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Version abrègée

La découverte de la supraconductivité à haute température dans les cuprates en

1986 a stimulé la recherche de matériaux fortement corrélés. La compréhension

des phénomènes dans les matériaux à haut Tc et l’espoir de découvrir ou de

fabriquer des matériaux avec des très hauts Tc reste la principale motivation dans

ce domaine. Parallèlement à l’étude détaillée des cuprates, la communauté de

l’état solide s’oriente vers la recherche de nouveaux matériaux dont la découverte

trouve un intérêt d’un point de vue technologique mais aussi car ils pourraient

permettre une meilleure compréhension des phénomènes « haut Tc ».

Mes travaux de thèse s’articule autour de trois points : i) étudier le rôle de

l’inhomogénéité dans les matériaux sous dopés. Ceci reste une des énigmes des

cuprates supraconducteurs ; ii) Etudier l’effet du désordre dans MgB2, supracon-

ducteur ayant des potentiels pour les applications ; iii) la découverte de nouveaux

matériaux supraconducteurs dans les dichalcogénures de métaux de transition.

Tous ces matériaux sont, d’un certain point de vue, des supraconducteurs non

conventionnels : les cuprates par leur haute Tc et par la symétrie du paramètre

d’ordre ; MgB2 par la supraconductivité à deux bandes et un Tc de 39 K ; et enfin

les dichalcogénures dont la supraconductivité apparâıt dans le bruit de fond de

la compétition entre les interactions.

Nous avons utilisé des mesures de propriétés de transport, tels que la résistivité

et le pouvoir thermoélectrique, pour comprendre le comportement de ces matériaux.

En plus de la température, nous avons appliqué des hautes pressions, des champs

magnétiques extrêmes et nous avons contrôlé le désordre créé par irradiation

électronique rapide.

Dans la première partie, je présente la dépendance en température de matériaux

de la famille dichalcogénures qui possèdent une structure 1T : 1T-TiSe2 et 1T-TaS2,

pour lesquels un état supraconducteur n’a jamais été observé dans l’état non

transformé. 1T-TiSe2 présente une phase CDW (onde de densité de charge) à

température inférieure à 220 K dont l’origine reste une question ouverte. L’exis-
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tence de cette phase peut être le résultat d’un mécanisme excitonique ou d’une

distorsion de type Jahn-Teller. Nous avons montré que 1T-TiSe2 est supracon-

ducteur dans une gamme de pression comprise entre 3 et 4 GPa. Cette gamme

de pression cöıncide avec le petit domaine CDW fluctuante avant sa disparition

à plus haute pression. Si l’état CDW est dû à des interactions excitoniques, alors

nos observations suggèrent qu’elles peuvent être aussi à l’origine de la supracon-

ductivité.

Le second dichalcogénure étudié est 1T-TaS2, pour lequel une phase isolante

de Mott apparâıt superposée à un état CDW commensurable. Avec l’application

d’une pression supérieure à 2.5 GPa, le matériau devient supraconducteur avec

une Tc de 5.9 K. De manière inattendue, la supraconductivité apparue à partir

d’une phase non métallique reste stable jusqu’au plus hautes pressions appliquées

de 24 GPa.

Dans la deuxième partie, j’ai essayé d’apporter ma contribution à la thématique

« supraconducteurs haute Tc ». Quelques cristaux de très bonne qualité de

Bi2Sr2PrxCa1−xCu2O8−δ sous dopés ont été sélectionnés. Nos avons étudié la na-

ture de l’état fondamental à basse température en appliquant de hauts champs

magnétiques. Même si des mesures ont déjà été effectuées par d’autres groupes

et ont montré qu’à fort sous dopage, l’état fondamental était isolant ; nous avons

montré qu’un échantillon avec un Tc de 15 K présente un comportement métallique

jusqu’à une pression de 60 T. De plus, nous avons montré qu’une distribution

inhomogène des dopants peut masquer entièrement l’état intrinsèque d’un supra-

conducteur haut Tc.

Dans la dernière partie, nous avons étudié MgB2 supraconducteur à deux

bandes par diffusion entre les bandes grâce à la règle de Matthiessen. Nous avons

fait une étude systématique de l’influence des défauts créés par une irradiation ra-

pide d’électrons. Nous avons trouvé que la loi de Matthiessen peut être appliquée

pour une concentration de défauts de la gamme obtenue. Nous avons par la suite

comparé l’influence de défauts sur la température critique et sur la résistivité

résiduelle dans MgB2 avec des supraconducteurs avec divers paramètres d’ordre.
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Nous avons trouvé que la vitesse de décroissance de Tc dans notre système est dans

la gamme de réponse d’un supraconducteur avec un paramètre d’ordre d’onde s.

Mots-clés : Supraconductivité, Propriétés de transport, Supraconducters

haute Tc, Dichalcogénures
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Abstract

The discovery of high temperature superconductivity in the cuprates in 1986 has

boosted the research in strongly correlated materials. One strong motivation was

and stays the understanding the high-Tc phenomenon with the hope that one

can ultimately engineer new materials with even higher Tc. Besides the in-depth

investigation of cuprates, there is a strong tendency in the solid state community

to find new superconductors, which by themselves are interesting for applications,

or by their properties they can contribute to the understanding of the high-Tc

phenomenon.

The program of my doctoral thesis was three-fold: i) to address one impor-

tant issue in the cuprate superconductors, that of the role of homogeneity in

the underdoped part of the phase diagram; ii) what is the effect of disorder in

MgB2 superconductor, which has high potentials for applications; iii) to discover

new superconductors in the family of transition metal dichalcogenides. All these

materials are in some sense unconventional superconductors. The cuprates by

their high Tc and the symmetry of the order parameter, MgB2 by its two-band

superconductivity and Tc of 39 K, and the dichalcogenides by the appearance of

superconductivity on the background of competing interactions.

Measurements of transport properties, such as resistivity and thermoelectric

power, were used to get insight in the behavior of these materials. Besides temper-

ature as variable, I applied high pressure, extreme magnetic fields and controlled

disorder introduced by fast electron irradiation.

In the first part I present the pressure dependent study of two members of

the transition metal dichalcogenides having 1T structure, 1T-TiSe2 and 1T-TaS2,

where superconductivity was never observed in a pristine sample. 1T-TiSe2 has

a CDW phase below 220 K which origin, weather it is driven by an excitonic

mechanism or by a Jahn-Teller distortion, is an ongoing question. By applying

pressure I showed that the pristine sample is superconducting in the pressure

range of 2.0–4.0 GPa. This range remarkably coincides with the short range
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fluctuating CDW before its disappearance at the upper pressure value. If CDW

is due to excitonic interactions than our observation suggest that it can be at the

origin of superconductivity, as well.

The second dichalcogenide is the 1T-TaS2, where a Mott-insulator phase ap-

pears on the top of a commensurate CDW. By applying pressure I was able to

melt that Mott-phase, and reveal that the material is superconducting above

2.5 GPa with Tc of 5.9 K. Unexpectedly, superconductivity is born from a non-

metallic phase, and stays remarkably stable up to the highest applied pressure of

24 GPa.

In the second part I tried to give my contribution to the field of

high-Tc superconductors. I carefully selected few high quality underdoped

Bi2Sr2PrxCa1−xCu2O8−δ sample, to address the nature of the low temperature

ground state by applying high magnetic field. Although former measurements by

other groups showed that at high underdoping, the ground state is an insulator, I

found that a sample with as low Tc as 15 K exhibits metallic behavior up to 60 T.

Furthermore, I showed that a inhomogeneous distribution of the doping atoms

can completely mask the intrinsic normal state of a high-Tc superconductor.

In the last part of my thesis I focused on the two-band superconductor MgB2

by studying the scattering between the

bands by the means of the Matthiessen’s rule. I made a systematic study of

the influence of defects created by fast electron irradiation, and found that the

the Matthiessen’s rule is satisfied for the defect concentration range I induced.

I further compare the influence of defects on the critical temperature and the

residual resistivity in MgB2 with superconductors with various order parameters,

and found that the decrease-rate of Tc in our system is within the range of a

response of a superconductor with an s-wave order parameter.

Keywords: Superconductivity, Transport properties, High-Tc superconduc-

tors, Dichalcogenides
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Chapter 1

Introduction

Superconductivity looks like a miracle. The fact that one can transport electrical

charge without resistance, without “paying” anything for this transport, without

heating up the wires, is far from being an ordinary thing. Furthermore, this

zero resistance state arrives without a herald: the resistance drops from a finite

value to zero suddenly at a critical temperature Tc. When Kamerlingh Onnes’

student reported him the zero resistance state below 4.1 K of Mercury in 1911

[1](Fig. 1.1(a)), the supervisor was suspicious. They had to repeat the experiment

several times before it became evident that they were facing a genuine discovery.

This sudden and fundamental disappearance of resistance was rewarded by the

Nobel Prize in 1913.

During the decades new superconductors were discovered, a wealth of exper-

imental results were accumulated which finally led to the understanding of the

microscopic mechanism of superconductivity by Bardeen, Cooper and Schrieffer

in 1957 [2]. The description of this macroscopic coherent quantum state by the

BCS theory merited also a Nobel Prize in 1972.

Because of the lossless electrical transport, magnetic levitation, quantum in-

terference etc., it was clear that this phenomenon is very important for appli-

cations and that the increase of Tc would be very beneficial. If Tc went above

liquid nitrogen temperature (77 K) one could dispense with the costly helium

1
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(a) The first observation of superconduc-
tivity by measuring the resistivity of Mer-
cury. (after H. K. Onnes, [1]).

(b) This ceramic material was the first of
a new class of high temperature supercon-
ductors (after Bednorz and Müller, [6]).

Figure 1.1: The two most important milestones in superconductivity. Both of
them have been awarded with a Nobel Prize.

liquefaction. Until the mid-seventies physicists and material scientists managed

to increase Tc up to 23 K (Nb3Ge) [3, 4, 5] but it seemed that it leveled off at

this value. Theorists suspected that there was an intrinsic upper limit for Tc, in

the 30 K ballpark.

The report of Bednorz and Müller in 1986 [6] which stated that in an oxide

material Tc might be higher than 30 K (Fig. 1.1(b)) arrived as a deus ex machina!

A few months later Wu and colleagues reported Tc of 93 K in YBa2Cu3O6 [7].

After that it seemed that the sky was the limit for Tc and a “gold-rush” started

for higher and higher critical temperatures. Besides many non-confirmed room

temperature or even higher Tc superconductors the overall accepted highest am-

bient pressure Tc is at 135 K in HgBaCuO superconductor [8]. The very same

compound under 15 GPa of pressure shows the onset of superconductivity at

164 K, the highest Tc known today (see. Fig. 1.2) [9]. The heroes of this new era,

Bednorz and Müller received the Nobel Prize in 1989.

The conventional superconductors (those discovered before 1974) and the
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Figure 1.2: The evolution of the superconducting transition temperature (Tc)
during the years. The drastic change in slope has happened in 1986 with the
discovery of high temperature superconductors.

high-Tc oxide superconductors are only two chapters in superconductivity. There

are many others which show that superconductivity is a robust phenomenon in

condensed matter.

Figure 1.3 summarizes, with a somewhat personal choice, the most interest-

ing superconducting families discovered in the last 30 years. Organic materials

which were considered as the archetypes of the electrical insulator still, the quasi-

onedimensional (TMTSF)2PF6 showed superconductivity in 1980 [10]. Since

then, by increasing the dimensionality of the organic conductors Tc has gone

up to 30 K in Rb3C60[11, 12]. The latest member of the carbon-based super-

conductors is the calcium intercalated graphite [13], which was surprising not

because of its “high” Tc, but by the fact that it had been missed in the heydays

of graphite intercalation in the 60’s and 70’s. It has been a subject of discussion

whether the mechanism of superconductivity in the low-dimensional organics is

the same as in e.g. lead, described by the BCS theory, where the coupling between
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Figure 1.3: Another subset of superconductors discovered in the last 3 decades,
excepting the cuprate superconductors. The large number of newly discovered
superconductors shows the vivacity of this topic in the condensed matter com-
munity.

electrons into pairs (the current carrying units in superconductors) is mediated

by lattice vibrations. There is less debate about the unconventional nature of

superconductivity in heavy fermion systems (discovered in CuCe2Si2 in 1979 by

Steglich [14]) and in Sr2RuO4 reported by Maeno in 1994 [15]. Probably these

materials are in the same class of superconductors as superconducting cobaltates

[16] and the high temperature cuprate superconductors where the role of strong

Coulomb repulsion and magnetism in the coupling is also suspected. They are the

subject of vivid interest among the theorists, trying to describe the microscopic

mechanism of superconductivity in these families.

In the case of MgB2 [17] the excitement had a different origin. Although MgB2

does have a lower transition temperature (Tc of 39 K, which is still rather high)

than some of the oxide-based, high-Tc superconductors, but since MgB2 appears

to be a simple, old-fashioned superconductor, it is much easier to work with and
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appears easier to manipulate. There is a very real likelihood that wires of this

material will be used to make superconducting electromagnets that will produce

the magnetic fields for machines such as magnetic resonance imaging devices

found in many hospitals. In addition there is also the hope that MgB2 will prove

to be useful for electronic applications as well. There are several advantages that

MgB2 has over traditional superconductors. First of all, a transition temperature

of 40 K means that it will be useful when cooled to temperatures near 20 K.

Whereas this is still a very low temperature (about -250 C) it is easily reached by

closed cycle refrigeration. This means that superconducting devices made from

MgB2 could be cooled without the need for liquid cryogens. In addition MgB2 is

lightweight and it has a very low electrical resistivity in the non-superconducting

state.

At the moment of writing this dissertation the hype is turned towards the Fe-

oxipnictide superconductors, which show Tc as high as 54 K. The major question

is related to the role of the magnetic Fe ion in superconductivity. Knowing the

speed of scientific progress, it would not be surprising that by the end of this

PhD work, all the questions would be answered!

In no lesser extent was the scientific community surprised by the supercon-

ductivity of the pillar of the information technologies, silicon, which also shows

zero resistance state with suitable doping. This is also true for the boron doped

diamond.

The mystery of superconductivity also stems from the fact that many of these

superconductors were discovered just by chance. One can have a feeling that

finding them is just a question of luck, like finding a jewel in the desert. For

example the cobaltate superconductor was discovered by a salesman who wanted

to sell a magnetometer and for demonstration he took off the shelf a longly

forgotten sample; MgB2 was known fifty years before it was cooled down below

liquid nitrogen temperature, etc. It also gives the false impression that by random

mixing of elements one can discover new, high temperature superconductors.

However, most of the superconductors are the fruits of tedious, well-thought
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research. Just to mention the case of the cuprates, Alex Müller has been working

on related compounds for many-many years among the oxides, even when nobody

gave a credit for his ideas.

It is widely believed that superconductivity will gain importance in the fu-

ture when energy will become more and more precious. Not only because using

superconductors the transport and energy storage will be more cost effective, but

relying on electrical energy will preserve in a greater extent our environment.

Using high magnetic fields and quantum interference devices in health care will

gain in importance, as well. Research and development in superconductivity are

picking up worldwide.

My research program during these four years was to refine a few parameters in

the already known superconductors Ba2Sr2CaCu2O8+δ and MgB2. In the former

case the question I wanted to answer is the ground state of an underdoped cuprate

superconductor. I have challenged the well accepted concept, that its ground state

is an insulator. In the case of MgB2 I have addressed the issue of defects on Tc

and the fulfillment or not of the Matthiessen’s rule. By introducing point defects

by fast electron irradiation I have performed a systematic study of the resistivity

of this compound.

Last but not least, my task was also to discover new superconductors by

applying high pressure as a tuning parameter. Two layered conductors were

chosen, 1T-TaS2 and 1T-TiSe2, which are different from cuprates in the sense

that the major interaction is not magnetism but the formation of charge density

waves by strong electron-phonon or excitonic interactions. I have managed to

find a superconducting phase in both compounds, and to map out the pressure-

temperature phase diagram.
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Chapter 2

Electronic properties of

two-dimensional conductors

One would naively expect that more dimensions results in deeper physics. How-

ever, research in the last 40 years has shown that Nature has chosen differently

– as we delve deeper into the physics of low dimensional materials, we find more

and more interesting phenomena to explain. Although some of the theories are

old, discussion is still running hot on many topics, mainly due to the subtle bal-

ance existing between electronic phases, resulting in rich but rather complicated

phase diagrams containing a multitude of exotic states. In the following section

I will attempt to give a brief introduction to the constantly growing and exciting

field of low dimensional physics, focusing on phenomena that are important in

understanding experimental results shown in the following chapters.

2.1 Electron-electron correlations

The simplest definition of a correlated electron system is a negative statement:

An electronic system is correlated when the electrons within it are not free. In the

free electron model description of metals, the valence electrons of the constituent

atoms become conduction electrons and move freely through the volume of the

11
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metal. They form a free electron Fermi gas, which is subject to the Pauli principle.

[1]

2.2 The Hubbard model

Usually electrons in a solid can be described using two basis set, the Wannier, and

the Bloch-basis. Let us choose in this section the Wannier [2] basis φn(r − Ri).

For these states we can introduce the standard creation c†niσ and annihilation

cniσ operators. They create and destroy the n-th localized Wannier state with

spin σ on the atom at the position Ri. First we only consider the two simplest

processes; the Coulomb repulsion between electrons on the same site, and the

kinetic (hopping) term, which describes the quantum mechanical amplitude that

an electron may hop from site Ri to Rj (or from Rj to Ri).

By using only these two terms in our model, we have already made one ap-

proximation. In the standard Hubbard model [3, 4, 5] we assume that each atom

has only one electron orbit and the corresponding orbital state is non-degenerate.

Of course, actual atoms can have more than one orbital and more than two elec-

trons in the corresponding states. The philosophy behind the Hubbard model is

that those electrons in other states do not play significant roles in the low-energy

physics of the system, and can be “forgotten” for the moment. Using the two

simple terms described above the Hamilton operator of the system can be written

as

H =
∑

ijσ

ti,jc
†
iσcjσ + UH

∑

i

ni↑ni↓ (2.1)

where niσ stands for c†iσciσ and is the electron number operator. In this form

there is no explicit long range interaction present, and the only two-electron term

acts between two electrons on the same site. However, there is a hidden long range

force in this description, which makes the situation much more complicated; the

Pauli exclusion principle (PEP). Electrons are fermions, and so the many body
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wave function must be antisymmetric under interchange of any two electrons. It

is possible to further simplify the formula by the expressing it in terms of the

dimensionless quantity U/t, which indicates whether the hopping or the Coulomb

repulsion force dominates. However, it is still not possible to determine the

relative importance of the two in relation to the Pauli exclusion principle, which

depends on the probability of finding two electrons on the same site. This quantity

is somewhat accounted for by the second crucial parameter involved in the model,

the electron density per spin n = 1
2N

∑

iσ c†iσcjσ which controls the total number

of electrons in the system. Each atom has space for at most two electrons, so n

can be in the range of 0 to 1.

2.2.1 Different ground states

The interpretation of the behavior of the Hubbard model is centered around

the competition of the three forces described above, on-site repulsion, hopping,

and PEP, controlled by the parameters t and U , and the correlations between

electrons that they induce.

Hubbard model in the case of a half filled band

Let’s first assume that on each atom we have one electron. In this case we have

a perfect half filled band. In the Hubbard model to put an extra electron on

that system we have to pay the energy cost of the Coulomb repulsion. If that

energy U is big the band will split into two subbands, with a gap in the middle.

If n is not perfectly equal to 0.5 the Fermi energy will cross either the upper,

or the lower Hubbard band, and in case of the perfect crystal, the material will

behave like a metal, however in the case of the half filled band n = 0.5 we have

an insulator.

So we have one electron on each site. Let’s come back to the half-filled band.

Half of the electrons has up spin, and half of them down. Due to the overlap

between the neighboring sites, the process when one electron jumps to one of
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Figure 2.1: The broadening of the bands (upper), and the density of the states
in the Hubbard model

its neighbors, and then back has finite probability. That process will cause the

broadening of the electron state to a band, and a lowering of the overall energy.

This hopping, again owing to the PEP can only take place if the spins of the

two electrons are antiparallel. Thus the U ≫ t > 0 introduces antiferromagnetic

correlation between neighbouring sites, and can be accounted for an effective

antiferromagnetic coupling between the neighboring spins. In the half filled band

we have an antiferromagnetic insulator, the Mott-insulator.

For that reasoning we used the condition that we have two separate Hubbard

bands. We have seen, that the hopping broadens the Hubbard band, and the

bandwidth is 2zt, where z is the number of the nearest-neighbor sites. In a square

lattice 2zt = 8t. As we increase t, for example by decreasing the distance between

the sites, there will be a point when the two Hubbard subbands will overlap, and

the material becomes a metal (Fig. 2.1). This is called the Mott-transition.
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Figure 2.2: Phase diagram of the two and tree dimensional Hubbard-model in a
mean field approximation, as a function U/t and n. It shows antiferromagnetic
(anti), ferromagnetic (ferro), paramagnetic (para), spiral-ferrimagnetic (s-ferri),
and spiral spin density wave (SSDW) states.(Figures from [6] (2D) and [7] (3D)

Ground states of the non half-filled band

In the last section we saw how the systems behaves in the case of half filled

band. It is even more interesting, what happens with the Hubbard-model if

we can control the number of carriers, either by adding extra electrons in the

upper Hubbard band, or by creating holes in the lower. In the mean field theory

calculation in two and three dimension shows the appearance of several new

phases. (Fig. 2.2) The mean field approximation seems to give back many of

the features of the tree dimensional metal. But in lower dimension, there are

many fine details and complications, like Van Hove singularities, nesting Fermi

surfaces, what might give rise to new phases. One of the most spectacular of them

is the non-conventional superconductivity with dx2−y2 symmetry, as in the case of

High-Tc superconductors. Several calculation shows that despite the fact that in
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Figure 2.3: The phase diagram as a function of hole concentration δ, on finite
temperature, coming from numerical calculation of the two dimensional Hubbard
model. (Figure from [8])

the Hubbard model, there is no explicit attractive interaction, the energetically

favorable ground state might be the condensate of Cooper-pairs [8], which can

be even further stabilized by adding new terms to the Hamiltonian. One of the

most common extensions is to add the possibility of hopping to further sites.

In the simplest case that means the second-nearest-neighbor interaction t′. The

importance of t′ can be better seen if we look on the theory proposed first by

P.W. Anderson [9]. As we start to remove electrons from the Mott insulator

(Fig. 2.4(a)), we create holes, and they can freely jump, and behave as free carriers

(Fig. 2.4(b)). But we still have the rest of the electrons, in an antiferromagnetic

state. It is somewhat natural to form singlets form the neighboring atoms, and

make a condensate of it (Fig. 2.4(c)). As we allow the next-nearest-neighbor

hopping, the possibilities to create resonating singlets is even more (Fig. 2.4(d)).

The ground state will be the superposition of all those singlet configurations,

without those where we have doubly occupied states.
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(a) The Mott insulator (b) Free holes

(c) The formation of the singlets (d) The formation of the singlets with t′

Figure 2.4: The cartoon of the Anderson model.
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2.3 Electron–phonon interaction

In the last section we were only focusing on the electrons, neglecting any in-

teraction between them except the bare Coulomb-repulsion. In this part I will

introduce some part of the physics involving the elemental excitation of the vi-

bration of the ions forming the lattice.

The Hamiltonian of an electron-phonon system can usually be written in the

form

H = Hel + Hph + Hel−ph (2.2)

where the terms can be expressed in the second quantised formalism,

Hel =
∑

k

ǫkc
†
kck

Hph =
∑

q

ωqa
†
qaq (2.3)

Hel−ph =
1√
N

∑

q,k

g(q,k)
(

a†
−q + aq

)

c†k+qck

for simplicity the spin and polarization indexes have been neglected. c†k(ck)

and a†
q(bq) are electron and phonon creation (annihilation) operators respectively,

ǫk is the bare electron energy, ωq is the phonon energy and is the electron-phonon

g(q,k) is the e−-ph interaction describing the scattering of electrons by phonons.

The above Hamiltonian can be understood as follows: In a lattice where the

atoms are oscillating around their equilibrium position, the free electron Bloch-

states are no longer eigenstates of the system. Due to charge-conservation, the

number of electrons is constant, but the number of phonons can change. Thus, the

electrons can interact with an oscillation of the lattice by creating, or annihilating

a phonon. It is important to notice that the total momentum of the crystal is no

longer conserved in this description. To fix this problem we describe the vibration
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Figure 2.5: The two types of the electron phonon interactions

of the crystal using phonons, and we use the reciprocal vectors of the lattice as a

parameter for the phonons and the electrons as well.

Now we can consider the joint set of the phonons and the electrons, and

observe that the total momentum is now conserved. Since the crystal momentum

is only defined modulo any vector G in reciprocal space, we can define two types

of processes. A normal process is when the electron momentum after the creation

or annihilation of a phonon remains in the Brillouin zone. In a so-called Umklapp

process, however, the final electron state has to be shifted by a reciprocal vector

G from an equivalent state in the first BZ.

2.3.1 Peierls instability, charge density waves

Due to the interaction described in the last section the energy of the electrons and

phonons are renormalized. The lowering in energy of a phonon mode, or phonon

softening, at a given q can be strong enough such that the expectation value of

the phonon number operator
〈

a†
qaq

〉

is nonzero. From that point, the numbers

of phonons with momentum q is finite, resulting in a condensation, which means

a deformation of the lattice. The order parameter of the resulting phase can be
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defined as

∆ =
1√
L

g
[

〈aq〉 +
〈

a†
−q

〉]

(2.4)

where g is the electron-phonon coupling constant, and L is the characteristic

length of the system.

The real space representation of this condensation is a modulation of the

crystal structure. The changes of atomic position can then be written in the

form

〈δRn〉 ∼
2 |∆|

g
cos (qRn + φ) (2.5)

But why would such a distortion be energetically favorable? There are two

competing energies involved in the CDW phase transition: on one hand the loss

of lattice energy associated with the distortion and on the other the gain of

electronic energy from the lowering of E near π
2a

As a result of the distortion, a gap will open at the boundary of the BZ. If the

new periodicity is chosen such that the gap opens at the Fermi energy, the system

achieves the maximal energy reduction. In order to observe the appearance of

the gap and calculate the energy reduction we will use the Fröhlich-Hamiltonian

(2.3). Since we are in the condensed state, the phonon operators can be replaced

by their average. We have seen as well that the periodicity of the new order will

be the Fermi wavelength, and therefore we will use q = kF .

H =
∑

k

ǫkc
†
kck +

∑

k

[

∆∗c†k−2kF
ck + ∆c†kck+2kF

]

(2.6)

It is useful to measure the energy from the Fermi-level. Using this convention

we can distinguish the c† and d† operators, which measure the energy at the kF

and −kF points respectively. Using these operators the previous Hamiltonian 2.2
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becomes,

H =
∑

k

[

ǫkF+kc
†
kF+kckF+k + ǫ−kF+kd

†
−kF+kd−kF+k

]

(2.7)

+
∑

k

[

∆∗d†
−kF+kckF+k + ∆c†kF+kd−kF+k

]

(2.8)

in matrix form;

H =
∑

k

=
(

c†kF+k d†
−kF+k

)





ǫkF+k ∆

∆∗ ǫ−kF+k









ckF+k

d−kF+k



 (2.9)

The beauty of this definition is that it is already in a bi-linear form, and therefore

can be diagonalized with a well chosen unitary transformation. To achieve this

we choose two new fermionic operator pairs in place of c and d.





αk

βk



 =





uk vk

−v∗
k u∗

k









ckF+k

d−kF+k



 (2.10)

and

(

α†
k β†

k

)

=
(

c†kF+k d†
−kF+k

)





u∗
k −vk

v∗
k u∗

k



 . (2.11)

To satisfy the unitarity,

|uk|2 + |vk|2 = 1 (2.12)

the correct u and v must be found to diagonalize the Hamiltonian.

H =
∑

k

= E
(α)
k α†

kαk + E
(β)
k β†

kβk (2.13)
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After a short calculation we can arrive at following forms for u and v:

u2
k =

1

2



1 +
ξk

√

ξ2
k + |∆|2



 , v2
k =

1

2



1 − ξk
√

ξ2
k + |∆|2



 (2.14)

where

ξk =
ǫkF+k − ǫ−kF+k

2
. (2.15)

According to the equations above,

E
(α)
k = ǫkF+k

∣

∣u2
k

∣

∣

2
+ ǫ−kF+k

∣

∣v2
k

∣

∣

2
+ (∆ + ∆∗) ukvk, (2.16)

E
(β)
k = ǫkF+k

∣

∣u2
k

∣

∣

2
+ ǫ−kF+k

∣

∣v2
k

∣

∣

2 − (∆ + ∆∗) ukvk (2.17)

These are the dispersion relations of the new quasi particles. By the (2.14)

definitions of u and v, and the approximation that bare electron energy near the

Fermi surface can be assumed linear,

ǫkF+k = µ + ξk = µ + ~vF|k| (2.18)

ǫ−kF+k = µ + ξk = µ − ~vF|k| (2.19)

, we find for the dispersion relation of the new quasiparticles,

E
(α)
k = µ +

√

(~vF|k|) + |∆|2 (2.20)

E
(β)
k = µ −

√

(~vF|k|) + |∆|2 (2.21)

(2.22)

In Fig. 2.6, these two dispersions can be seen in addition to the opening of a gap

with a magnitude of 2∆. Since the gap opens at the top of the Fermi-level, the

one dimensional system becomes an insulator. This is referred to as the Peierls

instability [10].
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Figure 2.6: The one particle excitation spectrum of the spin density wave state.

Now we have seen that reducing the size of the Brillouin-zone lowers the

overall energy of the electronic system by reducing the energy of electrons at the

Fermi-surface, a process which involves modulation of the positions of the atoms

in the crystal.

We have to emphasize that the formalism we derived is only strictly valid in

one dimension. In two dimensions the energy balance between the introduced

crystal stress and the lowering in of the electron energy is more subtle. To see

that we have to use the electron susceptibility χ(q). It tells us how an electron

system, described by the electronic density ρ(q) behaves under the influence of

an external potential V (q).

ρ(q) = −χ(q)V (q) (2.23)

The susceptibility can be written in the form firs derived by Lindhard in 1954

[11]. In the static limit

χ(q) =
∑

k

fk+q − fk

Ek+q − Ek

, (2.24)

where fk and Ek stands for the Fermi-Dirac function and the energy eigenvalues

at the given k vector, respectively.

That can be explicitly calculated in the one dimensional case if we take a
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Figure 2.7: The Lindhard function in one two and three dimension

linear dispersion relation near EF .

χ(q)1D = −e2n(ǫF ) ln

∣

∣

∣

∣

q + 2kF

q − 2kF

∣

∣

∣

∣

(2.25)

n(ǫF ) is the density of states at the Fermi energy, and e is the elemental charge.

This function has a logarithmic singularity at 2kF , what means that the electron

system is unstable against any perturbation with a characteristic wavelength

λ = π/kF .

The singularity of the susceptibility can be understood if we take a closer look

on the original Lindhard form 2.24. In the denominator we have the difference of

the electron energy in two points of the Brillouin zone, separated by the q vector.

If we take the simplest isotropic case in three dimension, the Fermi surface is

a sphere. After shifting it with the q vector, the intersection of is a ring. The

total volume of that ring compared to the surface of the sphere is small. In two

dimension where the intersections are two point the result is still finite. But in

one dimension the Fermi surface consist of two points, which can be overlapped

by a single translation. That produces singularity, and we get the 2.25 form of

the susceptibility. Those three cases are plotted in Figure 2.7.

In 3D materials the susceptibility can be enhanced if two parts of the Fermi
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Figure 2.8: The band splitting of the Cu2+ S = 1/2, L = 2 band in a cubic
environment (without Jahn–Teller distortion), and in a tetragonal environment
(with Jann–Teller distortion)

surface are parallel. Those are called the nesting Fermi surfaces. That is still

favors the one dimension, because in case of the Fermi “line”, very big portion of

it can be mapped to each other. In two dimension it is more difficult to imagine

a geometry where important parts of the Fermi surface are parallel. Therefore

is it questioned if the nesting can be driving force of the charge density wave

formation in two dimensional materials [12].

2.3.2 Jahn–Teller distortion

In the previous subsection it was shown that in low dimensional systems where

the electrons are confined by strong electron-lattice coupling, distortion of the

crystal can be energetically favourable.

It is however also possible to imagine a situation where the lowering of the

energy of the ”‘core”’ electrons yields the displacement of the atoms. This is

called the Jahn–Teller effect [13].

Picture a crystal where Cu2+ (d9) ions are coordinated in an octahedral en-

vironment (i.e. a cubic crystal field). The local crystal field splits the 5-fold

degenerate L = 2 levels split into two groups: The threefold degenerate t2g level

consists of the dxy, dyz and dzx orbitals, and are filled with 6 electrons. The

upper eg states consist of the dx2 and dx2−y2 orbitals and are occupied by the

three remaining electrons.
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If we now for example distort all the octahedra along the z-axis, the symmetry

is of the crystal is reduced to tetragonal and a further splitting is induced in the

scheme discussed above. This splitting may be easily calculated if the distortion

is sufficiently small so that it can be treated as a perturbation. The t2g level is

now split into a low lying doubly degenerate level containing four electrons (dxz,

dyz), and a higher energy state (dyz) with two electrons. The total energy of the

three states, however, remains unaffected. On the other hand, the upper eg level

is split into a lower dx2 level containing two electrons and a higher dx2−y2 with the

final electron occupying it, resulting in a lowering of energy. While this energy

gain is proportional to the size of the distortion, it is balanced agains the stress

induced in the structure, which generally scales as the square of the distortion

parameter. Thus, the Jahn–Teller occurs mainly for small displacements.

2.4 Superconductivity

The third fenomena that might be the last in that chapter, but the most im-

portant, is superconductivity. Superconductivity has been long considered the

most extraordinary and mysterious property of metals. The basic and still most

comprehensive theory was developed by Bardeen, Cooper, and Schrieffer in 1957

[14]. They showed that in case of an existing attractive interaction between the

electrons, the bound two electron states are energetically favorable. They can

be looked as an effective boson, what can condensate without breaking the Pauli

exclusion principle.

They have discovered as well, that the mediating attractive potential is created

by the exchange of phonons. The fact that so far no other mediating force has

been confirmed (although there were several proposed), shows the geniality of

that discovery.

The Hamilton operator of the BCS theory, is the most intuitive in a second

quantized formalism. Here for the simplicity we will only consider the case where

the two electrons have opposite momentum. It can be sown, that Cooper-pairs
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having zero total momentum, have the lowest energy, therefore that simplification

is valid.

HBCS =
∑

k,σ

ǫkc
†
k,σck,σ +

1

2

∑

k,k′,σ,σ′

Vk,k′c†k′,σc
†
−k′,σ′c−k,σ′ck,σ. (2.26)

The first part is the usual kinetic energy term. And the second term describes

the scattering of a bound electron pair with opposite momentum. If we restrict

the pairs to the spin singlet state, as it is in the nature, we can further simplify

the form:

HBCS =
∑

k

ǫk

(

c†k,↑ck,↑ + c†k,↓ck,↓

)

+
∑

k,k′

Vk,k′c†k′,↑c
†
−k′,↓c−k,↓ck,↑. (2.27)

. From that point we can follow almost step by step the development, what we

used for the charge density waves. First we define an order parameter, with the

operator what have a non-vanishing average. In the case of the superconductivity,

those are the Cooper-pairs. Therefore the order parameter has the form of:

∆k = −
∑

k′

Vk,k′ 〈c−k′,↓ck′,↑〉 , ∆∗
k = −

∑

k′

Vk,k′

〈

c†k′,↑c
†
−k′,↓

〉

(2.28)

Since in the case of superconductivity we are not restricted in one dimension, the

momentum dependence of the potential and therefore the order parameter has

to be explicitly written. Now if we use the general mean field approach, we can

write the 2.26 in the following form:

HBCS =
∑

k

ǫk

(

c†k,↑ck,↑ + c†k,↓ck,↓

)

+
∑

k,k′

Vk,k′c†k′,↑c
†
−k′,↓ 〈c−k,↓ck,↑〉 (2.29)

+
∑

k,k′

Vk,k′

〈

c†k′,↑c
†
−k′,↓

〉

c−k,↓ck,↑ +
∑

k,k′

Vk,k′

〈

c†k′,↑c
†
−k′,↓

〉

〈c−k,↓ck,↑〉 .

(2.30)

It is ofter convenient not to fix the total number of electrons, by introducing the
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chemical potential µ. Therefore from now we use ξk = ǫk − µ. By writing ∆k

into 2.29 we get the following equation:

HBCS =
∑

k

ξk

(

c†k,↑ck,↑ + c†k,↓ck,↓

)

(2.31)

−
∑

k

(

∆kc
†
k,↑c

†
−k,↓ + ∆∗

kc−k,↓ck,↑

)

+
∑

k,k′

Vk,k′

〈

c†k′,↑c
†
−k′,↓

〉

〈c−k,↓ck,↑〉 .

(2.32)

That equation has the same form as 2.6, except an extra constant term. Therefore

we can use the same method the diagonalize the Hamiltonian. The only thing

we have to be aware of is the k dependence of ∆.

It isn’t surprising that we can use the same formalism for both fenomena.

The two can be brought even further, if in case of the charge density waves, we

forget about the explicit form of the phonon operators, and use them only as

an effective potential. The operator what will have a non vanishing average in

that case will be the c†k+qck. The average of that operator will represent the

modulation of the charge density with a period of q. The first mentioning of su-

perconductivity together with the charge density waves was done by Frölich, who

suggested that the sliding movement of a long range ordered CDW would happen

without resistivity. Although his derivation was correct, any small perturbation

of the potential (impurity, finite phonon lifetime, or the commensurability of the

wave with the underlying lattice) would pin the density wave, and prevent the

zero resistivity conductance.

Recently Gabovic et. al showed, using a Green-function approach, that the

two symmetry braking phase are closely related [15, 16].

Therefore it is natural to expect that superconductivity and charge density

wave can compete or even coexist in some materials, depending on the fine details

of the electronic structure.
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Chapter 3

Transition metal dichalcogenides

3.1 Introduction to the transition metal dichalco-

genides

3.1.1 Crystal structure and polytypes

Layered transition metal dichalcogenides have attracted a widespread interest

because of their unique electronic properties. Originally they were discovered as

the prototypical 2D CDW compounds, however later on the discovery of super-

conductivity at low temperature made them subject to an intense study. Their

general formula is TX2, where T stands for the transition metal (usually Nb, Ti

or Ta) and X for the chalcogenide (S, Se or Te). They are layered materials where

the transition metal layer is sandwiched between two chalcogenide layers. The

bond between the T and X atoms in a sandwich is a strong (largely covalent)

one, and these atoms form a two-dimensional hexagonal lattice. The TX2 layers

are coupled in the crystal by weak van der Waals forces. The structure of the

crystals is schematically shown in Fig. 3.1. The weak van der Waals interaction

between the layers admits various ways for the relative position of for the TX2

sandwiches in a crystal along the axis perpendicular to the layers (the c axis).

Therefore these layered compounds exist in several modifications. The two most
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Figure 3.1: Schematic structure of the layered structure

common types of layer packing are shown in Fig. 3.2.

Depending on the relative placement of the layers TMDs can have different

polytypes referred as 1T, 2H, 3R, 4Ha, 4Hb. The starting number in this notation

denotes the number of X-T-X sandwiches perpendicular to the plain in the unit

cell, the T, H, R distinguish the trigonal, hexagonal or rhombohedral symme-

try of the structure. Sometimes additional lower case superscript is required to

distinguish the otherwise similarly labeled polytypes.

The inter-layer interaction is weak in these materials, therefore the physi-

cal properties are largely determined by the two-dimensional structure of the

lattice inside the sandwich. But there is an other factor what influences the elec-

tronic structure, and therefore many properties of the crystals, the symmetry of

the atoms in the layers. Good example is the three modifications of TaS2 what

exhibits a strong dependence of the electronic properties on the type of the struc-

ture. The 1T-TaS2, what is one subject of our study as well, has trigonal packing.

It shows clearly non-metallic behavior at room temperature, with a slowly and

almost linearly increasing resistivity with decreasing temperature. The 2H poly-

type with octahedral packing, what has the second biggest unit cell, behaves as
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X

T

1T

2H

Figure 3.2: The different intra-sandwich coordination of the atoms in the two
simplest 1T and 2H polytypes.

an ordinary metal at T = 300 K. In the case of 4Hb-TaS2, the trigonal and the

octahedral layers are alternating, resulting metallic resistivity along the layers

(because of the sandwiches with octahedral coordination), and semimetallic in

the perpendicular direction.

Another typical property of layered compounds is the anisotropy of the phys-

ical properties. The overlap of the orbitals between the layers is small, because

of the van der Waals interlayer interaction, however in the layers the electrons

can move more freely.

The anisotropy is mirrored in the electronic resistivity. In example of the

2H-NbSe2 that anisotropy is 2140 at room temperature and goes up to 7200 at

8 K [1] (Fig. 3.3).

The two dimensionality of the electronic motion is well presented in other

electronic (optical) and magnetic properties as well.

But the anisotropy manifests itself not only in the electronic properties. The

crystals are easy to cleave between the layers producing good quality atomically
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Figure 3.3: The resistivity anisotropy of 2H-NbS2.(Figure from [1])

flat surfaces. That, and the presence of the charge density wave instability made

them a perfect subject to many studies using surface sensitive techniques like

AFM, STM or ARPES.

It is also relatively easy to grow thin films of transition metal dichalcogenides

by epitaxial methods making them good candidates for industrial applications,

or physical studies. One example is the use of NbSe2 in quantum interferometer

devices as a weak coupling element.

3.1.2 Electronic structure

We have seen that the different crystal symmetry, therefore the different coordi-

nation of the atoms gives rise to different measured electronic structures. Let’s

see what electron structure calculation can tell about it TaS2. That material

exist in both 1T and 2H polytype.

The decomposed density of states of 1T-TaS2 is shown in Figure 3.4(a). We

notice that Ta d state splits into three lower t2g (dz2 , dyz, dx2−y2 ) and two

degenerate upper eg (dxy, dyz ) orbitals because of the lattice distortion. There is

a strong hybridization between S p and Ta d bands which appears in valence and

conduction bands, which determines the transport properties of 1T-TaS2. The

states in this range consist of three main peaks that are assigned to p dπ and
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(a) (b)

Figure 3.4: Projected density of state of 1T (a) and 2H (b) TaS2. The calculation
was done using full-potential linearized augmented plane wave method. (Figure
from [2])

p dσ bonding, Ta t2g antibonding (-1.2–2.9 eV) and eg antibonding (3.4–6.0 eV)

bands. The value of the density of states at the Fermi level (N(EF )) is 1.512

states/eV per unit cell.

Figure 3.4(b) presents the decomposed density of states of 2H-TaS2 . Owing to

the trigonal prismatic coordination of Ta atoms in the 2H phase, there appears a

dramatic change in decomposed density of states compared to that of 1T phase.

The eg subband shifts towards lower energies while the t2g subband shifts to

higher energies with respect to Fermi level, meanwhile, the band gap between t2g

and eg disappears. In other words, Ta d state splits into upper subband (dxy, dyz,

dxz ) and lower narrow subband (dz2 , dx2−y2). A strong hybridization between S

3p and Ta 5d appears in a range from -6.2 to 6 eV. The states in this range are

assigned to p dπ and p dσ bonding (-6.2–0.5 eV), t2g and eg antibonding (-0.5–

6.0 eV) band. The N(EF ) is 4.67 states/eV per unit cell what is about 3.1 times

higher that in the 1T phase.

The difference in the electronic structure is also visible on the shape and

structure of the Fermi surface (Fig. 3.5). While in 1T-TaS2 the Fermi surface

contains 6 leaves with a small pocket in the middle, in the case of 2H-TaS2 the

pocket in the middle of the Brillouin zone is much larger, comparable in size to
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(a) (b)

Figure 3.5: The Fermi surface of 1T (a) [3] and 2H (b) [4] TaS2.

the leave on the side of the BZ. The differences are crucial to understand the

structure of the CDW.

3.1.3 Intercalation complexes

The weak van der Waals interlayer coupling allows the introduction of extrane-

ous atoms, or molecules between the layers. They can change the spacing and

therefore the band overlap, as well as can donate to or take electrons from the

sandwiches. That gives us a unique control over the electronic properties of those

materials.

Intercalation has been done on all the important TMD families. Nb and Ta

compounds have been modified with organic molecules, ammonia, and metals.

Introducing octadecilamin has changed the interlayer spacing of 2H-TaS2 form

2 Å to 56 Å [5].

It is important to mention that the original aim of the organic molecule in-

tercalation was to modify the relative position of the layers without extrinsically

changing the electronic structure. However several studies proved that the N

atom present on all the organic molecules used, suffered a partial electron loss,

donating them to the TMD layers. That has been seen in photoelectron emission

in case of TaSy(Py)1/2 [6], or in the NMR spectrum of the NbS2(Py)1/2 [7].
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Figure 3.6: The measured Fermi-surface of 1T-TiSe2. There are pockets around
the L-M points, coming from the Ti 3d band, and a hole like pocket around the
Γ point originating from the Se 4p band.

3.2 1T-TiSe2

3.2.1 Presentation of 1T-TiSe2

Among the many transition-metal dichalcogenides with charge-density-wave CDW

instabilities, 1T-TiSe2 is particularly interesting because it is the only group IVB

transition-metal compound showing a structural transformation. Upon cooling

down from room temperature, 1T-TiSe2 undergoes a second-order phase transi-

tion at Tc = 200 K into a commensurate CDW phase associated with a (2×2×2)

superlattice that forms without the precursor of an incommensurate phase. The

three CDW vectors are zone boundary wave vectors connecting the Γ point with

the L points of the hexagonal Brillouin zone.

The Fermi-surface contains a hole pocket coming from the Se 4p-type valence

band, at the Γ point, and electron pockets from the Ti 3d-type conduction band

around the L points. The overlap between the p and the d-band is 120 meV

resulting a relatively small Fermi surface (Fig. 3.6).

The pockets of the Fermi surfaces are relatively small. The estimated volume,

relative to the volume of the Brillouin-zone is 1% for the Se 4p pockets, and 6%

for the Ti 3d pockets. That small value is the strongest reason against the Fermi-
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surface nesting driven CDW transition, proposed originally by Di Salvo et al. [8],

based on the similar mechanism found to be important in other low dimensional

transition metal dichalcogenides.

One year later White and Lucovsky [9] suggested an antiferroelectric tran-

sition mechanism in which the CDW formation is the result of a soft phonon

inherent to the lattice system itself. Their model was motivated by the obser-

vation that the lattice and electronic polarizabilities, as determined from optical

reflectivity spectra, are unusually large for 1T-TiSe2.

Antiferroelectricity is involved in the recently proposed model of Bussmann-

Holder and Büttner [10] as well. According to their calculation the microscopic

origin of the CDW is an incipient antiferroelectricic state, driven by anharmonic

electron-phonon interaction.

Still in 1977 Hughes [11] had different idea. He brought the Jahn-Teller effect

in the discussion. According to band structure calculations, the lowest lying d-

band is slightly lower in the transition metal dichalcogenides of the 2H polytype,

then for the 1T materials. That was supported by the atomic displacements,

where a transition from octahedral (1T), to trigonal prismatic (2H) structure

was observed. In his scenario the movements of the atoms would lover the Ti 3d

band. Keeping the Jahn-Teller mechanism in mind Whangbo and Canadel [12]

pointed out, that the energy lowering which stabilizes the structural transition is

not originating from the lowering of the Ti 3d band. It should be more associated

with the shortening of the Ti-Se bond, which lowers the Se 4p band.

Using the band-type Jahn-Teller effect Motizuki [13, 14, 15, 16] and coworkers

developed a microscopic theory, involving strong wave-vector-dependent electron-

lattice interaction. That was further supported by the ARPES measurement of

Rossnagel et al. [17], where they have seen the predicted lowering of the 4p-type

Se band due to the band distortion at the Γ point resulting in a p-d gap of about

100 meV (Fig. 3.7).

The fourth big group of the theories to explain the origin of the charge density

wave transition in 1T-TiSe2 is based on an excitonic-insulator mechanism. For
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(a) (b)

Figure 3.7: Energy distribution curves for the MΓAL plane of the Brillouin-zone
taken with 13 eV photons at room temperature a) and 100 K b). Se 4p emission
features are indicated by circles. Solid lines denote the position of the midpoint
of the leading edge. Photoemission intensity is represented in a linear gray scale
with white corresponding to high intensity. (Figure from [17])

that material it was originally proposed by Wilson in 1977 [18, 19], but the original

idea is much older, coming from Kohn from 1960 [20, 21]. If the carrier density

in a semimetal is low, the Coulomb interaction between the carriers is weekly

screened, and thus the electrons and thermally excited holes can exist in a bound

state, mediated by the electrostatic forces. That bound state is called exciton.

If the excitonic binding energy is bigger then the gap between the electrons and

holes, the system becomes unstable towards the formation of the excitons. This

can drive a transition to a condensed ground state of excitons with the periodicity

defined by the spanning vector connecting the conduction band maximum with

the valence band minimum. In the 1T-TiSe2 the electron and the hole density

around the Γ and L points is relatively small (< 1022 cm−3), making it an ideal

candidate to be the first material with excitonic condensed state. Recently a

calculation based on a BCS-like theory of the excitonic condensed state, showed

a big renormalization of the bands at high symmetry points, and a very large

transfer of the spectral weight to the backfolded bands. Those changes of the

electronic structure were observed with high resolution ARPES measurement by

the same group (Fig. 3.8) [22].
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(a) (b)

Figure 3.8: Measured a) and calculated b) band structure of the 1T-TiSe2 above
(upper) and below (lower) the charge density wave phase transition, around the
Γ and M points. There is good agreement in the large renormalisation of the
bands crossing the Fermi surface. (Figure from ) [22])
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Figure 3.9: The CuxTiSe2 T − x electronic phase diagram. Open circles rep-
resents the charge density wave transition, and the filled circles corresponds to
the superconducting temperature. Shaded circle at x = 0.04 indicates that the
transition is just below the accessible temperature range, and the dashed circle at
x = 0.06 marks the barely visible CDW transition. The inset shows the crystal
structure of CuxTiSe2. (Figure from [23])

1T-TiSe2 attracted further interest when recently superconductivity was dis-

covered in copper intercalated samples [23] (Fig. 3.9). Right after the publication

an innumerable variety of mechanisms have been proposed linking the CDW

phase and the superconductivity.

Zhao et al. [24] has performed angle resolved photoemission spectroscopy on

copper intercalated single crystals and has found that the chemical potential is

raised with the Cu content, what makes the charge density wave formation less

favorable. Parallel to that, the density of states is raised what destabilizes the

electronic system against superconductivity (Fig. 3.10). In their picture the two

low temperature phases are not competing, the appearance of the superconduc-

tivity at the intercalation where the charge density wave phase is suppressed is

just a coincidence.

To reveal the nature of the gap S. I. Li et al. preformed in plane thermal
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Figure 3.10: Photoemission intensity map for 1T-TiSe2 (a, b) and
1T-Cu0.065TiSe2 (c, d) at 250 and 20 K at the Γ and L points. Arrows illus-
trates the band folding, and Se1 and Se2 labels the two Se 4p band.(Figure from
[24])

conductivity κ measurement on Cu0.07TiSe2. The thermal conductivity of a metal

at low temperatures, according to the Wiedemann-Franz law (WF), has the form

of

κ(T ) = σLT + O(T 2), L =
3

2

(

kB

e

)2

. (3.1)

Using the assumption that the WF-law is obeyed by this material, they sepa-

rated the residual, temperature normalized, linear term of the thermal conduc-

tivity κ0/T , where κ0 = κ(T = 0). The assumption was further verified with

the measurement under magnetic field, where they found that the material sat-

isfies the WF-law within an error bar of 4%. κ0/T is a good measure of the

gap symmetry. For unconventional superconductors with nodes in the super-

conducting gap, the nodal quasiparticles will contribute a finite κ0/T in zero

field. They found that κ0/T = 0 within the precision of the measurement and

conclude that the Cu0.07TiSe2 is most probably an s-wave superconductor, with

a fully gapped excitation spectrum. Furthermore they compared the magnetic

field dependence of κ0/T normalized by its normal state value κN/T , with dif-

ferent other superconductors. The very distinct difference from the behavior of
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Figure 3.11: Normalized residual linear term κ0/T of Cu0.07TiSe2 plotted as a
function of H/Hc2. For comparison similar data are shown for the clean s-wave
superconductor Nb, The dirty s-wave superconducting alloy InBi, the multiband
s-wave superconductor NbSe2, and an overdoped sample of the d-wave supercon-
ductor Tl-2201. (Figure from [25])

a multiband superconductor NbSe2 shows that Cu0.07TiSe2 is a single gap s-wave

superconductor. (Fig. 3.11)

Furthermore, Bud’ko et al. preformed thermal-expansion and magnetization

measurements under pressure on CuxTiSe2 samples in the intercalation range

0 ≤ x ≤ 0.08 [26]. They found, by analyzing the ambient pressure thermal-

expansion data, a well defined difference in intercalation behavior of the samples

below and above 3%. From the magnetization measurement under pressure they

found different behavior for the pressure dependence of the Tc at three different

x. At x = 0.06 the Tc is increasing from 2 K with a rate of 0.05 K/GPa, at

the intercalation of X = 0.1, the TC is decreasing from 3 K with the rate of

0.025 K/GPa, and in the middle range x = 0.08 Tc has a maximum value of

4 K at the pressure of 0.5 GPa (Fig. 3.12(a)). From these three facts naturally

came the question whether the three can be scaled together with the ambient

pressure dome as a function of x. It is possible, by using the scaling factor

of 5.6 · 10−2 1/GPa, the points can be matched. The only thing questioning the
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(a) The pressure dependence of the super-
conducting transition temperature.

(b) Pressure dependent Tc and TCDW ,
scaled on a x-T phase diagram.

Figure 3.12: Measurement of the pressure dependence of the transition temper-
atures of the 1T-CuxTiSe2 at different intercalation level.

relevancy of that scaling is the fact that the scaling factor is different for the CDW

transition: in order to match the TCDW points they had to use 1.5 · 10−1 1/GPa

(Fig. 3.12(b)).

From all those measurements, ideas it is clear, that in that material choice

between the two ground states depends on a very subtle balance. With the dop-

ing due to the intercalation it is possible to change that balance to favor the

superconductivity, but the control on the sample quality is less good. There-

fore comparing different measurements, made on different samples coming from

different sources is more difficult. Our aim was to change the balance with a

parameter what we have more control on, and is ideal for low dimensional ma-

terials: pressure. Pressure has the great advantage that can be applied on the

very same carefully selected sample. Therefore the comparison of the results

between the different measurements, and the tracing of the development of the

phases can be more adequately done. It is also important that pressure does not
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creates extra defects, what is important when we are dealing with superconduct-

ing materials, since impurities can behave as pair breaking centers, and suppress

superconductivity.

3.2.2 Results

I measured the transport properties of the pristine 1T-TiSe2 over a wide pressure

range of 0–10 GPa and temperature of 0–300 K. The change of pressure in that

material is an ideal tool to change the electronic structure without introducing

phase inhomogeneity and disorder. Moreover the subtle balance in the electron

density is crucial for the charge density wave formation giving us the hope to be

able to suppress it and reveal the low temperature properties of the underlying

electronic structure.

The single crystal 1T-TiSe2 samples used in this investigation were grown by a

conventional vapour transport method and the sample stoichiometry was verified

by X-ray and resistivity measurements. The RRR of a typical crystal was about

10-20. The resistivity was measured using a standard 4-point technique, with an

AC current of 5 mA and a frequency 16.98 Hz. Pressure measurements in the low

pressure range 0–2 GPa were obtained in a self-clamped piston cylinder pressure

cell. Pressure measurements in the pressure range 2–25 GPa were performed in

an opposed anvil Bridgeman-type pressure cell with tungsten carbide or sintered

diamond anvils and quasi-liquid steatite medium. A dilution refrigerator was

used to achieve base temperatures of 70 mK.

Figure 3.13 shows the temperature-dependence of the resistivity in the pres-

sure range 0–10 GPa. The onset of the charge density wave (CDW) appears as

a well-defined broad peak in the resistivity below 200 K. With the application of

pressure the peak subsides gradually, until at about 3 GPa there remains no iden-

tifiable sign of that feature in the resistivity measurements. The development of

the CDW can be followed on the thermoelectric power measurement (Fig. 3.14).

Above the CDW transition the resistivity varies linearly with temperature as ex-
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Figure 3.13: Pressure dependent resistivity measurements of 1T-TiSe2. The tran-
sition into the charge density wave (CDW) phase is identified with the broad peak
in the resistivity below 200 K. The inset shows the emergent superconducting
transition at pressures above 3 GPa. The maximum superconducting transition
temperature observed was about 1.8 K at pressures slightly below 3 GPa.

pected of a well-behaved phonon scattering dominated system. On the other hand

the TEP increasing with decreasing temperature what is clearly a non metallic

behavior. That behavior stays to higher pressure as well. At low temperatures

the temperature dependence of the resistivity shows some surprising deviations

from the expected model of electron scattering on phonons and static impurities.

The precise determination of the temperature exponents will be discussed later.

Let’s see somewhat in more details the TEP. If the sample was a simple metal

above Tp = 220 K at ambient pressure, then one may apply the formula describing

the thermopower of a free electron gas with an energy- independent scattering

rate:

S(T )metal =
π2k2

BT

2|e|EF

(3.2)

It shows that it should linearly increase with temperature, and the slope is
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(a) (b)

Figure 3.14: (a) Pressure dependent thermoelectric power measurements of of
1T-TiSe2 up to 2.3 GPa, The thermopower is negative in the whole temperature
range indicating n type carriers. (b) The thermopower plotted as a function of
1/T .

inversly proportional with the bandwidth. If it were a semiconductor, TEP would

follow the:

S(T )ins. ∼
kB

|e|
∆

2kBT
(3.3)

where ∆ is the semiconducting energy gap. In the case of conduction by

electrons and holes, this expression contains a prefactor

µe − µh

µe + µh

(3.4)

where µe, and µh denote electron and hole mobilities.

From figure 3.14, it is clear, that the absolute value of the TEP is decreasing

above Tp, therefore does not behave as a metal. If we plot the TEP data as

function of 1/T , one can see that even above 220 K it follows relatively well the

semiconducting behavior (Fig 3.14(b)). One could not claim that this is just an

apparent semiconducting behavior because of the CDW fluctuations above the

Peierls transitions. We should remind ourselves, that even in quasi-1D systems
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like (TaSe4)2I, where CDW fluctuations scatter electrons so much that the re-

sistivity is non-metallic, the TEP still gives a metallic-like behavior [27]. If the

system is non-metallic, the transition cannot be as of Peierls nature. This puts

forward other mechanisms for the CDW formation.

From fig 3.14, one can see that below Tp a second type of carrier appears,

which mobility overtakes the TEP behavior, and S starts to decrease below 120-

140 K.

In Figure 3.15 I summarize our findings in a pressure-temperature phase dia-

gram. The broad peak in the resistivity associated with the CDW phase transi-

tion becomes indistinguishable at pressures above 2.5 GPa. Above that pressure

the system is believed to be metallic. Superconductivity persists in the pressure

range 2–4 GPa. The residual resistivity or the resistivity in the normal state

just above the superconducting transition at 2 K shows dramatic variation with

pressure until about 4 GPa with some marginal linear decrease in that quantity

at higher pressures. At the critical pressure of about 3 GPa there appears to be

a slight local maximum in the residual resistivity coinciding with the maximum

transition temperature of the superconducting dome. Incidentally, as can be seen

from the lower part of the graph in Fig.3.15 there is a depression in the resis-

tivity temperature exponent n, derived from the standard resistivity equation

ρ = ρ0 + AT n. The resistivity exponent was obtained through a fitting proce-

dure over the low temperature region up to 30 K of the data. More explicitly,

everywhere outside the pressure range of 2–4 GPa (where the superconductivity

occurs), the exponent of the temperature dependent contribution hovers around

the value of n ∼ 3. In the 2–4 GPa pressure region n drops to a value of n ∼ 2.6.

Although a resistivity thermal exponent of n ∼ 3 is not entirely unfeasible within

a phonon picture, the unusual pressure dependent dip is reminiscent of a quantum

critical scenario, especially when coupled to a residual resistivity peak above the

superconducting dome. Both of these features may be attributed to the presence

of remnant quantum fluctuations in the system at pressures below 4 GPa. The

nature of these fluctuations is unclear, but could be linked to the softening of
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Figure 3.15: Pressure-temperature phase diagram of 1T-TiSe2. On the left axis
we see the evolution of the CDW transition temperature and the superconduc-
tivity transition temperature ×10 with pressure. The superconducting dome is
constrained to the pressure ranges of 2–4GPa. On the right axis we see the pres-
sure dependence of the residual resistivity over the entire investigated pressure
range.
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the possible excitonic CDW state in 1T-TiSe2. Since the anomaly in the resid-

ual resistivity and in the power law exponent happen in the very same pressure

window where superconductivity is present, it is reasonable to suppose that they

are linked. We think that the fluctuating excitonic interaction (equivalent to the

fluctuating short range CDW) is at the origin of the coupling of charges into

Cooper pairs.

Figure 3.16: Temperature dependence of the magnetic critical field in 1T-TiSe2 in
the temperature range 70–700 mK, shown as a function of (T/TC)2. Notably, the
critical field follows BCS like H(T ) = H(0)(1 − T/T 2

C) temperature dependence
at low temperatures, as expected for most conventional superconductors. (inset)
The resistivity versus magnetic field curves.

A further hint for this conjecture is coming from the measurement of the up-

per critical field in the superconducting state. It is unusually low for an electron-

phonon mediated superconductivity. In Figure 3.16 we present the temperature

dependence of the critical fields at a pressure of 3.5 GPa, plotted nominally as a

function of T 2 in the temperature range 70–700 mK, the Tc at the investigated

pressure was about 480 mK. We have to note that the critical field does de-

pend quadratically on temperature, in agreement with the conventional behavior

H(T ) = H(0)(1 − T/T 2
C) but there appears to be some slight upward deviation.
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That could be compared to the formalism of a positive curvature anomaly (PCA)

predicted by Maekawa [28] for dirty 2D systems. The main justification for this

effect lies in the enhanced Coulomb repulsion in a soft localisation regime, which

is weakened in a perpendicular magnetic field [29]. The upturn signals the pres-

ence of weak localisation in the material. The superconductivity in 1T-TiSe2 is

shown to be extremely sensitive to magnetic field, the HC(0) is estimated to be

around 200 Gauss.

On the Figure 3.17 I summarize the knowledge about the superconductivity

and the melting of the CDW phase in 1T-TiSe2 on a three dimensional phase

diagram. On the right side I plotted the data coming from the intercalated

[23] samples, together with the few points published in the paper of Bud’ko

[26]. On the left side I plotted my results, as a function of pressure. Looking

on those two walls naturally appears the question, what the low temperature

phase diagram looks like on the intercalation-pressure plane. Do we have two

distinct superconducting bubbles, or a superconducting “tunnel” connects the

two discovered phases. In the case of the intercalation is seems clear that partial

doping of the material can be accounted for the instability of the charge density

wave phase, what gives rise of the superconductivity, and turns the material into

a good metal [30]. In the case of pressure it is more difficult to imagine any

doping effect, which might be a reason for having two bubbles. That might be

further supported by the different behavior of the thermoelectric power in the

Cu intercalated samples and the samples under pressure. On the other hand in

both cases, the superconductivity appeared at the point where the CDW phase

disappears, supporting the idea of quantum-criticality induced superconductivity,

where at least partially, the fluctuations of the charge density wave phase play an

important role in the formation of superconductivity. That might suggest that the

two domes are connected with a superconducting tunnel. Further measurements

of Cu intercalated samples under high pressure are needed to discover the physics

in that very important part of the parameter-space.
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Figure 3.17: The three dimensional phase diagram of 1T-TiSe2, in the
temperature-pressure-intercalation space. The points on the temperature-
intercalation plane are coming from the paper of Morosan et al. [23], and the
pressure dependence of the intercalated samples from the publication of Bud’ko
et al. [26].

3.3 1T-TaS2

3.3.1 Presentation of 1T-TaS2

1T-TaS2 has a simple crystal structure, composed of planes of tantalum (Ta)

atoms, surrounded in an octahedral arrangement by sulphur (S) atoms, see insert

on Fig. 3.18. Even at ambient pressure, a variety of phases are present including

a metallic phase at high temperatures, an incommensurate charge density wave

(ICDW) phase below 550 K, a nearly commensurate charge density wave (NC-

CDW) phase below 350 K, and a commensurate charge density wave (CCDW)

phase below 180 K. The charge density wave (CDW) state in 1T-TaS2 is mostly

driven by the Fermi surface instability, resembling a Peierls instability in (quasi)

one dimension. The Peierls-like instability is, however, substantially more com-

plex in 1T-TaS2 then in many other systems. That is supported by the measured

and calculated Fermi surface shown on the Figure 3.19.
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Figure 3.18: Ambient pressure phases of 1T-TaS2. The phases are: a metal-
lic phase at temperatures above 550 K; a charge density wave phase (ICCDW)
above 350 K; a nearly commensurate charge density wave phase (NCCDW) above
190 K; a commensurate charge density wave CCDW Mott phase below 190 K;
additionally there is a trigonal phase present solely during the warming up cy-
cle between 200–300 K [31, 32, 33]. Also shown are the Ta atom distortions in
the fully commensurate phase (see insert at low temperatures) and the crystal
structure of 1T-TaS2.

Figure 3.19: The measured and the calculated Fermi-surface of the 1T-TaS2. The
calculation was made using density functional theory. On the left figure, the BZ.
in the CDW phase is marked as well.
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Figure 3.20: (a) Scanning tunneling microscopic image of the incommensurate
phase of 1T-TaS2. (b) Fourier transformation of (a).(Figure from [32])

The incommensurate charge density wave phase

The first modulation of the electronic density occurs below 550 K. In that phase

the original lattice parameter a0 = 3.346 Å, and the wavelength of the density

wave aICDW = 11.811 Å are incommensurate to each other aICDW/a0 = 3.35,

creating a homogeneous long range ordered CDW state. (Fig. 3.20) The CDW

wave vector and the lattice vector are parallel to each other and leads to a partial

gapping of the FS.

That phase exhibit metallic behavior. That is in an agreement with the finite

electron density seen in angle resolved photoemission spectroscopy (Fig. 3.21)

[34], which comes form the non-gapped part of the Fermi-surface.

The nearly-commensurate charge density wave phase

At temperatures below 350 K the structure of the charge modulation changes.

Ambient pressure X-ray studies in 1T-TaS2 reveal, that instead of the long

range ordered incommensurate CDW system, the material develops commen-

surate CDW domains of hexagonal shape [35, 32]. Those islands are separated

by regions where the phase of the modulations changes rapidly, connecting the

different domains. (Fig. 3.22)

The electrons in the commensurate CDW domains are strongly bound, the

carriers responsible for the conduction are coming from the inter-domain space.

The decrease of the interdomain space, and the increase of the domain size (Fig.
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Figure 3.21: Angle resolved photoemission spectra recorded above, and below the
ICCDW-NCCDW phase transition. A clear Fermi edge, with finite electron den-
sity at the Fermi-level can be seen. The inset shows the photoemission intensity
as a function of temperature in arbitrary unites at 180 meV (figure from [34]).

Figure 3.22: (a) Scanning tunneling microscopic image of the nearly-
commensurate phase of 1T-TaS2 The commensurate domains, and the domain
walls are clearly present. (b) Fourier transformation of (a).(Figure from [32])
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Figure 3.23: The domain size in the nearly-commensurate charge density wave
phase of 1T-TaS2 (Figure from [36])

3.23) is responsible for the clearly non-metallic increasing resistivity.

The removal of the electrons from the Fermi edge can also be seen in ARPES,

as shown on Figure 3.24. At the same time, the three Hubbard subbands, which

are characteristic signs of the commensurate structure, and therefore will be

explained more detailed later, become more pronounced.

The NCCDW phase has been subject of numerous experimental and theo-

retical investigations at ambient pressure. Previous theoretical approaches in-

voked mainly phenomenological treatments, based on sophisticated versions of

the Landau-type functional, which neglect the microscopic mechanism [37, 38].

However, the main mechanism behind the creation of the textured phase has been

established to lie in the tendency of the system to maximize the electronic gap at

a given deformation amplitude. This is achieved by (inter)locking the deforma-

tions at (three) commensurate wave-vectors, counteracted by the remnant part

of the electrons in the states above the gap. This leads to a microscopic mech-

anism for domain formation, common to many electronic systems with (charge

or spin) density waves close to commensurability [39]. Essentially, the discom-

mensuration in the textured phase hosts the electrons that do not fit below the

gap that exists in the commensurately ordered domains. Notably, however, the

size of the domains in 1T-TaS2 is substantial, containing several hundred of TaS2

units within each layer (from 5 to 20 David star structures containing 13 TaS2
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Figure 3.24: Photoelectron intensity of the 1T-TaS2 at different temperatures.
The gradual development of the three Hubbard subbands, and the decrease of
the intensity at the Fermi level can be seen (figure from [34]).
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unit each). Therefore, long range Coulomb forces are expected to control the

charge transfer involved in the domain size and organization as it will be shown

later. This important aspect was omitted in former theoretical treatments of the

NCCDW phase in 1T-TaS2.

The commensurate charge density wave phase

The CCDW phase is geometrically the simplest among the CDW phases in this

material. The displacement of the atoms leads to the formation of David star

clusters, where twelve Ta atoms within the layer move inwards toward a thir-

teenth central Ta atom. The stars interlock by forming a triangular superlattice

(Fig. 3.18, insert). However, this deformation does not fully gap the electronic

system, with only twelve out of the thirteen electrons of the new unit cell oc-

cupying the electronic states below the energy gap created by the deformation.

The “thirteenth” electron presides above the deformation-induced gap [40]. The

enigma of high resistivity of this phase was resolved by pointing out that the

system stabilizes by simultaneously developing a Mott insulator state from the

electrons above the gap [41, 42], latter confirmed by other experiments including

spectroscopic methods [43, 44] (Fig. 3.25).

It should be noted that the formation of the David-star clusters also involves

displacements perpendicular to the plane, causing a periodic swelling of the TaS2

layers [45, 46]. This CCDW-Mott phase was found to be sensitive to doping

[47, 43], disorder induced by irradiation [48], and pressurization [49].

3.3.2 Goal of the experiment

From the rich phase diagram of the 1T-TaS2 it is clear that the balance between

the different phases is very fragile. Due to the Mott-localization, it is impossible

to see what is the reason for be the ground state of the electrons, what gives

the semimetallic behavior at intermediate temperature. Pressure is an ideal tool

in that case to suppress the localization, and affect the balance between the
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Figure 3.25: Temperature dependent photoelectron intensity of the 1T-TaS2 at
the Fermi-energy, and at the binding energy of 180 meV, collected during a whole
cycle of cooling down (open symbols) and warming up (closed symbols). The two
steps in the transition are due to the CDW states bound to the impurities on the
surface. It is important to notice, that even after the first order phase transition,
there is a finite electron density at the Fermi-energy decreasing further with
temperature. Those are the 13th electrons localized in the middle of the David-
stars.
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CDW phases. The c-axes displacement of the atoms in the David-stars can

be suppressed by pushing the layers closer to each other. Due to the sandwich

structure of the material we could expect that the pressure will mainly reduce the

c-axes lattice parameter, and the effect on the a-b plane might be negligible. That

is supported by the big difference in the compressibility along the two directions

α‖ − α⊥ = 1.04 · 10−3 kbar−1 and αV = 2.27 · 10−3 kbar−1 [50].

3.3.3 Results

I have carried out resistivity and thermoelectric power measurements on 1T-TaS2

under pressures ranging from 0–25 GPa and temperatures ranging from 1.3–300 K

(Fig. 3.26(a)). At temperatures below 250 K we observe a first order transition

from the NCCDW to the CCDW phase at temperatures below 250 K, which

melts with a pressure of 0.8 GPa.

This can be followed on change of the thermoelectric power as well. (Fig. 3.27)

It shows a distinct behavior from TiSe2. At high temperatures the TEP starts

from a positive value and changes sign showing the two-band nature of conduc-

tion, electrons and holes, which is compatible with the complex band structure

of the system. Above the nearly commensurate-commensurate phase transition

the TEP stays low, showing that there are some free carriers between the com-

mensurate regions which are strongly scattered, resulting in the non-metallic

temperature behavior of the resistivity. At the transition the TEP changes sign,

becomes positive, and jumps up to huge values. Despite this first order-like phase

transition, and despite the semiconducting like behavior of the resistivity, TEP

does not show the 1/T dependence. It rather flattens out reminescent of a con-

figurational entropy contribution to TEP which gives a temperature independent

contribution (kB/e) ln
(

1−c
c

)

(where c is the density of charge carriers per site).

At low temperatures it picks up some T-dependence, presumably because some

correlation effects. As we increase the pressure the melting of that Mott phase

is even more visible in the TEP, were the hole-like low temperature contribution
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(a)

(b)

Figure 3.26: Resistivity in the pressure range of 0–25 GPa and temperature
range of 1.3–300 K. Figure (a) shows that the temperature dependence of the
resistivity is largely non-metallic over the entire temperature range for pressures
of 0–4 GPa; the low temperature upturn in the resistivity that relates to the
variable-range-hopping conduction in the Mott phase [41, 42] disappears above
0.6 GPa; first traces of the superconductivity are observed at an approximate
pressure of 2.5 GPa, with a TSC of 1.5 K; metallic-like behaviour develops for
low temperatures at pressures of 4–8 GPa; fully metallic behaviour is present at
pressures greater then 8 GPa. Figure (b) clearly demonstrates that the super-
conductivity first develops with pressure within the non-metallic phase.



62 Chapter 3. Transition metal dichalcogenides

0 50 100 150 200 250 300
−50

0

50

100

150

200

T [K]

S
 [µ

 V
/K

]

 

 
0.4GPa
0.75GPa
0.8GPa
1GPa

(a)

0 50 100 150 200 250 300
−25

−20

−15

−10

−5

0

5

10

T [K]

S
 [µ

Ω
/K

]

 

 

0.8GPa

1GPa

1.5GPa

2GPa

(b)

Figure 3.27: Thermoelectric power of the 1T-TaS2 in two different pressure range.
The figure (a) shows a broader pressure scan from 0–0.2 GPa, whereas the (b) is
a zoom on the higher (0.8–2 GPa) pressure range

completely disappears.

At low temperatures the resistivity saturates to finite residual values that

shift lower and lower as the pressure is increased. The transition from the in-

commensurate to the nearly commensurate CDW phase appears as an increase

in the resistivity in the temperature range of 120–300 K for the whole pressure

range. The first confirmed signatures of superconductivity appear at 1.5 K and

2.5 GPa. The superconductivity arises from the non-metallic low temperature

phase, which continuously evolves from the NCCDW state at ambient pressure.

In addition, at around 4-5 GPa, the resistivity saturates to a plateau-like

temperature dependence below 50 K. The value of this low temperature residual

resistivity drops as the pressure increases, and a metallic-like signature stabilizes

in the low temperature ranges. Above 8 GPa, the resistivity is metallic over

the entire investigated temperature range, although the temperature dependence

remains unconventional.

Let me summarize my findings in a pressure-temperature phase diagram

(Fig. 3.28). The Mott localization and the CCDW phase are fully suppressed

at pressures of about 0.8 GPa. The NCCDW phase persists to pressures of

7 GPa and may be visualised as roughly hexagonal CDW domains suspended in
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Figure 3.28: The temperature-pressure phase diagram of 1T-TaS2. The Mott
localization is suppressed, closely accompanied by the melting of the commen-
surate CDW phase at a pressure of 0.8 GPa; the lattice structure in the lat-
ter phase is composed of interlocking David stars. The nearly commensurate
CDW phase extends over the pressure range of 1–7 GPa, and may be visualised
as roughly hexagonal domains suspended in an interdomain phase, indicated in
gray. The first signatures of superconductivity appear from the nearly commen-
surate CDW state, and remain roughly at 5 K throughout the entire pressure
range of 3–25 GPa. In the pressure range of 8–25 GPa the system is metallic
over the investigated temperature range when above the superconducting transi-
tion temperature. The drawing above the phase diagram indicates the probable
deformation patterns in the system at low temperature, as discussed in the text.
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an interdomain phase [35, 32]. The domains are expected to become progres-

sively smaller as the pressure increases. The first signatures of superconductivity

appear in the NCCDW phase and remain roughly at 5 K throughout the entire

pressure range of 3–25 GPa. For pressures of 8–25 GPa the system is metallic over

the investigated temperature range when above the superconducting transition

temperature.

The questions which emerges from this new phase diagram address the melting

of the CCDW Mott state, the origin of the textured NCCDW phase in relation

to that state, the appearance of superconductivity in a pristine 1T system, which

remains apparently insensitive to both pressure and the melting of the charge

order.

3.3.4 Discussion

The exceptional assembly of electron-phonon coupling, nesting effects and Coulomb

interaction combine to construct the elaborate phase space of 1T-TaS2. In order

to understand the many complexities of this system it is important to consider

the microscopics of the different phases at ambient pressure and their possible

evolution under pressure. I will address each of the above posed questions sepa-

rately.

Meltdown of the Mott phase

The standard way of influencing the Mott phase is to affect the ratio between

the Coulomb repulsion and the bandwidth. These two relevant energy scales

correspond to the parameters U and t of the single-band Hubbard Hamiltonian,

usually used to describe the Mott transition (Eq. 2.1). For the special case of the

triangular lattice of David stars in 1T-TaS2, t and U map to the overlap of the

electronic wave functions defined by the deformation localized at David stars, and

the Coulomb interaction of the electrons above the gap within the same David

star, respectively.
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The qualitative understanding of the observed phase transition comes from the

insight that pressure changes both of the relevant energy scales, by decreasing the

swelling of the planes related to the David star deformations in the CDW state.

In particular, by reducing the deformation, the pressure diminishes the CDW

gap and increases the screening capacity of the electrons below the gap (i.e. the

inter-band contribution to the dielectric function)). Similarly, the pressure also

weakens the potential that defines the local wavefunction, thereby increasing

its extension and the wavefunction overlap integral. Both of these mechanisms

simultaneously increase t and decrease U , leading to a decrease in the ratio U/t.

The Mott state melting occurs naturally at a critical value of this ratio [51].

Nature of the textured phase

Since the nearly-commensurate phase is created from domains, containing David-

star structures, where the Coulomb interaction plays one of the key roles, it is

impossible to avoid its effect in the theoretical description of the NCCDW phase.

I fully include this aspect of the charge transfer, when considering the forma-

tion of domains in the NCCDW phase in 1T-TaS2. The two limiting cases of this

charge relocation leave the domains either as a lightly (self-)doped Mott state, or

fully depleted, where all the extra electrons are in the interdomain space. I com-

pare the Coulomb energy per particle involved in the formation of fully depleted

domains, Ec with the electronic energy gap ∆ in the domains. The case of Ec ∼ ∆

implies a Coulomb controlled textured phase. The alternatives, unrestricted by

the long range Coulomb forces, relate to Ec ≪ ∆ and Ec ≫ ∆ signifying fully

depleted and slightly doped Mott phase domains, respectively. Figure 3.29 shows

the results of a calculation, for different domain sizes and organization in suc-

cessive layers. The calculation is performed for a Kagome patchwork with two

different stacking alignments. (For the details of the calculation see App.A)

Stacking A considers an axial alignment of domains and interdomain triangles in

successive layers, and has been experimentally observed in 1T-TaS2 (see Fig. 3.29,

Stacking A). The shifted positions of the domains between adjacent planes resem-
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ble a closely packed face centered cubic (FCC) structure [35]. Stacking B refers

to a hypothetical case of an exact axial superposition of the domains between the

planes, for comparison (see Fig. 3.29, Stacking B). The calculation shows that

the deviation from the observed Stacking A structure induces a big change in

the Coulomb energy. The calculations demonstrate that the experimentally ob-

served stacking and sizes of the domains support Coulomb controlled texturing

and depletion of the domains.

Figure 3.29: The results for the Coulomb energy calculation for two different do-
main stacking as a function of domain size. The lower line (blue), corresponds to
an axial arrangement of domains (hexagonal) and interdomain spaces (triangu-
lar) between adjacent layers (stacking A), as deduced from experiment [35]; the
upper line (red) shows, for comparison, the Coulomb energy for a hypothetical
axial domain stacking between successive layers (stacking B). The green dashed
box depicts the values of domain sizes that were experimentally observed in the
NCCDW phase at ambient pressure. We note that the Coulomb energies cal-
culated for these values are comparable to the energy of the gap, hinting at a
possible Coulomb-controlled phase separation.

We can conclude that the NCCDW phase of 1T-TaS2 at ambient pressure,

is an example of a Coulomb-interaction controlled and commensurability driven

electronic phase separation. This state extends to very low temperature upon

pressurization, where superconductivity occurs.
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Superconductivity in the textured phase

Within the conventional picture, the CDW and superconducting ground states

compete against each other, because both result in a gapping of the single-particle

electronic spectra at the Fermi level. Indeed, the superconductivity in 1T-TaS2

appears as soon as the fully commensurate CDW phase is suppressed at low

pressures of 0.8-1 GPa, suggesting a mutual exclusion of each other. On the

other hand, no notable competition is observed in the pressure range of 1–7 GPa

within the NCCDW phase where the CDW and superconductivity coexist.

Figure 3.30: Resistivity taken at 6 K as a function of pressure. Sharp decrease
in resistivity accompanies the suppression of the Mott-localised phase; linear
residual resistivity pressure dependence accompanies the gradual melting of the
CDW domains in the nearly commensurate CDW phases; a shoulder-like anomaly
in the pressure range 4–7 GPa may be associated with the complete dissociation
of the CDW domains with pressure; above 7 GPa the residual resistivity again
behaves linearly with pressure. The scattering of electrons on the CCDW islands
dominate the resistivity below 7 GPa

To illustrate this point we consider the behaviour of the normal-state resis-

tivity as a function of pressure (Fig. 3.30). Technically, we take the normal-state
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or the residual resistivity to be the resistivity at 6 K above 1 GPa. Below that

pressure the resistivity is dominated by a variable range-hopping regime in the

Mott state, (see Fig. 3.26(a)) and 6 K is just above the superconducting transi-

tion temperature in the whole pressure range. The residual resistivity decreases

gradually above 1 GPa until approximately 4 GPa. This may be explained by

the shrinking of the CDW domains with pressure and an increased fraction of

electrons in the interdomain phase. In the pressure range of 4–7 GPa, we see

a shoulder-like anomaly in this effective residual resistivity. This probably indi-

cates a complete dissociation of the CDW domains into a uniform, fluctuating

background of weak distortions. Above 7 GPa the pressure dependence of the

residual resistivity is less significant. It is worthwhile noting that the residual

resistivity decreases by 4 orders of magnitude between 0 and 8 GPa.

It is quite normal to assume that the superconductivity forms within the

metallic interdomain spaces of the NCCDW phase. Thereby, incidentally, the

competition between the CDW and superconductivity is avoided in the NCCDW

phase through a phase separation in real space on a microscopic scale. Thus,

the superconducting state remains rather insensitive to the size, and even the

disappearance of the domains brought on by the pressure change. On the other

hand, we may assume that the domains appear as scatterers of the electrons in the

normal state, which would explain the manifest sensitivity of the normal-state

resistivity to the collapse of the CCDW domains around a pressure of 7 GPa

(Fig. 3.30).

I may postulate that the electron-phonon coupling that is inherent in the

CDW state vastly helps the superconductivity in undeformed parts of the system.

Combined with the phase separation on microscopic level, this would lead to the

conclusion that the same parts of the Fermi surface are being affected by the

CDW and the superconductivity transitions. This has been recently observed in

2H-NbSe2 [52] — another member of the TMD compounds, where an analogous

indifference of the superconductivity with respect to the CDW transition has

been detected [53], with some evidence for a textured phase based on a triple
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CDW state [54, 55].

Compete or coexist?

There are several pictures relating charge ordering and superconductivity that

exist in the literature; all of them turn out to be inconsistent with our phase dia-

gram. We can rule out the possibility of superconductivity rooted in a manner of

a self-doped Mott phase [56, 57]. This scenario is unlikely because of a significant

charge transfer from the CCDW domains to the interdomain space within the NC-

CDW phase, and the insensitivity of the superconductivity to the disappearance

of the CDW state. For that same reason, no sign of charge or spin-ordering fluc-

tuations facilitating superconductivity are established to be present in 1T-TaS2

contrary to some other low-dimensional materials [58, 59]. On the other hand,

our phase diagram of 1T-TaS2 is remarkably similar to that of some of the or-

ganic layered superconductors κ-(BEDT-TTF)2X [60], although on a different

pressure scale. Recent studies have uncovered numerous similarities, especially

those revolving around the appearance of the pseudogap, between the layered

organics, the superconducting cuprates and several dichalcogenide superconduc-

tors, advocating separate origins for the pseudogap and the superconducting gap

[61, 62]. 1T-TaS2 may be sited within this framework by the presence of two

types of order presumably accompanied by two distinct gaps in the pressure re-

gion between 1 GPa and 7 GPa. In addition, the relation between the electronic

phase separation and superconductivity has been extensively considered for the

cuprate systems in the form of stripes [63, 63, 64, 65, 66], and recently observed

by scanning tunneling microscopy [67].

Conclusion

I have investigated the possibility of pressure induced superconductivity in the

transition metal dichalcogenides with 1T structure.

In the case of the 1T-TiSe2 I found that pressure suppresses the charge density
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wave phase, and superconductivity occurs in the pressure range of 2.0–4.0 GPa.

This range remarkably coincides with the short range fluctuating CDW before

its disappearance at the upper pressure value. By looking the pressure depen-

dence of the thermoelectric power we found further evidence that the mechanism

responsible for the CDW formation is excitonic. Those two findings suggest that

excitoning interactions can be the origin of the superconductivity as well.

In 1T-TaS2, the interplay between charge density waves and superconductiv-

ity, spanning from the localized CCDW Mott phase to unconventional metallic

states is readily and controllably tuneable by the application of external pressure.

Although the superconducting phase shares a few common features with the su-

perconductivity in a number of layered superconductors that have been subject to

extensive interest in recent years, there are a number of key differences. The re-

markable insensitivity of the superconducting phase to the changes in the normal

state; the development of a Mott phase at low pressures as well as an excep-

tional variety of CDW phases, among those the textured non-metallic phase that

hosts superconductivity. All combined, they emphasize the importance of this

material in the still perplexing field of electronic collective phenomena. In the

future 1T-TaS2 would particularly benefit from further studies of the normal and

superconducting states under pressure, by X-ray structural , Raman and infrared

measurements.
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Chapter 4

Underdoped Bi2Sr2CaCu2O8−δ

high Tc superconductor

The high temperature superconductivity in a copper-oxide family has been dis-

covered in 1986 by Bednorz and Müller. This discovery by all means has revolu-

tionized solid state physics, at least the sub-field of strongly correlated materials.

Despite the more than two decades elapsed, the solution of the high Tc is still

missing. This is due to difficulties both in theoretical description of a doped Mott

insulator and the the complexity of the materials showing this phenomenon. Some

theoretical models, e.g. t− J model, rely on the importance of magnetic interac-

tion in the coupling of charges into Cooper pairs, since the parent compound is a

antiferromagnetic Mott insulator which doping with charges shows the zero resis-

tance state. Recently, ARPES measurements have shown the presence of strong

electron-phonon coupling in these materials, which have revitalized models which

put this interaction in the first plan. From the experimental point of view one of

the greatest challenge is the sample quality. Most of these materials consist of 4-5

different elements. It is difficult to achieve a high chemical and structural order

in single crystals. This is especially true for the samples in which underdoping

is required by substituting one element for another (e.g. Ca or Pr) or by oxygen

depletion. Nevertheless, it is a general opinion that in-depth study of underdoped
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cuprates is primordial for the unraveling of the high-Tc phenomenon.

One of the claims in this field is that the ground state of the underdoped

cuprates is insulating. This notion was based on the observations that one super-

conductivity is suppressed by high magnetic field, the temperature dependence of

the resistivity is that of a semiconductor and not that of a metal. Our conjecture

was that the origin of this observation is sample inhomogeneity. After suppress-

ing the superconducting state, the non-metallic part of he sample is dominating

the overall response.

Since in our Institute we have an excellent single crystal growing facility,

where high quality underdoped crystals have been made, we have decided to

address this issue in this thesis. Magnetic fields up to 16 Tesla were applied in

our laboratory for certain samples, but the major part of the measurements was

carried out in the 50 T pulsed field facility of the Laboratory of Pulsed Magnetic

Fields in Toulouse.

4.1 Introduction

High-Tc cuprates are quasi two dimensional materials. In their structure the

central part is the conducting copper-oxygen plain (bi-layer or tri-layer in cer-

tain families) which is separated by several other insulating oxide planes. A

copper oxygen plane is represented in figure 4.1. by the sketch of the atomic

orbitals which determine the electronic structure of these materials. 4.1. Among

the cuprates Bi2Sr2CaCu2O8 and its derivatives have the strongest anisotropy

in their transport properties between in-plane and out-of-plane behaviors [1] (of

the order of 105 - 106) and therefore are the most 2D conductors among the

high-Tc cuprates. The idealized crystal structure of Bi2Sr2CaCu2O8 is shown in

Figure 4.2. It should be noted, however, that excess oxygen atoms are incorpo-

rated in the BiO plane, resulting in a clear superstructure modulations [2] which

is believed not to have a major influence on Tc. The Tc of Bi2Sr2CaCu2O8 can be

controlled by changing the oxygen stoichiometry (annealing in oxygen or in a vac-
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Figure 4.1: The structure of the copper oxygen plane. Copper (red) is represented
with the 3d9 dx2-dy2 orbital, and oxygen (black) with the closed 2p shell.

uum) or by substituting Y, Pr or other rare-earth elements for Ca. The highest

Tc for this compound is 95 K. To the carrier concentration of 0.16 hole/Cu corre-

sponding to this Tc the name of optimum doping is attributed. Below and above

this carrier concentration we are speaking of underdoped and overdoped cuprates.

As-grown Bi2Sr2CaCu2O8 samples are close to the optimum doping (Tc ∼ 90 K).

Holes are depleted in the Y or Pr substituted samples Bi2Sr2Ca1−xYxCu2O8, and

they become insulating (Tc = 0 at around x ∼ 0.5).

The electronic structure of Bi2Sr2CaCu2O8 has been extensively studied by

various electron spectroscopic techniques, including angle-resolved photoemission

spectroscopy (ARPES) [3, 4, 5] because of the high quality and stability of cleaved

surfaces. One of the latest issues coming from these measurements, in the notion

of the two energy gaps in the superconducting state. The superconducting gap

– an energy scale tied to the superconducting phenomena – opens on the Fermi

surface at the superconducting transition temperature in conventional BCS su-
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Figure 4.2: The unit cell of the Bi2Sr2CaCu2O8 with the lattice parameters.
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Figure 4.3: The phase diagram of Bi2Sr2CaCu2O8, as a function of hope doping
p. Below the maximum Tc is the underdoped region, and above is the overdoped.

perconductors. In the high-Tc cuprates going towards the underdoped side an

additional gap opening was observed, called pseudogap (opens at T ∗ well above

Tc) which relation to the superconducting gap remains open.

Whether the pseudogap is a distinct phenomenon or coming from Cooper-

pairs without macroscopic phase coherence above Tc is one of the central questions

in high-Tc research. Although some experimental evidence suggests that the two

gaps are distinct, this issue is still under intense debate. The crucial piece of

evidence to firmly establish this two-gap picture is still missing.

As mentioned above one major difficulty in the study of High-Tc supercon-

ductors is the sample quality. Due to the complex structure, cuprates tends to

develop inhomogeneity, what can appear on very different length-scales. Recent

high resolution scanning tunneling microscopy study showed that microscopic

electronic inhomogeneity might be an intrinsic property of the High-Tc super-

conductors [6].

According to these measurements the local electronic density (LDOS), even

in a good quality single crystal, is very inhomogeneous. In the interpretation of

these measurements, due to strong Coulomb repulsion electronic phase separation
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Figure 4.4: A comparison of an integrated LDOS map, and its corresponding
superconducting gap map of a pure single crystal Bi2Sr2CaCu2O8. a) 600×600 Å
LDOS map measured in a constant current mode. To remove the modulation due
to the well ordered topological atomic structures, Fourier filtering was used. b)
Superconducting gap map, obtained simultaneously with the LDOS map on the
same location, showing the spatial variation of the superconducting energy gap.
The energy gap values are extracted from the corresponding local differential
conductance spectra. (Figure from [6])

occurs even on a perfect lattice. The measured LDOS shows high correlation with

the local superconducting properties, like the superconducting gap, what shows

that even very localized changes in the electronic structure can have impact on

macroscopic properties. That is very important when we look the doping depen-

dence of any parameter of the cuprates. Alternatively to the phase separation

picture, reorganization of the doping atoms can locally change the behavior of

the material, and the measured average property will not be the same as it would

be in the homogeneous case.

One way to follow the doping (and the inhomogeneities) is by measuring

the electrical resistivity in the normal state. The resistivity of the cuprates is

very sensitive to the hole concentration. Near optimal doping the material is

a reasonably good metal. As one reduces the number of carriers, the resistivity

increases monotonously until it reaches the metal–Mott insulator phase boundary,

and becomes an insulator (Figure 4.5). One of the key question is, at what carrier

concentration this transition occurs and what happens at T ∗ (Fig. 4.5(b)).

The overall accepted phase diagram of the cuprates, Tc versus hole/Cu (d) is

established largely based on resistivity and thermopower (S) measurements. Re-
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(a) (b)

Figure 4.5: Temperature dependence of resistivity of Bi2Sr2YxCa1−xCu2Oy sam-
ples in two different doping range. The arrow on (b) shows the opening of the
pseudogap T ∗. (Figure (a) from [7])

sistivity can measure precisely Tc, and there is a well accepted relation between S

(300 K) and d established by Tallon and co [8, 9]. Eventually, a.c. susceptibility is

also used since the appearance of shielding currents coincide with Tc. But already

these measurements show the serious problem of sample homogeneity (absence

of single Tc with narrow transition region) when one goes to the underdoped re-

gion. It already announces the difficulty in determining the ground state of the

underdoped cuprates, that is which is the state from which superconductivity

emerges.

Several research groups have addressed this question, but the clear answer is

still missing. Of course, a difficulty is coming from the fact that ground state

is hidden by the superconductivity. In order to have access to it, one should

suppress superconductivity. There are several ways to achieve it. One is to intro-

duce defects by irradiation with electrons [10], protons [11], or heavy ions [12].

Defects introduce pair braking (in cuprates even non-magnetic defects break up

the pairs due to the d-wave symmetry) and with high enough defect concentra-

tion it is possible to suppress completely superconductivity. However,in High-Tc

superconductors the carrier density is low, and there are not enough free elec-
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Figure 4.6: The resistivity plotted versus temperature for YBCO7 at different
impurity concentration created by irradiation with 2.5 MeV electrons. At high
temperature the resistivity lines are parallel, showing that the Matthiessen’s rule
is well verified. (Figure from [10])

trons to screen out efficiently the disorder potential created by the impurities.

They manifest as if the size of the scattering centers would grow with decreasing

temperature and they introduce a non-metallic temperature dependence like in

Kondo systems. This can be seen as an upturn at low temperatures in the elec-

tron irradiated YBa2CuO7. (Fig. 4.6) This effect is even more important in the

underdoped samples.

A better way to suppress superconductivity is to put the sample in magnetic

field. High enough magnetic filed brakes up the cooper pair singlets, and the

material regains it’s normal state. This happens at a characteristic field HC2.

This method is the most straightforward for bulk, low temperature BCS super-

conductors, where the HC2 is moderate and can be accessed by conventional

superconducting magnets. But in the case of High-Tc superconductors the HC2

can be as high as 100 T, so very often pulsed magnetic fields are employed which

can reach fields of 60 T.

One of the earliest measurements was performed on La2−xSrxCuO4 [13], where

a logarithmic divergences of the resistivity as observed as a function of temper-
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Figure 4.7: In plane resistivity versus temperature plots from samples of Ln2 −
xSrxCuO4 and Bi2Sr2−xLaxCuO7−δ. Open squares denote the data taken at 60 T.
The thick line is the zero field curve. The lines are labeled with the Sr content.
Arrow shows the minimum of the resistivity. (Figure from [16])

ature in high magnetic fields. That measurement was followed later on with the

study of Bi2Sr2−xLaxCuO7−δ crystals [14, 15], where the same low temperature

resistivity behavior was present (Fig. 4.7).

Based on these finding they have suggested an intriguing phase diagram for

the two families of cuprate superconductors. (Fig 4.8).

The strangest thing in Fig. 4.8(a) is not the peak of Tmin at 1/8 of hole con-

centration per Cu site (it is explained by commensurability effect of stripes), but

the proximity of the insulating and superconducting phases in the ∼ 0.05–0.1

hole concentration range. This suggest that the Cooper pairing happens in a

non-metallic phase. The same model is proposed for BISCO in a different hole

concentration range.

It is worth to mention that a follow up investigation of the magnetoresis-

tance revealed an interesting behavior [17]. From the measurement on LSCO

crystals, it looks like the magnetoresistance is saturating at high magnetic fields.

Similar behavior of the magnetoresistance has been seen in the case of granu-
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(a) (b)

Figure 4.8: Phase diagram of La2−xSrxCuO4 (a), and Bi2Sr2−xLaxCuO7−δ (b) as a
function of hole concentration in high magnetic field (B=60 T). Solid line shows
the minimum of the resistivity, dashed line follows the Tc at zero field.(Figure
from [16])

lar superconducting systems, where the grains are connected by the Josephson

phase-coupling. The phase what was denoted earlier as normal phase is more

likely a Bose-insulator phase, where the electrons are scattered on the fluctuat-

ing Cooper-pairs. Once the magnetic field is high enough to suppress even the

Cooper pairs without phase coherence the real ground state of the material ap-

pears. In the explanation of the authors the magnetic field first increases the

phase fluctuations, driving the system further in the Bose-insulating phase, and

then brakes the Cooper-pairs what brings the system closer to it’s normal state.

The competition of those two effect gives rise to a peak in the magnetoresistance.

Since the fluctuations are enhanced by the small grains, or in the case of high-Tc

materials domain size, one wound expect that the effect will be less pronounced,

or non existing in high quality samples.

4.2 Sample and measurements

My goal was to check whether the same phase boundary occurs in the case of

high quality Bi2Sr2PrxCa1−xCu8−δ single crystals. In our Institute we are en-

joying an in house crystal growing facility. In our attempt to underdoped the
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Figure 4.9: In plane resistivity ρab versus magnetic field for the x = 0.08
La2−xSrxCuO4, at various temperatures (Figure from [13]).

samples we focused on lowering the Tc and keeping the crystal structure as close

as possible to the optimally doped one. From large batches of single crystals with

variable Pr content samples were selected with the following criteria: 1. lowest

room temperature resistivity and metallic temperature dependence in the whole

temperature range; 2. low residual resistivity; 3. single and relatively sharp

superconducting transition. Even when extreme precautions were taken in the

single crystal synthesis by the self flux method (choosing pure starting materials,

crucibles, very low cooling rate of the melt) within the same batch there were

considerable dispersion of Tcs. Out of 150 resistivity runs 10 crystals were se-

lected obeying the above criteria. The lowest Tc (the highest underdoping) was

15 K, and the highest Tc in the underdoped side was 50 K. Two typical resistivity

versus temperature curves are shown in magnetic field up tom 16 T in figures

4.10(a) and 4.10(b). These runs clearly show the absence of upturn in resistivity

but also show the need to go to higher magnetic fields. The Hc2 is well above of

16 T for these Tcs. Most of the measurements were performed in the National

Pulsed Magnetic Field Laboratory in Toulouse up to fields of 60 T.
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Figure 4.10: Two typical, resistivity versus temperature curves of
Bi2Sr2PrxCa1−xCu8−δ under magnetic fields up to 16 T. T

(0)
c = 41 K (a) and

T
(0)
c = 33 K

4.2.1 Results

From the set of measurements 3 characteristic results are shown below. To see

the normal state behavior of our samples with relatively good homogeneity, I

selected three of them for high magnetic field measurement. For all samples the

size was chosen to be very small (0.004 × 0.05 × 0.2 mm3) in order to reduce

further the possibility of inhomogeneities. The samples were characterized with

a temperature dependent resistivity measurement (Fig. 4.11). One sample had

Tc = 50 K (corresponding to p = 0.085 hole/Cu) the second had Tc = 35 K

(corresponding to p = 0.075 hole/Cu) and the last one with Tc = 15 K (corre-

sponding to p = 0.058 hole/Cu). The last sample had Tc low enough to suppress

the superconducting state with 16 T of field available in our laboratory as shown

in figure 4.11(a). The samples with higher Tc were measured in pulsed magnetic

field. Figure 4.11(b) depicts the temperature dependence of the resistivity in

several magnetic fields for Tc of 50 K. For H = 50 T the sample stays in the

normal state in the entire temperature range.

From both of the graphs it is clear, that we can suppress superconductivity

in those samples, and that the resistivity stays metallic, down to the lowest tem-

perature reached in our experiment(Tmin = 1.2 K), even if the sample is strongly

underdoped and the zero field transition temperature is as low as T = 15 K.
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Figure 4.11: Resistivity versus temperature measurements of a Pr doped
Bi2Sr2CaCu2O8−δ samples at different magnetic field.The zero field transition
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These observations do not support the claims of Boebinger and co. [18] based

on the high magnetic field data obtained on various underdoped cuprate families

that the low temperature ground state of these samples is non-metallic. This

notion is reported in Figure 4.8 as an insulator-superconductor phase boundary

in the underdoped region.

What could be the origin of this discrepancy between those and our mea-

surements. In our opinion it comes from different sample quality. It stresses the

difficulty of making a good quality underdoped single crystalline cuprate super-

conductor.

Figure 4.11(c) shows well the difficulty in the selection of good underdoped

sample. The third crystal, which has similar Tc to the second one, which has

satisfied the selection criteria for a “good sample” shows a behavior close to that

reported by Ono et al. [15]. Before giving a tentative description for this behavior

lets discuss in more details samples 1 and 2.

4.2.2 Magnetoresistance in the normal state

The temperature and field dependence of the magnetoresistance of many metals

can be analyzed in terms of Köhler’s rule. [19] Semiclassical transport theory

based on the Boltzmann equation predicts Köhler’s rule to hold if there is a

single species of charge carrier and the scattering time tau is the same at all

points on the Fermi surface. The dependence of the resistance on the field is then

contained in the quantity (ωcτ) , where ωc is the frequency at which the magnetic

field H causes the charge carriers to sweep across the Fermi surface. Since the

resistance in zero field is proportional to the scattering rate, the field dependence

of the magnetoresistance of samples with different scattering times either due to

different purity or temperature (T ) can be related by rescaling the field by the

zero-field resistance ρ(0, T ):

∆ρ

ρ0

= f

(

H

ρ0

)

= f (ωcτ) (4.1)
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Figure 4.12: (a) A zoom on the transition of sample 1 with Tc = 15 K. (b) The
scaled results of ∆ρ

ρ0
versus H

ρ0
(Köhler plot) for the same sample. The Köhler’s

rule surprisingly obeys in the entire scanned magnetic field range.

where ∆ρ = ρ(H) − ρ0, ρ0 is the zero-field resistivity, and f is a function that

depends upon the geometrical configuration and on the kind of metal. This is

Köhler’s rule and the corresponding plots are known as Köhler plots. It holds

regardless of the topology and geometry of the Fermi surface.

The scaled results of ∆ρ
ρ0

versus H
ρ0

for the underdoped sample with Tc = 15 K

are shown in Fig. 4.12 at the fixed temperatures of T = 20 K and varying field

and at fixed field of 16 T and varying temperature. It is not only that the

ground state of this underdoped sample of exceptional quality is metallic down

to the lowest temperatures, but surprisingly obeys the Köhler’s rule, at these low

temperatures. It is surprising, because it is expected to be violated, for example

due to two relaxation rates, one for spinons and the other for holons as proposed

in some theories. Actually Kimura et al. [20] report some data where Köhler is

satisfied above Tc only in the overdoped samples, which are supposed to resemble

an ordinary metal.

If we extend our magnetoresistance measurements to high temperature (un-

fortunately sample 1 broke during the measurements) on sample 2 (Tc = 50 K)we

obtain also the violation of the Köhler’s rule (see Figure 4.13) , in accordance

with Kimura et al.

On theoretical basis there are several possible explanations for the violation
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Figure 4.13: The Köhler plot of an underdoped Bi2Sr2CaCu2O8−y with Tc = 50 K
(Sample 2)

of Köhler’s rule, within the framework of a semiclassical description. i) The

electronic structure varies with temperature due to the formation of the density

wave, or pseudogap formation. In this case the carrier density will change in

temperature. ii) There is more than one type of carrier and their mobilities have

different temperature dependences. In the cuprates it was always considered that

the charge carriers are hole-like. However, recently

Proust et al. [21] reported the presence of electron-like charge carriers on

the Fermi surface, as well. iii) The temperature dependence of the scattering

rate varies significantly at different points on the Fermi surface. This possibility

was also evoked for the explanation of the temperature dependence of the Hall

coefficient [22, 23, 24] iv) The scattering time τ is field dependent in a way

that τ(H,T )/τ(0, T ) is temperature dependent. If the scattering is due (or even

partially) to local magnetic moments which develop with underdoping, then that

will vary τ with field.

Since the magnetoresistance measurements were done in the pseudogap phase,

all this scenarios might have some role in the violation of Köhler’s rule. Neverthe-
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less, the greatest challenge is to join the satisfaction at very low temperatures and

the violation at high ones. For the time being the major effort would be to per-

form MR measurements on the very same sample from low to high temperatures

and to record the gradual departure from the universal behavior.

4.2.3 Superconducting fluctuations near Tc

Another intensively discussed issue related to high-Tc superconductors is the su-

perconducting fluctuations above Tc. The strength of these fluctuations is due to

the facts that cuprate superconductors have much smaller values of the coherence

length and lower carrier densities than most conventional superconductors, and

in addition they have anisotropic layer structure. Because of these properties,

fluctuation effects [25, 26] are more important and have been studied both above

and below Tc and in applied magnetic fields by many research groups [27, 28].

Over the last few years [29] it has become clear that several families of cuprate

superconductors exhibit a parabolic curve of Tc versus hole concentration (p) sim-

ilar to that originally established for La2−xSrxCuO8−δ. Superconductivity only

exists over a rather limited range of p and disappears both for underdoped and

overdoped samples. This behavior may provide a critical test for different theo-

retical mechanisms and it is clearly of interest to understand how the fluctuation

effects change with doping.

Some time ago Forró et al. [30] have reported a detailed study of supercon-

ducting fluctuations in Bi2Sr2CaCu2O8−y both on the overdoped and underdoped

side. They claimed that the contribution to the electrical conductivity from su-

perconducting fluctuations above Tc falls off drastically as oxygen concentration

deviates from the optimum, both on the underdoped and overdoped sides (see

Fig. 4.14(a) for the underdoped samples). Furthermore, the range of these fluctu-

ations is also decreasing with the departure from the optimally doped situation.

The doping was done with oxygen depletion and insertion in a limited range. The

underdoping was limited to Tc of ∼ 70 K. Since we have underdoping in a much
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(a) Normalized resistivity measured in
the ab plane for the same single crystal of
Bi2Sr2CaCu2O8−y at various oxygen con-
tent y. The numbers on the curve refer
to the oxygen partial pressure (in bars) at
the annealing temperature [30]

(b) Fluctuation analysis of the data in
(a). σ′ is the excess conductivity. The
dashed lines show the slope expected (-0.5
and -1) in the 3D and 2D limits of Eq. 4.2
using S = 1.5 nm and room temperature
resistivity of 150 µΩm [30]

Figure 4.14:

broader range, we could test those ideas.

As it is shown on Figure 4.14(b) [30] the fluctuating contribution to the con-

ductivity is deduced as the difference between the measured conductivity (1
ρ
) and

the extrapolated one from the region where one does not expect this contribution

( 1
ρextra

). A simplistic picture is that Cooper pairs are preformed well above Tc,

but macroscopic phase coherence cannot be established to give the zero resistance

state, but they diminish the resistivity. The functional dependence on the dimen-

sionality of these fluctuations and of the different microscopic contributions have

a huge literature. A detailed discussion of it would go beyond the scope of this

section. Nevertheless, σ′ depends on the reduced temperature τ = (T − Tc)/Tc)

in the following way:mozilla

σ′ =

(

e2

16~S

)

τ−1/2(τ + 4K)−1/2 (4.2)

in the 2D case, S is the interlayer spacing between CuO2 layers, K = (ξ/S)2,

where ξc is the zero temperature coherence length perpandicular to the CuO2
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Figure 4.15: Fluctuation analysis of the data of three samples. σ′ is the excess
conductivity. The dashed lines show the slope expected (-0.5 and -1) in the 3D
and 2D limits of Eq. 4.2

planes. From Fig. 4.14(b) one can read that both sigma prime and the τ region

where these fluctuation appear shrinks with underdoping.

We have checked these claims in three of our samples (Fig. 4.15). Since our

MR data are not continuous in temperature (but they are recorded at few fixed

temperatures) the interpolation necessarily brings in some uncertainty. Never-

theless, from Fig. 4.15 one can read, that for all the three samples (Tc = 41 K for

the resistivity see 4.10(a), Tc = 33 K for the resistivity see 4.10(a), Tc = 15 K

for the resistivity see 4.11(a)) underdoped sample, the fluctuating conductivity

has very similar behavior as in the case of Forró et al. What is very interesting

and puzzling that apparently with magnetic field the extent and the range of su-

perconducting fluctuations is extended. The confirmation of these effects is the
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subject of future works.

It shows as well, together with the simple model presented in the last subsec-

tion, that the careful choice of the sample regarding the sample quality is crucial

in the field of cuprates.

4.2.4 A minimal model for the resistivity of inhomoge-

neous superconductor.

Now lets turn back to our main finding, which needs no more confirmation, which

stands firmly as an experimental fact. In good samples after the suppression of

Tc with high magnetic field, the sample stays metallic. I many cases in the

literature, and occasionally in some of our measurements, the resistivity turns

to be non-metallic after the disappearance of the superconducting state. How

should we understand it?

To achieve low enough transition temperature, the doping content (achieved

by substitution of Ca for Y or Pr) has to be high, and the material is close

to the metal insulator transition already at zero field. Therefore, just a small

fluctuation in the distribution of the doping atoms can turn a big part of the

sample insulator, and change the overall behavior which shows up in resistivity

measurement. The inhomogeneous distribution of Y atoms in Bi2Sr2CaCu2O8

was observed for example in the work of Stoto et al. [31] where they have observed

the lack of periodicity along the c axes.They attributed this kind of disorder to

the coexistence along c direction of regions with the normal arrangement, and

low Y content, and regions which have shifted due to an antiphase boundary,

with high Y content. Bi2Sr2YxCa1−xCu8−δ

In order to check whether the resistivity changes due to the reorganization

of the doping atoms, I calculated the lower bound of the resistivity of an inho-

mogeneous sample. I assumed that on one half of the sample the concentration

of the doping atoms is higher, and therefore the hole concentration is smaller. I

neglected the change in the region with higher doping concentration. I did that
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(a) Lower Y content (b) Higher Y content

(c)

Figure 4.16: (a,b )High Resolution Electron Microscopic image of the crystal
structure of Y-substituted Bi2Sr2CaCu8−δ with two different Y content in the
projection down to the c axes. With increasing Y content an antiphase domain
structure appears. A few antiphase boundaries (APB) are already present in the
weakly substituted crystal. (c) Schematic representation of the domains structure
of the CuO2 planes of Y-rich crystals due to the presence of translation interfaces
(Figure from [31])
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Figure 4.17: The geometry and parameters used in the calculation of the resis-
tivity of an inhomogeneous superconductor.

so, because neither during the annealation of the samples in different oxygen

atmospheres, nor during the chemical substitution the control over the amount

of the dopent is perfect. The most direct way to characterize the samples is

by measuring the transition temperature, and using the general formula for Tc

versus hole concentration to get the doping level. The transition temperature is

determined, by the superconducting regions, therefore in the case of an inhomo-

geneous sample, where non-superconducting regions are in the superconducting

background, the doping content will be determined by the hole concentration of

the SC part of the sample. To compare samples with the same Tc I kept the

doping level constant on one part of the sample.

To calculate the lower bound of the resistivity, I used the geometric configu-

ration what is the “best case” (Fig. 4.17).

The resistivity is the most enhanced if the two regions are serially connected

to each other, and the least if they are parallel. Although in a real sample the

islands are rather randomly distributed, the model is not that far from the reality.

Generally the distribution of the dopant atoms in the material is such that in

some of the layers the concentration is lower, while other layers it’s higher. Since

the current is parallel to the layers, we can consider the material as several parallel
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connected layers with different hole concentrations. The resistivity in that case,

has the following form

ρpar(x1, a1) = ρ(x)
1

a1

a
a1

(

ρ(x)
ρ(x1)

− 1
)

+ 1
, (4.3)

where x is the Pr content of the metallic part, x1 and a1 are the Pr content and

the size of the insulator half and a is the size for the sample. For the calculation

I used x = 0.6, and I obtained the ρ(x) function from the residual resistivity

published in a systematic study of the Pr doped Bi2Sr2CaCu2O8 [32]. The result

is shown on the Figure 4.18

To see how much the result depends on the geometry, I did the same calcu-

lation for serially connected two parts, and plotted the ratio of the two results

(Fig. 4.19).

The outcome of the calculation shows two things. First that even in the most

optimistic case, the resistivity can change with a factor of two relative to the part

of the sample which gives superconductivity. And that is just a very optimistic

lower bound calculation, because changing the geometry the value can increase
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Figure 4.19: The ratio of the resistivity of a Bi2Sr2PrxCa1−xCu2O8−δ calculated
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further as much as a few orders of magnitude. To obtain more precise value of

the expected resistivity increase, more accurate finite element calculations are

needed for randomly distributed insulating islands.

4.3 Conclusion

We can conclude that the sample quality in high-Tc cuprates is primordial. By

carefully selecting high quality samples I showed that the ground state of the

Bi2Sr2CaxCu2O8−δ is metallic even in the highly underdoped, low Tc range. To

explain the discrepancy between my and earlier reported measurements, I created

a minimalistic model for resistivity of inhomogeneous samples and showed that

already a small reorganization of the doping atoms, can have a drastic impact on

the overall behavior of the samples, and turn a metal to an insulator.

I also performed magnetoresistivity measurement up to 60 T, and fluctuation

analysis. From the magnetoresistance I could read that the Köhler’s rule is vi-

olated in the sample with higher Tc in accordance with other measurement, but
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surprisingly it is obeyed in a sample with Tc = 15 K. By comparing the fluctua-

tions with an earlier measurement of Forró et al [30] , I found the puzzling result

that with increasing magnetic field the amplitude and the range of superconduct-

ing fluctuations is extended. Both of the latter findings ask for further works and

shows the way for future experiments.
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Chapter 5

MgB2

5.1 Introduction

The idea of superconductivity in metal borides, carbides and nitrides is old. [1, 2].

Many ternary transition metal diborides have been found to superconduct with

transition temperatures of 2–6 K (YRe2B2, LuB2C2) [3], and even a few with

higher Tcs like LuRuB4 [4] and YNi4B [5] Tc ∼ 12K. Some quaternary com-

pounds were even more promising: LnNi2B2C Tc = 6.6K [6] and YPb5B3C0.3

Tc = 23K [7]. In 1970, transition temperatures above 11K were found in the

diboride Zr0.13Mo0.87B2 by Cooper et al [8]. Later on Leyarovska et al [9] exam-

ined diborides and discovered NbB2 with Tc ∼ 0.062 K, but the majority of the

materials didn’t superconduct down to 0.42K. After all these efforts, the discov-

ery in 2001 of MgB2 with Tc ∼ 39K [10], came as a large surprise. This lead to

another wave of research, dedicated to find higher temperature superconductors

among other diborides, but so far no new materials have been found. There is a

a simple evidence that the superconductivity in MgB2 can be described by the

BCS theory, assuming two different superconducting gaps opening in two differ-

ent bands. In the light of this, it is quite surprising to have such a high Tc since

interband scattering acts as pair-breaker. Thus one would expect samples with

very much varying transition temperatures. This is not the case. Furthermore,
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Figure 5.1: The crystal structure of the MgB2

the normal state resistivity seems anomalous in the sense that Matthiessen’s rule

does not seem to be followed when comparing different samples. This is a point,

that merits further attention.

5.1.1 Crystal structure

MgB2 has a hexagonal crystal structure with space group p6/mmm, which is com-

mon among diborides (Fig. 5.1). The boron atoms from a graphite-like honey-

comb network and the Mg atoms are located at the interstices of these hexagons.

In the unit cell the atomic positions are (0, 0, 0) for Mg (Weizkoff symbol 1a)

and (1/3, 2/3, 1/2) and (2/3, 1/3, 1/2) for the B (Weizkoff symbol 2d) atoms.

Lattice parameters are a = 0.3084 nm and c = 0.3524 nm. The intralayer inter-

atomic distances are B–B 0.1780 nm and Mg–Mg 0.3084 nm, whilst the interlayer

interatomic distances are Mg–Mg 0.3524 nm and Mg-B 0.25 nm. The reciprocal

space primitive translations are A = 2π/a(2/
√

3, 0, 0), B = 2π/a(−1/
√

3, 1, 0)

and C = 2π/c(0, 0, 1).
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Figure 5.2: Isotope effect of MgB2. Magnetization curves measured with SQUID.
The sample was cooled down to 20K and warmed up above the transition tem-
perature in 1mT (Figure from [11])
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5.1.2 Isotope effect

One might ask the question if a superconductor with such a high Tc behaves

according to the BCS theory or not. One of the most common proofs of its

applicability is the presence of the isotope effect. From the BCS theory Tc ∼ M−α

where M is the isotope mass and α = 1/2 in the weak coupling limit. This proves

the presence of phonons in the mechanism of the attractive interaction as well.

An isotopic substitution study has been performed by Hinks et al. in 2001

[11], where both the Mg and the B atoms were exchanged. Pure 10B and 11B

were combined with 24Mg, 26Mg and with the natural isotopic mixture. The Tc

was determined from the magnetization curves measured with a SQUID.

Using the standard definition of the isotope effect coefficient for multicom-

ponent systems αi = d ln Tc/d ln Mi, they found that αB = 0.30 ± 0.01 and

αMg = 0.02 ± 0.01. This pronounced effect shows that the phonons are indeed

involved in the superconducting pairing mechanism. From the fact that αB is

one order of magnitude bigger than αMg it is clear that those phonons are due

to the movements of the B atoms. The deviation from the weak coupling value

of αw.c. = 0.5 comes from the strong anhamonicity of the B E2g mode, where the

boron atoms are moving out of phase.

5.1.3 Specific heat measurement

The low temperature specific heat of a metal can be described as a sum of two

terms, Cn = γT +AT 3. The first term is electronic, and the second from phonons.

From BCS theory, the specific heat jumps at the superconducting transition tem-

perature, and in the superconducting state the electronic contribution can be

described as Cs ∼ e
δ

kbT . The size of the jump is given by the Rutgers-formula,

(Cs − Cn)|Tc
= Tcµ0

[

dH
dT

∣

∣

Tc

]2

.

Bouquet et al. [12] performed specific heat measurements on Mg11B2 pow-

der samples (Fig. 5.3. The results show the predicted jump, and a temperature

dependent electronic specific heat coefficient (γ), but it is clearly different form
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Figure 5.3: Electronic specific heat coefficient (γ) of MgB2 at different magnetic
field. (Figure from [12])

the theoretical curve coming from isotropic BCS theory: there is a little shoulder

below 5K which doesn’t exist in the one band BCS-theory. The shoulder disap-

pears upon applying 0.5 T. This will be explained in the following section with

an anisotropic two gap model.

5.1.4 Point contact spectroscopy

A direct way to see the two gaps is point contact spectroscopy, where the fine

structure of the gap can reveal the presence as well as the size of the second

gap. It also gives direct access to the eDOS of the material. The measurement

was performed by Gonelli et al., on high quality single crystals [13]. The result

(Fig. 5.4(a) shows the double gap in the ab-plane, at ±2.7mV and at ±7.2mV.

By changing the temperature it is possible to follow the disappearance of the

gaps. This is presented in Fig. 5.4(b). It is interesting to remark that the second,

smaller gap, is much less pronounced in the c direction, than in the ab plane.
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(a) (b)

Figure 5.4: (a) Point contact spectroscopy curves of MgB2. The dashed lines
shows the position of the two gaps. (b) the temperature dependence of the two
gaps. I can be seen that they disappear at the same temperature. (Figures from
[13])

5.1.5 Electronic structure calculation and the proof of the

two gap model

In MgB2, the Mg atom forms ionic bonds with the boron atoms, giving its valence

electrons to the boron planes. The boron atoms are held together by 2D covalent

σ bonds formed by the sp2 orbitals, which arise from hybridization of the boron

2s and px,y levels, and a 3D metallic π band from the boron pz orbitals. The pz

band contains both holes and electrons as charge carriers. The energies of the

σ and π bands are almost the same at the zone center allowing charge transfer

between them. The eDOS at the Fermi level and the normal state conductivity

has a contribution from both bands, however the 2Dσ band is responsible for the

superconductivity.

The aforementioned bands can be seen in the band structure calculation of

Choi et al. [14]. The calculation was made using ab initio pseudopotentials using

density functional theory (DFT) in the local density approximation (LDA). From

the electronic band structure (Fig. 5.5(a) (top)), it is clear that the Fermi surface



5.2. The goal of our experiment 117

of MgB2 has two parts:2 dimensional hole-like coaxial σ bands along the Γ to A

line, a holelike tubular network of π bands connecting the K and M points, and

an electron like network around the H and L points.

The phonon dispersion was calculated using the frozen phonon method

(Fig. 5.5(a)(bottom)). It is important to remark the large anharmonicity of the

E2g phonons, as these are the phonons coupled to electrons in the superconducting

state.

Using the above results, Choi et al. presented ab inito calculations of the su-

perconducting properties of MgB2. The anisotropic Eliashberg formalism was

used for the calculation, which is a generalized form of the isotropic theory

and is more suitable for materials with strongly momentum dependent gap.

In agreement with the earlier proposition, they found that the superconduct-

ing gap has s-wave symmetry. Plotting the energy gap distribution ( ρ(∆) =
∫

dr
∑

k |Ψk(r)|2δ(∆ − ∆(k)) where Ψk(r) is the electron wave function with

crystal momentum k ), two typical gap values can be clearly defined. From

6.4meV to 7.2meV on the σ sheets and from 1.2 to 3.7 meV on the π sheets.

These results are in agreement with the values coming from experiment, such as

point contact spectroscopy or specific heat. The temperature dependence of the

two gaps also gave similar results to the experiment. It was possible to prove that

the anomalous isotope effect coefficient is due to the large anharmonicity of the

E2g mode involved in the superconductivity. The calculation of the temperature

dependence of the specific heat is in good agreement with experiment as well.

5.2 The goal of our experiment

In the last section we have seen that there is good agreement between theory and

experiment on several points describing the superconductivity of MgB2. It has

been shown that it has an anisotropic s-wave gap, where the gap has two well

defined branches corresponding to the σ and π bands, which are well separated

in both real and momentum space. The question then arises how the existence of
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(a) (b)

Figure 5.5: (a)Calculated electron (top) and phonon (bottom) band structures
of MgB2. The solid lines are the anharmonic phonon frequencies, and the dashed
lines represent the standard harmonic phonon frequencies. Inset: the BZ of a
standard hexagonal crystal. (b top) The superconducting energy gap on the the
Fermi surface of the MgB2 at 4K. The Fermi surface consist of four sheets. Two σ
(“cylinders”) where the superconducting gap is ∼ 7.2 meV, and two π (“webbed
tunnels”) where the gap ranges from 6.4 to 6.8 meV. The lower part shows the
distribution of the energy gap, using the same color code as on the upper part of
the figure (Figure from [14]
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Figure 5.6: Reduction of the current-carrying cross-section in polycrystalline sam-
ples

those two bands and two gaps changes the transport properties of the material.

Is the scattering in the two Fermi-surface sheets comparable and is the scattering

between the bands important?

If the two band description is valid we can conclude that the relation for the

inter- and intralayer scattering rates is γintra ≫ γinter. This is due to several

reasons, one of which is the σ π disparity. The σ and π bands are formed from

different local orbitals, and therefore orthogonal on the atomic scale. Moreover

the disparity between the two bands is relatively large due to the compactness

of the B 2s and 2p orbitals. This can be understood if we observe that while

the pz orbital has odd parity, the bond orbitals have even parity with respect

to the B layer. Therefore, the only possible way to the hybridization involve

interlayer hopping from a pz orbital on one layer to a bond orbital in the other

layer. However, the relative scattering within the two layers is unaccounted for.

In order to address the problem of inter and intraband scattering the resistivity

curves from crystals of different sample quality were compared by I. I. Mazin et.

al. [15]. In this study two conclusions were made based on the findings: (i) The

high-temperature slope of the resistivity is clearly correlated with the residual

resistivity in other words Matthiessen’s rule is not followed and

Although those two statements are valid based on the results of the analysis,
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there is one questionable point; the sample quality. In order to compare samples

with different impurity concentration polycrystalline samples, thin films, single

crystals, and substituted materials from different synthesis routes were used. As

such, a non-negligible contribution can arise from extrinsic effects. Indeed, other

authors [16], have concluded based on another set of samples that the main

influence on the sample resistivity in non-single crystals comes from the reduced

current-carrying cross-section. This reduction arises from the fact that the only

place where the current can travel from one grain to the other is the point, or

reduced area where they touch each other – this is illustrated in Fig. 5.6.

Another common method for determining the in-plane scattering is atomic

substitution. Both Mg and B can be substituted with elements like Zn, Si, Ni,

Fe, Al, C, Co and Mn [17, 18, 19]. Although in this case homogeneous distribution

of defects can be guaranteed, doping of the material can’t be avoided.

More recently several authors have performed measurements on irradiated

samples from the same source in order to obviate the problem of comparing dis-

tinct samples. Wang et al. [20], and later Putti et al. [21] have used neutron

irradiation to create point defects in polycrystalline samples. It is known that

neutron irradiation produces cascades of atomic displacements resulting in clus-

tering of defects. This has induced almost a factor of 100 change in the residual

resistivity and the authors found a linear variation of Tc with defect level. Specific

heat measurements indicate a change from two-gap to single-gap superconduc-

tivity as Tc is suppressed below 20K [21].

Our goal was to check the validity of the first statement using a well defined,

systematic study, measuring the relation between residual resistivity, temperature

dependent resistivity, critical temperature and defect concentration.

5.3 Experimental setup

In our measurement we used high-quality single crystal samples grown by the

group of J. Karpinski in Zürich with the high pressure cubic anvil technique [17].
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Figure 5.7: The setup for electron irradiation in the Laboratoire des Solides
Irradiés, Ecole Polytechnique in Palaiseau, France.

The resistivity was measured using the 4-point method. To reduce the contact

resistivity coming from the oxidized surface layer, we sputtered gold patches on

the crystal. Gold wires were glued later on these patches with silver epoxy.

To introduce homogeneously distributed point defects we chose electron ir-

radiation. The irradiation was performed in the Labratoire des Solides Irradiés,

Ecole Polytechnique in Palaiseau. The setup is shown in Fig. 5.7.

This method has the advantage that the 2.5MeV electrons only interact

weakly with the material. They mostly create interstitial/vacancy pairs by head-

on collisions with the nuclei. These defects are considered to not carry a magnetic

moment. In order to minimize defect recombination and clustering, during the

irradiation the sample was as far as possible kept at a temperature of 20K in

liquid H2. This insured that the defect level is a linear function of the electron

dose.

To avoid heating during irradiation, the electron flux was limited to 31̇014 e/cm2.
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The irradiation was interrupted regularly and the resistivity measured between

20 and 50K. This range is wide enough to allow determination of the Tc and

the residual resistivity, and the temperature is low enough to avoid considerable

defect recombination. After a few such cycles the sample was heated up to room

temperature and cooled down again. This has allowed for comparison in the

whole temperature range between 20 – 290 K. This way, the same single crystal

sample with increasing defect concentration could be used, avoiding any artifacts

which are inevitable if measurements on different samples are compared.

5.4 Results

Fig 5.8 shows ρ(T ) curves in the 20–50K range. Already at the lowest applied

fluence, one can observe a doubling of the superconducting transition. Both ob-

served transitions are sharp. It is very likely that the phase with higher Tc is due

to areas near the contacts, partially protected from radiation. Both transitions

vary linearly with the applied fluence, thus we used the lower temperature tran-

sition to determine Tc. The residual resistivity was found to vary linearly with

electron fluence (see insert on Fig. 5.9), which is a proof that defects are created

independently and that they do not interact. The main panel of Figure 5.9 shows

Tc as a function of the residual resistivity. This again is a linear function of the

electron fluence, the slope of which can give information about the nature of the

defects, and when compared to superconductors with known pairing symmetry,

can also give a hint of the pairing symmetry of the gap. In order to put this

result into context, in fig.5.10 we plot the scaled transition temperature and the

scaled residual resistivity together with similar curves of superconductors with

various order parameters (V3Si – s-wave [22]; Sr2RuO4 – [23] p-wave; YBa2Cu3O7

- d-wave [24]). In all these compounds it is considered that the residual resistivity

is increased by non-magnetic defects. The decrease of Tc with increasing residual

resistivity indicates pair breaking by induced scattering centers. According to

the theorem of Anderson [25], in a dirty superconductor with s-wave symmetry
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Figure 5.8: Resistivity of MgB2 versus temperature at different electron fluences.
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non-magnetic impurities do not reduce the transition temperature, as they do

not introduce time reversal symmetry breaking. In a two-band superconductor

the situation, however, is different: interband scattering breaks the time reversal

symmetry, and should result in a decrease of Tc [26].

One can see that despite the 2-band nature of the superconductivity, the

decrease of Tc is in MgB2 is less steep than that observed in, for instance, V3Si, a

conventional s-wave superconductor; this hints to s-wave pairing in MgB2. It also

seems to rule out the possibility that, at these defect concentrations, increased

interband scattering could be responsible for the decrease of Tc.

Anderson’s [25] theorem states that for s-wave pairing non-magnetic impuri-

ties do not change the TC . This is because Cooper pairs are formed from time

reversed states and although non-magnetic impurities may change for example

the phonon spectrum, they do not break the time reversal symmetry (TRS). How-

ever, magnetic impurities strongly reduce Tc for all singlet states because they

do break TRS. This behaviour is described by the Abrikosov-Gorkov formula

[27, 28, 29]:

ln

(

Tc0

Tc

)

= Ψ

(

1

2
+

~

4πkBTc

1

τM

)

− Ψ

(

1

2

)

(5.1)

where Tc0 is the superconducting critical temperature in the pure system, Ψ(x)

is the digamma function and τM is the quasiparticle lifetime due to scattering

from magnetic impurities. The finite decrease of Tc on defect concentration means

that some of them carry a spin – being magnetic.

In order to check the stability of the electron irradiation induced defects, we

warmed our sample to room temperature (Fig. 5.11), then cooled it down again.

This allowed us to compare the temperature dependence of the resistivity in the

whole temperature range, as well as to check Matthiessen’s rule, which states

that resistivities coming from different mechanisms are superadditive, that is:

ρ ≥ ρ1 + ρ2. The equality is only satisfied for certain special cases, but in reality
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it holds with sufficient precision for simple metals.

It is also well known that impurity scattering is essentially temperature inde-

pendent. This means that resistivity curves ρ(T ) of a simple metal which differ

only by impurity scattering are parallel lines. Magnesium diboride is not a sim-

ple metal however; it has two bands, with very little scattering between the two,

which results in two almost independent conducting channels [15]. In this case

the resistivity can be written as

1

ρ
=

1

ρ
(π)
0 + ρ(π)(T )

+
1

ρ
(σ)
0 + ρ(σ)(T )

(5.2)

This form does not allow the separation of a temperature independent term unless

one of the temperature dependent terms is very large, in which case that partic-

ular channel is switched off. This can happen if the electron-phonon coupling is

much stronger in one of the two bands.

The upper part of Figure 5.11 shows the ρ(T ) curves. It is clear that some of

the defects are annealed at room temperature, presumably in the Mg sublattice.

The lower part of the figure shows the difference between the partly annealed and

the non-irradiated ρ(T ) curve. Despite a factor of 3 change in the residual resis-
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Figure 5.11: (upper) Resistivity versus temperature before and after irradiation.
The arrows show the direction of the temperature sweep, (lower) The difference
between the irradiated and the non-irradiated curve as a function of temperature.

tivity, within the precision of the measurement, the difference between the two

curves is temperature independent, thus Matthiessen’s rule seems to be followed.

These two findings can be reconciled with two-band conduction if we assume that

point defects do not increase interband scattering, and intraband scattering in

the two bands is very different, independently of the impurity concentration.

5.5 Conclusion

In conclusion, we have measured the resistivity of a single crystal MgB2 sample

as a function of point defect concentration. We have found linear variation of the

residual resistivity with electron fluence, showing the creation of homogeneously

distributed point defects. Tc decreased linearly, but very weakly with electron

fluence, suggesting s-wave pairing. A partly annealed irradiated sample, when
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compared to a non-irradiated one has an ρ(T ) curve which is only shifted by a

temperature-independent constant, in agreement with Matthiessen’s rule. This

confirms that interband scattering does not play an important role at these levels

of irradiation.
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Chapter 6

Conclusion

Despite its advanced age, superconductivity is one of the hottest topics in the

strongly correlated materials. High-Tc superconductors might look like an ever-

green theme. The reason for that is the number of opened questions concerning

the pairing mechanism which is strongly related to the materials’ qualities. There

are also superconductors, like MgB2 which are promising for applications, but

there are features which should be clarified. Beside those we shouldn’t forget

about the possibility to discover new superconductors. They can be interesting

by themselves, and by their investigation they can provide valuable contribution

to understand other, more complicated systems, like that of cuprates supercon-

ductors.

In my research I focused on three major question. The role of inhomogeneity

in the low temperature transport properties of the underdoped cuprates, the

validity of the Matthiessen’s rule in the case of MgB2 and the possibility of

pressure induced superconductivity in the 1T transition metal dichalcogenides

(TMD).

In order to address these questions I measured the transport properties of

these materials, such as electrical resistivity and thermoelectric power. Resistivity

measurement is sensitive to the scattering processes of the electrons, and from

the thermoelectric power we can learn about the density of state, and the type
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of charge carriers, which reflects in some sense the dispersion relation around the

Fermi surface. Those two measurements together are exceptionally good tools

to monitor changes which might happen in the electrical properties of a system.

As control parameter beside temperature I used pressure, high pulsed magnetic

field, and electron irradiation.

In the first part of my thesis I addressed the subject of pressure induced

superconductivity in transition metal dichalcogenides (TMD) with 1T structure.

Superconductivity has never been observed in pristine 1T TMD sample. My two

candidates were the 1T-TiSe2 and 1T-TaS2. 1T-TiSe2 has a CDW phase below

220 K which origin is an ongoing question. Although the excitonic mechanism

got recently more experimental support, the Jahn-Teller distortion can not be

excluded from the game neither. By applying pressure I discovered that the

pristine sample is superconducting between 2.0 and 4.0 GPa. This pressure range

has a remarkable coincidence with the disappearance of the CDW phase, where

short range fluctuations are the strongest, and they disappear together at the

same pressure. My thermoelectric power measurement showed that the high

temperature state is non metallic throughout the whole pressure range which

more or less eliminates the Peierls mechanism for the phase transition. This

further supports the excitonic origin of the CDW phase. After those findings

the interesting possibility arises that the superconductivity might share the same

origin.

My further interest was to see how general is, to find superconductivity under

pressure in the TMD materials with 1T structure. To answer that I chose an

other remarkable member of that family, the 1T-TaS4. This material generated

a great interest in the past because of the wide variety of the two dimensional

CDW phases it exhibits. At low temperature we can find a commensurate CDW

(CCDW) phase having a Mott-state on top of it, formed from the electrons not

involved in the charge density wave. By increasing temperature that phase melts

to a nearly commensurate phase (NCCDW) where commensurate domains are

separated with domain walls. I found that pressure melts the phase as well, and
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reveal that the material is superconducting above 2.5 GPa with a Tc of 5.9 K. Be-

side the relatively high transition temperature, the superconducting phase shows

other interesting properties. First of all, it develops from a non-metallic NCCDW

phase, and stays remarkably stable up to the highest applied pressure of 24 GPa.

It is even more remarkable, considering the fact that the phase above Tc changes

from the non-metallic to metallic, varying the low temperature resistivity by 2

orders of magnitude.

In the second part I investigated the low temperature normal state of the high-

Tc superconductor Bi2Sr2CaCu2O8. Contrary to earlier reports, I found that the

ground state of the underdoped cuprate after the suppression of Tc in high mag-

netic field (up to 60 T) is metallic . I explain the discrepancy between the two

findings with the sample quality. With a simple model of inhomogeneous sample

I showed, that already a small reorganization of the dopant atoms can drastically

change the overall measured behavior. In other words, the normal state may look

metallic, but the majority of the sample is insulator. After suppressing supercon-

ductivity the majority phase takes over. I also investigated the magnetoresistance

of the samples with different critical temperatures up to 60 T. At high tempera-

tures I found the violation of the Köhler’s rule, what is in agreement with earlier

reported measurements. Surprisingly, at low temperatures (which means lower

Tc and higher underdoping) the system obeys the Kohler’s rule. My further con-

tribution to high-Tc from these measurements is coming from the analysis of the

superconducting fluctuation. I found that the amplitude and the range of the

superconducting fluctuations is increases with increasing magnetic field.

In the last section I investigated the suggestion made by Igor Mazin,concerning

the violation of the Matthiessen’s rule in the two band superconductor MgB2. To

have a good control over the parameters, I chose high quality single crystals,

and introduced point defects by fast electron irradiation. The systematic study

showed that the Matthiessen’s rule is obeyed in the case of MgB2 in the Tc range

of 30–35 K. . This confirms that interband scattering does not play an important

role at these levels of irradiation.
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Throughout this thesis I investigated three different families of superconduc-

tors and I made interesting observations. But by no means is this the end of

the road. There is a lot more to do even within these families. The further

investigation of the excitonic mechanism, or the doping versus pressure phase

diagram in the case of 1T-TiSe2 are very important tasks. X-ray measurement

under high pressure on 1T-TaS2 would be very beneficial to reveal the nature

of the charge density wave phase. Last but not least, to unravel the mystery of

high-TC superconductivity, more careful measurement on high quality samples

are needed.



Appendix A

Calculation the Coulomb energy

for different domain sizes in the

case of 1T-TaS2

The Coulomb energy related to the charge transfer within the superstructure

shown in Fig. 3.29 is calculated starting from the usual expression,

ECoul =
1

2

∫

s.c.
d3−→r

∫

d3
−→
r′

1

4πε0εr

ρ(−→r )ρ(
−→
r′ )

∣

∣

∣

−→r −−→
r′

∣

∣

∣

, (A.1)

where the first integral goes over the supercell in the TaS2 plane, while the second

integral goes over the whole space. ρ(r) stands for the charge density produced

by the charge transfer from domains to inter-domain space. ECoul stands for

the energy per supercell in the TaS2 plane, while the energy Ec per electron

transferred is obtained by dividing ECoul by the number of David stars in the

domain. Given the particular shape of the textured phase, we choose to calculate

the integral in direct space, though with some simplifications. Firstly, being only

interested in the long-wavelength aspect of the charge transfer, we do not consider

the details of the charge distribution vertically within the layer, or on the scale

of the basic TaS2 cell. Accordingly, the Coulomb potential is regularized below
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distance d, of the order of the separation between two neighbouring Ta atoms,

and the planar charge density is assumed smooth on that scale. The latter is

set within the domain by the requirement of one electron lacking per David

star, and the requirement that each supercell remains neutral. Additionally, no

variation in planar charge density is allowed within domains or within the inter-

domain space. The former integral then transforms into the three-dimensional

sum of convolutions of planar integrals over pairs of planar supercells. The sum is

rapidly converging upon choosing the high-symmetry supercell, while all integrals

are numerically calculated by subdividing the planar supercell into small triangles

(size of the order of d). The requirement that the states above the gap in domains

are kept void, determines the contributions to the dielectric constant εr that

enters the calculation. Specifically, the contribution from electrons from metallic,

”triangular” parts should be excluded, and only the contributions that relate to

gapped charge-density wave should be included. Since these contributions also

determine the screening of the electron-electron interaction in the Mott phase,

the approximate value for appropriate εr may be determined from the proximity

of that phase. The collapse of the Mott state on triangular lattice[1] is known to

occur at U/t ∼ 10. The value of U is given by e2/rDSεr, where rDS is of the order

of the radius of the David star in 1T-TaS2, e2/rDS ∼ 2 eV. The transfer integral

t relevant for the Hubbard model one may read from the relevant band-width W

in the band structure calculation[2], W = 8t ≈ 0.1 eV. This leads to εr ∼ 10,

used in our calculation.
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on the earth. Eduard Tutǐs for one of my best scientific discussions of my life.

Anna Kusmartseva, who not only was involved in that conversation, but was also

shared her great philosophy. All the members of to group who shared all the joy

both in, and outside the lab. The small Hungarian community including Tamas,

Janos, Rea and Nadia, who were always around to try my cooking creations. Bibe

and Camillo, for the great festivals. My basketball and dancing clubs for adding

color to my life. Gøran, for correcting this work and being a perfect flatmate for

a few months. And everyone else who I can’t name here because of lack of space

– especially who shared skiing experiences, happiness, craziness, talks, and time

with me.

And I just can’t express well enough my gratefulness for my family. They

were located far away, but always here with me.

141



Curriculum Vitae

Balázs Sipos

Personal details

Date of birth February 28, 1981
Place of birth Budapest, Hungary
Citizen of Hungary
Civil status single

Education

1991–1999 High School Studies, ELTE Trefort Ágoston Gyakorlóiskola és Gimnázium
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B. Sipos, N. Barisic, R. Gaal, L. Forró, J. Karpinski and F. Rullier-Albenque Physical Review B

76 132504 (2007)

• Pressure induced superconductivity in 1T-TiSe2 A.F. Kusmartseva, B. Sipos, H. Berger, L.
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