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Version abregée

La découverte de la supraconductivité a haute température dans les cuprates en
1986 a stimulé la recherche de matériaux fortement corrélés. La compréhension
des phénomenes dans les matériaux a haut 7, et 'espoir de découvrir ou de
fabriquer des matériaux avec des tres hauts T, reste la principale motivation dans
ce domaine. Parallelement a 1’étude détaillée des cuprates, la communauté de
I’état solide s’oriente vers la recherche de nouveaux matériaux dont la découverte
trouve un intérét d’'un point de vue technologique mais aussi car ils pourraient
permettre une meilleure compréhension des phénomenes « haut 7T, ».

Mes travaux de these s’articule autour de trois points : i) étudier le role de
I'inhomogénéité dans les matériaux sous dopés. Ceci reste une des énigmes des
cuprates supraconducteurs; ii) Etudier 'effet du désordre dans MgB,, supracon-
ducteur ayant des potentiels pour les applications ; iii) la découverte de nouveaux
matériaux supraconducteurs dans les dichalcogénures de métaux de transition.
Tous ces matériaux sont, d’un certain point de vue, des supraconducteurs non
conventionnels : les cuprates par leur haute T, et par la symétrie du parametre
d’ordre ; MgBs par la supraconductivité a deux bandes et un T, de 39 K ; et enfin
les dichalcogénures dont la supraconductivité apparait dans le bruit de fond de
la compétition entre les interactions.

Nous avons utilisé des mesures de propriétés de transport, tels que la résistivité
et le pouvoir thermoélectrique, pour comprendre le comportement de ces matériaux.
En plus de la température, nous avons appliqué des hautes pressions, des champs
magnétiques extrémes et nous avons controlé le désordre créé par irradiation
électronique rapide.

Dans la premiere partie, je présente la dépendance en température de matériaux
de la famille dichalcogénures qui possedent une structure 17T : 1T-TiSe, et 1T-TaS,,
pour lesquels un état supraconducteur n’a jamais été observé dans 1’état non
transformé. 1T-TiSey présente une phase CDW (onde de densité de charge) a

température inférieure a 220 K dont l'origine reste une question ouverte. L’exis-



tence de cette phase peut étre le résultat d’'un mécanisme excitonique ou d’une
distorsion de type Jahn-Teller. Nous avons montré que 1T-TiSe, est supracon-
ducteur dans une gamme de pression comprise entre 3 et 4 GPa. Cette gamme
de pression coincide avec le petit domaine CDW fluctuante avant sa disparition
a plus haute pression. Si ’état CDW est dii a des interactions excitoniques, alors
nos observations suggerent qu’elles peuvent étre aussi a l'origine de la supracon-
ductivité.

Le second dichalcogénure étudié est 1T-TaS,, pour lequel une phase isolante
de Mott apparailt superposée a un état CDW commensurable. Avec I'application
d’une pression supérieure a 2.5 GPa, le matériau devient supraconducteur avec
une T, de 5.9 K. De maniere inattendue, la supraconductivité apparue a partir
d’une phase non métallique reste stable jusqu’au plus hautes pressions appliquées
de 24 GPa.

Dans la deuxieme partie, j’ai essayé d’apporter ma contribution a la thématique
« supraconducteurs haute T, ». Quelques cristaux de tres bonne qualité de
BisSryPr,Ca;_,CusOg_s sous dopés ont été sélectionnés. Nos avons étudié la na-
ture de ’état fondamental a basse température en appliquant de hauts champs
magnétiques. Méme si des mesures ont déja été effectuées par d’autres groupes
et ont montré qu’a fort sous dopage, 1’état fondamental était isolant ; nous avons
montré qu’'un échantillon avec un T, de 15 K présente un comportement métallique
jusqu’a une pression de 60 T. De plus, nous avons montré qu'une distribution
inhomogene des dopants peut masquer entierement 1’état intrinseque d’un supra-
conducteur haut 7.

Dans la derniere partie, nous avons étudié MgBs; supraconducteur a deux
bandes par diffusion entre les bandes grace a la regle de Matthiessen. Nous avons
fait une étude systématique de 'influence des défauts créés par une irradiation ra-
pide d’électrons. Nous avons trouvé que la loi de Matthiessen peut étre appliquée
pour une concentration de défauts de la gamme obtenue. Nous avons par la suite
comparé l'influence de défauts sur la température critique et sur la résistivité

résiduelle dans MgBs avec des supraconducteurs avec divers parametres d’ordre.



vi

Nous avons trouvé que la vitesse de décroissance de T, dans notre systeme est dans
la gamme de réponse d'un supraconducteur avec un parametre d’ordre d’onde s.
Mots-clés : Supraconductivité, Propriétés de transport, Supraconducters

haute T, Dichalcogénures
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Abstract

The discovery of high temperature superconductivity in the cuprates in 1986 has
boosted the research in strongly correlated materials. One strong motivation was
and stays the understanding the high-7,. phenomenon with the hope that one
can ultimately engineer new materials with even higher 7,.. Besides the in-depth
investigation of cuprates, there is a strong tendency in the solid state community
to find new superconductors, which by themselves are interesting for applications,
or by their properties they can contribute to the understanding of the high-T.
phenomenon.

The program of my doctoral thesis was three-fold: i) to address one impor-
tant issue in the cuprate superconductors, that of the role of homogeneity in
the underdoped part of the phase diagram; ii) what is the effect of disorder in
MgB; superconductor, which has high potentials for applications; iii) to discover
new superconductors in the family of transition metal dichalcogenides. All these
materials are in some sense unconventional superconductors. The cuprates by
their high 7, and the symmetry of the order parameter, MgBs by its two-band
superconductivity and Tc of 39 K, and the dichalcogenides by the appearance of
superconductivity on the background of competing interactions.

Measurements of transport properties, such as resistivity and thermoelectric
power, were used to get insight in the behavior of these materials. Besides temper-
ature as variable, I applied high pressure, extreme magnetic fields and controlled
disorder introduced by fast electron irradiation.

In the first part I present the pressure dependent study of two members of
the transition metal dichalcogenides having 1T structure, 1T-TiSe; and 1T-TaSs,
where superconductivity was never observed in a pristine sample. 1T-TiSe, has
a CDW phase below 220 K which origin, weather it is driven by an excitonic
mechanism or by a Jahn-Teller distortion, is an ongoing question. By applying
pressure I showed that the pristine sample is superconducting in the pressure

range of 2.0-4.0 GPa. This range remarkably coincides with the short range
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fluctuating CDW before its disappearance at the upper pressure value. If CDW
is due to excitonic interactions than our observation suggest that it can be at the
origin of superconductivity, as well.

The second dichalcogenide is the 1T-TaSy, where a Mott-insulator phase ap-
pears on the top of a commensurate CDW. By applying pressure I was able to
melt that Mott-phase, and reveal that the material is superconducting above
2.5 GPa with T, of 5.9 K. Unexpectedly, superconductivity is born from a non-
metallic phase, and stays remarkably stable up to the highest applied pressure of
24 GPa.

In the second part I tried to give my contribution to the field of
high-T, superconductors. I carefully selected few high quality underdoped
BisSryPr,Ca;_,CusOg_s sample, to address the nature of the low temperature
ground state by applying high magnetic field. Although former measurements by
other groups showed that at high underdoping, the ground state is an insulator, I
found that a sample with as low T, as 15 K exhibits metallic behavior up to 60 T.
Furthermore, I showed that a inhomogeneous distribution of the doping atoms
can completely mask the intrinsic normal state of a high-T, superconductor.

In the last part of my thesis I focused on the two-band superconductor MgBs
by studying the scattering between the

bands by the means of the Matthiessen’s rule. I made a systematic study of
the influence of defects created by fast electron irradiation, and found that the
the Matthiessen’s rule is satisfied for the defect concentration range I induced.
I further compare the influence of defects on the critical temperature and the
residual resistivity in MgBs with superconductors with various order parameters,
and found that the decrease-rate of T, in our system is within the range of a

response of a superconductor with an s-wave order parameter.

Keywords: Superconductivity, Transport properties, High-T, superconduc-

tors, Dichalcogenides
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Chapter 1

Introduction

Superconductivity looks like a miracle. The fact that one can transport electrical
charge without resistance, without “paying” anything for this transport, without
heating up the wires, is far from being an ordinary thing. Furthermore, this
zero resistance state arrives without a herald: the resistance drops from a finite
value to zero suddenly at a critical temperature 7.. When Kamerlingh Onnes’
student reported him the zero resistance state below 4.1 K of Mercury in 1911
[1](Fig. 1.1(a)), the supervisor was suspicious. They had to repeat the experiment
several times before it became evident that they were facing a genuine discovery.
This sudden and fundamental disappearance of resistance was rewarded by the

Nobel Prize in 1913.

During the decades new superconductors were discovered, a wealth of exper-
imental results were accumulated which finally led to the understanding of the
microscopic mechanism of superconductivity by Bardeen, Cooper and Schrieffer
in 1957 [2]. The description of this macroscopic coherent quantum state by the

BCS theory merited also a Nobel Prize in 1972.

Because of the lossless electrical transport, magnetic levitation, quantum in-
terference etc., it was clear that this phenomenon is very important for appli-
cations and that the increase of T, would be very beneficial. If T, went above

liquid nitrogen temperature (77 K) one could dispense with the costly helium

1
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cury. (after H. K. Onnes, [1]). ductors (after Bednorz and Miiller, [6]).

Figure 1.1: The two most important milestones in superconductivity. Both of
them have been awarded with a Nobel Prize.

liquefaction. Until the mid-seventies physicists and material scientists managed
to increase Tc up to 23 K (NbsGe) [3, 4, 5] but it seemed that it leveled off at
this value. Theorists suspected that there was an intrinsic upper limit for 7., in
the 30 K ballpark.

The report of Bednorz and Miiller in 1986 [6] which stated that in an oxide
material 7, might be higher than 30 K (Fig. 1.1(b)) arrived as a deus ex machina!
A few months later Wu and colleagues reported 7, of 93 K in YBayCuzOg [7].
After that it seemed that the sky was the limit for 7, and a “gold-rush” started
for higher and higher critical temperatures. Besides many non-confirmed room
temperature or even higher 7, superconductors the overall accepted highest am-
bient pressure T, is at 135 K in HgBaCuO superconductor [8]. The very same
compound under 15 GPa of pressure shows the onset of superconductivity at
164 K, the highest T, known today (see. Fig.1.2) [9]. The heroes of this new era,
Bednorz and Miiller received the Nobel Prize in 1989.

The conventional superconductors (those discovered before 1974) and the
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Figure 1.2: The evolution of the superconducting transition temperature (7)
during the years. The drastic change in slope has happened in 1986 with the
discovery of high temperature superconductors.

high-T, oxide superconductors are only two chapters in superconductivity. There
are many others which show that superconductivity is a robust phenomenon in

condensed matter.

Figure 1.3 summarizes, with a somewhat personal choice, the most interest-
ing superconducting families discovered in the last 30 years. Organic materials
which were considered as the archetypes of the electrical insulator still, the quasi-
onedimensional (TMTSF),PFg showed superconductivity in 1980 [10]. Since
then, by increasing the dimensionality of the organic conductors 7T, has gone
up to 30 K in Rb3Cgo[11, 12]. The latest member of the carbon-based super-
conductors is the calcium intercalated graphite [13], which was surprising not
because of its “high” T., but by the fact that it had been missed in the heydays
of graphite intercalation in the 60’s and 70’s. It has been a subject of discussion
whether the mechanism of superconductivity in the low-dimensional organics is

the same as in e.g. lead, described by the BCS theory, where the coupling between
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Figure 1.3: Another subset of superconductors discovered in the last 3 decades,
excepting the cuprate superconductors. The large number of newly discovered
superconductors shows the vivacity of this topic in the condensed matter com-
munity.

electrons into pairs (the current carrying units in superconductors) is mediated
by lattice vibrations. There is less debate about the unconventional nature of
superconductivity in heavy fermion systems (discovered in CuCesSiy in 1979 by
Steglich [14]) and in SroRuOy4 reported by Maeno in 1994 [15]. Probably these
materials are in the same class of superconductors as superconducting cobaltates
[16] and the high temperature cuprate superconductors where the role of strong
Coulomb repulsion and magnetism in the coupling is also suspected. They are the
subject of vivid interest among the theorists, trying to describe the microscopic
mechanism of superconductivity in these families.

In the case of MgB, [17] the excitement had a different origin. Although MgB,
does have a lower transition temperature (7, of 39 K, which is still rather high)
than some of the oxide-based, high-T,. superconductors, but since MgB, appears

to be a simple, old-fashioned superconductor, it is much easier to work with and



appears easier to manipulate. There is a very real likelihood that wires of this
material will be used to make superconducting electromagnets that will produce
the magnetic fields for machines such as magnetic resonance imaging devices
found in many hospitals. In addition there is also the hope that MgB, will prove
to be useful for electronic applications as well. There are several advantages that
MgBs has over traditional superconductors. First of all, a transition temperature
of 40 K means that it will be useful when cooled to temperatures near 20 K.
Whereas this is still a very low temperature (about -250 C) it is easily reached by
closed cycle refrigeration. This means that superconducting devices made from
MgB, could be cooled without the need for liquid cryogens. In addition MgB, is
lightweight and it has a very low electrical resistivity in the non-superconducting
state.

At the moment of writing this dissertation the hype is turned towards the Fe-
oxipnictide superconductors, which show 7. as high as 54 K. The major question
is related to the role of the magnetic Fe ion in superconductivity. Knowing the
speed of scientific progress, it would not be surprising that by the end of this
PhD work, all the questions would be answered!

In no lesser extent was the scientific community surprised by the supercon-
ductivity of the pillar of the information technologies, silicon, which also shows
zero resistance state with suitable doping. This is also true for the boron doped
diamond.

The mystery of superconductivity also stems from the fact that many of these
superconductors were discovered just by chance. One can have a feeling that
finding them is just a question of luck, like finding a jewel in the desert. For
example the cobaltate superconductor was discovered by a salesman who wanted
to sell a magnetometer and for demonstration he took off the shelf a longly
forgotten sample; MgB, was known fifty years before it was cooled down below
liquid nitrogen temperature, etc. It also gives the false impression that by random
mixing of elements one can discover new, high temperature superconductors.

However, most of the superconductors are the fruits of tedious, well-thought
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research. Just to mention the case of the cuprates, Alex Miiller has been working
on related compounds for many-many years among the oxides, even when nobody
gave a credit for his ideas.

It is widely believed that superconductivity will gain importance in the fu-
ture when energy will become more and more precious. Not only because using
superconductors the transport and energy storage will be more cost effective, but
relying on electrical energy will preserve in a greater extent our environment.
Using high magnetic fields and quantum interference devices in health care will
gain in importance, as well. Research and development in superconductivity are
picking up worldwide.

My research program during these four years was to refine a few parameters in
the already known superconductors BaySroCaCusOgys and MgBs. In the former
case the question I wanted to answer is the ground state of an underdoped cuprate
superconductor. I have challenged the well accepted concept, that its ground state
is an insulator. In the case of MgBs I have addressed the issue of defects on T,
and the fulfillment or not of the Matthiessen’s rule. By introducing point defects
by fast electron irradiation I have performed a systematic study of the resistivity
of this compound.

Last but not least, my task was also to discover new superconductors by
applying high pressure as a tuning parameter. Two layered conductors were
chosen, 1T-TaS,; and 1T-TiSe,, which are different from cuprates in the sense
that the major interaction is not magnetism but the formation of charge density
waves by strong electron-phonon or excitonic interactions. I have managed to
find a superconducting phase in both compounds, and to map out the pressure-

temperature phase diagram.
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Chapter 2

Electronic properties of

two-dimensional conductors

One would naively expect that more dimensions results in deeper physics. How-
ever, research in the last 40 years has shown that Nature has chosen differently
— as we delve deeper into the physics of low dimensional materials, we find more
and more interesting phenomena to explain. Although some of the theories are
old, discussion is still running hot on many topics, mainly due to the subtle bal-
ance existing between electronic phases, resulting in rich but rather complicated
phase diagrams containing a multitude of exotic states. In the following section
I will attempt to give a brief introduction to the constantly growing and exciting
field of low dimensional physics, focusing on phenomena that are important in

understanding experimental results shown in the following chapters.

2.1 Electron-electron correlations

The simplest definition of a correlated electron system is a negative statement:
An electronic system is correlated when the electrons within it are not free. In the
free electron model description of metals, the valence electrons of the constituent

atoms become conduction electrons and move freely through the volume of the

11



12 Chapter 2. Electronic properties of two-dimensional conductors

metal. They form a free electron Fermi gas, which is subject to the Pauli principle.

1]

2.2 The Hubbard model

Usually electrons in a solid can be described using two basis set, the Wannier, and

the Bloch-basis. Let us choose in this section the Wannier [2] basis ¢,(r — R;).
T

For these states we can introduce the standard creation c,,, and annihilation
Cnie Operators. They create and destroy the n-th localized Wannier state with
spin ¢ on the atom at the position R;. First we only consider the two simplest
processes; the Coulomb repulsion between electrons on the same site, and the
kinetic (hopping) term, which describes the quantum mechanical amplitude that
an electron may hop from site R; to R; (or from R; to R;).

By using only these two terms in our model, we have already made one ap-
proximation. In the standard Hubbard model [3, 4, 5] we assume that each atom
has only one electron orbit and the corresponding orbital state is non-degenerate.
Of course, actual atoms can have more than one orbital and more than two elec-
trons in the corresponding states. The philosophy behind the Hubbard model is
that those electrons in other states do not play significant roles in the low-energy
physics of the system, and can be “forgotten” for the moment. Using the two

simple terms described above the Hamilton operator of the system can be written

as

H= Z ti,jc;[gcja + UH Z Ny ;| (21)

ijo

where n;, stands for c;cw and is the electron number operator. In this form
there is no explicit long range interaction present, and the only two-electron term
acts between two electrons on the same site. However, there is a hidden long range
force in this description, which makes the situation much more complicated; the

Pauli exclusion principle (PEP). Electrons are fermions, and so the many body
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wave function must be antisymmetric under interchange of any two electrons. It
is possible to further simplify the formula by the expressing it in terms of the
dimensionless quantity U/t, which indicates whether the hopping or the Coulomb
repulsion force dominates. However, it is still not possible to determine the
relative importance of the two in relation to the Pauli exclusion principle, which
depends on the probability of finding two electrons on the same site. This quantity
is somewhat accounted for by the second crucial parameter involved in the model,

io c;rgcjg which controls the total number

the electron density per spin n = ﬁ >
of electrons in the system. Each atom has space for at most two electrons, so n

can be in the range of 0 to 1.

2.2.1 Different ground states

The interpretation of the behavior of the Hubbard model is centered around
the competition of the three forces described above, on-site repulsion, hopping,
and PEP, controlled by the parameters ¢ and U, and the correlations between

electrons that they induce.

Hubbard model in the case of a half filled band

Let’s first assume that on each atom we have one electron. In this case we have
a perfect half filled band. In the Hubbard model to put an extra electron on
that system we have to pay the energy cost of the Coulomb repulsion. If that
energy U is big the band will split into two subbands, with a gap in the middle.
If n is not perfectly equal to 0.5 the Fermi energy will cross either the upper,
or the lower Hubbard band, and in case of the perfect crystal, the material will
behave like a metal, however in the case of the half filled band n = 0.5 we have
an insulator.

So we have one electron on each site. Let’s come back to the half-filled band.
Half of the electrons has up spin, and half of them down. Due to the overlap

between the neighboring sites, the process when one electron jumps to one of
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Figure 2.1: The broadening of the bands (upper), and the density of the states
in the Hubbard model

its neighbors, and then back has finite probability. That process will cause the
broadening of the electron state to a band, and a lowering of the overall energy.
This hopping, again owing to the PEP can only take place if the spins of the
two electrons are antiparallel. Thus the U >t > 0 introduces antiferromagnetic
correlation between neighbouring sites, and can be accounted for an effective
antiferromagnetic coupling between the neighboring spins. In the half filled band

we have an antiferromagnetic insulator, the Mott-insulator.

For that reasoning we used the condition that we have two separate Hubbard
bands. We have seen, that the hopping broadens the Hubbard band, and the
bandwidth is 2zt, where z is the number of the nearest-neighbor sites. In a square
lattice 22t = 8t. As we increase t, for example by decreasing the distance between
the sites, there will be a point when the two Hubbard subbands will overlap, and
the material becomes a metal (Fig.2.1). This is called the Mott-transition.
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2 dimension 3 dimension

SSDW | {SSDW
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Figure 2.2: Phase diagram of the two and tree dimensional Hubbard-model in a
mean field approximation, as a function U/t and n. It shows antiferromagnetic
(anti), ferromagnetic (ferro), paramagnetic (para), spiral-ferrimagnetic (s-ferri),
and spiral spin density wave (SSDW) states.(Figures from [6] (2D) and [7] (3D)

Ground states of the non half-filled band

In the last section we saw how the systems behaves in the case of half filled
band. It is even more interesting, what happens with the Hubbard-model if
we can control the number of carriers, either by adding extra electrons in the
upper Hubbard band, or by creating holes in the lower. In the mean field theory
calculation in two and three dimension shows the appearance of several new
phases. (Fig.2.2) The mean field approximation seems to give back many of
the features of the tree dimensional metal. But in lower dimension, there are
many fine details and complications, like Van Hove singularities, nesting Fermi
surfaces, what might give rise to new phases. One of the most spectacular of them
is the non-conventional superconductivity with d,2_,2 symmetry, as in the case of

High-T, superconductors. Several calculation shows that despite the fact that in
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Figure 2.3: The phase diagram as a function of hole concentration ¢, on finite
temperature, coming from numerical calculation of the two dimensional Hubbard
model. (Figure from [8])

the Hubbard model, there is no explicit attractive interaction, the energetically
favorable ground state might be the condensate of Cooper-pairs [8], which can
be even further stabilized by adding new terms to the Hamiltonian. One of the
most common extensions is to add the possibility of hopping to further sites.
In the simplest case that means the second-nearest-neighbor interaction ¢'. The
importance of ¢ can be better seen if we look on the theory proposed first by
P.W. Anderson [9]. As we start to remove electrons from the Mott insulator
(Fig. 2.4(a)), we create holes, and they can freely jump, and behave as free carriers
(Fig.2.4(b)). But we still have the rest of the electrons, in an antiferromagnetic
state. It is somewhat natural to form singlets form the neighboring atoms, and
make a condensate of it (Fig.2.4(c)). As we allow the next-nearest-neighbor
hopping, the possibilities to create resonating singlets is even more (Fig.2.4(d)).
The ground state will be the superposition of all those singlet configurations,

without those where we have doubly occupied states.
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2.3 Electron—phonon interaction

In the last section we were only focusing on the electrons, neglecting any in-
teraction between them except the bare Coulomb-repulsion. In this part I will
introduce some part of the physics involving the elemental excitation of the vi-
bration of the ions forming the lattice.

The Hamiltonian of an electron-phonon system can usually be written in the

form
H=H,+Hy,+ He—pp (2.2)

where the terms can be expressed in the second quantised formalism,

Hel = Z EkCTka

k
H,, = quagaq (2.3)
q

1
Helfph = ﬁ Z g(q7 k) (aT—q + GQ> C;r{+qck
q.k

for simplicity the spin and polarization indexes have been neglected. c;r((ck)
and af (bq) are electron and phonon creation (annihilation) operators respectively,
ek is the bare electron energy, wq is the phonon energy and is the electron-phonon
g(q, k) is the e™-ph interaction describing the scattering of electrons by phonons.

The above Hamiltonian can be understood as follows: In a lattice where the
atoms are oscillating around their equilibrium position, the free electron Bloch-
states are no longer eigenstates of the system. Due to charge-conservation, the
number of electrons is constant, but the number of phonons can change. Thus, the
electrons can interact with an oscillation of the lattice by creating, or annihilating
a phonon. It is important to notice that the total momentum of the crystal is no

longer conserved in this description. To fix this problem we describe the vibration
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Figure 2.5: The two types of the electron phonon interactions

of the crystal using phonons, and we use the reciprocal vectors of the lattice as a

parameter for the phonons and the electrons as well.

Now we can consider the joint set of the phonons and the electrons, and
observe that the total momentum is now conserved. Since the crystal momentum
is only defined modulo any vector G in reciprocal space, we can define two types
of processes. A normal process is when the electron momentum after the creation
or annihilation of a phonon remains in the Brillouin zone. In a so-called Umklapp
process, however, the final electron state has to be shifted by a reciprocal vector

G from an equivalent state in the first BZ.

2.3.1 Peierls instability, charge density waves

Due to the interaction described in the last section the energy of the electrons and
phonons are renormalized. The lowering in energy of a phonon mode, or phonon
softening, at a given q can be strong enough such that the expectation value of
the phonon number operator <&Laq> is nonzero. From that point, the numbers
of phonons with momentum q is finite, resulting in a condensation, which means

a deformation of the lattice. The order parameter of the resulting phase can be
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defined as

A= %g [(aq) + <aiq>] (2.4)

where ¢ is the electron-phonon coupling constant, and L is the characteristic

length of the system.

The real space representation of this condensation is a modulation of the
crystal structure. The changes of atomic position can then be written in the

form

(R, ~ 2 'gA| cos (qR., + ©) (2.5)

But why would such a distortion be energetically favorable? There are two
competing energies involved in the CDW phase transition: on one hand the loss
of lattice energy associated with the distortion and on the other the gain of

electronic energy from the lowering of E near -

As a result of the distortion, a gap will open at the boundary of the BZ. If the
new periodicity is chosen such that the gap opens at the Fermi energy, the system
achieves the maximal energy reduction. In order to observe the appearance of
the gap and calculate the energy reduction we will use the Frohlich-Hamiltonian
(2.3). Since we are in the condensed state, the phonon operators can be replaced
by their average. We have seen as well that the periodicity of the new order will

be the Fermi wavelength, and therefore we will use q = kp.
H = Z ekchk + Z [A*CLQkFck + AchkaF (2.6)
Kk Kk

It is useful to measure the energy from the Fermi-level. Using this convention
we can distinguish the ¢ and d' operators, which measure the energy at the kg

and —kp points respectively. Using these operators the previous Hamiltonian 2.2
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becomes,
H=) [EkF+kCLF+kaF+k + E—kF+kdikF+kd—kF+k] (2.7)
K
+ Z [A*dikarkckF-i-k + ACTkp+kd—kF+k:| (2.8)
K

in matrix form;

€kp+k A Ckp+k
H= Z - (CLFJrk dikp+k> F* ) (2.9)
K A" e kptk d_xp+k

The beauty of this definition is that it is already in a bi-linear form, and therefore
can be diagonalized with a well chosen unitary transformation. To achieve this

we choose two new fermionic operator pairs in place of ¢ and d.

Qk . Uk Uk Ckp+k (2 10)
fic —v U dip+k
and
Up —Uk
(al ﬁl) = (cLF+k d*_kF+k) E (2.11)
U Uy
To satisfy the unitarity,
ine® + ue* = 1 (2.12)

the correct v and v must be found to diagonalize the Hamiltonian.

H=> =E oo+ E 3l (2.13)
k
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After a short calculation we can arrive at following forms for u and v:

1 1
& + A & + A
where
f _ €kp+k _2€—kp+k'

According to the equations above,

El(ca) = €kp+k ’uif + Ekptk |Ulz<}2 + (A + A7) wevy,

El(f) = €xptk |“i|2 + € kptk }UIZF — (A + A") ukvk

(2.14)

(2.15)

(2.16)
(2.17)

These are the dispersion relations of the new quasi particles. By the (2.14)

definitions of u and v, and the approximation that bare electron energy near the

Fermi surface can be assumed linear,

€xptk = fo+ & = p+ hop|K|

€ kptk = p+ & = p— hoplk|

, we find for the dispersion relation of the new quasiparticles,

E® = p+ /(hoplk]) + |A]?
EY = j— /(hoe|k]) + [A?

(2.18)
(2.19)

(2.20)
(2.21)
(2.22)

In Fig. 2.6, these two dispersions can be seen in addition to the opening of a gap

with a magnitude of 2A. Since the gap opens at the top of the Fermi-level, the

one dimensional system becomes an insulator. This is referred to as the Peierls

instability [10].
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Figure 2.6: The one particle excitation spectrum of the spin density wave state.

Now we have seen that reducing the size of the Brillouin-zone lowers the
overall energy of the electronic system by reducing the energy of electrons at the
Fermi-surface, a process which involves modulation of the positions of the atoms

in the crystal.

We have to emphasize that the formalism we derived is only strictly valid in
one dimension. In two dimensions the energy balance between the introduced
crystal stress and the lowering in of the electron energy is more subtle. To see
that we have to use the electron susceptibility x(q). It tells us how an electron
system, described by the electronic density p(q) behaves under the influence of

an external potential V'(q).

p(q) = —x(a)V(q) (2.23)

The susceptibility can be written in the form firs derived by Lindhard in 1954
[11]. In the static limit

fk-i—q
2.24
Z B Ek (224)

where fi and Fy stands for the Fermi-Dirac function and the energy eigenvalues

at the given k vector, respectively.

That can be explicitly calculated in the one dimensional case if we take a
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X(q)/X(0)

Figure 2.7: The Lindhard function in one two and three dimension

linear dispersion relation near Ep.

q+ 2kp
q—2kp

2

x(q)ip = —e“n(ep) In (2.25)

n(ep) is the density of states at the Fermi energy, and e is the elemental charge.
This function has a logarithmic singularity at 2kp, what means that the electron

system is unstable against any perturbation with a characteristic wavelength

)\:W/kp.

The singularity of the susceptibility can be understood if we take a closer look
on the original Lindhard form 2.24. In the denominator we have the difference of
the electron energy in two points of the Brillouin zone, separated by the q vector.
If we take the simplest isotropic case in three dimension, the Fermi surface is
a sphere. After shifting it with the q vector, the intersection of is a ring. The
total volume of that ring compared to the surface of the sphere is small. In two
dimension where the intersections are two point the result is still finite. But in
one dimension the Fermi surface consist of two points, which can be overlapped
by a single translation. That produces singularity, and we get the 2.25 form of

the susceptibility. Those three cases are plotted in Figure 2.7.

In 3D materials the susceptibility can be enhanced if two parts of the Fermi
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Figure 2.8: The band splitting of the Cu?* S = 1/2, L = 2 band in a cubic
environment (without Jahn—Teller distortion), and in a tetragonal environment
(with Jann—Teller distortion)

surface are parallel. Those are called the nesting Fermi surfaces. That is still
favors the one dimension, because in case of the Fermi “line”, very big portion of
it can be mapped to each other. In two dimension it is more difficult to imagine
a geometry where important parts of the Fermi surface are parallel. Therefore
is it questioned if the nesting can be driving force of the charge density wave

formation in two dimensional materials [12].

2.3.2 Jahn—Teller distortion

In the previous subsection it was shown that in low dimensional systems where
the electrons are confined by strong electron-lattice coupling, distortion of the
crystal can be energetically favourable.

It is however also possible to imagine a situation where the lowering of the

Y b

energy of the ”‘core”’ electrons yields the displacement of the atoms. This is

called the Jahn-Teller effect [13].

Picture a crystal where Cu** (d”) ions are coordinated in an octahedral en-
vironment (i.e. a cubic crystal field). The local crystal field splits the 5-fold
degenerate L = 2 levels split into two groups: The threefold degenerate to, level

consists of the d,,, d,. and d., orbitals, and are filled with 6 electrons. The

Y

upper e, states consist of the d,2 and d,2_,2 orbitals and are occupied by the

-y

three remaining electrons.
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If we now for example distort all the octahedra along the z-axis, the symmetry
is of the crystal is reduced to tetragonal and a further splitting is induced in the
scheme discussed above. This splitting may be easily calculated if the distortion
is sufficiently small so that it can be treated as a perturbation. The to, level is
now split into a low lying doubly degenerate level containing four electrons (d,.,
dy.), and a higher energy state (d,.) with two electrons. The total energy of the
three states, however, remains unaffected. On the other hand, the upper e, level
is split into a lower d,2 level containing two electrons and a higher d,2_,» with the
final electron occupying it, resulting in a lowering of energy. While this energy
gain is proportional to the size of the distortion, it is balanced agains the stress
induced in the structure, which generally scales as the square of the distortion

parameter. Thus, the Jahn—Teller occurs mainly for small displacements.

2.4 Superconductivity

The third fenomena that might be the last in that chapter, but the most im-
portant, is superconductivity. Superconductivity has been long considered the
most extraordinary and mysterious property of metals. The basic and still most
comprehensive theory was developed by Bardeen, Cooper, and Schrieffer in 1957
[14]. They showed that in case of an existing attractive interaction between the
electrons, the bound two electron states are energetically favorable. They can
be looked as an effective boson, what can condensate without breaking the Pauli
exclusion principle.

They have discovered as well, that the mediating attractive potential is created
by the exchange of phonons. The fact that so far no other mediating force has
been confirmed (although there were several proposed), shows the geniality of
that discovery.

The Hamilton operator of the BCS theory, is the most intuitive in a second
quantized formalism. Here for the simplicity we will only consider the case where

the two electrons have opposite momentum. It can be sown, that Cooper-pairs
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having zero total momentum, have the lowest energy, therefore that simplification

is valid.

1
Hpes = ZGkCTkngk,U + 5 Z Vk,k’CL/JCik/,U/C_k’g/Ck’U. (2.26)
k,o k k' 0,0’
The first part is the usual kinetic energy term. And the second term describes
the scattering of a bound electron pair with opposite momentum. If we restrict
the pairs to the spin singlet state, as it is in the nature, we can further simplify

the form:

Hpcs = Z €k (CLTCk,T + CL,iCk7i> + Z Vk,k’CL/,TCJr_kglc—k,le,T- (2.27)

Kk kK’
. From that point we can follow almost step by step the development, what we
used for the charge density waves. First we define an order parameter, with the
operator what have a non-vanishing average. In the case of the superconductivity,

those are the Cooper-pairs. Therefore the order parameter has the form of:
Ag = — Z Vk,k/ <C*k/,lck/,T> ) Al*c = — Z Vk,k’ <CI<’,TCT—k’,l> (228)
k’ K’

Since in the case of superconductivity we are not restricted in one dimension, the
momentum dependence of the potential and therefore the order parameter has
to be explicitly written. Now if we use the general mean field approach, we can

write the 2.26 in the following form:

HBCS = Z €k (CLTCva + CLle7l> + Z kak/clT(’,TCT—k’,l <ka,lck,T> (229)
k

Kk

ot tot
+ ) View <Ck’,TC—k’,L> ettt + Y View <Ck’,TC—k’, 1> (cok 10 -
kK

KKk

(2.30)

It is ofter convenient not to fix the total number of electrons, by introducing the



28 Chapter 2. Electronic properties of two-dimensional conductors

chemical potential y. Therefore from now we use & = ¢, — pu. By writing Ay

into 2.29 we get the following equation:

Hpes = Z 3" (CLTCk,T + CLiCm) (2.31)
k
— Z <AkCI{,TCT—k,i + A”{{c_k,lcm) + Z Vk,k/ <CL’,TCik’,L> <C—k»lck,T> .
k kk’
(2.32)

That equation has the same form as 2.6, except an extra constant term. Therefore
we can use the same method the diagonalize the Hamiltonian. The only thing
we have to be aware of is the k dependence of A.

It isn’t surprising that we can use the same formalism for both fenomena.
The two can be brought even further, if in case of the charge density waves, we
forget about the explicit form of the phonon operators, and use them only as
an effective potential. The operator what will have a non vanishing average in
that case will be the CL 1qCk- The average of that operator will represent the
modulation of the charge density with a period of q. The first mentioning of su-
perconductivity together with the charge density waves was done by Frolich, who
suggested that the sliding movement of a long range ordered CDW would happen
without resistivity. Although his derivation was correct, any small perturbation
of the potential (impurity, finite phonon lifetime, or the commensurability of the
wave with the underlying lattice) would pin the density wave, and prevent the
zero resistivity conductance.

Recently Gabovic et. al showed, using a Green-function approach, that the
two symmetry braking phase are closely related [15, 16].

Therefore it is natural to expect that superconductivity and charge density
wave can compete or even coexist in some materials, depending on the fine details

of the electronic structure.
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Chapter 3

Transition metal dichalcogenides

3.1 Introduction to the transition metal dichalco-

genides

3.1.1 Crystal structure and polytypes

Layered transition metal dichalcogenides have attracted a widespread interest
because of their unique electronic properties. Originally they were discovered as
the prototypical 2D CDW compounds, however later on the discovery of super-
conductivity at low temperature made them subject to an intense study. Their
general formula is TXy, where T stands for the transition metal (usually Nb, Ti
or Ta) and X for the chalcogenide (S, Se or Te). They are layered materials where
the transition metal layer is sandwiched between two chalcogenide layers. The
bond between the T and X atoms in a sandwich is a strong (largely covalent)
one, and these atoms form a two-dimensional hexagonal lattice. The TX, layers
are coupled in the crystal by weak van der Waals forces. The structure of the
crystals is schematically shown in Fig.3.1. The weak van der Waals interaction
between the layers admits various ways for the relative position of for the TXy
sandwiches in a crystal along the axis perpendicular to the layers (the ¢ axis).

Therefore these layered compounds exist in several modifications. The two most

31
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Figure 3.1: Schematic structure of the layered structure

common types of layer packing are shown in Fig. 3.2.

Depending on the relative placement of the layers TMDs can have different
polytypes referred as 1T, 2H, 3R, 4H,, 4H,. The starting number in this notation
denotes the number of X-T-X sandwiches perpendicular to the plain in the unit
cell, the T, H, R distinguish the trigonal, hexagonal or rhombohedral symme-
try of the structure. Sometimes additional lower case superscript is required to

distinguish the otherwise similarly labeled polytypes.

The inter-layer interaction is weak in these materials, therefore the physi-
cal properties are largely determined by the two-dimensional structure of the
lattice inside the sandwich. But there is an other factor what influences the elec-
tronic structure, and therefore many properties of the crystals, the symmetry of
the atoms in the layers. Good example is the three modifications of TaS, what
exhibits a strong dependence of the electronic properties on the type of the struc-
ture. The 1T-TaS,, what is one subject of our study as well, has trigonal packing.
It shows clearly non-metallic behavior at room temperature, with a slowly and
almost linearly increasing resistivity with decreasing temperature. The 2H poly-

type with octahedral packing, what has the second biggest unit cell, behaves as
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Figure 3.2: The different intra-sandwich coordination of the atoms in the two
simplest 1T and 2H polytypes.

an ordinary metal at 7' = 300 K. In the case of 4H,-TaS,, the trigonal and the
octahedral layers are alternating, resulting metallic resistivity along the layers
(because of the sandwiches with octahedral coordination), and semimetallic in
the perpendicular direction.

Another typical property of layered compounds is the anisotropy of the phys-
ical properties. The overlap of the orbitals between the layers is small, because
of the van der Waals interlayer interaction, however in the layers the electrons
can move more freely.

The anisotropy is mirrored in the electronic resistivity. In example of the
2H-NbSe, that anisotropy is 2140 at room temperature and goes up to 7200 at
8 K [1] (Fig. 3.3).

The two dimensionality of the electronic motion is well presented in other
electronic (optical) and magnetic properties as well.

But the anisotropy manifests itself not only in the electronic properties. The

crystals are easy to cleave between the layers producing good quality atomically
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Figure 3.3: The resistivity anisotropy of 2H-NbS,.(Figure from [1])

flat surfaces. That, and the presence of the charge density wave instability made
them a perfect subject to many studies using surface sensitive techniques like
AFM, STM or ARPES.

It is also relatively easy to grow thin films of transition metal dichalcogenides
by epitaxial methods making them good candidates for industrial applications,
or physical studies. One example is the use of NbSe,; in quantum interferometer

devices as a weak coupling element.

3.1.2 Electronic structure

We have seen that the different crystal symmetry, therefore the different coordi-
nation of the atoms gives rise to different measured electronic structures. Let’s
see what electron structure calculation can tell about it TaS,. That material
exist in both 1T and 2H polytype.

The decomposed density of states of 1T-TaS, is shown in Figure 3.4(a). We
notice that Ta d state splits into three lower to; (d.2, dy., d;2_,2 ) and two
degenerate upper e, (d,,, d,. ) orbitals because of the lattice distortion. There is
a strong hybridization between S p and Ta d bands which appears in valence and
conduction bands, which determines the transport properties of 1T-TaS;. The

states in this range consist of three main peaks that are assigned to p d, and
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Figure 3.4: Projected density of state of 1T (a) and 2H (b) TaS,. The calculation
was done using full-potential linearized augmented plane wave method. (Figure
from [2])

p d, bonding, Ta ¢y, antibonding (-1.2-2.9 eV) and e, antibonding (3.4-6.0 eV)
bands. The value of the density of states at t