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Abstract

Given an m×n-matrix A and a polyhedron Q in Rm , we want to find a vector b ∈Q such that

the system of linear inequalities Ax É b has no integral solution. We refer to this problem

as a parameterised integer (linear) programming problem. This is a generalisation of ordi-

nary integer linear programming, as Q can be chosen to contain only a single vector in Rm .

Motivated by the celebrated algorithm of Lenstra (1983) for integer programming in fixed

dimension, we restrict ourselves to the case when n is fixed and develop a polynomial-time

algorithm for parameterised integer programming in fixed dimension. As an application of

this result, we provide an algorithm that computes the integer programming gap of a family

of integer programs, i.e., the maximum value of the difference

max
{

cx : Ax É b
}

−max
{

cx : Ax É b, x ∈Zn
}

over all b for which the integer program is feasible.

Then, we consider integer programs in standard form,

min
{

cx : Ax = b, x ∈Zn
+
}

,

and establish several bounds on the number of non-zero components in an optimum so-

lution. It turns out that there is always an optimum solution with the number of non-zero

entries bounded by a polynomial in the number of constraints and the maximum size of an

entry in A. This fact follows from the integer analogue of Carathéodory’s theorem, which

is proved in this thesis. Such a bound is especially beneficial when the integer program is

derived from some combinatorial optimisation problem and contains exponentially many

variables — nonetheless, we still can guarantee the existence of an optimum solution of

polynomial size.

One of such applications is the cutting stock problem. The columns of the matrix A in

the integer programming formulation for this problem are exactly the integral non-negative

solutions of the knapsack inequality ax É 1; hence, their number is exponential in the input

size. However, we prove that an optimum solution of polynomial size exists, and therefore,

the cutting stock problem belongs to NP, which was not known so far. We continue inves-

tigating this integer program and derive some results on the strength of its linear program-

ming relaxation, i.e., integer programming gap. Finally, we describe polynomial-size integer

programming formulations for the cutting stock problem.





Kurzzusammenfassung

Sei eine m ×n Matrix A und ein Polyeder Q im Rm gegeben, dann suchen wir einen Vek-

tor b ∈ Q , so dass das Ungleichungssystem Ax É b keine ganzzahlige Lösung besitzt. Wir

bezeichnen dieses Problem als parametrisierte ganzzahlige Programmierung. Dies ist eine

Verallgemeinerung der gewöhnlichen ganzzahligen Programmierung, denn Q kann als ein

einzelner Vektor des Rm gewählt werden. Motiviert durch den vielgepriesenen Algorith-

mus von Lenstra (1983) für ganzzahlige Programmierung in fester Dimension, beschränken

wir uns auf konstantes n und entwickeln für diesen Fall einen Polynomialzeit-Algorithmus

für parametrisierte ganzzahlige Programmierung in fester Dimension. Als eine Anwendung

dieses Resultats liefern wir einen Algorithmus, welcher den Integrality Gap einer Familie

von ganzzahligen Programmen berechnet; das bedeutet die maximale Differenz

max
{

cx : Ax É b
}

−max
{

cx : Ax É b, x ∈Zn
}

über alle Vektoren b, für die das ganzzahlige Programm zulässig ist.

Dann betrachten wir ganzzahlige Programme in Standardform,

min
{

cx : Ax = b, x ∈Zn
+
}

und beweisen mehrere Schranken an die Anzahl der von Null verschiedenen Komponenten

in einer optimalen Lösung. Es wird sich herausstellen, dass es stets eine optimale Lösung

gibt, deren Anzahl der von Null verschiedenen Einträge sich durch ein Polynom in der An-

zahl der Ungleichungen und der maximalen Größe der Einträge in A beschränken lässt. Die-

ses Ergebnis folgt aus dem ganzzahligen Analogon des Satzes von Carathéodory, welches in

dieser Dissertation bewiesen wird. Diese Schranke ist besonders nützlich, wenn das ganz-

zahlige Programm aus bestimmten kombinatorischen Optimierungsproblemen abgeleitet

ist und exponentiell viele Variablen enthält, denn nichtsdestotrotz können wir in diesem

Fall die Existenz einer optimalen Lösung polynomieller Größe zeigen.

Eine solche Anwendung ist das Cutting Stock-Problem. Die Spalten der Matrix A in der

IP-Formulierung des Problems sind exakt die nicht-negativen ganzzahligen Lösungen der

Knapsack-Ungleichung ax É 1, womit ihre Anzahl exponentiell in der Eingabe ist. Dennoch

können wir beweisen, dass eine optimale Lösung polynomieller Größe existiert und damit

das Cutting Stock-Problem in NP liegt, was bis dato nicht bekannt war. Wir setzen die Un-

tersuchung dieses ganzzahligen Programms fort und leiten einige Resultate für die Güte der

LP-Relaxation bzw. des Integrality Gaps ab. Schließlich geben wir eine IP-Formulierung

polynomieller Größe für das Cutting Stock-Problem an.
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Chapter 1

Introduction

“The secret of being boring is to

say everything.”

—VOLTAIRE

The epigraph came to my mind almost immediately after I had finished writ-

ing this introductory chapter. “You are boring yourself,” such was the first im-

pression. And indeed, I should have said something about the importance of

integer programming in nowadays life, in particular, in computer science and

management. I should have given some impressive practical examples and

tried to convince the reader that his life would be much worse if integer pro-

gramming never existed. But I am sure that all these things, if I said them,

would sound very artificial and insincere, because my real motivation to study

this subject has nothing to do with them. Integer programming is just interest-

ing itself, and this is the only thing I can tell to argue my personal interest in

it.

The term integer linear programming, or simply integer programming, refers to the

problem of optimising a linear function over the integral vectors of a polyhedron.

Many combinatorial optimisation problems can be modelled as integer programs

in a very straightforward way, that motivated the intensive study of different aspects

of integer programming in both theory and practice. Our contribution concerns

rather the theoretical side of this research. We consider a number of complexity

issues related to integer programming, like polynomial-time solvability of certain

problems and bounds on the size of solutions.

The first well-known fact to be mentioned about the complexity of integer pro-

gramming is that it is NP-complete in general; hence, it is very unlikely that there is
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an efficient algorithm for it. On the other hand, there are several subclasses of the

problem for which such an algorithm does exist. Thus, for example, if the underlying

polyhedron is integral, i.e., equal to the convex hull of the integral vectors contained

in it, we can drop the integrality requirement and apply linear programming tech-

niques to solve the problem.

Yet, integer programming problems with a fixed number of variables are solvable

in polynomial time, as was shown by Lenstra (1983). Later, Kannan (1992) consid-

ered a generalisation of the problem: given an m ×n-matrix A and a polyhedron Q

in Rm , test the following statement:

∀b ∈Q ∃x ∈Zn : Ax É b ? (1.1)

Essentially, this is a parameterised version of integer programming, with b being a

parameter. Kannan described an algorithm that answers this question in polyno-

mial time if n and the affine dimension of the polyhedron Q are fixed. It is clear that

the requirement for n to be fixed is necessary, since for Q, containing only one vec-

tor, we have just an ordinary integer programming problem. But can we make the

affine dimension of Q variable? In other words, does there exist a polynomial-time

algorithm for the problem (1.1) in fixed dimension? In this thesis we establish such

an algorithm.

This result gives rise to an algorithm that computes the so-called integer pro-

gramming gap for a family of integer programs

max
{

cx : Ax É b, x integral
}

, (1.2)

that is, the maximum difference between the optimum value of its linear program-

ming relaxation and the optimum value of the integer program (1.2) itself, over all

vectors b for which the integer program is feasible.

Combinatorial optimisation problems often admit integer programming formu-

lations of the form

min
{

cx : Ax = b, x Ê 0 integral
}

, (1.3)

where the columns of the matrix A are derived from the input to the problem, and

sometimes their number is exponential in the input size; especially, this is the case

for various partitioning, covering, and packing problems. Such integer programs

are usually tackled by means of column generation methods. The common idea of

these methods is to generate the columns of A in run-time — during the solution

process— when needed.

Perhaps, the most popular combinatorial optimisation problem leading to an

integer program of the form (1.3) is the cutting stock problem. In this case, the
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columns of A are all integral non-negative solutions of the linear inequality ax É 1,

for some vector a, while c is the all-one vector. The problem is known to be NP-

hard, but the existence of an optimum solution of polynomial size has not yet been

proved. We show that such a solution exists; more generally, there always exists an

optimum solution of the integer program (1.3) whose size is polynomially bounded

in the number of constraints, the size of the optimum value, and the maximum size

of an entry in A. Like existence of a basic optimum solution for linear program-

ming problems follows from Carathéodory’s theorem, the bound mentioned above

appears to be just a corollary of the Carathéodory-type theorem for integer cones.

It was observed that the integer programming gap for integer programs derived

from the cutting stock problem is usually small. We describe the bound, which

follows directly from the algorithm of Karmarkar and Karp (1982). Although the

proof is just a straightforward application of the algorithm, the bound was never

stated explicitly. At last, we propose other integer programming formulations for

the cutting stock problem, which appear to have polynomial size. These rely on the

Carathéodory-type bounds for integer cones.

1.1 Outline

In Chapter 2 we review some preliminaries on linear algebra, algorithms and com-

plexity theory, and theory of linear and integer programming, which are necessary

for understanding the rest of the thesis. We assume, however, that the reader is al-

ready familiar with most of the facts and definition presented in this chapter — it

was mostly added for reference.

Chapter 3 is a crucial preparation step towards a solution of the problem (1.1).

We begin this chapter by describing — very briefly— the Lenstra’s algorithm for in-

teger programming in fixed dimension. The following sections are devoted to the

adaptation of this approach to the case of the varying right-hand side in the system

of linear inequalities Ax É b, that finally results in the important structural theorem.

The applications of the structural theorem, including the algorithm for parame-

terised integer programming and computation of the integer programming gap, are

discussed in Chapter 4.

In Chapter 5 we turn to integer programs in standard form (1.3), to derive a de-

sired bound on the size of an optimum solution. We introduce the notion of an

integer cone and prove a number of theorems, which can be seen analogous to the

well-known Carathéodory’s theorem. These theorems immediately imply the cor-

responding bounds on the size of an optimum solution.

Chapter 6 is devoted to the cutting stock problem or, more precisely, to the inte-
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ger programming formulation of this problem described earlier. First, we apply the

results of Chapter 5 to show the existence of an optimum solution of polynomial

size. Then we consider the integer programming gap for these integer programs:

we show that the algorithm of Karmarkar and Karp (1982) implies that the integer

programming gap is of order O
(

log2 d
)

, where d is the number of constraints in the

integer program. Finally, we describe two different integer programming formula-

tions, both of polynomial size in the input.

The last chapter summarises our basic results once again, and lists some inter-

esting open problems related to the subject of this thesis. We remark that each of

the chapters begins with a more detailed description of its content and main results

presented there.

Chapters 3 and 4 are mostly borrowed from Eisenbrand and Shmonin (2007).

Chapter 5 and parts of Chapter 6 are from Eisenbrand and Shmonin (2006). Some

parts of Chapter 6 are done in collaboration with András Sebő.



Chapter 2

Preliminaries

We expect the reader to be familiar with basic set theory, linear algebra, algorithms

and complexity theory, and theory of linear and integer programming. In this chap-

ter we summarise some definitions and results from these fields, and describe the

notation to be used throughout the whole thesis.

2.1 Basic definitions and notation

Given a set X , we write x ∈ X if x is an element of X , and x ∉ X otherwise. If X is

a subset of a set Y , we write X ⊆ Y . If, in addition, X 6= Y , we write X ⊂ Y and say

that X is a proper subset of Y . The intersection, union, difference and the Cartesian

product of sets X and Y are denoted by X ∩Y , X ∪Y , X \Y , and X ×Y , respectively.

The symbol ; refers to the empty set. The cardinality of a set X is denoted by |X |.
Sets X1, . . . , Xn are called disjoint if they are pairwise disjoint, i.e., Xi ∩X j =; for

all pairs of distinct indices i and j . A partition of a set X is a collection of disjoint

sets X1, . . . , Xn such that

X =
n
⋃

i=1

Xi .

The symbolsR, Q and Z stand for the sets of real numbers, rational numbers and

integers, respectively. Their restrictions to the non-negative numbers are, respec-

tively, R+, Q+, and Z+. For any real number α, the symbol ⌊α⌋ denotes the largest

integer not exceeding α. Similarly, ⌈α⌉ is the smallest integer that is greater than or

equal to α. Both ⌊ ·⌋ and ⌈ ·⌉ are called rounding operations. The absolute value of a

number α is denoted by |α|.
A number α is said to divide a number β if there exists an integer γ such that β=

γα. For rational numbers α1, . . . ,αn , not all equal to 0, there always exists the largest
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rational numberαdividing each ofα1, . . . ,αn ; this number is called the greatest com-

mon divisor of α1, . . . ,αn and denoted by gcd(α1, . . . ,αn). If gcd(α1, . . . ,αn) = 1, then

the numbers α1, . . . ,αn are called relatively prime.

For two functions f , g : Z+ → R+, we write f = O(g ), or equivalently, g =Ω( f ), if

there exists a constant C and an index n0 such that f (n) É C g (n) for all n Ê n0. If

both f =O(g ) and f =Ω(g ) hold, we write f =Θ(g ).

2.2 Matrices and linear algebra

Let Fbe a set. The symbol Fn denotes the set of all n-tuples, or n-vectors, of elements

from F. The set of m ×n-matrices with all entries taken from F is denoted by Fm×n .

We shall use this notation for the sets R, Q, Z and their restrictions R+, Q+, and Z+
only. Vectors in Qn and matrices in Qm×n are called rational, while vectors inZn and

matrices in Zm×n are integral.

Given a vector x ∈Rn , we write xi to refer to the i-th component of x (i = 1, . . . ,n).

For a number α, the all-α vector is a vector with all components equal to α. The

symbols ⌈x⌉ and ⌊x⌋ denote the vectors obtained by the component-wise applica-

tion of the operations ⌈ ·⌉ and ⌊ ·⌋, respectively. For two vectors x and y in Rn , we

write x É y if xi É yi for each i = 1, . . . ,n. Similarly, we write x < y if xi < yi for each

i = 1, . . . ,n.

In order to simplify our notation, we distinguish between row-vectors and col-

umn-vectors. Furthermore, suppose that A is a matrix and x, y , b, and c are vectors.

Following Schrijver (1986), we agree that whenever we use notation like

Ax = b, Ax É b, y A = c,

we implicitly assume compatibility of sizes of A, x, y , b, and c. In particular, b and

x are column-vectors, while y and c are row-vectors. Similarly, if c and x are vectors

and we write cx, then c is a row-vector and x is a column-vector, both having the

same number of components.

The rank of the matrix A ∈ Rm×n is denoted by rank(A). If all entries of A are

equal to 0, we write A = 0. If A is a square matrix (m = n), then det(A) is the de-

terminant of A. We say that A has full column rank if rank(A) = n. If rank(A) = m,

then A is said to be of full row rank. A square matrix A is called non-singular if

det(A) 6= 0. In this case there exists the unique inverse matrix A−1 with the property

A A−1 = A−1 A = I .

The sets Rn and Qn are essentially linear spaces over the fields R and Q, respec-

tively, with addition of vectors and multiplication of vectors with scalars defined as
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usual. By ei (i = 1, . . . ,n) we denote the i -th unit vector in Rn ; thus, the i-th compo-

nent of ei is equal to 1, while all other components are zeros. For two sets X ,Y ⊆Rn

and a number α, we define

X +Y :=
{

x + y : x ∈ X , y ∈ Y
}

,

and

αX :=
{

αx : x ∈ X
}

.

If Y consists of only one vector y , we simply write X + y instead of X + {y} and say

that X + y is the translate of X along the vector y .

We need two different norms defined on Rn ; namely, the l∞-norm

‖x‖∞ := max
{

|xi | : i = 1, . . . ,n
}

and the Euclidean norm, or l2-norm,

‖x‖2 :=
(

n
∑

i=1

x2
i

)1/2

.

It is easy to see that

‖x + y‖2 = ‖x‖2 +‖y‖2

if and only if x =λy for some number λ, i.e, vectors x and y are collinear.

It is well-known that any linear transformation L : Rn → Rm can be represented

by a matrix A ∈ Rm×n , so that Ax = L(x) for all x ∈ Rn . Similarly, any affine trans-

formation T : Rn →Rm is completely determined by a matrix A ∈Rm×n and a vector

b ∈ Rm , with Ax + b = T (x) for all x ∈ Rn . We say that a linear transformation is

rational if it is defined by a rational matrix. Analogously, an affine transformation

is rational if it is defined by a rational matrix and a rational vector. Finally, we re-

mark that usually we do not distinguish between transformations and the matrices

representing them.

Let X be a set of vectors in Rn . The linear hull of X , denoted by lin(X ), is just the

subspace of Rn spanned by X . The affine hull of X is the set

aff(X ) := lin(X −x)+x,

where x is an arbitrary vector from X .1

1The set aff(X ) appears to be independent of the choice of x. Similarly, aff(X )− x is the

same linear space for all x ∈ aff(X ).
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We say that a set X is convex if λx+(1−λ)y ∈ X for any x, y ∈ X and any 0 <λ< 1.

The convex hull of X , conv(X ), is the minimal convex set containing X . Equivalently,

conv(X ) :=
{

t
∑

i=1

λi xi : t Ê 1, x1, . . . , xt ∈ X , λ1, . . . ,λt Ê 0,
t

∑

i=1

λi = 1

}

.

Theorem 2.1 (Carathéodory’s theorem). For any set X ⊆ Rn and any x ∈ conv(X ),

there exist affinely independent vectors x1, . . . , xk in X such that x ∈ conv({x1, . . . , xk }).

A set X in Rn is a convex cone, or simply a cone, if X 6= ; and λx +µy ∈ X for any

x, y ∈ X and any λ,µ Ê 0. The cone generated by X , cone(X ), is the smallest convex

cone containing X ; equivalently, it is the set of all non-negative linear combinations

of vectors from X :

cone(X ) :=
{

t
∑

i=1

λi xi : t Ê 0, x1, . . . , xt ∈ X , λ1, . . . ,λt Ê 0

}

.

If X is finite, we say that cone(X ) is finitely generated. A cone in Rn is called simpli-

cial if it is generated by n linearly independent vectors.

Theorem 2.2 (Carathéodory’s theorem). For any set X ⊆ Rn and any x ∈ cone(X ),

there exist linearly independent vectors x1, . . . , xk in X such that x ∈ cone({x1, . . . , xk }).

The affine dimension of a set X in Rn , denoted by dim(X ), is the dimension of the

linear subspace aff(X )−x, where x is an arbitrary vector from X .

2.3 Algorithms and complexity

Unless explicitly stated otherwise, we always assume that the data is stored in bi-

nary encoding as finite {0,1}-strings. The size of the data is the total length of these

strings. For a rational number α= p/q , where p and q are relatively prime integers

with q Ê 1, we have

size(α) := 1+⌈log(|p|+1)⌉+⌈log(q +1)⌉.

The size of a rational vector x ∈Qn is roughly the sum of the sizes of its components:

size(x) := n +
n
∑

i=1

size(xi ).
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The size of a rational matrix A = [αi j ] ∈Qm×n is

size(A) := mn +
m
∑

i=1

n
∑

j=1

size(αi j ).

The size of a linear inequality ax É β or equation ax = β, where a is a rational

row-vector and β is a rational number, is equal to

1+ size(a)+ size(β).

The size of a system of linear inequalities Ax É b or equations Ax = b, where A is a

rational matrix and b is a rational vector, is

1+ size(A)+ size(b).

As we have agreed in the previous section, linear and affine transformations are

identified with the matrices representing them; hence, the size of a rational linear

transformation is just the size of the corresponding matrix (and similarly for affine

transformations).

We use the computational model of the random access machine (RAM) operat-

ing on {0,1}-strings. For a formal description of the RAM computational model and

basic complexity issues we refer to Garey and Johnson (1979) and Papadimitriou

(1994). Here we assume that the following arithmetic operations are available: ad-

dition, subtraction, multiplication, division, comparison, rounding, and taking log-

arithm.

Let Σ be an alphabet (in our case Σ = {0,1}). A decision problem is a subset

Π ⊆ Σ
∗, where Σ

∗ denotes the set of all strings of symbols from the alphabet Σ. In-

formally, it is a problem that can be answered by ‘yes’ or ‘no’, with Π representing

the set of inputs for which the answer is ‘yes’.

A polynomial-time algorithm is an algorithm that terminates after a number of

steps bounded by a polynomial in the size of the input data. Such algorithms are

also called efficient. A decision problem Π is polynomial-time solvable if it can be

solved by a polynomial-time algorithm. The class of the decision problems solvable

in polynomial time is denoted by P.

The class NP comprises the decision problems whose solutions can be verified

in polynomial time. Formally, Π ∈ NP if there exists a decision problem Π
′ ∈ P and

a polynomial p : Z+ → Z+ such that for each string σ ∈ Σ
∗, σ is in Π if and only if

there exists a string σ′ ∈ Σ
∗ of size at most p(size(σ)) with σσ′ ∈Π

′. The string σ′ is

called a certificate for σ. Trivially, P ⊆ NP. One of the most fundamental questions
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in complexity theory is whether P 6= NP. Although it is widely believed to be true,

nobody has been able to prove this so far.

A decision problem Π ⊆ Σ
∗ is Karp-reducible, or simply reducible, to a problem

Π
′ ⊆ Σ

∗ if there exists a polynomial-time algorithm that returns, for any σ ∈ Σ
∗, a

stringσ′ ∈Σ
∗ such that σ ∈Π if and only if σ′ ∈Π

′. This definition implicitly requires

size(σ′) to be bounded by a polynomial in size(σ). A problem Π is NP-hard if each

problem in NP is reducible to Π. If, in addition, Π ∈ NP, it is called NP-complete. It

is the theorem of Cook (1971) that there exist NP-complete problems.

A problem Π ⊆ Σ
∗ is Turing-reducible, or polynomially reducible, to a problem

Π
′ ⊆ Σ

∗, if there exists an algorithm such that, given an input σ ∈ Σ
∗ and an algo-

rithm A for the problem Π
′, solves the problem Π for the input σ in time bounded

by a polynomial in the size of σ and the running time function of A . If Π is polyno-

mially reducible to Π
′ and Π

′ is polynomially reducible to Π, the problems Π and Π
′

are called polynomially equivalent.

An optimisation problem is usually stated as follows (maximisation problem is

analogous):

min
{

f (x) : x ∈ Xσ

}

, (2.1)

where Xσ is a collection of elements derived from the input σ of the problem, f

is a rational-valued function. The associated decision problem is: Given a rational

number α, is there an x ∈ Xσ with f (x) É α? If γ is an upper bound on the size of

the minimum value, we can find the optimum by solving O(γ) associated decision

problems (via binary search). Thus, if γ is bounded by a polynomial in the input

size, the optimisation problem is polynomially equivalent to its decision version.

Karp (1972) showed that several fundamental combinatorial optimisation prob-

lems (the travelling salesman problem, the maximum clique problem, the maxi-

mum cut problem) are NP-complete. Since then almost all combinatorial optimi-

sation problems have been proved to be either solvable in polynomial time, or NP-

complete.

In this thesis we study a number of optimisation problems, assuming some of

their parameters to be fixed. By “fixing” a parameter, we mean that it does not be-

long to the input of the problem, and hence, does not contribute its size. Particu-

larly, when computing the running time of the algorithm, we may treat this param-

eter as a constant.

Apparently, we mention some approximation algorithms. For the sake of com-

pleteness, we define that a polynomial-time algorithm A is an α-approximation

algorithm (α> 1) for the optimisation problem (2.1) if for any input σ, it yields a so-

lution x ∈ Xσ of value f (x) Éα ·OPT(σ), where OPT(σ) denotes the optimum value.

A polynomial-time approximation scheme is a family of algorithms
{

Aε : ε> 0
}

such
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that each Aε is an (1+ε)-approximation algorithm. It is a fully polynomial-time ap-

proximation scheme if, additionally, each algorithm Aε runs in time polynomial in

1/ε2.

2.4 Polyhedra and linear programming

An excellent reference on theory of polyhedra and linear programming is Schrijver

(1986). All facts and algorithms we mention in this section are perfectly treated in

this book.

Let a ∈Rn be a row-vector and β a number. The sets

H< :=
{

x : ax <β
}

, HÉ :=
{

x : ax Éβ
}

, H= :=
{

x : ax =β
}

are called, respectively, an open half-space, a closed half-space, and a hyper-plane

in Rn . A partially open polyhedron P is the intersection of finitely many closed or

open half-spaces. If P can be defined by means of closed half-spaces only, we say

that it is a closed polyhedron, or simply a polyhedron.1 A bounded (partially open)

polyhedron is called a (partially open) polytope. It is known that P is a polytope if

and only if it is the convex hull of finitely many vectors. The polyhedron P in Rn is

said to be full-dimensional if dim(P ) = n.

A (closed or open) half-space is called rational if it can be defined by an inequal-

ity with rational coefficients and a rational right-hand side. The corresponding hy-

per-plane is then rational, too. Finally, a partially open polyhedron is rational if it

can be defined by means of rational half-spaces.

A polyhedron of the form

C =
{

x : Ax É 0
}

,

is called a polyhedral cone. It is well-known that a cone C is polyhedral if and only

if it is finitely generated. We shall need the following lemma (directly follows from

Theorem 10.2 in Schrijver (1986)).

Lemma 2.3. Let x1, . . . , xn be linearly independent vectors in Rn . Then

cone({x1, . . . , xn}) =
{

x : Ax É 0
}

,

1Traditionally, linear and integer programming deals only with closed polyhedra. We

need the notion of partially open polyhedra in Chapters 3 and 4 to be able to partition the

space Rm , which is certainly impossible by means of closed polyhedra only. We remark

that many results of linear and integer programming are easily transformed to the case of

partially open polyhedra.
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for some matrix A ∈Rn×n . Moreover, the size of each row in A is at most 4n2φ, where

φ is the largest size of a vector in {x1, . . . , xn}.

Each polyhedron can be decomposed into a polytope and a polyhedral cone in the

following sense.

Theorem 2.4 (Decomposition of polyhedra). A set P ⊆Rn is a polyhedron if and only

if P =Q +C for some polytope Q and some polyhedral cone C .

In fact, in this decomposition

C =
{

y : y +x ∈ P for all x ∈ P
}

and is called the characteristic cone of P . It is a common agreement that the char-

acteristic cone of the empty polyhedron is C = {0}. The non-zero vectors in C are

called the infinite directions of P . The characteristic cone of a rational polyhedron

is also rational. The linearity space of P =
{

x : Ax É b
}

is the set

C ∪ (−C )=
{

y : Ay = 0
}

.

If the linearity space of P is equal to {0}, the polyhedron P is called pointed. It can be

shown that if P is pointed, then there exist hyper-planes that intersect P at exactly

one vector; this vector is then called a vertex of P . We remark that any simplicial

cone is pointed and has exactly one vertex, which is 0.

Let A ∈ Rm×n be a matrix. The set of the right-hand sides b ∈ Rm for which the

system Ax É b has a solution is a polyhedron inRm and can be computed by exploit-

ing the well-known Fourier–Motzkin elimination procedure. This procedure runs in

polynomial time if n is fixed.

Linear programming problem is formulated as follows: Given a matrix A and

vectors b and c, compute

max
{

cx : Ax É b
}

. (2.2)

Geometrically it can be interpreted as the problem of finding a furthest point of the

polyhedron

P =
{

x : Ax É b
}

with respect to the direction c. Indeed, if we consider the family of hyper-planes

Hδ =
{

x : cx = δ
}

,

then the optimum value of the problem (2.2) is the largest δ such that the intersec-

tion P ∩Hδ is non-empty, see Figure 2.1. There are several polynomially equivalent

forms of a linear programming problem; for example,

min
{

cx : Ax = b, x Ê 0
}
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cx = δ

c

P

Figure 2.1: Linear programming geometrically.

is a linear program in standard form.

We say that the linear program (2.2) is feasible if there exists a vector x satisfying

Ax É b; otherwise, it is infeasible. It is bounded if its optimum is finite. It follows

that the linear program (2.2) is unbounded if and only if there exists a vector y in

the characteristic cone of P such that c y > 0. A “certificate” for optimality of a given

solution follows from the following theorem.

Theorem 2.5 (Duality theorem). Let A be a matrix and b, c vectors. Then

max
{

cx : Ax É b
}

= min
{

yb : y A = c, y Ê 0
}

, (2.3)

if at least one of these optima is finite.

Consequently, if at least one of the optima in (2.3) is finite, then both are finite. Let

x and y be feasible solutions for linear programs in (2.3), i.e.,

Ax É b, y A = c, y Ê 0.

Complementary slackness states that x and y are optimum solutions if and only if

y(b − Ax) = 0.

For a matrix A and an index set N ⊆ {1, . . . ,m}, let AN denote the matrix consisting

of the rows of A whose index is in N . We say that I is a basis for A if

rank(A) = rank(AN ) = |N |.

Complementary slackness together with Carathéodory’s theorem (see Theorem 2.2)

imply the following important result.
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Theorem 2.6. If the optima in (2.3) are finite, then there exists a basis N of A such

that

(a) the minimum is attained by a row-vector y such that yi = 0 for all i ∉ N;

(b) the maximum is attained by a vector x such that AN x = bN .

In particular, if A has full column rank, then both x and y are uniquely determined

by N and called basic solutions. In fact, basic solutions of the system Ax É b are

exactly the vertices of the polyhedron P =
{

x : Ax É b
}

.

Perhaps, the most efficient method for solving linear programming problems in

practice is the simplex method, introduced by Dantzig (1951). Nonetheless, most of

its variants have been proved to take exponential time in the worst case and none of

them is shown to run in polynomial time.

The first polynomial-time algorithm for solving linear programming problems—

the ellipsoid method — was proposed by Khachiyan (1979). Although practical us-

age of this algorithm is very limited (or even infeasible), its theoretical importance

in combinatorial optimisation is difficult to overestimate. We consider some impli-

cations of this algorithm in Section 2.5.

Karmarkar (1984) showed that interior-point methods can also be used to solve

linear programming problems in polynomial time. Furthermore, these methods

turned out to be efficient in practice, too.

We conclude with the remark that all these methods can be implemented in such

a way that— for matrices of full column rank— they yield basic optimum solutions

for both primal and dual linear programs.

2.5 The ellipsoid method

As we have already mentioned in the previous section, the ellipsoid algorithm be-

came a very powerful tool in theoretical study of combinatorial optimisation prob-

lems. Grötschel et al. (1981) observed that for the ellipsoid method to work, we do

not need to list all constraints of a linear program explicitly; in fact, it suffices to pro-

vide a tool for generating them when needed. A good description of this approach,

together with its various applications in combinatorial optimisation, can be found

in Schrijver (1986) and Grötschel et al. (1993). In this section we only formulate the

main result.

Let Σ be an alphabet and let Π⊆Σ
∗ be a family of words (inputs to the problem).

Suppose that for each input σ ∈Π, there is an associated rational polyhedron Pσ in

Rnσ . We assume that nσ is known in advance and that Pσ is defined by a system of

linear inequalities, each of size bounded by a polynomial in size(σ).
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The separation problem for the family of polyhedra
{

Pσ : σ∈Π
}

is the following:

Given σ∈Π and a vector z ∈Rnσ , decide whether z belongs to Pσ, and if

not, find a vector a ∈Rnσ such that ax < az for all x ∈Pσ.

We say that the separation problem is polynomial-time solvable if it is solvable in

time polynomial in size(σ) and size(z).

The corresponding optimisation problem is:

Given σ ∈ Π and a row-vector c ∈ Rnσ , find a vector x ∈ Pσ maximising

cx over Pσ or an infinite direction y of Pσ with c y > 0, if either of them

exists.

This problem is said to be polynomial-time solvable if it is solvable in time polyno-

mial in size(σ) and size(c).

The following theorem states that these two problems are, in fact, polynomially

equivalent.

Theorem 2.7 (Equivalence of separation and optimisation). The separation problem

for a family of polyhedra
{

Pσ : σ∈Π
}

is solvable in polynomial time if and only if the

optimisation problem for
{

Pσ : σ ∈Π
}

is solvable in polynomial time.

Finally, we remark that the ellipsoid algorithm is not restricted to closed polyhedra

only— it can also be used to find a vector in a given partially open polyhedron.

2.6 Integer programming and lattices

Many combinatorial optimisation problems can be formulated as maximising (or

minimising) a linear function over the integral vectors in a polyhedron:

max
{

cx : Ax É b, x integral
}

, (2.4)

where A is a rational matrix, b and c are rational vectors. Problems of this form are

called integer linear programming problems. The corresponding linear program

max
{

cx : Ax É b
}

(2.5)

is called the linear programming relaxation of (2.4).

It is not surprising that integer programming is NP-complete in general. How-

ever, there are several classes of integer programs for which polynomial-time algo-

rithms are known to exist.

A polyhedron P is an integer polyhedron if it is the convex hull of the integral

vectors contained in P . In particular, if P is pointed, then all its vertices are integral.
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c

c

PI

P

Figure 2.2: Integer hull of a polyhedron.

Theorem 2.8. Let P be a rational polyhedron in Rn . Then P is integer if and only if

for each c ∈Qn , the linear program (2.5) has an integral optimum solution whenever

it is finite.

Moreover, if P is an integer polyhedron, we can find an integral optimum solution

of the linear programming problem (2.5), if it exists, in polynomial time. In other

words, integer programming over integer polyhedra is polynomial-time solvable.

A system of linear inequalities Ax É b, with A ∈Qm×n and b ∈Qm , is called totally

dual integral if for each c ∈Zn , the linear program

min
{

yb : y A = c, y Ê 0
}

has an integral optimum solution y whenever it is finite.

Theorem 2.9. If Ax É b is a totally dual integral system and b is an integral vector,

then the polyhedron
{

x : Ax É b
}

is integer.

Given a rational polyhedron

P =
{

x : Ax É b
}

⊆Rn ,

we define the integer hull of P as the convex hull of all integral vectors lying in P :

PI := conv(P ∩Zn).

PI is an integer polyhedron, and therefore, the integer program (2.4) is equivalent

to the linear program

max
{

cx : x ∈ PI

}

;
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see Figure 2.2. Usually, the integer hull PI is the intersection of exponentially many

half-spaces. Nevertheless, it is often the case that the separation problem for PI can

be solved in polynomial time, which yields a polynomial-time optimisation algo-

rithm, see Theorem 2.7.

The problem (2.4) is polynomially equivalent to the following decision problem

∃x ∈Zn : Ax É b ? (2.6)

Indeed, it can be shown that if the optimum (2.4) is finite, then there exists an opti-

mum solution whose size is bounded by a polynomial in the input size. Therefore,

we can use binary search with polynomially many calls to the subroutine solving

(2.6) to find the optimum (2.4).

Lenstra (1983) was the first to develop a polynomial-time algorithm for integer

programming with a fixed number of variables. The fastest algorithm so far, which is

due to Eisenbrand (2003), combines Lenstra’s ideas together with randomised sam-

pling techniques of Clarkson (1995). We also mention the algorithm of Barvinok

(1994) for counting integral vectors in a given polyhedron in fixed dimension, which

exploits rational functions to encode all integral vectors of a polyhedron. Obviously,

this algorithm is also able to decide (2.6), and therefore, to solve integer program-

ming problems in fixed dimension.

It turns out that the number of vertices of the integer hull of a polyhedron in

fixed dimension is bounded by a polynomial in the input size. The best bound so

far is given in the following theorem, which is due to Cook et al. (1992).

Theorem 2.10. Let P =
{

x : Ax É b
}

be a polyhedron, where A ∈ Qm×n and b ∈ Qm .

Suppose that the size of each inequality in the system Ax É b is at most φ. Then the

number of vertices of PI is at most 2mn(6n2φ)n−1.

Combining the bound of Theorem 2.10 with the Lenstra’s algorithm, we can derive

an algorithm to compute all vertices of PI in polynomial time, if the dimension is

fixed; see Hartmann (1989) for details.

A slightly modified version of the Lenstra’s algorithm will be discussed in the

beginning of Chapter 3, since we shall use essentially the same framework in the

rest of that chapter. But before doing this, we need to introduce some basics of

lattice theory, which is extensively used by Lenstra (1983) in his algorithm. We just

mention that the Lenstra’s algorithm can be adapted to solve integer programs with

a fixed number of constraints and mixed-integer linear programming problems

∃(x, y) ∈Zn ×Rk : Ax +B y É b ? (2.7)
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where A and B are rational matrices and b is a rational vector, if the number of

integer variables is fixed. Moreover, it can also be adapted to the case when some of

the inequalities in (2.7) are strict.

Let B be a rational non-singular square matrix with columns b1, . . . ,bn ∈Qn . The

lattice generated by B is the set

Λ(B) :=
{

n
∑

i=1

λi bi : λi ∈Z, i = 1, . . . ,n

}

.

The vectors b1, . . . ,bn are called the basis of the lattice Λ(B). The lattice generated

by the unit vectors e1, . . . ,en is just Zn and called the standard lattice.

An integral square matrix U is called unimodular if |det(A)| = 1. In this case, we

have |det(U−1)| = 1 and the inverse matrix U−1 is also integral. A linear transforma-

tion defined by a unimodular matrix is called unimodular, too.

Theorem 2.11. Let B ,B ′ ∈Qn×n be two rational non-singular square matrices. Then

Λ(B) =Λ(B ′) if and only if B ′ = BU for some unimodular matrix U ∈Zn×n .

Particularly, any unimodular matrix U ∈Zn×n is a basis of the standard lattice Zn .

A matrix of full row rank is said to be in Hermite normal form if it has the form
[

B 0
]

, where B is a non-singular, lower triangular, non-negative matrix, in which

each row has a unique maximum entry located on the main diagonal of B . It turns

out that each matrix of full column rank can be transformed into Hermite nor-

mal form by multiplying from the right with an appropriate unimodular matrix.

Moreover, the Hermite normal form of a matrix is unique and can be computed

in polynomial time; see, for example, Kannan and Bachem (1979). Finally, we men-

tion that the Hermite normal form of a row-vector a is the vector [γ,0, . . . ,0], where

γ= gcd(α1, . . . ,αn).



Chapter 3

Integral Vectors in a Parameterised

Polyhedron

Let us consider integer linear programs

max
{

cx : Ax É b
}

,

where A ∈Qm×n is a rational matrix, b ∈ Qm and c ∈Qn are rational vectors, under

the assumption that the number n of variables is fixed. The corresponding, polyno-

mially equivalent, decision problem is the following:

∃x ∈Zn : Ax É b ? (3.1)

In words, we are given a polyhedron in fixed dimension, and the question is to find

an integral vector in this polyhedron. As was shown by Lenstra (1983), the problem

(3.1) is polynomial-time solvable for fixed n, and we shall consider his algorithm in

Section 3.1.

Kannan (1990) examined a generalisation of the problem (3.1). In his settings,

the right-hand side b in the inequality system is allowed to vary over some partially

open polyhedron Q in Rm and the question is to decide the following:

∀b ∈Q ∃x ∈Z
n : Ax É b ? (3.2)

We shall refer to this problem as a parameterised integer linear programming prob-

lem, with the right-hand side b being a parameter. The family of polyhedra

Pb :=
{

x ∈Rn : Ax É b
}

,

is called a parameterised polyhedron P . The question (3.2) is then equivalent to

∃b ∈Q : Pb ∩Zn =; ?
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Kannan gave an algorithm that solves the problem (3.2) in polynomial time un-

der the assumption that both n and the affine dimension of Q are fixed. The main

techniques used in his algorithm were actually developed in Kannan (1992) to tackle

the famous Frobenius problem—given n relatively prime integersα1, . . . ,αn , find the

largest integer that is not representable as an integral non-negative combination of

α1, . . . ,αn — in the case when n is fixed. This problem is polynomial-time solvable

if we can decide, in polynomial time, if there exists an integer b > b0 such that the

system

a1x1 + . . .+an xn = b, xi Ê 0, i = 1, . . . ,n

has no integral solution x1, . . . , xn ; here b0 is a given number. In this statement, the

right-hand side b is required to be integer, too; however, as we shall see further, this

is not a crucial restriction.

We shall also adopt many techniques from Kannan (1992), but improve the al-

gorithm to run in time polynomial in dim(Q). In other words, we assume only n to

be fixed, proving that the problem (3.2) is polynomial-time solvable in fixed dimen-

sion.

Our algorithm will be based on a structural theorem, which provides a descrip-

tion of candidate integral solutions of the system Ax É b via affine transformations

of the right-hand side b. Formally, we partition the partially open polyhedron Q

into polynomially many regions Qi , and for each i , find a constant number of uni-

modular transformations Ui j : Rn → Rn and affine transformations Ti j : Rm → Rn

such that, for any b ∈Qi , the polyhedron Pb contains an integral vector if and only

if it contains a vector Ui j ⌈Ti j (b)⌉ for some index j . Thus, given a right-hand side

b ∈ Qi , we need to try only a constant number of candidate solutions in order to

check whether the polyhedron Pb contains an integral vector!

Although the regions Qi are no more partially open polyhedra, we still have a

good description for them in terms of integer projections — the notion we define

in Section 3.3 — of partially open polyhedra. It turns out that in fixed dimension

these integer projections are easy to deal with; in particular, we can efficiently test

whether a given vector b belongs to Qi , optimise a linear function over Qi , etc.

This chapter is mostly devoted to the proof of the structural theorem; applica-

tions of this theorem, including the algorithm for parameterised integer program-

ming, are left until Chapter 4.

3.1 Integer programming in fixed dimension

We begin by describing the algorithm of Lenstra (1983) for integer programming in

fixed dimension. Basic concepts of this algorithm will then be used in the proof of
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the structural theorem.

The main idea of the algorithm can be explained, intuitively, in few words: if a

polyhedron contains no integral vector, then it must be “flat” along some integral

direction. In order to make this formal, we introduce the notion of “lattice width.”

The width of a closed convex set K in Rn along a direction c ∈Rn is defined as

wc (K ) := max
{

cx : x ∈K
}

−min
{

cx : x ∈ K
}

.

The lattice width of K (with respect to the standard lattice Zn) is the minimum of its

widths along all non-zero integral directions:

w(K ) := min
{

wc (K ) : c ∈Z
n \ {0}

}

.

An integral direction c attaining the above minimum is called a width direction of

K . Observe that if c is a width direction of K , then (−1)c is also a width direction of

K . Also, we have

w(v +αK ) =αw(K ) (3.3)

for any vector v and any numberα; moreover, both sets K and v+αK have the same

width directions.

Usage of the concept of lattice width in integer linear programming, as well as in

algorithmic number theory relies upon the celebrated flatness theorem, which goes

back to Khinchin (1948) who first proved it for ellipsoids in Rn . Here we state it for

convex bodies, i.e., bounded closed convex sets of non-zero volume.

Theorem 3.1 (Flatness theorem). There exists a constant ω(n), depending only on n,

such that any convex body K ⊆Rn with w(K ) Êω(n) contains an integral vector.

The constant ω(n) in Theorem 3.1 is referred to as the flatness constant. The best

known estimate for the flatness constant ω(n) so far is O
(

n3/2
)

, which is due to

Banaszczyk et al. (1999), although a linear dependence on n is conjectured; see, for

example, Kannan and Lovász (1988).

Further on we shall deal with rational polyhedra rather than general convex bod-

ies. It is easy to see that for the particular case of rational polyhedra, assumptions

of non-zero volume and boundedness can safely be removed from the theorem’s

statement.

• Rational polyhedra of zero volume. If P ⊆ Rn is a rational polyhedron of zero

volume, then it has width 0 along an integral direction orthogonal to its affine

hull.1

1This is not necessarily true for polyhedra which are not rational. For a counter-exam-

ple, we can consider polyhedra on the line in R2 defined by the equation x1+
p

2x2 = 0: they

do not contain any integral point but their width along any non-zero integral direction can

be made arbitrarily large.
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• Unbounded rational polyhedra. Let C be the characteristic cone of a ratio-

nal polyhedron P ⊆ Rn ; then C is also rational. If C = {0}, then P is already

bounded. If C is full-dimensional, then the set y +C , where y is an arbitrary

vector from P , trivially contains an integral vector, as we can always allocate a

unit box

B :=
{

x ∈Rn : 0É xi É 1, i = 1, . . . ,n
}

inside a full-dimensional cone, i.e., find v ∈Rn such that v+B ⊆C . Finally, if C

is not full-dimensional, then w(P ) is finite, since it is finite along any direction

orthogonal to the affine hull of C . Then we can choose a sufficiently large box

Bδ :=
{

x ∈Rn : |xi | É δ, i = 1, . . . ,n
}

such that w(P )= w(P∩Bδ). If w(P ) Êω(n), then P∩Bδ (and hence P ) contains

an integral vector by Theorem 3.1.

Thus, we have proved the following statement.

Corollary 3.2. There exists a constant ω(n), depending only on n, such that any ra-

tional polyhedron P ⊆Rn with w(P ) Êω(n) contains an integral vector.

Corollary 3.2 assumes a rational polyhedron to be closed. However, this assumption

can also be dropped. To see this, consider a non-empty partially open polyhedron

P . It can be represented as the sum P = y+Q, where y is an arbitrary vector in P and

Q := P−y is a partially open polyhedron; then 0 ∈Q. If P contains no integral vector,

then the polyhedron y+(1−ε)Q contains no integral vector for any small ε> 0 (here

Q denotes the closure of Q). Applying Corollary 3.2, we obtain

(1−ε) ·w(P ) = (1−ε) ·w(Q) = w
(

y + (1−ε) ·Q
)

<ω(n)

for any ε> 0, which is equivalent to

w(P ) Éω(n).

Obviously, we can make the above inequality strict by adding a positive number to

the original value of ω(n). This gives us the following claim.

Corollary 3.3. There exists a constant ω(n), depending only on n, such that any ratio-

nal partially open polyhedron P ⊆Rn with w(P ) Êω(n) contains an integral vector.

In what follows we shall always assume that the polyhedron in question is closed

and exploit Corollary 3.2 for our arguments. On the other hand, Corollary 3.3 can be
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Figure 3.1: Construction of polyhedra from the proof of Lemma 3.4.

used to derive essentially the same conclusions for partially open polyhedra. In par-

ticular, the algorithm we shall describe is also applicable for the problem of finding

an integral vector in a partially open polyhedron.

The following lemma is almost a direct implication of the flatness theorem for

rational polyhedra.

Lemma 3.4. Let P be a rational polyhedron in Rn of finite lattice width and let c be

its width direction. We define

β := min
{

cx : x ∈ P
}

. (3.4)

Then P contains an integral vector if and only if the polyhedron

P ∩
{

x ∈Rn : βÉ cx Éβ+ω(n)
}

contains an integral vector.

Proof. If w(P ) <ω(n), there is nothing to prove, as

P ⊆
{

x ∈Rn : βÉ cx Éβ+ω(n)
}

.

Suppose that w(P ) Êω(n). We can express P as the sum P = y +Q, with y being an

optimum solution of the linear program (3.4) and Q := P − y . Consider the polyhe-

dron

Q ′ := y +
ω(n)

w(P )
Q.
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y

P

c

Figure 3.2: Recursion step of the Lenstra’s algorithm.

Since P is a convex set and ω(n) É w(P ), we have Q ′ ⊆ P (see Figure 3.1). Further-

more, equation (3.3) implies that

w(Q ′) =
ω(n)

w(P )
w(Q) =

ω(n)

w(P )
w(P ) =ω(n),

and c is also a width direction of Q ′. Applying Corollary 3.2, we conclude that Q ′

contains an integral vector, say z. But then z ∈ P and

cz É c y +w(Q ′) =β+ω(n).

This completes the proof.

Now, suppose that we know a width direction c of a rational polyhedron

P =
{

x ∈Rn : Ax É b
}

.

Since c is an integral vector, for any integral vector x ∈ P the inner product cx

must be an integer. Together with Lemma 3.4, it allows us to split the original prob-

lem into ω(n)+1 integer programming problems on lower-dimensional polyhedra

P ∩
{

x ∈Rn : cx = ⌈β⌉+ j
}

, j = 0, . . . ,ω(n),

where β is defined by (3.4), see Figure 3.2. The rounding operation ⌈β⌉ is important

here, as β is not necessarily an integer.

The components of c must be relatively prime integers, as otherwise we could

scale c by the greatest common divisor of its components, to obtain a smaller lattice
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width of P . Therefore, Hermite normal form of c is just the unit row-vector e1 in

Rn . We can easily find a unimodular matrix U such that cU = e1, introduce new

variables

y =U−1x

and rewrite the original system of linear inequalities Ax É b in the form

(AU )y É b.

Since U is unimodular, the system Ax É b has an integral solution if and only if the

system (AU )y É b has an integral solution: indeed, x is an integral vector if and only

if y is an integral vector. But the equation

cx = ⌈β⌉+ j

is then transformed into

y1 = ⌈β⌉+ j ;

and hence, the variable y1 can be eliminated. All together, we can proceed with a

constant number of integer programming problems, each having a smaller number

of variables. If n is fixed, this procedure will terminate after a polynomial number

of steps.

In the above description we have omitted a question of computing a width di-

rection. This question is actually out of scope of this thesis, since we shall use the re-

sulting algorithm for integer programming in fixed dimension only as a “black box,”

while the recursion step described by Lemma 3.4 will be needed explicitly. Due to

this reason, we just mention that in order to find a width direction for the poly-

hedron P , the algorithm of Lenstra (1983) exploits the well-known LLL-algorithm,

proposed by Lenstra et al. (1982).

We also remark that, in its original description, the Lenstra’s algorithm either

finds an integral vector in P , or provides an integral direction along which P is flat.

In other words, the Lenstra’s algorithm uses a recursion call only for “flat” polyhe-

dra. In contrast, the algorithm described here always proceeds with a recursion call,

even if the actual lattice width of P is large enough to conclude that P does contain

an integral vector. Such an approach proved to be more suitable for the case when

the right-hand side of the inequality system defining P is allowed to vary.

To conclude this section, let us briefly summarise the issues arising when try-

ing to generalise the above algorithm for the case of parameterised integer linear

programming.

(a) The described algorithm is very sensitive to the fact that c is a width direction of

the polyhedron. However, width directions of the polyhedron
{

x : Ax É b
}

may

change if we change b.
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(b) Even if the width direction c remains the same, as b varies, it is not a trivial task

to apply recursion: the value (3.4) also depends on b and may happen to be

fractional. As a consequence, the hyper-planes

{

x : cx = ⌈β⌉+ j
}

are not easy to deal with.

In the following section we address the first problem and consider the width direc-

tions of a parameterised polyhedron.

3.2 Lattice width of a parameterised polyhedron

Let P be a parameterised polyhedron defined by a rational matrix A ∈Qm×n :

Pb =
{

x : Ax É b
}

,

where the parameter b is allowed to vary over Rm . We restrict our attention only

to those b, for which Pb is non-empty, and aim to find a small set C of non-zero

integral directions such that

w(Pb) = min
{

wc (Pb) : c ∈C
}

for any of these vectors b. Further on, the elements of the set C are referred to as

width directions of the parameterised polyhedron P . It turns out that such a set can

be computed in polynomial time if n is fixed. In particular, the set C itself contains

only polynomially many vectors!

Without loss of generality, we can assume that A has full column rank. Indeed, if

r := rank(A) < n, then we can find a unimodular matrix U such that AU is in Hermite

normal form, say AU =
[

H 0
]

. If C is the set of width directions of the parameterised

polyhedron
{

y ∈Rn :
[

H 0
]

y É b
}

,

then
{

cU−1 : c ∈ C
}

is the set of width directions of the parameterised polyhedron

Pb , since for any vector c, we have

max
{

cx : Ax É b
}

= max
{

cUU−1x : AUU−1x É b
}

= max
{

c ′y :
[

H 0
]

y É b
}

,

where c ′ := cU , and the same line for minima. The latter optimum is infinite if c ′
i
6= 0

for some i , r < i É n; therefore, we can assume that all width directions c ′ satisfy
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a2

a1 c

a2x =β2

a1x =β1

Figure 3.3: Bounded linear program.

c ′
i
= 0 for all i = r + 1, . . . ,n. But then the problem is equivalent to that of finding

width directions of the parameterised polyhedron

P ′
b :=

{

y ∈Rr : H y É b
}

,

which is defined by the matrix H of full column rank.

By Theorem 2.5, any feasible linear program

max
{

cx : Ax É b
}

(3.5)

is bounded if and only if there exists a feasible solution for the dual program

min
{

yb : y A = c, y Ê 0
}

.

Furthermore, if the dual program is feasible, then there exists a basic feasible solu-

tion to it, i.e., a basis N ⊆ {1, . . . ,m} of A such that c = yN AN for some vector y Ê 0,

see Theorem 2.6. In other words, the vector c belongs to the cone generated by the

rows of matrix AN , as in Figure 3.3. This simple observation yields the following

lemma.

Lemma 3.5. Let P be a parameterised polyhedron defined by a rational matrix A. If

Pb′ has infinite lattice width for some b′, then Pb has infinite lattice width for all b.

Proof. Suppose that the lattice width of Pb is finite for some b and let c 6= 0 be a

width direction. Then both linear programs

max
{

cx : Ax É b
}

and min
{

cx : Ax É b
}

are bounded, and therefore, there exist bases N1 and N2 of A such that c belongs to

the cones

C1 =
{

y AN1 : y Ê 0
}

and C2 =
{

−y AN2 : y Ê 0
}
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generated by the rows of matrices AN1 and −AN2 , respectively. But then the linear

programs

max
{

cx : Ax É b′} and min
{

cx : Ax É b′}

must also be bounded, whence wc (Pb′) is finite.

The above lemma shows that finite lattice width is a property of the matrix A. In

particular P0 has finite lattice width if and only if Pb has finite lattice width for all

b, and if P0 has infinite lattice width, then Pb contains an integral vector for all b.

Since we can easily recognise whether P0 has infinite lattice width, we shall further

consider only those parameterised polyhedra, for which w(P0) is finite, and there-

fore, w(Pb) is finite for any b. We say in this case that the parameterised polyhedron

P , defined by A, has finite lattice width.

Once we agreed that A is of full column rank, each basis N ⊆ {1, . . . ,m} of A

uniquely defines the corresponding basic solution as a rational linear transforma-

tion of the right-hand side b:

FN : Rm →R
n , FN b = A−1

N bN . (3.6)

Moreover, if the optimum (3.5) if finite, then there exists a basis N such that the

optimum value is attained by vector FN b (again, Theorem 2.6).

Now, suppose that c is a width direction of Pb . Then there exist two bases N1 and

N2 such that

max
{

cx : Ax É b
}

= cFN1 b and min
{

cx : Ax É b
}

= cFN2 b (3.7)

and c belongs to both cones

C1 :=
{

y AN1 : y Ê 0
}

and C2 =
{

−y AN1 : y Ê 0
}

generated by the rows of the matrices AN1 and −AN2 , respectively. In fact, equations

(3.7) hold for any vector c from C1 ∩C2. Thus, the lattice width of Pb is equal to the

optimum value of the following optimisation problem:

min
{

c(FN1 −FN2 )b : c ∈C1 ∩C2 ∩Zn \ {0}
}

, (3.8)

while an optimum solution provides a width direction. The latter is an integer pro-

gramming problem, since the (simplicial) cones C1 and C2 can be represented by

some systems of inequalities, cD1 É 0 and cD2 É 0, respectively, while the origin can

be cut off by a single inequality, for example, cD11 É −1, where 1 denotes the n-
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dimensional all-one vector. Hence, the optimum value of (3.8) is attained at some

vertex of the integer hull of the pointed polyhedron

{

c : cD1 É 0, cD2 É 0, cD11 É−1
}

. (3.9)

For fixed n, the number of these vertices is polynomial in the input size and they all

can be computed in polynomial time, see Theorem 2.10. This is summarised in the

following lemma.

Lemma 3.6. There exists an algorithm that takes as input a rational matrix A ∈Qm×n

of full column rank, defining a parameterised polyhedron P of finite lattice width,

and computes a set of triples (Fi ,Gi ,ci ) of linear transformations Fi ,Gi : Rm → Rn

and a non-zero row-vector ci ∈ Zn , i = 1, . . . , M, such that for all b, for which Pb is

non-empty,

(a) Fi and Gi provide, respectively, an upper and lower bound on the value of the

linear function ci x in Pb , i.e., for all i ,

ci Gi b É min
{

ci x : x ∈ Pb

}

É max
{

ci x : x ∈Pb

}

É ci Fi b,

(b) the lattice width of Pb is attained along the direction ci for some i ∈
{

1, . . . , M
}

and can be expressed as

w(Pb) = min
i

ci (Fi −Gi )b.

The number M satisfies the bound

M É mn
(

2n +1
)n(

24n5φ
)n−1

, (3.10)

where φ is the maximum size of a column in A. The algorithm runs in polynomial

time if n is fixed.

Proof. In the first step of the algorithm we enumerate all possible bases of A; since A

is of full column rank, there exists at least one basis, but the total number of possible

bases is at most mn/2. The algorithm iterates over all unordered pairs of bases, and

for each such a pair
{

N1, N2

}

does the following.

Let

C1 =
{

y AN1 : y Ê 0
}

and C2 =
{

−y AN2 : y Ê 0
}

be the simplicial cones generated by the rows of matrices AN1 and−AN2 respectively.

By Lemma 2.3, these cones can be represented by systems of linear inequalities,
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cD1 É 0 and cD2 É 0, respectively, each of which consists of n inequalities and the

size of each inequality is bounded by 4n2φ. As the cone C1∩C2 is pointed, the origin

can be cut off by a single inequality; for example,

cD11 É−1,

where 1 stands for the n-dimensional all-one vector. The size of the latter inequality

is bounded by 4n3φ.

All together, there are 2n+1 inequalities in the integer program (3.9) and the size

of each is bounded by 4n3φ. This implies that the number of vertices of the integer

hull of (3.9) is at most 2
(

2n +1
)n(

24n5φ
)n−1

, see Theorem 2.10, and they all can be

computed in polynomial time if n is fixed, by exploiting the algorithm for integer

programming in fixed dimension; see Hartmann (1989) for details.

The algorithm then outputs the triple (FN1 ,FN2 ,c) for each vertex c of the integer

hull of (3.9), where FN1 and FN2 are the linear transformations defined by (3.6).

Since there are at most mn/2 unordered pairs of bases and, for each pair, the

algorithm returns at most 2
(

2n +1
)n(

24n5φ
)n−1

triples, the total number of triples

satisfies (3.10), as required. Both parts of the theorem follow directly from our pre-

vious explanation.

The bound (3.10) can be rewritten for fixed n as

M =O
(

mnφn−1
)

.

Clearly, the greatest common divisor of the components of any direction ci obtained

by the algorithm must be equal to 1, as otherwise it would not be a vertex of (3.9).

This implies, in particular, that the Hermite normal form of any of these vectors is

just the first unit vector e1 in Rn .

It is also worth mentioning that if (Fi ,Gi ,ci ) is a triple attaining the minimum in

Part (b) of Lemma 3.6, then we have

w(Pb) É max
{

ci x : x ∈Pb

}

−min
{

ci x : x ∈Pb

}

É ci Fi b −ci Gi b = w(Pb),

hence Part (a) of the lemma, when applied to this triple, turns into the equations

min
{

ci x : x ∈Pb

}

= ci Gi b and max
{

ci x : x ∈Pb

}

= ci Fi b.

For our further purposes, however, it is more suitable to have a unique width

direction for all polyhedra Pb with varying b. In fact, using Lemma 3.6, we can par-

tition the set of the right-hand sides into a number of partially open polyhedra, such

that the width direction remains the same for all b belonging to the same region of
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the partition. To see this, observe that the sets Qi (i = 1, . . . , M) defined by the in-

equalities

ci (Fi −Gi )b É c j (F j −G j )b for all j 6= i ,

where the triples (ci ,Fi ,Gi ) are those returned by the algorithm of Lemma 3.6, are

polyhedra (even polyhedral cones) over b. Then Part (b) of Lemma 3.6 implies that

w(Pb) = min
j

c j (F j −G j )b = ci (Fi −Gi )b

for all b ∈Qi . Moreover, the polyhedra Qi ∩Q (i = 1, . . . , M) is “almost” a partition of

Q, in a sense that they can intersect only on the hyper-planes

{

b : ci (Fi −Gi )b = c j (F j −G j )b
}

,

i.e., the boundaries of the polyhedra Qi . Thus, the only thing we need is to exclude

such a boundary from all but one polyhedra. We remark that this was essentially the

main reason for introducing the notion of partially open polyhedra in Section 2.4,

which is not very common in the literature related to linear and integer program-

ming.

Theorem 3.7. There exists an algorithm that, given a rational matrix A ∈ Qm×n of

full column rank, defining a parameterised polyhedron P of finite lattice width, and

a rational partially open polyhedron1 Q ⊆Rm such that Pb is non-empty for all b ∈Q,

partitions Q into a number of partially open polyhedra Q1, . . . ,QM and finds, for each

i , a triple (Fi ,Gi ,ci ) of linear transformations Fi ,Gi : Rm → Rn and a non-zero row-

vector ci ∈Zn , such that

min
{

ci x : x ∈Pb

}

= ci Gi b, max
{

ci x : x ∈ Pb

}

= ci Fi b,

and

w(Pb) = wci
(Pb) = ci (Fi −Gi )b

for all b ∈Qi . If n is fixed, the algorithm runs in polynomial time and

M =O
(

mnφn−1
)

,

where φ is the maximum size of a column in A.

1Here and in what follows, the phrase “given a polyhedron” means that we are given a

system of linear inequalities defining the polyhedron. Particularly, the size of the polyhe-

dron is the size of this system of linear inequalities.
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Proof. First, we exploit the algorithm of Lemma 3.7 to obtain the triples (Fi ,Gi ,ci ),

i = 1, . . . , M , with M = O
(

mnφn−1
)

, providing us the width directions of the param-

eterised polyhedron P . For each i = 1, . . . , M , we define a partially open polyhedron

Qi by the inequalities

ci (Fi −Gi )b < c j (F j −G j )b, j = 1, . . . , i −1,

ci (Fi −Gi )b É c j (F j −G j )b, j = i +1, . . . , M .

Thus,

min
j

c j (F j −G j )b = ci (Fi −Gi )b

for all b ∈Qi . We claim that the intersections of the partially open polyhedra Qi with

Q give the required partition.

Indeed, let b ∈Q and let µ be the minimal value of ci (Fi −Gi )b, i = 1, . . . , M . Let I

denote the set of indices i with ci (Fi −Gi )b =µ. Then b ∈Qi0 , where i0 is the smallest

index in I . Yet, suppose that b ∈ Q belongs to two partially open polyhedra, say Qi

and Q j . Without loss of generality, we can assume i < j . But then we have

ci (Fi −Gi )b É c j (F j −G j )b < ci (Fi −Gi )b,

where the first inequality is due to the fact b ∈Qi and the second inequality follows

from b ∈Q j ; both together are a contradiction.

For the width directions, Lemma 3.6 implies that

w(Pb) = min
j

c j (F j −G j )b = ci (Fi −Gi )b

for all b ∈Qi ∩Q. This completes the proof.

The result analogous to Theorem 3.7 first appeared in Kannan (1992). However, the

bound on the number of regions in the partition was exponential not only in n, but

also in the affine dimension of Q, dim(Q). Consequently, the algorithm to compute

this partition ran in time exponential in dim(Q). Actually, this is exactly the point,

where the algorithm of Kannan (1990) for parameterised integer programming be-

came exponential in dim(Q).

Another improvement over the result of Kannan — although not so important

from the algorithmic point of view— is that we compute the exact width directions

of a parameterised polyhedron P , while Kannan’s algorithm outputs for each region

Qi , a direction ci ∈Zn such that for all b ∈Qi ,

either wc (Pb) É 1, or wc (Pb) É 2w(Pb);

in other words, it computes approximate width directions of Pb .
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3.3 Integer projections

Notice that the algorithm of Theorem 3.7 not only delivers, for each region Qi of the

partition, a width direction of the polyhedron Pb, but also expresses the lattice width

w(Pb) as a linear transformation of b. Furthermore, looking back to the Lenstra’s

algorithm for integer programming in fixed dimension (Section 3.1), we can see that

the value (3.4) is also defined as a linear transformation of b; namely,

β= ci Gi b

for each b ∈ Qi . Following the Lenstra’s algorithm, we can now proceed with a re-

cursion call, as Pb contains an integral vector if and only if its intersection with the

hyper-plane
{

x : ci x = ⌈β⌉+ j
}

contains an integral vector for some j ∈ {0, . . . ,ω(n)}. With b varying, these hyper-

planes take the form
{

x : ci x = ⌈ci Gi b⌉+ j
}

and, while still being hyper-planes in variables x, are no more polyhedra in the

space of variables (x,b), i.e,

{

(x,b) : ci x = ⌈ci Gi b⌉+ j
}

(3.11)

are not polyhedra.

Nevertheless, we can still express these sets in the form suitable for our pur-

poses. Indeed, the set (3.11) is, in fact, the projection of the set of all feasible solu-

tions of the mixed-integer linear program

ci x = z + j , ci Gi b É z < ci Gi b +1, z ∈Z

onto the space of variables (x,b).

More generally, we define the integer projection W /Zl of a set W ⊆Rn+l as

W /Zl :=
{

x ∈R
n : (x, z) ∈W for some z ∈Z

l
}

.

In words, it is a set of vectors x, for which there exists an integral vector z ∈Zl such

that (x, z) belongs to W . We shall mostly deal with integer projections of rational

partially open polyhedra.

It is easy to see that the integer projection P/Zl of any polyhedron P ⊆ Rn+l

is just the union of (possibly infinite number of) partially open polyhedra in Rn .

Furthermore, for any polyhedron P we have

P = P/Z0, P ∩Zn =
{

(x, x) ∈Rn ×Rn : x ∈ P
}

/Zn . (3.12)
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Thus, integer projections of polyhedra can be viewed as a generalisation of both

polyhedra and integral vectors in polyhedra.

Let P be a partially open polyhedron in Rn+l . If l is fixed, we can apply the

Lenstra’s algorithm for mixed-integer programming to check whether P/Zl is empty,

and if not, to find a vector x in P/Zl . Indeed, P/Zl is empty if and only if the mixed-

integer program

(x, z) ∈P, x ∈Rn , z ∈Zl

is infeasible. Yet, we can optimise a linear function over a set P/Zl in polynomial

time, if l is fixed. Barvinok and Woods (2003) studied the set of integral vectors in

P/Zl , assuming n and l to be fixed. They were able to develop an algorithm, which

computes a short rational generating function for (P/Zl )∩Zn . As a consequence,

it is possible, for example, to compute the number of integral vectors in P/Zl . We

remark that the algorithm of Barvinok and Woods (2003) combines the approach of

Barvinok (1994) with the result of Kannan (1992) on width directions of a parame-

terised polyhedron, which we have improved in the previous section.

In our proof of the structural theorem we must be able to check feasibility for

an integer projection P/Zl . As we have already mentioned, it can be done with the

Lenstra’s algorithm, if l is bounded by a constant. Therefore, we must carefully esti-

mate the growth of l in the algorithm. The following lemma, although very simple,

is helpful for this.

Lemma 3.8. Let V ,W ⊆Rn be integer projections of some partially open polyhedra in

Rn+l and Rn+k , respectively. Then V ∩W is the integer projection of a partially open

polyhedron in Rn+l+k .

Proof. Let V = P1/Zl and W = P2/Zk , where P1 ⊆ Rn+l and P2 ⊆ Rn+k are partially

open polyhedra. A vector x ∈ Rn belongs to the intersection V ∩W if and only if

there exist integral vectors z1 ∈ Zl and z2 ∈ Zk such that (x, z1) ∈ P1 and (x, z2) ∈
P2. Equivalently, there exists an integral vector (z1, z2) ∈ Zl+k such that the vector

(x, z1, z2) belongs to the polyhedron defined by

(x, z1) ∈ P1 and (x, z2) ∈P2.

This completes the proof.

3.4 Structural theorem

Now, we have all necessary tools to establish the main result of this chapter — the

structural theorem. We must remark that the theorem itself, as well as its proof, is



37

mostly taken from Kannan (1992). However, our stronger result on width directions

of a parameterised polyhedron (see Section 3.2) leads to the stronger result in this

structural theorem: again, the parameter b is allowed to vary over a polyhedron of a

variable dimension.

Theorem 3.9. There exists an algorithm that, given a rational matrix A ∈ Qm×n of

full column rank, defining a parameterised polyhedron P of finite lattice width, and

a rational partially open polyhedron Q ⊆Rm such that Pb is non-empty for all b ∈Q,

computes a partition of Q into sets S1, . . . ,SM , each being the integer projection of a

partially open polyhedron, Si = S ′
i
/Zli , and finds, for each i , a number of unimod-

ular transformations Ui j : Rn → Rn and affine transformations Ti j : Rm → Rn , j =
1, . . . ,Ki , such that, for any b ∈ Si , Pb ∩Zn 6= ; if and only if Pb contains Ui j ⌈Ti j (b)⌉
for some index j .

If n is fixed, then the algorithm runs in polynomial time and the following bounds

hold:

M =O
(

(mnφn−1)nχ(n)
)

, li =O
(

χ(n)
)

, Ki =O
(

2n2/2χ(n)
)

, i = 1, . . . , M ,

where φ denotes the maximum size of a column in A and

χ(n) =
n
∏

i=1

ω(n)

is a constant.

Before we present the proof of this theorem, we informally discuss why it is useful.

Suppose n is fixed and we want to decide whether there exists a b ∈Q such that the

system Ax É b has no integral solution. The algorithm of Theorem 3.9 returns us

a partition of Q into polynomially many sets Si , each being the integer projection

of some partially open polyhedron S ′
i
⊆ Rn+li . If n is fixed, then li is bounded by a

constant, see the statement of Theorem 3.9. This means that Si can be modelled in

an extended space as the solutions of a mixed-integer program with a fixed number

of integer variables. Then the theorem states further that in order to find an integral

vector in Pb , we need to consider Ki (a fixed number of) candidate solutions

xi j =Ui j ⌈Ti j (b)⌉.

Notice that each of these candidate solutions for a given b can be modelled with a

fixed number of integer variables too, as Ti j (b) ∈Rn and n is fixed. We want to check

whether each of these candidate solutions does not satisfy Ax É b. In this case, each

of the candidate solutions violates at least one constraint of Ax É b. Since the num-

ber of candidate solutions Ki is fixed, we can check the
(m

Ki

)

many ways, in which



38

a candidate solution is associated with a constraint to be violated. All together we

can answer the question whether there exists a b ∈Q with Ax É b having no integral

solution, by solving a polynomial number of mixed-integer programs with a fixed

number of integer variables. In Chapter 4 we describe this again in more detail and

in a slightly more general form.

Proof of Theorem 3.9. The proof is by induction on n. First, suppose that n = 1.

The algorithm of Theorem 3.7 partitions Q into M = O(m) partially open polyhe-

dra Q1, . . . ,QM and computes, for each i = 1, . . . , M , a triple (Fi ,Gi ,ci ) such that

min
{

ci x : x ∈Pb

}

= ci Gi b and max
{

ci x : x ∈Pb

}

= ci Fi b.

Notice that ci is necessarily 1. Thus, we set Si =Qi and assign to each Si one trans-

formation Ti 1 : Rm → R defined by Ti 1(b) = Gi b. Indeed, for any b ∈ Si , the poly-

hedron Pb contains an integral vector if and only if ⌈Gi b⌉ is contained in Pb . The

unimodular transformation Ui 1 is just the identity.

Now, we consider a general n. Again, by applying the algorithm of Theorem 3.7,

we obtain a partition of Q into partially open polyhedra Qi and the corresponding

triples (Fi ,Gi ,ci ) such that

w(Pb) = ci (Fi −Gi )b

for all b ∈ Qi ; moreover, ci Gi b gives the minimal value of the linear function ci x in

Pb , while ci Fi b is its maximum value. Further on, we restrict our attention onto one

particular cell of this partition, and (we hope it does not confuse the reader) denote

it by Q. Let (F,G ,c) be the corresponding triple. After applying an appropriate uni-

modular transformation U , we may assume that c is the first unit vector e1. This is

feasible, since we can transform the candidate solutions Ui j ⌈Ti j (b)⌉ back with the

inverse of this unimodular transformation from the left: indeed, Ax É b if and only

if AU (U−1x) É b, and x is integral if and only if U−1x is integral.

Let P ′ denote the lower-dimensional parameterised polyhedron, derived from P

by moving the variable x1 to the right-hand side:

P ′
b−a1 x1

=
{

x′ : A′x′ É b −a1x1

}

,

where A′ stands for the matrix A after removing the first column a1, xi is the i-th

component of x and x′ = [ x2, . . . , xn ]. The polyhedron Pb contains an integral vector

if and only if P ′
b−a1 x1

contains an integral vector for some integral value of x1. On the

other hand, it follows from Lemma 3.4 that we need to consider only those values of

x1 that satisfy

e1Gb É x1 É e1Gb +ω(n).
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As b varies over Q and x1 varies from e1Gb to e1Gb+ω(n), the vector b−a1x1 varies

over the polyhedron

Q ′ =
{

b −a1x1 : b ∈Q, e1Gb É x1 É e1Gb +ω(n), x1 É e1F b
}

,

where the last inequality ensures that we do not leave the feasible region.

As P ′ has a smaller dimension than P , we can use the induction hypothesis to

obtain a partition of Q ′ into sets R1, . . . ,RM ′ , where Ri = R ′
i
/Zli is an integer projec-

tions of a partially open polyhedron R ′
i

inRn+li (i = 1, . . . , M ′), and the corresponding

collections of unimodular transformations Ui j and affine transformations Ti j such

that P ′
b′ , with b′ ∈ Ri , contains an integral vector if and only if it contains Ui j ⌈Ti j (b′)⌉

for some j . By induction, we also have the bounds

M ′ =O
(

(mn−1φn−2)(n−1)χ(n−1)
)

, li =O(χ(n −1)), i = 1, . . . , M ′,

and, for each i , the number of unimodular transformations Ui j and affine transfor-

mations Ti j is

O
(

2(n−1)2/2χ(n −1)
)

.

Recall that we are interested in integral vectors of the polyhedra P ′
b−a1 x1

for at

most ω(n)+1 different values of x1, namely,

x1 = ⌈e1Gb⌉+ j , j = 0, . . . ,ω(n).

Consequently, we need to consider transformations Ui j and Ti j corresponding to

these particular values of x1. However, the vectors

b −
(

⌈e1Gb⌉+ j
)

a1, j = 0, . . . ,ω(n),

may happen to lie in different parts of the partition of Q ′. We define our partition

as follows. For every ordered tuple I =
〈

i0, . . . , i|I |−1

〉

of at most ω(n)+1 indices from
{

1, . . . , M ′}, we define S I as the set of all b ∈Q such that

b −
(

⌈e1Gb⌉+ j
)

a1 ∈ Ri j
, j = 0, . . . , |I |−1

e1Gb + j > e1F b, j Ê |I |.

The second constraint is equivalent to b −
(

⌈e1Gb⌉+ j
)

a1 ∉Q ′.
These sets S I are integer projections of some higher-dimensional partially open

polyhedra, S I = S ′
I /Zl I . Indeed, ⌈e1Gb⌉ can be expressed as an integer variable z0

satisfying the constraint

e1Gb É z0 < e1Gb +1,
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while each of the conditions b −
(

⌈e1Gb⌉+ j
)

a1 ∈ Ri j
is equivalent to

(b, z0, z) ∈ R ′
i j

for some integral vector z ∈Z
li j . By Lemma 3.8, we also have

lI É 1+ (ω(n)+1)O(χ(n −1)) =O(χ(n)).

The number of the regions is roughly

O
(

(mnφn−1)
(

(mn−1φn−2)(n−1)χ(n−1)
)ω(n))=O

(

(mnφn−1)nχ(n)
)

.

At last, they do form a partition of Q. Indeed, for each b ∈Q, its translate

b −
(

⌈e1Gb⌉+ j
)

a1

belongs to Q ′ and lies in some set Ri , unless

e1Gb + j > e1F b or j >ω(n).

Consequently, there exists a tuple I such that b ∈ S I . Similarly, b cannot lie in several

sets S I , as in this case

b −
(

⌈e1Gb⌉+ j
)

a1,

for some j , would belong to several sets Ri , which is impossible, since the Ri formed

a partition of Q ′.
Now, we need to construct the appropriate transformations for each set S I . Let

I = 〈i0, . . . , iN−1〉 and let S I be the corresponding set in our partition. Let b ∈ S I . If Pb

contains an integral vector x, then it contains one with

x1 = ⌈e1Gb⌉+ j for some j = 0, . . . , N −1.

For this x1, the polyhedron P ′
b−a1 x1

contains an integral vector x′, defined by

x′ =Ui j k

⌈

Ti j k (b −a1x1)
⌉

for some index k. Equivalently,

U−1
i j k x′ =

⌈

Ti j k (b)−Ti j k (a1)x1

⌉

.

To prove the induction step, we need to move x1 to the left-hand side of the

above equation. First, since x1 is an integer, the product ⌊Ti j k (a1)⌋x1 is also an inte-

ger and rounding will not affect it. Hence, we get

⌊

Ti j k (a1)
⌋

x1 +U−1
i j k x′ =

⌈

Ti j k (b)−
{

Ti j k(a1)
}

x1

⌉

,
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where
{

Ti j k(a1)
}

denotes the fractional part of the vector Ti j k (a1). Recall that we

consider

x1 =
⌈

e1Gb
⌉

+ j . (3.13)

Therefore,

⌊

Ti j k(a1)
⌋

x1 +U−1
i j k x′ =

⌈

Ti j k (b)− (e1Gb + j )
{

Ti j k (a1)
}

−γ
{

Ti j k (a1)
}⌉

(3.14)

for some 0 É γ < 1. Observe that Ti j k (b)− (e1Gb + j ){Ti j k (a1)} is an affine transfor-

mation of b only; let us denote it by TI j k(b). Furthermore, each component of the

vector γ
{

Ti j k (a1)
}

lies between 0 and 1; thus each component of the right-hand side

vector in (3.14) can actually take only two values. Therefore, we can try all possibili-

ties; namely, we have to consider equations

⌊

Ti j k (a1)
⌋

x1 +U−1
i j k x′ =

⌈

TI j k(b)−v
⌉

, (3.15)

where v ∈ Zn−1 satisfies the bounds 0 É v É 1. Obviously, there are only 2n−1 such

vectors, which is a constant if n is fixed. The right-hand side in these equations de-

pends now only on b. Combining them with (3.13), we obtain the required formula

for an integral vector in Pb , since the transformation

U−1
I j k =

[

1 0
⌊

Ti j k (a1)
⌋

U−1
i j k

]

is obviously unimodular.

The above construction must be repeated for all j = 0, . . . , N −1 and all indices k,

thus we obtain at most

O
(

2(n−1)2/2χ(n −1)
)(

ω(n)+1
)

2n−1 =O
(

2n2/2χ(n)
)

pairs of transformations for each set S I . As explained earlier, if there is an integral

vector in Pb , then there is one satisfying (3.13), for some j , and (3.14), for some k,

which is equivalent to (3.15), for some v . This completes the proof.
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Chapter 4

Application of the Structural Theorem

In the previous chapter, we defined a parameterised integer linear programming

problem as follows: Given a rational matrix A ∈Qm×n and a partially open polyhe-

dron Q ⊆Rm , decide

∀b ∈Q ∃x ∈Zn : Ax É b ? (4.1)

Equivalently, we can ask if there exists b ∈ Q such that the system Ax É b has

no integral solution. The structural theorem proved in Section 3.4 provides a tool

for solving parameterised integer programming problems when n is fixed. In fact,

we can do even more. But before we state the generalisation of the problem, let us

consider the following question:

∃b ∈Q ∃x ∈Zn : Ax É b ? (4.2)

Clearly, this problem is polynomial-time solvable when n is fixed, since it is just a

mixed-integer programming problem with a fixed number of integer variables:

∃(x,b) ∈Zn ×Rm : Ax −b É 0, b ∈Q ?

Our general question combines (4.1) and (4.2): now, we are given two systems of

linear inequalities, Ax É Φ(b) and B x ÉΨ(b), with the right-hand sides depending

on the parameter b via rational affine transformations Φ and Ψ, and the question

is to find b ∈Q such that Ax ÉΦ(b) has an integral solution, while the system B x É
Ψ(b) is infeasible in integer variables.1

1The affine transformationsΦ andΨwere introduced into the statement to treat systems

with different number of inequalities (the systems Ax É b and B x É b have the same number

of inequalities).
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4.1 Parameterised integer programming

Let A ∈Qm×n and B ∈Qk×n be rational matrices and let Φ : Rl →Rm and Ψ : Rl →Rk

be rational affine transformations. Yet, let Q ⊆ Rm be a partially open polyhedron.

We aim to find a vector b ∈ Q such that the system Ax É Φ(b) has an integral solu-

tion, but the system B x ÉΨ(b) has no integral solution.

The idea of the algorithm is now simple: First we run the algorithm of Theo-

rem 3.9 on input B and Ψ(Q), the image of Q with respect to the transformation

Ψ. Then we consider each set Si returned by the algorithm of Theorem 3.9 inde-

pendently. For each b such that Ψ(b) ∈ Si we have a fixed number of candidate

solutions for the system B x ÉΨ(b), defined via unimodular and affine transforma-

tions as Ui j ⌈Ti j (Ψ(b))⌉. Each rounding operation can be expressed by introducing

an integral vector: z = ⌈Ti j (Ψ(b))⌉ is equivalent to

Ti j (Ψ(b)) É z < Ti j (Ψ(b))+1,

where 1 denotes the all-one vector. We need only a constant number of integer

variables to express all candidate solutions plus a fixed number of integer variables

to represent the integer projections Si = S ′
i
/Zli . It remains to solve a number of

mixed-integer programs, to which we also include the constraints Ax ÉΦ(b), in or-

der to check whether there exists b ∈ Q such that all candidate solutions z violate

B z ÉΨ(b), while the system Ax ÉΦ(b) has an integral solution.

Theorem 4.1. There exists an algorithm that, given rational matrices A ∈Qm×n and

B ∈Qk×n , rational affine transformations Φ : Rl → Rm and Ψ : Rl → Rk and a ratio-

nal polyhedron Q ⊆ Rl , finds b ∈ Q such that the system Ax É Φ(b) has an integral

solution, but the system B x ÉΨ(b) has no integral solution, or asserts that no such b

exists. The algorithm runs in polynomial time if n is fixed.

Proof. Let r := rank(B). We can compute in polynomial time a unimodular matrix

U ∈ Zn×n such that BU =
[

B ′0
]

is the Hermite normal form of B , where B ′ has full

column rank; see Kannan and Bachem (1979). Then the system B x É Ψ(b) has an

integral solution if and only if the system B ′y ÉΨ(b) has an integral solution y ∈Zr .

Let P be a parameterised polyhedron defined by the matrix B ′. The system B ′y É
Ψ(b) has no integral solution if and only if PΨ(b) ∩Zn is empty. First, we exploit the

Fourier–Motzkin elimination procedure to construct the polyhedron Q ′ ⊆Rk of the

right-hand sides b′, for which the system B ′y É b′ has a fractional solution. For each

inequality ab′ É β, defining the polyhedron Q ′, we can solve the following mixed-

integer program

b ∈Q, aΨ(b) >β, Ax −Φ(b) É 0, x ∈Zn ,
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and if any of these problems has a feasible solution (x,b), then b is the answer to the

original problem. Hence, we can terminate and output this b.

Now, we can assume that for all b ∈ Q the system B ′y É Ψ(b) has a fractional

solution. By applying the algorithm of Theorem 3.9, we construct a partition ofΨ(Q)

into the sets S1, . . . ,SM , where each Si is the integer projection of a partially open

polyhedron, Si = S ′
i
/Zli . Since n is fixed, the numbers li (i = 1, . . . , M) are bounded

by some constant. Furthermore, for each i , the algorithm constructs unimodular

transformations Ui j and affine transformations Ti j , j = 1, . . . ,K , such that PΨ(b),

with Ψ(b) ∈ Si , contains an integral vector if and only if Ui j ⌈Ti jΨ(b)⌉ ∈ Pb for some

j . Again, K is fixed for a fixed n.

The algorithm will consider each index i independently. For a given i , Si can be

described as the set of vectors b such that

(Ψ(b), z) ∈ S ′
i

has a fractional solution for some integer z ∈Zli , which can be expressed in terms of

linear constraints, as S ′
i

is a partially open polyhedron. Let y j =Ui j ⌈Ti jΨ(b)⌉. The

vectors y j can be described by linear inequalities as

Ti jΨ(b) É z j < Ti jΨ(b)+1,

y j =Ui j z j ,

where 1 is the all-one vector. Then b is a solution to our problem if and only if

y j ∉PΨ(b) for all j . In this case, each y j violates at least one constraint in the system

B ′y É Ψ(b). We consider all possible tuples I of K constraints from B ′y É Ψ(b).

Obviously, there are only mK such tuples, that is, polynomially many in the input

size. For each such a tuple, we solve the mixed-integer program

Ax ÉΦ(b),

(Ψ(b), z) ∈ S ′
i
,

Ti jΨ(b) É z j < Ti jΨ(b)+1, j = 1, . . . ,K ,

y j =Ui j z j , j = 1, . . . ,K ,

ai j
y j >Ψi j

(b), j = 1, . . . ,K ,

where ai j
y ÉΨi j

(b) is the j -th constraint in the chosen tuple. Each such a mixed-

integer program can be solved in polynomial time, since the number of integer vari-

ables is fixed (in fact, there are at most (K +1)n + li integer variables).

If there exists a feasible solution b to one of these mixed-integer programs, this

b is also a solution to our original problem, hence we terminate and output b. If all

these mixed-integer programs are infeasible, there is no solution to the problem.
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The theorem analogous to Theorem 4.1 was proved by Kannan (1992). Our main

contribution comparing to that theorem is that the numbers l , k, and m do not

need to be fixed.

We remark that Theorem 4.1 allows to answer the question (4.1) in the case when

Q is the set of mixed-integral vectors of a polyhedron, if the number of integer com-

ponents is fixed. Indeed, for Q ∈Rk+m we can ask whether there is a b = (b1,b2) ∈Q,

b1 ∈ Rk and b2 ∈ Rm , such that the system x = b1 has an integral solution, while the

system Ax É b is infeasible in integer variables. This question is then equivalent to

testing

∀b ∈Q ∩ (Zk ×Rm) ∃x ∈Zn : Ax É b ?

for k and n fixed. The latter was also observed by Kannan (1992), but, again, his

algorithm runs in polynomial-time only with an additional assumption that m is

fixed.

4.2 Integer programming gaps

The algorithm described in Theorem 4.1 can be used to find the maximum differ-

ence between the optimum value of the integer linear program

max
{

cx : Ax É b, x ∈Zn
}

, (4.3)

and its linear programming relaxation

max
{

cx : Ax É b
}

. (4.4)

Given a rational matrix A ∈Qm×n and a rational vector c ∈Rn , we define

δ(A,c) := max
b

{

max
{

cx : Ax É b
}

−max
{

cx : Ax É b, x ∈Z
n
}}

,

where the maximum is taken over all vectors b ∈ Rm , for which (4.3) is feasible. We

shall call δ(A,c) the integer programming gap for the family of integer programs

(4.3).

Recently, Hoşten and Sturmfels (2003) established an algorithm to find the inte-

ger programming gap for a family of integer programs in standard form,

min
{

cx : Ax = b, x Ê 0
}

,

assuming the number of variables to be fixed. The latter, however, implies that the

number of rows is fixed, as we can always assume A to be of full row rank, and the
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problem fits into our settings. We develop an algorithm that, provided a matrix A

and a vector b, finds the integer programming gap δ(A,c) and runs in polynomial

time if the number of columns of A is fixed.

Consider the following system of inequalities:

cx Êβ,

Ax É b.

Given a vector b and a numberβ, there exists a feasible solution of the above system

if and only if the linear program (4.4) is feasible and its value is at least β. The set

of pairs (β,b) ∈ Rm+1, for which the above linear program has a solution, is a poly-

hedron in Rm and can be computed by means of Fourier–Motzkin elimination, in

polynomial time if n if fixed. Let Q denote this polyhedron.

Suppose that we suspect the maximum integer programming gap to be smaller

than γ. This means that, whenever β is an optimum value of (4.4), the integer pro-

gram (4.3) must have a solution of value at least β−γ. Equivalently, the system

cx Êβ−γ, (4.5)

Ax É b,

must have an integral solution. If there exists (b,β)∈Q such that (4.5) has no integral

solution, the integer programming gap is bigger thanγ. We also need to ensure that,

for a given b, the integer program is feasible, i.e., the system Ax É b has a solution

in integer variables.

Now, this is exactly the question for the algorithm of Theorem 4.1: Is there a

(β,b) ∈Q ′ such that the system (4.5) has no integral solution, but there exists y ∈Zn

such that Ay É b ? Here Q ′ = Q −γ(1,0) is the appropriate translate of the set Q. If

the algorithm returns some (β−γ,b), then the integer program (4.3), with the right-

hand side b, has no solution of value greater than β−γ, while being feasible. On the

other hand, (β,b) ∈ Q, thus the corresponding linear solution has optimum value

at least β. We can conclude that the maximum integer programming gap is greater

than γ. This gives us the following theorem.

Theorem 4.2. There exists an algorithm that, given a rational matrix A ∈ Rm×n , a

rational row-vector c ∈ Qn and a number γ, checks whether the maximum integer

programming gap for the integer programs (4.3) defined by A and c is bigger than γ.

The algorithm runs in polynomial time if the rank of A is fixed.

Using binary search, we can also find the minimum possible value for γ, hence the

maximum integer programming gap.
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The algorithm can easily be modified to find an integer programming gap for the

family (4.3) of integer programs, restricting the right-hand sides b to vary over some

polyhedron in Rm .



Chapter 5

Integer Programs in Standard Form

In this chapter we consider integer linear programs in standard form,

min
{

cx : Ax = b, x ∈Z
n
+
}

, (5.1)

where A ∈Qd×n is a matrix, c ∈Qn is a row-vector and b ∈Qd is a column-vector. The

problem (5.1) is polynomially equivalent to the following decision problem: Given

a matrix A and a vector b, decide

∃x ∈Z
n
+ : Ax = b ? (5.2)

In other words, the question is to decide whether a given vector b is an integral non-

negative combination of the columns of A. Clearly, we can assume without loss of

generality that A, b and c are integral.

Given a finite set X ⊂Rd , we define the integer cone generated by X to be the set

int.cone(X ) :=
{

t
∑

i=1

λi xi : t Ê 0; x1, . . . , xt ∈ X ; λ1, . . . ,λt ∈Z+

}

.

An example of the integer cone is shown on Figure 5.1: it is a discrete set of points

inside the “rational” cone cone(X ). The set X is called a Hilbert basis if

int.cone(X ) = cone(X )∩Zd .

It is well-known (see Schrijver (1986)) that every rational polyhedral cone C is gener-

ated by an integral Hilbert basis, that is, a Hilbert basis consisting of integral vectors

only. Moreover, if C is pointed, there is a unique minimal (with respect to inclusion)

integral Hilbert basis generating C .



50

Figure 5.1: Integer cone.

Carathéodory’s theorem (see Theorem 2.2) states that for a finite set X ⊂Rd and

a vector b ∈ cone(X ), there exists a subset Y ⊆ X of linearly independent vectors

such that b ∈ cone(Y ); in particular, |Y | É d . We consider the analogous question

for integer cones:

Given a finite set X of vectors in Qd and a vector b ∈ int.cone(X ), how

large is the smallest subset Y of X such that b ∈ int.cone(Y )?

Cook et al. (1986) showed that if X is an integral Hilbert basis and cone(X ) is point-

ed, then there exists a subset Y of X such that b ∈ int.cone(Y ) and |Y | É 2d−1. Later,

Sebő (1990) improved this bound to |Y | É 2d − 2. On the other hand, Bruns et al.

(1999) showed that the bound d is not valid. A tight bound, however, is still an open

question.

In Section 5.1 we shall investigate general integer cones generated by integral

vectors. We show that the desired bound cannot be given in terms of d only, and

propose a valid bound which is polynomial in d and the maximum size of a compo-

nent among vectors in X . For a special case, when conv(X )∩Zd ⊆ X , we prove the

bound 2d , which is exponential in d , but does not depend on the size of vectors in

X .

In Section 5.2 we apply these results to find the number of non-zero compo-

nents in an optimum solution of the integer program (5.1). It turns out that this

number does not depend on the number of variables, which is especially useful for

integer programs with exponentially many columns in the constraint matrix, since

we can guarantee the existence of an optimum solution of polynomial size. One of

the examples— the cutting stock problem— will be considered in Chapter 6.

Another interesting question concerns complexity of integer programs (5.1) un-

der the assumption that the number d of the equality constraints is fixed. The al-

gorithm of Lenstra is not applicable here, as the total number of constraints is not
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fixed — we have to count non-negativity constraints, too. In fact, the problem re-

mains NP-hard: the case d = 1 corresponds to the knapsack problem. However,

Papadimitriou (1981) showed that there exists a pseudo-polynomial algorithm for

the problems (5.1) when d is fixed, that is, an algorithm that runs in time polyno-

mial in n and the maximum absolute value of the entries of A, b and c. Similar as in

Chapter 4, we can ask whether the integer programming gap for the family of inte-

ger programs (5.1), with b varying over Qd , can also be found in pseudo-polynomial

time.

It is worth mentioning that if the columns of the matrix

[

c 1

A 0

]

form a Hilbert basis, the integer programming gap for (5.1) is less than 1: for any

integral vector b, the optimum value of an integer program is always equal to the

optimum value of the corresponding linear programming relaxation rounded up.

Moreover, the optimum solution can then be found in polynomial time. At last,

Cook et al. (1984) showed that if d is fixed, there exists a polynomial-time algorithm

to test whether a given set of integral vectors constitute a Hilbert basis. For a variable

d , it is easy to see that Hilbert basis testing belongs to coNP, but it is still not known

whether it is in NP.

5.1 Carathéodory-type theorems

Let X be a finite set of vectors in Zd and let b ∈ int.cone(X ). We aim to find an upper

bound on the size of a smallest subset Y of X such that b ∈ int.cone(Y ). It is easy to

see that we cannot give such a bound in terms of the dimension d only. For example,

if the set X consists of the vectors

xi j = 2i−1e j +ed , i = 1, . . . ,n, j = 1, . . . ,d −1,

where e j denotes the j -th unit vector in Rd , then all these vectors are needed to

express the vector b ∈Zd ,

b j = 2n −1, j = 1, . . . ,d −1,

bd = n (d −1),

as an integral non-negative combination of the elements of X . Indeed,

b =
n
∑

i=1

d−1
∑

j=1

xi j
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is the unique representation. Since size(b) = O(dn), we conclude that Ω(size(b)) of

vectors are needed to represent b.

In the above example all vectors in X were, in fact, non-negative integral vectors.

The following theorem provides an upper bound for such sets, which is O(size(b)).

Theorem 5.1. Let X be a finite set of non-negative integral vectors inRd and let b ∈Rd

belong to int.cone(X ). Then there exists a subset Y of X such that b ∈ int.cone(Y ) and

|Y | É size(b).

Proof. Suppose that

b =
∑

x∈X

λx x,

with λx > 0 integer for all x ∈ X . It suffices to show that if |X | > size(b), then we can

find a proper subset Y of X such that b ∈ int.cone(Y ).

Clearly,
∑

x∈Y x É b for all subsets Y of X . This implies that the number of differ-

ent vectors of the form
∑

x∈Y x is bounded by
∏d

i=1(bi +1). Inequality |X | > size(b)

implies

2|X | >
d
∏

i=1

(bi +1),

and therefore, there exist two subsets A and B of X , A 6= B , such that
∑

x∈A

x =
∑

x∈B

x.

Consequently, there exist two disjoint subsets of X , namely A′ := A\B and B ′ := B \A,

satisfying
∑

x∈A′
x =

∑

x∈B ′
x.

Without loss of generality we can assume A′ 6= ;. Let

λ∗ := min
{

λx : x ∈ A′}

and let x∗ ∈ A′ be a vector for which this minimum is attained, i.e., λx =λ∗. Now we

can rewrite
∑

x∈X

λx x =
∑

x∈X \A′
λx x +

∑

x∈A′
λx x

=
∑

x∈X \A′
λx x +

∑

x∈A′
(λx −λ∗)x +λ∗ ∑

x∈A′
x

=
∑

x∈X \A′
λx x +

∑

x∈A′
(λx −λ∗)x +λ∗ ∑

x∈B ′
x

=
∑

x∈X

µx x
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where

µx :=















λx +λ∗ if x ∈ B ′,

λx −λ∗ if x ∈ A′,

λx otherwise.

Thus, we have µx Ê 0 for all x ∈ X and µx∗ = 0. But then b ∈ int.cone(X \ {x∗}) and

the claim follows.

Suppose now that vectors in X are not all non-negative. In this case the bound of

Theorem 5.1 is no more valid. In order to see this, we consider the set X consisting

of vectors

xi j =−2i−1e j +ed , i = 1, . . . ,n −1, j = 1, . . . ,d −1,

xn j = 2n−1e j +ed , j = 1, . . . ,d −1,

and the vector b, defined by

b j = 1, j = 1, . . . ,d −1,

bd = n (d −1),

Again,

b =
n
∑

i=1

d−1
∑

j=1

xi j

is the unique representation of b as an integral non-negative combination of the

vectors from X . In other words, all of these vectors are needed to express b. But |X | =
n(d −1), while size(b) =O(d log(dn)). We can notice, however, that n is roughly the

largest size of a vector in X .

Theorem 5.2. Let X ⊂Zd be a finite set of integral vectors, such that X 6= {0}, and let

b ∈ int.cone(X ). Then there exists a subset Y of X such that b ∈ int.cone(Y ) and

|Y | É 2d log(4d M), (5.3)

where

M = max
x∈X

‖x‖∞.

Proof. Let b be an integral vector in Rd and let

b =
∑

x∈X

λx x,
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with λx > 0 integer for all x ∈ X . First, we show that if

|X | > d log(2|X |M +1), (5.4)

then there exists a proper subset Y of X such that b ∈ int.cone(Y ).

Indeed, for every subset Y of X , we have

∥

∥

∑

x∈Y

x
∥

∥

∞ É |X |M .

This implies that the number of different vectors that are representable as the sum

of vectors of a subset Y of X is bounded by (2|X |M +1)d . By (5.4), we have

2|X | > (2|X |M +1)d .

Therefore, there exist two subsets A and B of X , with A 6= B , such that

∑

x∈A

x =
∑

x∈B

x.

and we can proceed as in the proof of Theorem 5.1.

It remains to show that the inequality

|X | > 2d log(4d M) (5.5)

implies (5.4). Indeed, inequality (5.5) yields

M <
2|X |/(2d)

4d
,

whence

d log(2|X |M +1) < d log

(

|X |
2d

2|X |/(2d) +1

)

É d log

(

2|X |/(2d)

( |X |
2d

+1

))

=
|X |
2

+d log

( |X |
2d

+1

)

É
|X |
2

+
|X |
2

= |X |.

This completes the proof.
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We remark that the bound (5.3) can be written as

|Y | É 2d(2+ s + logd),

where s denotes the maximum size of a component of a vector in X .

Finally, we consider sets X of the very special structure: we suppose that X is

closed under convex combinations. The latter means that every integral vector in

conv(X ) also belongs to X . The theorem provides then a bound, which is indepen-

dent of the size of the vectors but exponential in the dimension.

Theorem 5.3. Let X ⊂Zd be a finite set of integral vectors that is closed under convex

combinations and let b ∈ int.cone(X ). Then there exists a subset Y of X such that

b ∈ int.cone(Y ) and

|Y | É 2d .

Furthermore, if

b =
∑

x∈X

λx x,

where λx Ê 0 integer for all x ∈ X , then there exist integers µx Ê 0 for all x ∈ Y , such

that

b =
∑

x∈Y

µx x and
∑

x∈X

λx =
∑

x∈Y

µx .

Proof. We say that

b =
∑

x∈X

λx x,

with λx Ê 0 integer for all x ∈ X , is a representation of b of value
∑

x∈X λx with the

potential
∑

x∈X

λx

∥

∥

[

1
x

]
∥

∥,

where ‖·‖ stands for the Euclidean norm in Rd+1. We show that, if there exists a

representation of b, then there exists a representation with the same value and at

most 2d non-zero coefficients.

Let

b =
∑

x∈X

λx x

be the representation of b of value γ with the smallest potential. If the number of

non-zero coefficients is greater than 2d , then there exist two different vectors x1 and

x2 in X such that λx1 > 0, λx2 > 0 and

x1 ≡ x2 mod 2.
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Since X is closed under convex combinations, 1/2(x1 + x2) belongs to X . Suppose

without loss of generality that λx1 Êλx2 . Then

λx1 x1 +λx2 x2 = (λx1 −λx2 )x1 +2λx2

(

1

2
(x1 +x2)

)

.

Since the vectors
[

1
x1

]

and
[

1
x2

]

are not collinear, we have

(λx1 −λx2 )
∥

∥

[

1
x1

]
∥

∥+2λx2

∥

∥

[

1
1/2(x1+x2)

]
∥

∥= (λx1 −λx2 )
∥

∥

[

1
x1

]
∥

∥+λx2

∥

∥

[

1
x1

]

+
[

1
x2

]
∥

∥

< (λx1 −λx2 )
∥

∥

[

1
x1

]∥

∥+λx2

(∥

∥

[

1
x1

]∥

∥+
∥

∥

[

1
x2

]∥

∥

)

=λx1

∥

∥

[

1
x1

]
∥

∥+λx2

∥

∥

[

1
x2

]
∥

∥

Thus, replacing

• λ1/2(x1+x2) by λ1/2(x1+x2) +2λx2 ,

• λx1 by λx1 −λx2 , and

• λx2 by 0

we obtain a representation of b with the same value and smaller potential, which is

a contradiction.

5.2 Integer programming problems in standard form

Motivated by their integer analogue of Carathéodory’s theorem, Cook et al. (1986)

considered integer programs

min
{

cx : Ax = b, x ∈Zn
+
}

, (5.6)

where A ∈ Zd×n is a matrix, c ∈ Zn is a row-vector, and b ∈ Zd is a column-vector,

under the condition that y A É c is a totally dual integral system. They showed that

if the polyhedron
{

y : y A É c
}

is full-dimensional and the minimum (5.6) exists, then

there exists an optimum solution with at most 2d −1 non-zero variables. Using the

result of Sebő (1990), this bound can be improved to 2d −2.

We can also apply our results, obtained in the previous section, to prove sim-

ilar bounds for general integer programs in standard form. Let x∗ be an integral

optimum solution of (5.6) and let γ := cx∗; then γ is an integer. The vector
[γ

b

]

is,

therefore, an integral non-negative combination of the columns of the matrix
[

c
A

]

.

Obviously, any other integral non-negative combination for
[γ

b

]

also yields an inte-

gral optimum solution. Thus, Theorems 5.1 and 5.2 imply the following.
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Corollary 5.4. Let A be a non-negative integral matrix and c a non-negative integral

row-vector. If the minimum (5.6) exists, then there is an optimum solution with at

most

2 size(b)

non-zero variables.

Proof. Since A and c are integral, we have

γÉ
d
∏

i=1

bi É
d
∏

i=1

(bi +1)−1,

and therefore,

log(γ+1) É
d
∑

i=1

log(bi +1)= size(b).

The claim follows from Theorem 5.1.

Corollary 5.5. Let A be an arbitrary integral matrix. If the minimum (5.6) exists,

then there is an optimum solution with at most

2(d +1)(2+ s + log(d +1))

non-zero variables, where s is the largest size of a coefficient in A and c.

These corollaries are very important for integer programs, where the columns of

the matrix A cannot be written explicitly. Such integer programs are usually de-

rived from combinatorial optimisation problems, e.g., packing, covering, partition-

ing, and tackled with column generation approach. Corollaries 5.4 and 5.5 then en-

sure that there exists an optimum solution of polynomial size. Chapter 6 is mostly

devoted to one particular example of such integer programs, which is derived from

the cutting stock problem.

Now, we switch to integer programs of the form

min
{

1x : Ax = b, x ∈Zn
+
}

. (5.7)

Cook et al. (1986) proved that for matrices A ∈ {0,1}d×n such that y A É 1 has the

integer rounding property, i.e.,

min
{

1x : Ax = b, x ∈Zn
+
}

=
⌈

min
{

1x : Ax = b, x ∈Rn
+
}⌉

for all vectors b for which the integer program is feasible, if the minimum (5.7) exists,

then there is an optimum solution with at most 2d −1 non-zero components.

We consider the case when the columns of A are closed under convex combi-

nations; for example, all integral vectors in a given polyhedron in Rd . Theorem 5.3

then yields an analogue of a “basic solution” for integer programs.
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Corollary 5.6. Suppose that the columns of a matrix A are closed under convex com-

bination. If the minimum (5.7) exists, then there is an optimum solution with at most

2d non-zero variables.

The above statement implies that, if d is fixed and the matrix A is given explicitly (all

n columns are in the input), then the integer program (5.7) can be solved in polyno-

mial time. Indeed, we can simply enumerate all possible “bases”, each consisting of

2d columns of A, and solve an integer programming problem in fixed dimension for

each such a basis, using the Lenstra’s algorithm.



Chapter 6

Cutting Stock Problem

In this chapter we investigate integer programs derived from the so-called cutting

stock problem. These are the integer programs in standard form, with the constraint

matrix composed of all integral solutions of the knapsack inequality ax É 1. Clearly,

the number of these columns is exponential in the input size.

6.1 Introduction

The classical one-dimensional bin packing problem is stated as follows: Given n

items of sizes s1, . . . , sn ∈ (0,1], find the minimum number of bins needed to pack all

these items, under the condition that the total size of the items packed into a bin

does not exceed 1. A closely related problem is that of stock cutting. In the one-

dimensional cutting stock problem the input is represented in a compact form: for

each index i = 1, . . . ,d , we are given two numbers, ai ∈ (0,1] and bi ∈ Z+, meaning

that there are bi items of size ai . The question is the same as for bin packing: we

need to partition all items into sets such that the total size of the items in each set

is at most 1 and the number of sets is minimised. Clearly, we can assume, without

loss of generality, that all sizes ai (i = 1, . . . ,d) are different and all numbers bi (i =
1, . . . ,d) are positive.

We denote by (n, s) an instance of the bin packing problem, where s ∈ (0,1]n is

the vector of items’ sizes. The instance of the cutting stock is denoted by (d , a,b);

here a ∈ (0,1]n is the vector of (different) item sizes, while the vector b ∈Zn
+ specifies

the multiplicity of each item.

So, bin packing and cutting stock are essentially the same problem, the only dif-

ference being in the input representation. While any polynomial-time algorithm for

the cutting stock problem runs also in polynomial time for bin packing, the con-
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verse is not necessarily true: the size of the input to the bin packing problem is in

general exponential in the size of the input to the corresponding cutting stock prob-

lem. In this sense, the cutting stock problem is harder than that of bin packing. In

particular, the bin packing problem is NP-complete, see Garey and Johnson (1979),

that immediately implies that cutting stock is NP-hard; however, it was not known

so far, whether it admits a solution whose size is polynomial in the size of the input;

see, for example, Marcotte (1986). Our results from the previous chapter allow to

answer this question positively, since we can formulate the problem as an integer

program in standard form— we describe the details in Section 6.2.

For the integer program itself, it was observed that its linear programming relax-

ation is very strong in practice. In fact, no instance of the cutting stock problem is

known with the integer programming gap greater than or equal to 2. This motivates

study of the integer programming gap of these integer programs, and Sections 6.3

and 6.4 are devoted to this question. We show that the approximation algorithm

of Karmarkar and Karp (1982) implies that the integer programming gap for an in-

stance I = (d , a,b) is bounded by O(log2 d).

Finally, in Section 6.5 we present two other integer programming formulations,

which appear to have polynomial size. To the best of our knowledge, polynomial-

size integer programming formulation for the cutting stock was not known so far.

For the rest of this introductory section, we summarise the most important re-

sults concerning bin packing and cutting stock. As we have already mentioned,

the problems are NP-hard in general. Moreover, no approximation algorithm of

factor better than 3/2 is possible, unless P = NP. Consequently, no polynomial-

time approximation scheme can exist for bin packing, unless P = NP. Nonetheless,

Fernandez de la Vega and Lueker (1981) established the so-called asymptotic poly-

nomial-time approximation scheme: for any given ε > 0, there is an algorithm that

runs in time polynomial in the input size and yields a solution of value at most

(1+ε)OPT(I )+1,

where OPT(I ) denotes the optimum value of the instance I of the bin packing prob-

lem, and runs in time polynomial in the input size. We remark that it can also be

implemented to run in polynomial time with respect to the compact input, as for

the cutting stock problem.

Karmarkar and Karp (1982) presented an asymptotic fully polynomial-time ap-

proximation scheme that, given ε> 0, computes a solution of value at most

(1+ε)OPT(I )+O(ε−2),

and runs in time polynomial in the input size and 1/ε. They also described a poly-

nomial-time near-optimal approximation algorithm, that computes a solution of
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value at most

OPT(I )+O(log2 OPT(I )).

As we shall see in Section 6.4, the bound is actually

LIN(I )+O(log2 d),

where LIN(I ) denotes the optimum value of the linear programming relaxation and

d is the number of different item sizes in the instance I . Again, we remark that

these algorithms can be implemented to run in polynomial time with respect to the

compact input, too.

Yet, the bin packing problem is, perhaps, a leader among combinatorial optimi-

sation problems in what concerns the number of different heuristics proposed for

its solution. We shall apparently use the heuristic called first fit decreasing: it takes

the items in non-increasing order of their sizes and packs an item into the first avail-

able bin, opening a new bin only if necessary. Johnson (1973) showed that the the

first fit decreasing algorithm computes a solution of value at most

11

9
OPT(I )+4.

We refer to Coffman et al. (1997) for a good survey on the approximation algorithms

for bin packing.

Finally, we mention an interesting open problem concerning cutting stock. It

arises if we assume the number of different item sizes to be fixed: Is the problem still

NP-hard or polynomial-time solvable? McCormick et al. (2001) proved polynomial-

time solvability in case d = 2, but for d Ê 3 the problem remains unsolved.

6.2 Integer programming formulation

Let I = (d , a,b) be an instance of the cutting stock problem. Any feasible packing of

a single bin can be represented by an integral vector v ∈Zd
+, where vi (i = 1, . . . ,d) is

the number of items of size ai packed into the bin, satisfying the constraint

av É 1;

such a vector is called a pattern. If we enumerate all possible patterns v1, . . . , vN ,

then the cutting stock problem I can be formulated as the integer linear program,



62

which was first introduced by Eisemann (1957):

min
N
∑

j=1

λ j

s. t.
N
∑

j=1

λ j v j = b,

λ j Ê 0 integer, j = 1, . . . , N ;

(6.1)

here the variable λ j ( j = 1, . . . , N ) represents the frequency of the pattern v j in a

solution. We denote by OPT(I ) the optimum value of (6.1); clearly, it is also the

optimum value of the original cutting stock problem I . The corresponding linear

programming relaxation has the form

min
N
∑

j=1

λ j

s.t.
N
∑

j=1

λ j v j = b,

λ j Ê 0, j = 1, . . . , N .

(6.2)

We denote the optimum value of this linear program by LIN(I ).

Both problems (6.1) and (6.2) have an enormous number of variables, namely,

equal to the number of non-negative integral solutions of the inequality av É 1, and

therefore, cannot be written explicitly. Furthermore, even the linear programming

relaxation (6.2) is NP-hard. To see this, consider its dual

max
{

yb : yv j É 1, j = 1, . . . , N
}

. (6.3)

The corresponding separation problem is: Given a row-vector y∗, check if it is feasi-

ble for (6.3), and if not, find a vector v ∈Zd such that y∗v > yv for all feasible vectors

y . This is equivalent to the knapsack problem

max
{

y∗v : av É 1, v ∈Zd
+
}

. (6.4)

Indeed, y∗ is a feasible solution of (6.3) if and only if the optimum value of (6.4) does

not exceed 1. This means, by Theorem 2.7, that the linear program (6.2) is as hard

as the knapsack problem, and the latter is known to be NP-hard.

However, if d is fixed, the problem (6.4) is just an integer programming problem

with a fixed number of variables, and hence, solvable in polynomial time by the

algorithm of Lenstra (1983). Consequently, the linear program (6.3), and therefore,

(6.2), are also polynomial-time solvable if d is fixed. We formulate this as a lemma.



63

Lemma 6.1. If d is fixed, then the linear program (6.2) is polynomial-time solvable.

Gilmore and Gomory (1961) (see also Gilmore and Gomory (1963)) described an ef-

ficient practical method to solve the linear program (6.2), nowadays known as the

column generation method. Essentially, it can be viewed as the simplex method,

where a column to be added into the current basis is derived by solving the knap-

sack problem (6.4). Karmarkar and Karp (1982) described an algorithm that solves

the linear program (6.2) approximately — within any given tolerance — in polyno-

mial time; formally, they showed that for any t > 0, there exists a polynomial-time

algorithm that computes a feasible solution to (6.2) of value at most LIN(I )+t . Their

algorithm is basically the ellipsoid method, but the separation problem is solved ap-

proximately, using a fully polynomial-time approximation scheme for the knapsack

problem.

We conclude this section with a bound on the size of an optimum solution for

the cutting stock problem. As we have said, it was not even known before whether it

admits an optimal solution whose encoding length is polynomial in the input size.

The following is an immediate consequence of Corollaries 5.4 and 5.6.

Theorem 6.2. Let I = (d , a,b) be an instance of the cutting stock problem. Then there

exists an optimal solution of (6.1) with at most

min
{

2 size(b), 2d
}

non-zero components.

6.3 Residual instances and small items

The linear program (6.2) has an important advantage over other relaxations of the

cutting stock problem: its optimum value is very close to the integral optimum

value. Surprisingly, the vast majority of cutting stock instances in practice satisfy

the property

OPT(I )= ⌈LIN(I )⌉;

some classes of such instances were investigated by Marcotte (1985). There are also

instances for which this property does not hold; for example, see Marcotte (1986),

Rietz et al. (2002). However, no instance is known to violate the property

OPT(I )É ⌈LIN(I )⌉+1, (6.5)

and it was conjectured by Scheithauer and Terno (1997) that (6.5) holds in general,

for all instances of the cutting stock problem.
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In the next section we prove that

OPT(I )−LIN(I )ÉO(log2 d)

for all instances of the cutting stock problem. Fairly, this bound follows directly

from the near-optimal approximation algorithm of Karmarkar and Karp (1982) and

it is not clear to us why it has not been shown explicitly so far.

First, let us agree on some notation. Since there is no crucial difference between

cutting stock and bin packing except their input representation, and the latter ap-

plies only when we talk about algorithmic aspects of the problem, we often switch

from one to another, depending on which input representation is more suitable for

us in this particular moment. Thus, the same instance I can be understood as the

bin packing instance (n, s), as the cutting stock instance (d , a,b). The bin packing

input can also be viewed as the multi-set of items, that justifies the notation, like

I ∪ J or I \ J for instances I and J . The total size of the items in I is sometimes de-

noted by s(I ), hence s(I )= ab.

Lemma 6.3. For any instance I of the bin packing problem, we have

OPT(I ) É 2s(I )+1.

Proof. There exists a packing such that all but one bins are more than half-full. If k

is the number of bins used, then

(k −1)
1

2
É s(I ),

and hence,

k É 2s(I )+1.

The claim follows.

Let I = (d , a,b) be an instance of the cutting stock problem and let λ ∈ RN
+ be an

optimal solution of the corresponding linear program (6.2). We can assume that λ

is a basic optimum solution (Theorem 2.6), and therefore, has at most d non-zero

components. Without loss of generality, let λ1, . . . ,λd be these components. Then

b =
d
∑

i=1

λi vi =
d
∑

i=1

⌊λi ⌋vi +
d
∑

i=1

{λi }vi ,

where {λi } := λi −⌊λi ⌋ denotes the fractional part of the number λi . We say that an

instance I ′ = (d , a,b′), where

b′ =
d
∑

i=1

{λi }vi ,
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is a residual instance for I . In other words, an instance of the cutting stock problem

is called residual if there exists a basic optimum solution of the linear program (6.2)

with all variables being smaller than 1.

Lemma 6.4. Let I = (d , a,b) be an instance of the cutting stock problem, and let I ′ =
(d , a,b′) be its residual instance. Then

OPT(I )−LIN(I )É OPT(I ′)−LIN(I ′).

Proof. The proof is straightforward. For some basic optimum solution λ of the lin-

ear program for the instance I , we have

b =
d
∑

i=1

⌊λi ⌋vi +
d
∑

i=1

{λi }vi =
d
∑

i=1

⌊λi ⌋vi +b′.

Then

LIN(I )=
d
∑

i=1

⌊λi ⌋+LIN(I ′)

and

OPT(I )É
d
∑

i=1

⌊λi ⌋+OPT(I ′)

and the claim follows.

Lemma 6.4 implies that the maximum of the difference OPT(I )−LIN(I ) over all in-

stances of the cutting stock problem is attained for some residual instance. Thus,

we can restrict our attention on residual instances only. It is easy to see that for any

residual instance I = (d , a,b), we have

s(I )= ab É LIN(I )É ⌈LIN(I )⌉ É OPT(I ) É d .

Lemma 6.5. Let I = (d , a,b) be a residual instance of the cutting stock problem and

let I ′ be the instance obtained from I by eliminating all items of size less than or equal

to 1/s(I ). Then

OPT(I )−⌈LIN(I )⌉ É max
{

OPT(I ′)−⌈LIN(I ′)⌉, 1
}

.

Proof. Having an optimum packing for I ′, we apply the first fit decreasing heuristic

to pack the remaining items. If the heuristic does not open a new bin, we are done.

Otherwise, we obtain a packing with, say p, bins:

I = v1 +v2 + . . .+vp ,
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where each, except possibly the last, bin satisfy

av j > 1−1/s(I ) ( j = 1, . . . , p −1)

Now, if p Ê ⌈s(I )⌉+1, then

⌈s(I )⌉
∑

j=1

av j >
⌈s(I )⌉
∑

j=1

(1−1/s(I ))Ê ⌈s(I )⌉−1.

Then the size of the items which are not packed within v1, . . . , vs is

a

(

b −
⌈s(I )⌉
∑

j=1

v j

)

= ab −
⌈s(I )⌉
∑

j=1

av j < s(I )− (⌈s(I )⌉−1)É 1,

and therefore, fits into one bin. Hence, OPT(I )É ⌈s(I )⌉+1, and the claim follows.

Therefore, we can restrict our attention only to residual instances I with all items

bigger than 1/s(I ). It gives immediately the following result.

Lemma 6.6. Let I = (d , a,b) be an instance of the cutting stock problem, where all

sizes are of the form ai = 1/ki , ki ∈Z+ (i = 1, . . . ,d). Then (6.5) holds.

Proof. The proof is by induction on d . Let I = (d , a,b) be a residual instance with

1/ai ∈ Z+ for all i = 1, . . . ,d . Without loss of generality, we can assume that b > 0; if

bi = 0 for some i , then the size ai does not occur in the instance and we have, in fact,

an instance with d −1 different item sizes. But then there is an item of size É 1/d ,

and it can be eliminated, due to Lemma 6.5.

6.4 Integer programming gaps

Let I = (n, s) and I ′ = (n′, s ′) be two instances of the bin packing problem. Without

loss of generality, we may assume that

s1 Ê . . . Ê sn and s ′1 Ê . . . Ê s ′n′ .

We say that instance I dominates instance I ′, and write I Ê I ′, if n Ê n′ and si Ê s ′
i

for all i = 1, . . . ,n′. Clearly, if I Ê I ′, then

LIN(I )Ê LIN(I ′) and OPT(I )Ê OPT(I ′),

since any (linear) solution for I ′ can be transformed to a (linear) solution for I , by

using essentially the same set of patterns.
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Theorem 6.7. For any instance I = (d , a,b) of the cutting stock problem,

OPT(I )É LIN(I )+C logd lnd ,

where C is a constant independent of I (C É 30).

Proof. The proof is by induction on d . Since the case d = 1 is trivial, suppose that

d > 1 and consider a residual instance I = (d , a,b) of the cutting stock problem. By

Lemma 6.5 we can also assume that ai > 1/d for all i = 1, . . . ,d . Let (n, s) be the

equivalent bin packing representation; without loss of generality, s1 Ê . . . Ê sn . We

split the set of items into groups as follows.

We fill the first group, G1, with first l1 largest items, s1, . . . , sl1
, such that

l1
∑

i=1

si > 2, but
l1−1
∑

i=1

si É 2.

Then we fill the group G2, in a similar way, with items sl1+1, . . . , sl1+l2
, until their total

size exceeds 2. We continue this process until all items are considered, obtaining

the sets G1, . . . ,Gk , with |Gi | = li (i = 1, . . . ,k). Then we have

k É s(I )/2+1É d/2+1,

since the total size of the items in each group Gi (i = 1, . . . ,k − 1) is bigger than

2. Moreover, since all items have size bigger than 1/d , we have li < 2d for all i =
1, . . . ,k −1.

Clearly, l1 É . . . É lk−1. Let G ′
i

be the set of items obtained from Gi by removing

smallest li − li−1 items (i = 2, . . . ,k − 1); then Gi−1 Ê G ′
i
. Let Hi be the set of items

obtained from G ′
i

by setting the size of all its items equal to the size of the largest

item in G ′
i

(i = 2, . . . ,k −1). Now, Gi−1 Ê Hi ÊG ′
i

for all i = 2, . . . ,k −1.

We define

J :=
k
⋃

i=2

Hi , J ′ :=G1 ∪Gk ∪
k
⋃

i=2

(Gi \G ′
i ),

Then

J É I É J ∪ J ′,

and therefore,

OPT(J ) É OPT(I )É OPT(J ∪ J ′) É OPT(J )+OPT(J ′),

and

LIN(J ) É LIN(I )É LIN(J ∪ J ′) É LIN(J )+LIN(J ′).
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It follows that

OPT(I )−LIN(I )É OPT(J )−LIN(J )+OPT(J ′). (6.6)

It remains to estimate OPT(J ′). For this purpose, we give an upper bound on the

total size of the items in J ′ and apply Lemma 6.3. First, observe that s(G1 ∪Gk ) É 6.

For each i = 2, . . . ,k−1, the set J ′ contains li −li−1 smallest items from Gi . Since li −1

items from Gi have size at most 2 (by construction), we get

s(Gi \G ′
i ) É 2

li − li−1

li −1
.

All together, we obtain

s(J ′) É 6+2
k−1
∑

i=2

li − li−1

li −1
É 6+2

k−1
∑

i=2

li−1
∑

j=li+1

1

j
= 6+2

lk−1−1
∑

j=1

1

j

É 6+2 ln lk−1 É 6+2 ln(2d).

With Lemma 6.3, we conclude that

OPT(J ′) É 13+4 ln(2d) ÉC lnd . (6.7)

By induction hypothesis, we also have

OPT(J )−LIN(J )+OPT(J ′) ÉC log(d/2) ln(d/2)+C lnd ,

that together with (6.7) and (6.6) yields

OPT(I )−LIN(I )É OPT(J )−LIN(J )+OPT(J ′) ÉC log(d/2) ln(d/2)+C lnd

=C (logd −1)(lnd −1)+C lnd ÉC logd lnd .

This completes the proof.

6.5 Polynomial-size integer programs

Integer programming formulation described in Section 6.2 is not the only possible

for the cutting stock problem. For the survey on various integer programming mod-

els for cutting stock, we refer to Valério de Carvalho (2002). We mention, however,

that like the formulation we used, all other integer programs discussed there involve

exponentially many variables or even constraints. For example, the assignment for-

mulation of Kantorovich (1960) has a binary variable xi j for each pair of an item si



69

and a bin B j , showing whether the item si is to be packed into the bin B j . For a

cutting stock instance I = (d , a,b), this already gives O(d‖b‖∞) variables.

Perhaps, the first integer programming formulation of polynomial size was pro-

posed by Belov and Weismantel (2003). The idea is that, given a cutting stock prob-

lem I = (m, a,b), each pattern can be represented as the sum of a small number of

sub-patterns. Let us denote

ui j = 2 j−1ei , i = 1, . . . ,d , j = 1, . . . ,Ki ,

where Ki = ⌈log(1/ai )⌉. Then the number of these vectors ui j is polynomial in the

input size, and each valid pattern v ∈Zd
+, av É 1, can be written as the sum

v =
d
∑

i=1

Ki
∑

j=1

µi j ui j ,

where µi j ∈ {0,1} for all i , j .

Now, suppose that we have an upper bound D on the number of patterns to be

used in an optimum solution. In other words, an optimum solution can be written

in the form

b =
D
∑

k=1

λk vk

for some patterns vk and some non-negative integers λ1, . . . ,λD (k = 1, . . . ,D); or, in

terms of sub-patterns,

b =
D
∑

k=1

n
∑

i=1

Ki
∑

j=1

λkµki j ui j

for some non-negative integers λk and binariesµki j (k = 1, . . . ,D, i = 1, . . . ,d and j =
1, . . . ,Ki ). This expression is non-linear, but variables µki j are binary, which allows

to use a technique of “switching” and express the product λkµki j as a single integer



70

variable, say ηki j . This results in the following integer programming formulation:

min
D
∑

k=1

λk

s.t.
D
∑

k=1

d
∑

i=1

Ki
∑

j=1

ηki j ui j = b,

d
∑

i=1

Ki
∑

j=1

µki j ui j É 1 for all k,

ηki j É η∗
k
µki j for all k, i , j ,

λk Ê ηki j for all k, i , j ,

λk ∈Z+, ηki j ∈Z+,µki j ∈ {0,1} for all k, i j ,

whereη∗
k

is some robust upper bound on the value ofηki j =λkµki j and can be taken

to be, for example,

η∗k =
n
∑

i=1

bi

for all k.

We remark that the authors did not state explicitly that their integer program is

of polynomial size. However, it follows immediately from Theorem 6.2, since D can

be chosen to be polynomial in the input size.

The second polynomial-size integer programming formulation was suggested

by András Sebő and explicitly exploits Catathéodory-type bounds from Section 5.2.

Let I = (d , a,b) be an instance of the cutting stock problem, and suppose we want

to decide whether there is a solution of value less than m. If so, then the vector
[

m
b

]

belongs to the integer cone of the vectors
[

1
vi

]

, where v1, . . . , vN are all patterns of I ,1

hence
[

m
b

]

=
N
∑

i=1

λi

[

1
vi

]

for some non-negative integers λ1, . . . ,λN . If D is an upper bound on the number

of patterns to be used in a solution, then at least one coefficient λi in that solution

must be greater than or equal to ⌈m/D⌉. In other words,

[

m
b

]

−⌈m/D⌉
[

1
v

]

=
N
∑

i=1

λi

[

1
vi

]

(6.8)

1Notice that v = 0 is also a valid pattern for the cutting stock problem.
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for some pattern v and some non-negative integers λ1, . . . ,λN . Now, we see that the

vector
[

m−⌈m/D⌉
b′

]

also belongs to the integer cone of vectors
[

1
vi

]

, i = 1, . . . , N , where

b′ = b −⌈m/L⌉v,

and therefore, is also expressible as the sum of D vectors. Thus, at least one coeffi-

cients λi in (6.8) must be greater than or equal to ⌈(m −⌈m/D⌉)/D⌉. Repeating this

procedure, we conclude that
[

m
b

]

is of the form

[

m
b

]

=
M
∑

i=1

λ∗
i

[

1
vi

]

for some (unknown) patterns vi and coefficients λ∗
i

, recursively defined as follows:

λ∗
i =

⌈

1

D

(

m −
i−1
∑

j=1

λ∗
j

)⌉

(6.9)

for i = 1, . . . , M . For the bound M , we get

M =O(D logm). (6.10)

The latter can easily be shown by induction, since the number of patterns for a vec-

tor
[

m
b

]

with the first component equal to m is equal to the number of patterns

we used for some vector with the first component equal to m −⌈m/D⌉ plus 1. The

bound (6.10) is polynomial, by Theorem 5.2, that gives us the polynomial-size for-

mulation in terms of integer programming:

[

m
b

]

=
M
∑

i=1

λ∗
i

[

1
vi

]

avi É 1 for all i ,

vi ∈Z+ for all i ,

where the numbers λ∗
i

are defined by (6.9).
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Chapter 7

Conclusions and Open Questions

At the end, let us summarise the main contributions of the present thesis once

again.

It has been known for a long time that the set of vectors b ∈ Rm , for which the

system of linear inequalities Ax É b has a solution, is a polyhedron, and this poly-

hedron can be found using Fourier–Motzkin elimination — in polynomial time if

the number n of variables x is fixed. Kannan (1992) asked an analogous question

for the case of integer variables x, and provided a algorithm that computes a de-

composition of the space of right-hand sides into integer projections of polyhedra

such that, for each particular region of this decomposition, we need to try only con-

stantly many candidate solutions, all defined in terms of affine transformations of

b, in order to check whether the system Ax É b has an integer solution. However,

his decomposition, as well as the running time of the algorithm, was exponential

in the dimension m of the b-space. We improved the algorithm so that it runs in

polynomial time under the only assumption that n is fixed. It seems to be best pos-

sible, since answering whether the system Ax É b has an integer solution in case

of variable n is just an ordinary integer programming problem, and therefore, NP-

complete.

A related question concerns the complexity of so-called parameterised integer

programming problems: the question here is to decide the statement

∀b ∈Q ∃x ∈Zn : Ax É b ?

where Q is a polyhedron in Rm and A is an m ×n-matrix. Again, the algorithm of

Kannan (1992) was able to solve this problem but took exponential time in m. We

made his algorithm running in time polynomial in m. The number n of variables x

needs to be fixed, but this assumption is absolutely reasonable, since integer pro-

gramming is just a special case of parameterised integer programming.
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Hoşten and Sturmfels (2003) considered integer programs of the form

min
{

cx : Ax = b, x Ê 0 integer
}

and developed an algorithm to find the so-called integer programming gap: the

maximum difference between the optimum value of the integer program and the

optimum value of its linear programming relaxation, for b varying over all vectors

for which the integer program is feasible. Their algorithm ran in polynomial time if

the number of variables is fixed. Implicitly, however, it also implies that the num-

ber of constraints is fixed. We considered a more general case and asked the same

question for integer programs of the form

max
{

cx : Ax É b, x integer
}

,

assuming the number of variables to be fixed. Our result — a polynomial-time al-

gorithm—generalises that of Hoşten and Sturmfels (2003), since each equality con-

straint can be replaced by two inequality constraints.

It is often the case in combinatorial optimisation, that a problem can be formu-

lated as an integer program in standard form

min
{

cx : Ax = b, x Ê 0 integer
}

with exponentially many variables. Apart from a solution method (these problems

are mostly NP-hard), we might be interested in the size of an (optimum) solution.

We give a bound which is polynomial in the number of rows in the matrix A and

the maximum size of an entry in A. If all entries of A are positive, then a bound in

terms of the size of the right-hand side b can be given. Finally, for the case when

the columns of A are, for example, all vectors of a given polyhedron, we provide a

bound which depends on the number of rows of A only, although exponential in it.

As a consequence, we prove that the cutting stock problem is NP-complete.

7.1 Open problems

There are some rumours that any research can be represented as a directed rooted

tree. A researcher starts with a problem at the root node, but its solution gives rise

to a number of other problems. Whatever direction (s)he chooses, solution of the

next problem creates several new problems again. The more problems you solve,

the more open questions you get!

Among the problems that arose during the work on the present thesis, we would

like to mention the following.
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Problem 1. We discussed a polynomial-time algorithm for finding the integer pro-

gramming gap for integer programs of the form

max
{

cx : Ax É b, x integer
}

,

where the right-hand side varies over all vectors for which the integer program is

feasible, when the number of variables is fixed. Integer programs in standard form

with a fixed number of variables is a sub-case. But we can consider integer programs

in standard form where the number of rows is fixed. Integer programming itself

becomes NP-hard in this case, but there exists a pseudo-polynomial algorithm for

it. Hence, the question: Can we compute the integer programming gap for these

integer programs in pseudo-polynomial time?

Problem 2. It is known that

min
{

cx : Ax = b, x Ê 0 integer
}

=
⌈

min
{

cx : Ax = b, x Ê 0
}⌉

for all b for which the integer program is feasible if and only if the columns of the

matrix
[

c 1

A 0

]

form a Hilbert basis. Furthermore, in fixed dimension we can test in polynomial

time whether given vectors constitute a Hilbert basis. But can we test, in polynomial

time in fixed dimension, whether

min
{

cx : Ax = b, x Ê 0 integer
}

É
⌈

min
{

cx : Ax = b, x Ê 0
}⌉

+1

holds for all b for which the integer program is feasible?

Problem 3. The cutting stock problem is known to be NP-complete in general. Can

it be solved in polynomial time under the assumption that the number of different

items sizes is fixed?

Problem 4. What is the tight bound on the maximum integer programming gap

for the cutting stock problem? As we mentioned, it was conjectured that OPT(I )−
⌈LIN(I )⌉ É 1 holds for all instances I . This conjecture needs to be proved (or dis-

proved).
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mixed-integer programming, 19

non-singular, 8

NP, 11

NP-hard, 12

NP-complete, 12

optimisation problem, 12, 17

P, 11

partition, 7

pattern, 61

pointed, 14

polyhedron, 13

polyhedron, parameterised ∼, 21

polyhedron, partially open ∼, 13

polynomial-time algorithm, 11

polynomial-time solvable, 11

polynomially equivalent, 12

polytope, 13

polytope, partially open ∼, 13

proper subset, 7

rational affine transformation, 9

rational half-space, 13

rational hyper-plane, 13

rational linear transformation, 9

rational matrix, 8

rational polyhedron, 13

rational vector, 8

relatively prime, 8

residual instance, 64

rounding, 7

separation problem, 16

size, 10

of equation, 11

of inequality, 11

of matrix, 11

of number, 10

of system of equations, 11

of system of inequalities, 11

of transformation, 11

of vector, 11

standard form, 15

standard lattice, 20

structural theorem, 22, 36–41

totally dual integral, 18

translate, 9

unimodular matrix, 20

unimodular transformation, 20

unit vector, 9

vertex, 14

width direction, 23, 28
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