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SUMMARY

Virtual execution environments, such as the Java Virtual Machine, promote platform-independent software
development. However, when it comes to analyzing algorithmcomplexity and performance bottlenecks,
available tools focus on platform-specific metrics, such ase.g. the CPU time consumption on a particular
system. Other drawbacks of many prevailing profiling tools are high overhead, significant measurement
perturbation, as well as reduced portability of profiling tools, which are often implemented in platform-
dependent native code. This article presents a novel profiling approach, which is entirely based on program
transformation techniques, in order to build a profiling data structure that provides calling-context-
sensitive program execution statistics. We explore the useof platform-independent profiling metrics, in
order to make the instrumentation entirely portable and to generate reproducible profiles. We implemented
these ideas within a Java-based profiling tool called JP. A significant novelty is that this tool achieves
complete bytecode coverage, by statically instrumenting the core runtime libraries, and dynamically
instrumenting the rest of the code. JP provides a small and flexible API to write customized profiling agents
in pure Java, which are periodically activated to process the collected profiling information. Performance
measurements point out that, despite the presence of dynamic instrumentation, JP causes significantly less
overhead than a prevailing tool for the profiling of Java code.
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1. INTRODUCTION

Virtual execution environments, such as the Java Virtual Machine (JVM) [35] or Microsoft’s .NET
framework [36], have become the basis for building complex,heterogeneous, component-based
software systems, because they enable the development of fully portable software. The Java promoters’
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slogan ‘write once, run anywhere’ is meant to emphasize the platform-independence of compiled Java
programs, which are represented as JVM bytecode [35].

Unfortunately, when it comes to performance analysis for Java programs, platform independence
is lost. Prevailing profiling tools typically provide information concerning CPU time consumption
on a particular execution platform, which is a highly system-specific dynamic metric, depending on
hardware, operating system, and virtual machine implementation. Similarly, memory consumption
is usually reported in bytes, a unit of measurement which takes into account platform-specific
characteristics: object internal representation, alignment constraints, header size, etc.

In addition to the lack of support for platform-independentperformance analysis, prevailing profiling
tools often cause high overhead and therefore significantlyperturbate the measurement. In other
words, execution statistics reported by profiling tools do frequently not faithfully represent normal,
non-profiled program executions, which may mislead software developers searching for performance
bottlenecks. As another shortcoming, many profiling tools for virtual execution environments consist
at least partly of platform-specific native code, limiting the portability of these tools.

Concretely, most profiling tools for Java are based on the Java Virtual Machine Profiling Interface
(JVMPI) [44, 34] or its successor, the JVM Tool Interface (JVMTI) [45]. These interfaces provide a set
of hooks into the JVM which signal events, such as method invocation, object allocation, etc. However,
many profiling events prevent optimizations within the virtual machine; even just-in-time compilation
may be disabled. Consequently, profiling can cause excessive overheads of more than factor 1 000
and completely perturbate the measurements. Moreover, these interfaces violate the ‘write once, run
anywhere’ motto, because they require profiling agents to beimplemented in native code.

One important use case for platform-independent profiling is in the area ofservice-oriented
architectures(SOA). SOA aims at the construction of applications by integrating advanced service
components [40], such as service repositories, matchmakers, service composition and orchestration
engines, reputation mechanisms, etc. These components aretypically deployed in heterogeneous
environments, which means that the actual target platformsare often not known at development
time. Therefore, it becomes necessary to have platform-independent profiling support that allows
the developer to detect algorithmic inefficiencies, as illustrated in [19], where the authors present a
profiling tool which enabled them to identify at the bytecode∗ level an inefficient sorting algorithm in
a piece of non-trivial third-party software. Moreover, as components may involve complex algorithms,
such as planners for automated service composition, the measurement overhead has to be low in order
for such profiling tools to be applicable. Existing profilersare not appropriate for this setting because
of their high overhead, their exclusive focus on highly platform-specific metrics, and frequent suffering
from strong measurement perturbation.

In this article we present a novel approach for fully platform-independent profiling in virtual
execution environments. We instrument programs in order tocreate a profiling data structure at
runtime, which stores various calling-context-sensitivedynamic metrics. Each calling context includes
a method invocation counter, a bytecode counter, as well as memory allocation counters. As opposed
to sampling-based profiling, our approach aims at generating exact profiles, tracking each method
invocation.

∗In this article the term ‘bytecode’ is used as a synonym for ’virtual machine bytecode instruction’.
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PLATFORM-INDEPENDENT PROFILING 3

In this article we explain our approach using abstract datatypes. We assessed our approach with a
Java implementation called JP. JP is implemented in pure Java and supports custom profiling agents that
may be written in pure Java, too. Hence, JP is a fully portableprofiling framework that can be used on
any JVM, also on those that support neither the JVMPI nor the JVMTI or that provide limited support
for profiling in general. A significant novelty is that JP alsoachieves complete bytecode coverage, by
statically instrumenting the core runtime libraries, and dynamically instrumenting application code as
well as any required additional libraries.

JP offers much flexibility with respect to the generation andprocessing of profiling data structures
at runtime. JP provides a simple API to implement customizedprofiling agents. User-defined profiling
agents can thus be programmed, e.g. to preserve a trace of thefull call stack or, on the opposite, to
compact it at certain intervals. This contrasts with existing profilers which frequently only support a
fixed maximal stack depth.

In this article we show that the overhead caused by JP is rather low compared to classical approaches,
since it does not prevent the underlying JVM from putting allits optimization facilities to work during
the profiling. The bigger part of the overhead is due to the generation of calling-context-sensitive
profiling data structures, whereas the maintenance of bytecode and memory allocation counters causes
relatively little overhead.

The contributions of this article are, first, novel techniques for platform-independent profiling in
virtual execution environments based on program transformations, along with the introduction of
portable and customizable profiling agents, and second, thepresentation of a Java-based profiling tool
that uses dynamic instrumentation to cover all executed bytecode, a thorough analysis of the profiling
overhead in our implementation using the DaCapo benchmark suite [12], the SPEC JVM98 benchmark
suite [48] and the SPEC JBB2005 [47] benchmark, as well as a comparison with the overhead caused
by ‘hprof’, a standard profiler that comes with many distributions of the Java Development Kit (JDK).

This article is structured as follows: Section 2 introducesthe platform-independent dynamic metrics
used by our profiling approach. Section 3 presents our profiling data structures using abstract datatypes.
Section 4 explains how call stacks are managed by the profiler, how applications are transformed
at the bytecode level to generate the needed profiling information, and how the number of executed
bytecodes is computed, which serves as profiling metric. Section 5 details our approach to profiling
memory allocation. Section 6 outlines the implementation of JP. Section 7 presents our performance
measurements, Section 8 discusses the benefits and limitations of our approach, whereas Section 9
compares our approach with related work. Finally, Section 10 concludes this article.

2. PLATFORM-INDEPENDENT DYNAMIC METRICS

In the following we introduce the platform-independent profiling metrics our approach focuses on: the
number of method invocations (Section 2.1), the number of executed bytecodes (Section 2.2), and the
number of object and array allocations (Section 2.3).

2.1. Method Invocations

Our profiling approach aims at computing calling-context-sensitive, platform-independent dynamic
metrics. For each calling context, we store the number of method invocations (with the same stack of

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper.2008;0:1–33
Prepared usingspeauth.cls
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callers). Information on the number of method invocations is a common metric supported by many
available profiling tools. However, while some profilers do not differentiate between different calling
contexts or keep calling contexts only up to a pre-defined depth, our approach is able to maintain
arbitrarily deep calling contexts. Nonetheless, user-defined profiling agents may discard or aggregate
execution statistics for certain calling contexts.

In Section 5.1 we will show that method invocation counters enable the computation of object
allocation statistics without causing extra runtime overhead in Java environments.

2.2. Dynamic Bytecode Metrics

Most existing profilers measure the CPU consumption of programs in seconds. Although the CPU
second is the most common profiling metric, it has several drawbacks: It is platform-dependent (for
the same program and input, the CPU time differs depending onhardware, operating system, and
virtual machine implementation), measuring it accuratelymay require platform-specific features (such
as special operating system functions) limiting the portability of the profilers, and results are usually
impossible to reproduce faithfully. Furthermore, measurement perturbation is often a serious problem:
The measured CPU consumption of the profiled program may significantly differ from the effective
CPU consumption when the program is executed without profiling. The last point is particularly true
on virtual machines where profiling disables just-in-time compilation (e.g., profiling based on the
JVMPI [44, 34] prevents just-in-time compilation).

For these reasons, we follow a different approach, using thenumber of executed bytecodesas
profiling metric [6], which has the following benefits:

• Platform-independent profiles: The number of executed bytecodes is a platform-independent
metric [23]. Although the CPU time of a deterministic program with a given input varies very
much depending on the performance of the underlying hardware and virtual machine (e.g.,
interpretation versus just-in-time compilation), the number of bytecodes issued by the program
remains the same, independent of hardware and virtual machine implementation (assuming the
same virtual machine class library is used).

• Reproducible profiles: For deterministic programs, the generated profiles are fully reproducible.
It must nevertheless be noted that few programs are actuallyfully deterministic. Timestamps and
hashcodes are often hidden sources of non-determinism, since they depend on the time of the
day, respectively the underlying memory management policy, when hashcodes are computed
from memory addresses. Also, the activity of system threadsof the JVM, such as the garbage
collector and finalizer thread, will introduce non-determinism at the application level via the
execution of finalizers or other callbacks.

• Comparable profiles: Profiles collected in different environments are directlycomparable, since
they are based on the same platform-independent metric.

• Accurate profiles: The profile reflects the number of bytecodes that a program would execute
without profiling, i.e., the profiling itself does not affectthe generated profile. However, for
multi-threaded, non-deterministic programs, the profiling may affect the thread scheduling,
resulting in some (usually minor) measurement perturbation.
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PLATFORM-INDEPENDENT PROFILING 5

• Portable and compatible profiling scheme: Because counting the number of executed
bytecodes does not require any hardware- or operating system-specific support, it can be
implemented in a fully portable way.

• Fine-grained control of profiling agent activation: User-defined profiling agents are invoked
in a deterministic way by each thread after the execution of acertain number of bytecodes,
which we call theprofiling granularity. Profiling agents can dynamically adjust the profiling
granularity in a fine-grained way. Upon invocation, profiling agents may process the execution
statistics collected so far, which enables the generation of continuous metrics [23]. Continuous
metrics represent profiling information at different stages of program execution.

• Reduced overhead:The overhead is rather low compared to classical approaches, since it does
not prevent the underlying virtual machine from putting allits optimization facilities to work
during the profiling.

Consequently, dynamic bytecode metrics are key to the provision of a new class of portable,
platform-independent profiling tools, with advantages forthe tool users as well as for the tool
implementors:

On the one hand, bytecode counting eases profiling, because thanks to the platform-independence
of this metric [23], the concrete environment is not of importance. Thus, the developer may profile
programs in the environment of his preference. Since factors such as the system load do not affect the
profiling results, the profiler may be executed as a background process on the developer’s machine. This
increases productivity, as there is no need to set up and maintain a dedicated, ‘standardized’ profiling
environment.

On the other hand, bytecode counting enables fully portableprofiling tools. This helps reducing the
development and maintenance costs for profiling tools, as a single version of a profiling tool can be
compatible with any kind of virtual machine. This is in contrast to prevailing profiling tools, which
exploit low-level, platform-dependent features (e.g., toobtain the exact CPU time of a thread from the
underlying operating system) and require profiling agents to be written in native code.

Other researchers have also found it valuable to have platform-independent profiling support, in
order to allow the developer to detect algorithmic inefficiencies. In [19] the authors present a profiling
tool which uses bytecode counting and enabled them to identify and replace an inefficient sorting
algorithm in a piece of non-trivial third-party software.

In [29], a dynamic platform-independent analysis is made ofa standard benchmark suite, which
enables the authors to propose a number of improvements to existing Java compilers and execution
environments.

2.3. Memory Allocation Metrics

Concerning dynamic memory allocation, most profilers use the number of allocated bytes as
measurement unit. However, this metric depends on the particular virtual machine in use (object
representation in memory, alignment, size of references, etc.).

In contrast, in our approach we track the number of allocatedobjects of each type, for each
calling context [7]. This means that object allocations aredescribed by triples of the form
〈calling context, object type, number of instances〉. This metric gives the developer a detailed, high-
level view of object allocation in the profiled program. If desired, an estimation of the number of
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6 W. BINDER ET AL.

allocated bytes may be computed from this metric. As explained in Section 5.1, it is possible to
compute this object allocation metric directly from methodinvocation counters without any additional
instrumentation. Consequently, there is no extra overheadin the creation of profiling data structures
(concerning execution time as well as the amount of memory required to store the profiling data
structures).

Regarding array allocation, we preserve the element type, the number of allocated arrays, and the
total number of array elements for each calling context. Concretely, array allocations are described
by 4-tuples of the form〈calling context, element type, number of arrays, number of array elements〉.
In the case of Java, the element type may be one of the 8 basic types (byte, short, int, long,
char, boolean, float, double), or a reference type. This metric may be used to compute other
statistics, such as the average size of allocated arrays. Moreover, if the memory representation of arrays
in a particular virtual machine is known, the metric may be used to compute the number of bytes
consumed by allocated arrays.

For deterministic programs, these platform-independent memory allocation metrics yield
reproducible profiles that are directly comparable across different machines. Measurement perturbation
is not an issue, as we measure the number of objects that the unmodified program (without profiling)
would allocate. In contrast, a metric such as the total amount of memory in use would be seriously
perturbated by the measurement, since the profiling data structure itself consumes memory.

Our metrics for memory allocation do not expose the life-time of allocated objects. In general,
the life-time of objects is hard to determine in virtual execution environments that rely entirely on
automatic memory management (garbage collection), since there are no explicit de-allocation sites in
the bytecode.

Custom profiling agents may put memory allocation metrics inrelation to the number of executed
bytecodes, in order to derive metrics such as the allocationdensity, i.e., the number of object allocations
(or the approximate number of bytes allocated) per 1 000 executed bytecodes [23].

3. PROFILING DATA STRUCTURES

In this Section we define the data structures used by our profiling framework as abstract datatypes. Our
profiler JP implements these abstract datatypes in Java.

3.1. Method Call Tree (MCT)

In our approach, we transform bytecode in order to create a Method Call Tree (MCT), where each node
represents all invocations of a particular method with the same calling context (call stack). The parent
node in the MCT corresponds to the caller, the children nodescorrespond to the callees. The root of
the MCT represents the caller of the main method. With the exception of the root node, each node in
the MCT stores profiling information for all invocations of the corresponding method with the same
call stack. Concretely, it stores the number of method invocations, the number of bytecodes executed
in the corresponding calling context (excluding the numberof bytecodes executed by callee methods,
since each callee has its own node in the MCT), as well as memory allocation counters.

In order to prevent race conditions, either access to the MCThas to be synchronized, or each thread
has to maintain its own copy of the tree. To avoid expensive synchronization and to allow profiling
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PLATFORM-INDEPENDENT PROFILING 7

agents to keep the profiling statistics of different threadsseparately, we chose to create a separate MCT
for each thread in the system.†

The MCT is similar to the Calling Context Tree (CCT) [1]. However, in contrast to the CCT, the
depth of the MCT is unbounded. Therefore, the MCT may consumea significant amount of memory in
the case of very deep recursions. Nonetheless, for most programs this is not a problem: According to
Ball and Larus [4], path profiling (i.e., preserving exact execution history) is feasible for a large portion
of programs.

In the following we define two abstract datatypes to represent a MCT, the method identifierMID and
the method invocation contextIC. An instance ofIC represents a node in the MCT. We assume the
existence of the typesINT, STRING, andTHREAD, as well as the possibility to create aggregate types
(SET OF).

3.1.1. Method Identifier.

• createMID(STRING class, STRING name, STRING sig): MID
Creates a new method identifier, consisting of class name, method name, and method signature.

• getClass(MID mid): STRING
Returns the class name ofmid.
getClass(createMID(c, x, y)) = c.

• getName(MID mid): STRING
Returns the method name ofmid.
getName(createMID(x, n, y)) = n.

• getSig(MID mid): STRING
Returns the method signature ofmid.
getSig(createMID(x, y, s)) = s.

3.1.2. MCT Creation and Method Invocation Counter.

• getOrCreateRoot(THREAD t): IC
Returns the root node of a thread’s MCT. If it does not exist, it is created.

• profileCall(IC caller, MID callee): IC
Registers a method invocation in the MCT. The returnedIC instance represents the callee
method, identified bycallee. It is a child node ofcaller in the MCT.

• getCaller(IC callee): IC
Returns the callerIC of callee. It is the parent node ofcallee in the MCT.

†At the implementation level, a thread-local variable may beused to store a reference to the root of a thread’s MCT. Each thread
gets its own instance of the thread-local variable. In Java,thread-local variables are instances ofjava.lang.ThreadLocal.
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8 W. BINDER ET AL.

getCaller(profileCall(c, x)) = c.
This operation is not defined for the root of the MCT.

• getCalls(IC c): INT
Returns the number of invocations of the method identified bygetMID(c) with the caller
getCaller(c).
getCalls(profileCall(x, y)) ≥ 1.
This operation is not defined for the root of the MCT.

• getMID(IC c): MID
Returns the method identifier associated withc.
getMID(profileCall(x, callee)) = callee.
This operation is not defined for the root of the MCT.

• getCallees(IC c): SET OF IC
Returns the set of calleeICs of c.
∀x ∈ getCallees(c): getCaller(x) = c.
∀x ∈ getCallees(c): getCalls(x)≥ 1.

3.1.3. Bytecode Counter.

Each IC instance stores a bytecode counter, which is initially zero. The bytecode counter is
manipulated by the following operations:

• profileInstr(IC ic, INT bytecodes): IC
Registers the execution of a certain number of bytecodes inic. The bytecode counter inic
is incremented bybytecodes. Returnsic, after its bytecode counter has been updated. This
operation is not defined for the root of the MCT.

• getInstr(IC ic): INT
Returns the number of bytecodes executed inic.
getInstr(profileInstr(x, b)) ≥ b.
This operation is not defined for the root of the MCT.

3.1.4. Array Allocation Counter.

EachIC instance stores array allocation counters, which are initially zero. The array allocation counters
are manipulated by the following operations:

• profileArrays(IC c, TYPE t, INT arrays, INT elements): IC
Registers array allocations inc. t is the element type of the arrays.arrays repre-
sents the number of allocated arrays, whileelements is the total number of elements
in all allocated arrays (i.e.,elements is the sum of the sizes of the allocated arrays).
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PLATFORM-INDEPENDENT PROFILING 9

profileArrays(IC, TYPE, INT, INT) returnsc, after its array allocation statistics
have been updated accordingly. This operation is not supported for the root of the MCT.

TYPE denotes the different data types supported by the virtual machine. In the case of the JVM,
t may take one of the following values:

– B: Signed byte (byte).
– C: Unicode character (char).
– D: Double-precision floating point value (double).
– F: Single-precision floating point value (float).
– I: Integer (int).
– J: Long integer (long).
– S: Signed short (short).
– Z: True or false (boolean).
– R: Reference.

The first 8 values correspond to the encoding of basic types inthe JVM [35]. The element typeR
indicates that the array stores references to objects, which may be instances of ‘normal’ classes
or arrays.

• getArrays(IC c, TYPE t): INT
Returns the number of arrays of element typet allocated inc.
getArrays(profileArrays(x,t,arrays,y), t) ≥ arrays.
This operation is not supported for the root of the MCT.

• getElements(IC c, TYPE t): INT
Returns the number of elements in arrays of element typet allocated inc.
getElements(profileArrays(x,t,y,elements), t) ≥ elements.
This operation is not supported for the root of the MCT.

3.2. Activation Counter

In order to schedule the regular activation of a user-definedprofiling agent in a platform-independent
way, our profilers maintain a counter of the (approximate) number of executed bytecodes for each
thread. If this counter exceeds the current profiling granularity, the profiling agent is invoked in order
to process the collected execution statistics. The abstract datatypeAC defined below represents an
activation counter for each thread.

• getOrCreateAC(THREAD t): AC
Returns the activation counter of a thread. If it does not exist, it is created.

• setValue(AC ac, INT v): AC
Returnsac, after its value has been updated tov.
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10 W. BINDER ET AL.

• getValue(AC ac): INT
Returns the value ofac.
getValue(setValue(x, v)) = v.

4. PROFILING BYTECODE EXECUTION

In this Section we describe our program instrumentation scheme for platform-independent profiling,
focusing on the MCT creation and the maintenance of bytecodecounters. The profiling of dynamic
memory allocation is the subject of Section 5.

In Section 4.1 we explain how programs are transformed to create MCTs at runtime. While
Section 4.2 discusses the necessary code instrumentation to maintain the bytecode counters within the
MCTs, Section 4.3 explicates the periodic activation of a custom profiling agent. Finally, in Section 4.4
we illustrate the program transformations with an example.

4.1. MCT Creation

We transform bytecode in order to pass the method invocationcontexticcaller (typeIC) of the caller
as an extra argument to the callee method (i.e., we extend thesignatures of all non-native methods with
the additional argument). In the beginning of a method‡ identified bymidcallee (typeMID), the callee
executes a statement corresponding to

iccallee = profileCall(iccaller, midcallee);
in order to obtain its own (i.e., the callee’s) method invocation contexticcallee.

Because native code is not changed by the instrumentation, we add simple wrapper methods
with the unmodified signatures which obtain the current thread’s MCT root by calling
getOrCreateRoot(t), wheret represents the current thread. Therefore, native code is able to
invoke methods with the unmodified signatures.§

For each method, we add a static field to hold the corresponding method identifier. In the static
initializer we call createMID(classname, methodname, signature) in order to allocate a
method identifier for each method.

4.2. Bytecode Counting

For each method invocation contextic, we compute the number of executed bytecodes. We instrument
the bytecode of methods in order to invokeprofileInstr(ic, bytecodes) according to the
number of executed bytecodes. For each (non-native) method, we perform a basic block analysis (BBA)
to compute a control flow graph. In the beginning of each basicblock, we insert a code sequence that
implements this update of the bytecode counter.

‡Here we do not distinguish between methods and constructors, i.e., ‘method’ stands for ‘method or constructor’.
§For native methods, which we cannot instrument, we add so-called ‘reverse’ wrappers which discard the extraIC argument
before invoking the native method. The ‘reverse’ wrappers allow transformed code to invoke all methods with the additional
argument, no matter whether the callee is native or not.
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PLATFORM-INDEPENDENT PROFILING 11

In the case of our Java profiler JP, the BBA algorithm is not hard-coded; via a system property the
user can specify a custom analysis algorithm. JP itself offers two built-in BBA algorithms, which we
call ‘Default BBA’ resp. ‘Precise BBA’. In the ‘Default BBA’, only bytecodes that may change the
control flow non-sequentially (i.e., jumps, branches, method return, exception throwing) end a basic
block. Method invocations do not end basic blocks of code, because we assume that the execution will
return after the call. This definition of basic block corresponds to the one used in [11] and is related to
the factored control flow graph [16].

The advantage of the ‘Default BBA’ is that it creates rather large basic blocks. Therefore, the number
of locations is reduced where updates to the bytecode counter have to be inserted, resulting in a lower
profiling overhead. As long as no exceptions are thrown, the resulting profiling information is precise.
However, exceptions (e.g., an invoked method may terminateabnormally throwing an exception) may
cause some imprecision in the accounting, as we always countall bytecodes in a basic block, even
though some of them may not be executed in case of an exception. The end result is that, using the
‘Default BBA’, we may count more bytecodes than are executed.

If the user wants to avoid this potential imprecision, he mayselect the ‘Precise BBA’, which
ends a basic block after each bytecode that either may changethe control flow non-sequentially (as
before), or may throw an exception. As there are many bytecodes that may throw an exception (e.g.,
NullPointerException may be raised by most bytecodes that require an object reference), the
resulting average basic block size is smaller. This inevitably results in a higher overhead for bytecode
counting, because each basic block is instrumented by JP.

4.3. Periodic Activation of Custom Profiling Agents

Our approach supports user-defined profiling agents which are periodically invoked by each thread
in order to aggregate and process the MCT collected by the thread. The custom profiling agent
has to provide an implementation of the abstract datatypeProfilingAgent, which includes two
operations,register(THREAD, IC) and processMCT(IC). In the case of JP, we mapped
ProfilingAgent to a Java interface.

• register(THREAD t, IC root): INT
This operation is invoked whenever a new threadt is created. It is called by
getOrCreateRoot(t), if a new MCT root node (root) has been allocated. For each thread,
this operation is invoked only once, when it starts executing instrumented code (a wrapper
method as discussed in Section 4.1). Afterregister(t, root) has been called, the profiling
agent must be prepared to handle subsequent invocations ofprocessMCT(IC) by the thread
t.
register(t, root) returns the current profiling granularity fort, i.e., the approximate
number of bytecodes to execute untilt will invoke processMCT(IC) for the first time.

• processMCT(IC ic): INT
This operation is periodically invoked by each thread in thesystem. Whenever
processMCT(ic) is called, the profiling agent has to process the current thread’s MCT. ic
is the method invocation context corresponding to the method that is currently being executed.
The profiling agent may obtain the root of the current thread’s MCT either from a map (to
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12 W. BINDER ET AL.

be updated upon invocations ofregister(THREAD, IC)) or by successively applying
getCaller(IC). processMCT(IC) allows the profiling agent to integrate the MCTs of
different threads into a global MCT, or to generate continuous metrics [23], which is particularly
useful to display up-to-date profiling information of long running programs, such as application
servers.
processMCT(IC) returns the current profiling granularity for the calling thread, i.e.,
the approximate number of bytecodes to execute until the current thread will invoke
processMCT(IC) again.

Each thread maintains an activation counterac (typeAC) in order to schedule the regular activation
of the custom profiling agent. The value ofac is an upper bound of the number of executed bytecodes
since the last invocation ofprocessMCT(IC). In order to makeac directly accessible within each
method, we pass it as an additional argument to all invocations of non-native methods. If the value of
ac exceeds the profiling granularity, the thread callsprocessMCT(IC) of the profiling agent. Note
that the value ofac is not part of the profiling statistics, it is only used at runtime to ensure the periodic
activation of the profiling agent.

The value ofac runs from the profiling granularity down to zero, because in general a comparison
against zero is more efficient than a comparison against an arbitrary, user-defined threshold. Concretely,
the following polling conditional is used to schedule the periodic activation of the profiling agent and
to resetac (ic refers to the current method invocation context):
if (getValue(ac) <= 0) setValue(ac, processMCT(ic));

The updates ofac are correlated to the updates of the bytecode counters within the MCT
(profileInstr(IC, INT)). However, in order to reduce the overhead, the value ofac is not
updated in every basic block of code, but only in the beginning of each method, exception handler, and
loop. Each time it is decremented by the number of bytecodes on the longest execution path until the
next update or until the method terminates. This ensures that the value ofac is updated by an upper
bound of the number of executed bytecodes.

The polling conditional that checks whetherprocessMCT(IC) has to be called is inserted in the
beginning of each method and in each loop, in order to ensure its presence in recursions and iteration.
As an optimization, we omit the conditional in the beginningof a method, if before invoking any
method, each execution path either terminates or passes by an otherwise inserted conditional. For
instance, this optimization allows to remove the check in the beginning of leaf methods. Note that we
do not implement full call/return polling [25], since we aimat minimizing the polling overhead and
because variations in the number of executed bytecodes between invocations of the profiling agent are
not a problem in our setting.

4.4. Program Transformation Example

The example in Fig. 1 illustrates the aforementioned program transformations. To the left is the
classFoo with the methodsum(int, int) before transformation, to the right is the instrumented
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class Foo { class Foo {
private static final MID mid_sum;
static {

String cl = Class.forName("Foo").getName();
mid_sum = createMID(cl, "sum", "(II)I");

}

static int sum(int from, static int sum(int from,
int to) { int to, AC ac, IC ic) {

ic = profileCall(ic, mid_sum);
profileInstr(ic, 2);
setValue(ac, getValue(ac) - 2);

int result = 0; int result = 0;
while (true) { while (true) {

profileInstr(ic, 3);
setValue(ac, getValue(ac) - 10);
if (getValue(ac) <= 0)

setValue(ac, processMCT(ic));
if (from > to) { if (from > to) {

profileInstr(ic, 2);
return result; return result;

} }
profileInstr(ic, 7);

result += f(from); result += f(from, ac, ic);
++from; ++from;

} }
} }

static int sum(int from, int to) {
Thread t = Thread.currentThread();
return sum(from, to, getOrCreateAC(t),

getOrCreateRoot(t));
}

... ...
} }

Figure 1. Example program transformations for MCT creation, bytecode counting,
and periodic invocation of a custom profiling agent.

version.¶ sum(int, int) computes the following mathematical function:sum(a, b) =
∑b

i=a f(i).
The methodint f(int), which is not shown in Fig. 1, is transformed in a similar way as
sum(int, int). In sum(int, int) we use an infinitewhile() loop with an explicit
conditional to end the loop instead of afor() loop that the reader might expect, in order to better
reflect the basic block structure of the bytecode.

¶For the sake of better readability, in this article we show all transformations on Java-based pseudo-code, whereas our
profiler implementation JP work at the JVM bytecode level. The operations on the abstract datatypesMID, IC, AC, and
ProfilingAgent are directly inlined in order to simplify the presentation.
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14 W. BINDER ET AL.

For this example, we used the ‘Default BBA’ introduced in Section 4.2.sum(int, int) has
4 basic blocks of code: The first one (2 bytecodes) initializes the local variableresult with zero,
the second one (3 bytecodes) compares the values of the localvariablesfrom andto and branches,
the third one (2 bytecodes) returns the value of the local variableresult, and the fourth block (7
bytecodes) adds the return value off(from) to the local variableresult, increments the local
variablefrom, and jumps to the begin of the loop.

In the instrumented code, the static initializer allocatesthe method identifiermid sum to represent
invocations ofsum(int, int) in the MCT. The instrumented method receives 2 extra arguments,
the activation counter (typeAC) and the caller’s method invocation context (typeIC). First, the
instrumented method updates the MCT and obtains its own (thecallee’s) method invocation context
(profileCall(IC, MID)). The bytecode counter within the callee’s method invocation context
is incremented in the beginning of each basic block of code bythe number of bytecodes in the block
(profileInstr(IC, INT)).

The activation counterac is updated in the beginning of the method and in the loop. It isreduced
by the number of bytecodes on the longest execution path until the next update or method termination.
For instance, in the loop it is incremented by 10 (3 + 7), as this is the length of the execution path if
the loop is repeated. The other path, which returns, executes only 5 bytecodes (3 + 2). The conditional
is present in the loop, but not in the beginning of the method,since the only possible execution path
passes by the conditional in the loop before invoking any method.

A wrapper method with the unmodified signature is added to allow native code, which is not aware of
the additional arguments, to invoke the instrumented method. The wrapper method obtains the current
thread’s activation counter as well as the root of its MCT before invoking the instrumented method
with the extra arguments.

5. PROFILING MEMORY ALLOCATION

In the following we present our approach for platform-independent profiling of dynamic memory
allocation. While Section 5.1 deals with profiling allocations of objects that are not arrays, Section 5.2
addresses array allocations. The approach presented here is specific to Java, because we exploit the
mechanism by which the JVM allocates and initializes objects resp. arrays.

5.1. Profiling Object Allocation

At the Java level, objects are allocated and initialized through class instance creation expressions (new),
whereas at the bytecode level, object allocation and initialization are separated. Objects are allocated
with the new<class> bytecode instruction, which leaves a reference to the created object instance
(of typeclass) on the stack. Before the object can be used, a constructor has to be invoked in order to
initialize the object. At the bytecode level, constructorsare special methods with the name<init> that
are invoked with theinvokespecial<method-spec> bytecode instruction.‖ invokespecial

‖invokespecial is also used for other purposes, such as calling private methods or methods in a superclass.
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receives a reference to the previously allocated (and stilluninitialized) object, as well as the method
arguments on the stack. The method selection is based on the compile-time type given inmethod-spec,
thus we can statically determine which constructor is invoked.

One way to profile object allocation would be to instrument each occurrence of thenew bytecode
instruction. However, as object allocation is rather frequent, this approach would produce a non-
negligible overhead due to bytecode expansion and resulting extra execution time. Therefore, we
chose a different approach, taking advantage of the MCT thatis already created. In the MCT, each
method invocation context maintains the set of non-native callee methods and their respective number
of invocations. As constructors must not be native (see [35], Section 2.12.1: ‘Constructor Modifiers’),
all constructor invocations are present in the MCT. Becausethe JVM ensures that objects are initialized
at most once and that uninitialized objects cannot be used∗∗ (see [35], Section 4.8: ‘Constraints on
Java Virtual Machine Code’, and Section 4.9: ‘Verification of Class Files’), we assume that constructor
invocations correspond to object allocations. Hence, instead of sequentially counting object allocations
as they take place, we use profiling data that is anyway collected – the number of constructor
invocations – to infer the total number of allocated objects.

While this profiling scheme allows to compute the number of objects allocated by ‘normal’
methods, tracking the number of objects allocated by constructors requires some extra analysis,
because every constructor, except the constructor ofjava.lang.Object, also has to invoke either
an alternate or a superclass constructor. In other words, for all constructors but the constructor of
java.lang.Object, we cannot assume that each constructor invocation corresponds to an object
allocation. Even though the invocation of an alternate or superclass constructor usually happens in the
beginning of the constructor code, it is not necessarily thefirst invocation of a constructor in the code,
since the creation of the constructor arguments may involveobject allocation and initialization.

For instance, consider the example in Fig. 2, which shows a classA with two constructors.
To the right is the constructor bytecode generated by a standard Java compiler. The first
constructorA() invokes the second constructorA(java.lang.Object) and passes a newly
allocated and initialized object instance. In the bytecodeof A(), the invocation of the constructor
of java.lang.Object comes before the invocation ofA(java.lang.Object). In the
MCT, A() has 2 callees, the constructor ofjava.lang.Object as well as the constructor
A(java.lang.Object), but only one of them corresponds to an object allocation.

In order to correctly profile the number of object allocations in constructors, we statically analyze
the bytecode of each constructor during the instrumentation, in order to determine which alternate or
superclass constructor is invoked. We use abstract interpretation in order to simulate the evolution of
the stack and of local variables during execution of the constructor code. We only track thethis
reference, which is initially passed to the constructor in the local variable 0, until the first invocation
on it (i.e., invocation of the alternate or superclass constructor). Our simulation is similar to the one
performed by the JVM bytecode verifier [35], but it is simpler, because we are only interested in the first
invocation on thethis reference, whereas the JVM bytecode verifier has to ensure several properties.

JP produces a mapM that associates each constructor (except the constructor of
java.lang.Object) with the corresponding alternate or superclass constructor it invokes. In

∗∗There are nevertheless abnormal cases where even recent JVMs do not prevent method invocations on uninitialized objects,
such as inside finalizers. This issue is further discussed inSection 5.3.
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public class A {
A() {

this(new Object()); aload_0
new java/lang/Object
dup
invokespecial java/lang/Object/<init>()V
invokespecial A/<init>(Ljava/lang/Object;)V
return

}

A(Object o) {
super(); aload_0

invokespecial java/lang/Object/<init>()V
return

}

}

Figure 2. Constructor example.

the map, the constructors are identified by their fully qualified name and signature. This map is
loaded and accessed by the user-defined profiling agent in order to compute the correct number of
object allocations from the MCT. In the following we consider M : MID → MID a (partial) function
mapping a method identifier of a constructor to the method identifier of the associated alternate or
superclass constructor. In the example in Fig. 2,M(createMID("A","<init>","()V")) =
createMID("A","<init>","(java.lang.Object)V"), and M(createMID("A",
"<init>","(java.lang.Object)V")) = createMID("java.lang.Object",
"<init>","()V").

Note that the assumption that each constructor (except the constructor ofjava.lang.Object)
has exactly one associated alternate or superclass constructor may not hold for hand-crafted bytecode,
as illustrated in Appendix A. However, this assumption is valid for compiled Java code, and the static
analyzer is able to detect situations where the assumption is violated, producing a warning.

Fig. 3 explains how to compute the number of object allocations from the information stored in
the MCT. FunctiongetAlloc(IC) of Fig. 3 (a) returns the total number of objects allocated ina
given method invocation contextc. If c does not correspond to a constructor (or corresponds to the
constructor ofjava.lang.Object), thengetAlloc(IC) returns the total number of constructor
invocations in the context ofc. If c corresponds to a constructor (different from the constructor of
java.lang.Object), then the sum has to be reduced bygetCalls(c), because each time the
constructor corresponding toc is invoked, it will call its associated alternate or superclass constructor
M(getMID(c)) once, without any object allocation taking place. Note thatthe computation of
getAlloc(IC) does not require the mapM. FunctiongetAlloc(IC, STRING) of Fig. 3 (b)
returns the number of objects of a certain typeclass allocated in a given method invocation context
c. In contrast togetAlloc(IC), functiongetAlloc(IC, STRING) differentiates between the
invocations of constructors of different classes.
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Figure 3. Computing the number of allocated objects based onthe number of constructor invocations.

5.2. Profiling Array Allocation

As array allocation does not involve any method/constructor invocation, the approach presented in
Section 5.1 is not applicable to profile array allocations. Therefore, we instrument all occurrences of
bytecode instructions that allocate arrays in order to preserve statistics of the type, number, and size of
allocated arrays.

In the JVM, the bytecode instructionsnewarray<type>, anewarray<type>, and multi-
anewarray<type><allocDim> are used to allocate arrays. Whilenewarray allocates a 1-
dimensional array of a basic type (byte, short, int, long, boolean, char, float, double),
anewarray allocates a 1-dimensional array to hold references. Multi-dimensional arrays are
represented as arrays of arrays.anewarray may be used to allocate one dimension of a multi-
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18 W. BINDER ET AL.

dimensional array. If several dimensions of a multi-dimensional array are to be allocated at once, it
is more efficient to usemultianewarray, which subsumes the functionality ofnewarray and of
anewarray, and allows to allocate several array dimensions (the parameterallocDim) with a single
bytecode instruction.
newarray and anewarray receive the sizes of the array to allocate on the stack;s must

be a non-negative integer value. In order to profile an array allocation newarray<type>, we
insert a bytecode sequence directly before thenewarray bytecode instruction, corresponding
to profileArrays(c, t, 1, s), where c represents the current method invocation context
and t the corresponding element type of the array (B, C, D, F, I, J, S, or Z). For
an array allocationanewarray<type>, we insert a bytecode sequence that corresponds to
profileArrays(c, R, 1, s).
multianewarray<type><allocDim> receivesallocDim non-negative integer values on the

stack, which correspond to the sizes of the array dimensionsto be allocated. IfallocDim = 1,
multianewarray could be replaced either bynewarray or by anewarray. Hence, we can
profile the array allocation as described fornewarray resp.anewarray.

If allocDim > 1, the actual number of arrays and of array elements have to computed by
multiplying the sizes of the dimensions [20]. The dimensionality of the arrayarrayDim is encoded in
the array type descriptor (type) [35]; allocDim ≤ arrayDim. We distinguish two cases:

1. allocDim < arrayDim, or the base type of the array is an object type. In this case, only arrays
that have references as elements (R) are allocated. For instance, the following array allocation
examples fall into this category:

• multianewarray [[[I 2
Allocates the first two dimensions of a 3-dimensional integer array.

• multianewarray [[Ljava/lang/Object; 2
Allocates a 2-dimensional array of objects.

In order to profile the array allocation, we insert a bytecodesequence that corresponds to one
invocation ofprofileArrays(IC, TYPE, INT, INT):††

profileArrays(c,R,





allocDim−1
∑

i=0

i
∏

j=1

dim(j)



,





allocDim
∑

i=1

i
∏

j=1

dim(j)



)

2. allocDim = arrayDim, and the base type of the array is a basic typet. In this case, two types
of arrays are allocated: Arrays that have references as elements (R), as well as arrays that have
a basic type as elements (B, C, D, F, I, J, S, orZ). For instance, the following array allocations
fall into this category:

• multianewarray [[[I 3
Allocates a 3-dimensional integer array.

††dim(j) refers to thejth dimension of the array,dim(j) ≥ 0, 1 ≤ j ≤ allocDim.
0

Y

j=1

x = 1.
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new Object[2][3][5] → profileArrays(c, R, 9, 38)
new Object[2][3][0] → profileArrays(c, R, 9, 8)
new Object[2][0][5] → profileArrays(c, R, 3, 2)
new Object[0][3][5] → profileArrays(c, R, 1, 0)

new int[2][3][5] → profileArrays(c, R, 3, 8), profileArrays(c, I, 6, 30)
new int[2][3][0] → profileArrays(c, R, 3, 8), profileArrays(c, I, 6, 0)
new int[2][0][5] → profileArrays(c, R, 3, 2), profileArrays(c, I, 0, 0)
new int[0][3][5] → profileArrays(c, R, 1, 0), profileArrays(c, I, 0, 0)

Figure 4. Examples: Profiling the allocation of multi-dimensional arrays.

• multianewarray [[Z 2
Allocates a 2-dimensional boolean array.

In order to profile the array allocation, we insert a bytecodesequence that corresponds to two
invocations ofprofileArrays(IC, TYPE, INT, INT):

profileArrays(c,R,





allocDim−2
∑

i=0

i
∏

j=1

dim(j)



,





allocDim−1
∑

i=1

i
∏

j=1

dim(j)



)

profileArrays(c,t,





allocDim−1
∏

j=1

dim(j)



,





allocDim
∏

j=1

dim(j)



)

Fig. 4 illustrates the profiling of the allocation of multi-dimensional arrays with several examples.
At the implementation level, the inserted bytecode sequence to profile the allocation of a multi-

dimensional array is generated according to the algorithm in Fig. 5. While the size of each array
dimension is anint, the results of the arithmetic operations may exceed the range of anint. Hence,
the variablesprod, arr, andel are of the typelong (i.e., each of them occupies two local variables).

5.3. Accuracy of Memory Profiling

In this Section we consider the accuracy of the profiling scheme presented in Section 5.1 and in
Section 5.2. We discuss to which extent and under which conditions the generated memory allocation
profiles are accurate.

An important limitation of our approach is that it cannot profile the execution of native code.
Nonetheless, as constructors cannot be native, the MCT covers all constructor invocations. The
consequence is that, in general, the information regardingthe allocation of objects that are not arrays is
present in the MCT, even though the profiled program may spenda considerable part of its execution
time in native code.

Concerning the allocation of objects that are not arrays, the approach described in Section 5.1 tracks
the allocation of all objects that are correctly initialized (i.e., the constructor returns normally). If an
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1. Save array dimensions (provided on the stack) in dedicated local variables. (As an optimization, the
first array dimension can remain on the stack.)

2. Allocate further local variables to hold the current dimensional productprod, the number of arrays
arr, and the number of array elementsel.
prod := 1.
arr := 0.
el := 0.

3. For each dimensioni (1 ≤ i ≤ allocDim):

(a) If i = allocDim = arrayDim and the base type of the array is a basic type:
i. InvokeprofileArrays(c, R, arr, el).

ii. arr := 0.
el := 0.

(b) arr := arr + prod.
(c) Retrieve the size of theith array dimensiondim(i) from the corresponding local variable. (The

first array dimension may be directly duplicated on the stack.)
(d) prod := prod ∗ dim(i).
(e) el := el + prod.

4. InvokeprofileArrays(c, t, arr, el).
If allocDim = arrayDim and the base type of the array is a basic type,t corresponds to that basic
type; otherwise,t = R.

5. Restore the array dimensions from local variables. (The first array dimension may be still on the
stack.)

Figure 5. Algorithm to instrument allocations of multi-dimensional arrays.

exception occurs after object allocation but before the invocation of the constructor (e.g., an exception
during the evaluation of the constructor arguments), the object allocation is not visible in the profile.
A rare situation, in conjunction with finalizers, is when an uninitialized object is actually used, even
though its constructor has not been invoked. Also in this case, the object allocation is not tracked.
If we wanted to detect such abnormal cases, we might nevertheless add instrumentation to count
all executions of thenew bytecode instruction, and check if this produces the same result as our
constructor-counting method.

If an exception is thrown in the constructor, the invocationof the constructor and hence the object
allocation is visible in the profile. Nonetheless, if the exception occurs before the invocation of an
alternate or superclass constructor, the computation of the number of object allocations within the
constructor according to Fig. 3 may be incorrect. Note that the latter problem only concerns the
computation of the number of object allocations in constructors, but not in other Java methods.
Summing up, uninitialized objects may distort the computedobject allocation profiles. Fortunately, this
is rarely a problem in practice, because constructors that terminate abnormally throwing an exception
are not frequent.

Regarding array allocation, we insert profiling code beforethe bytecode instruction that allocates
the array. Thus, if the array allocation fails (e.g., the size of the array provided on the stack is
negative or the JVM runs out of memory), the profile may be inconsistent. We did not consider the
case of a negative array size, as this situation is usually a consequence of a programming error. To
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Figure 6. (a) Static instrumentation tool and (b) custom profiling agent and dynamic instrumentation agent of JP.

address this issue, we could insert conditionals in the profiling code in order to skip the invocation
of profileArrays(IC, TYPE, INT, INT) if a negative array size was detected. As most
applications are not designed to deal with occurrences ofOutOfMemoryError, we did not consider
this issue either. I.e., our profiler is intended to be used onwell tested programs, which run successfully
without causing such exceptions/errors.

It is also possible to defer the invocation(s) ofprofileArrays(IC, TYPE, INT, INT)
after the actual array allocation bytecode, so that they getskipped in the case of an exception. This
requires a slight modification of the instrumentation algorithm presented in Fig. 5, as the integer
arguments ofprofileArrays(IC, TYPE, INT, INT) have to be stored either on the stack
(below the slots with the array dimensions) or in local variables.

6. IMPLEMENTATION OF JP

In the following we outline our implementation principles.As illustrated in Figure 6, JP consists of (a)
a static instrumentation tool for the preparation of the JDK, and (b) a runtime instrumentation agent
which transforms application classes (and any remaining libraries) on the fly for collaboration with the
custom profiling agent.

In order to implement the proposed profiling scheme, JP changes method (as well as constructor)
signatures and bodies, and adds new methods and fields (with some restrictions, as described later). At
the same time, JP has to (1) ensure that inserted profiling code will not be executed before the JVM has
completed bootstrapping and (2) provide support for temporarily disabling the execution of profiling
code for each thread.

The first constraint is important in order not to disrupt the startup of the JVM, since current standard
JVMs may crash if certain JDK classes (e.g.,Object, String, Throwable, Thread, etc.) are
initialized in an unexpected order because of additional class dependencies. Another problem is that, as
long as the JVM is not completely initialized, thread manipulation primitives may not behave according
to their specified functionality, and therefore have to be considered as unavailable.
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The second constraint allows dynamic instrumentation to beperformed inside the same JVM process
that runs the instrumented application, without creating artifacts in the collected profiling data.

6.1. Bootstrapping Support

Since the JVM offers no standardized support for bootstrapping with a customized JDK, we follow the
safe and portable approach of considering the whole bootstrapping sequence as critical, and rely on
the Java Language Specification [28], which mandates lazy class initialization, and hence guarantees
that classes are not initialized before their first use. JP relies on a so-called “Java programming
language agent” (for details, see the API documentation of thejava.lang.instrument package)
for dynamic instrumentation and for detecting the end of bootstrapping.

JP ensures that inserted profiling code is not executed whilethe JVM is bootstrapping. To this end,
the following rules have to be enforced during bootstrapping:

• Method bodies that have been modified are not executed; instead, the original method bodies
need to be executed. To this end, JP keeps a copy of the original method body together with the
instrumented version and inserts a conditional in the beginning of the method that branches to
the appropriate version depending on the state of the JVM.

• Added methods are not executed at all; they can only be invoked by profiling code after the end
of bootstrapping. JP also patches Java’s reflection API to ensure that added methods will not be
accidentally used by existing code that relies on reflection.

• Classes used by profiling code are not initialized, unless they anyway would be initialized when
bootstrapping an unmodified JDK.

• No fields are added to classes that are loaded during bootstrapping, unless these fields are simply
initialized to their respective default value. This restriction is necessary to prevent the need for
executing profiling code inside static initializers or constructors during bootstrapping. However,
for all classes loaded during bootstrapping, JP will create“sister classes”, the role of which is
to hold any required additional static fields, such as the method identifiers (MIDs) introduced in
Section 3. Because of lazy class initialization, and because the added static fields are accessed
only by profiling code, the static initializers of the extra classes will not be executed during
bootstrapping.

6.2. Dynamic Instrumentation Support

As illustrated in Figure 6(b), JP is designed to execute the dynamic instrumentation agent and the
instrumented application inside the same JVM.

Dynamic instrumentation necessarily involves the invocation of methods of the JDK, which
themselves are instrumented, since Java prohibits loadingan instrumented and a non-instrumented
version of a same JDK class in different classloader namespaces. Therefore, in order to prevent
dynamic instrumentation from perturbing the collection ofprofiling data, JP allows switching on and
off the execution of profiling code separately for each thread.

While other approaches, such as the NetBeans profiler [37], perform dynamic instrumentation in
a separate JVM process, and use inter-process communication (IPC) to synchronize and transfer all
class bytes, our in-process dynamic instrumentation has the advantage that it avoids the overhead of
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IPC (which entails frequent process-level context switches) and the memory footprint of an additional
JVM process.

Our tighter architecture makes it potentially easier for the developer to selectively disable the
profiling of either a set of classes (by temporarily switching off dynamic instrumentation) or a number
of threads (by choosing to bypass any inserted profiling code); this in turn helps the developer reduce
the time spent profiling.

7. EVALUATION

In this Section we evaluate the overhead caused by our Java profiler JP in different settings and compare
it with the ‘hprof’ profiling agent that is included in standard JDKs.

To evaluate the overhead caused by our profiling scheme, we used the DaCapo benchmark suite [12]
(version ‘dacapo-2006-10-MR2’), the SPEC JVM98 benchmarksuite [48] (with problem size 100), as
well as the SPEC JBB2005 benchmark [47] (warehouse sequence1, 2, 3, 4). SPEC JVM98 consists
of 7 benchmarks, whereas DaCapo, which is more recent, and isintended to provide more realistic
workloads than SPEC JVM98 (a thorough comparison is given in[12]), consists of 11 benchmarks.
Our test platform is a Linux Fedora Core 2 computer (Intel Pentium 4, 2.66 GHz, 1 GB RAM). The
metric used for DaCapo and SPEC JVM98 is the execution time inseconds, whereas SPEC JBB2005
measures the throughput in operations/second. All benchmarks were run in single-user mode (no
networking) and we removed background processes as much as possible in order to obtain reproducible
results. For each setting and each benchmark, we took the median of 15 runs. For the DaCapo and
SPEC JVM98 suites, we also computed the geometric mean of therespective benchmarks. Here we
present the measurements made with the Sun JDK 1.7.0 platform (‘early access’, build b24) in its
‘client’ and ‘server’ modes.

7.1. Time Overhead

Fig. 7 and 8 show the profiling overhead for different settings, with memory profiling enabled. For
the DaCapo and SPEC JVM98 benchmarks (resp. the SPEC JBB2005benchmark), the overhead is

computed as a factor ofexecution time with profiling
execution time without profiling

(

resp. operations/second without profiling
operations/second with profiling

)

. To compare our

profiler with a standard profiler based on the JVMPI/JVMTI, wealso evaluated the overhead caused by
the ‘hprof’ profiling agent shipped with standard JDKs. We started the profiling agent ‘hprof’ with the
‘-agentlib:hprof=cpu=times’ option, which activates JVMTI-based profiling. The argument
‘cpu=times’ ensures that the profiling agent tracks every method invocation, as our own profiling
scheme does.

For ‘mtrt’, the overhead due to ‘hprof’ is a factor close to 1 000 or more, depending on the execution
mode (‘client’ or ‘server’). The ‘mtrt’ benchmark producesby far the highest overhead with JP as
well. This is because this benchmark is made of a very high number of method invocations (according
to [23] it has the highest ratio of method invocations of the SPEC JVM98 suite); method entries are
where most profiling activity takes place.

On the opposite side, ‘db’ produces the lowest overhead, both with JP and hprof. This may be
explained by its unoptimized use of memory, since it spends most of the time sorting a small database
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Figure 7. Profiling overhead (slowdown factor) for different profiler settings with Sun JDK 1.7.0 in client mode.

using a simple algorithm that ignores data locality, which results in serious thrashing of the underlying
hardware memory management system [42]; therefore, this program spends comparatively more time
in platform-level memory management operations than executing actual bytecodes. We have found
(using a predecessor tool of JP [13]) that ‘db’ executes up toone order of magnitude fewer bytecode
instructions per unit of time than other, more optimized benchmarks of SPEC JVM98.

For the DaCapo suite, on average, the slowdown due to the ‘hprof’ profiler is a factor 201–275, for
the SPEC JVM98 suite, the slowdown is a factor 202–362, whilefor SPEC JBB2005, it is 340–436.

In all tests with JP, we used a simple profiling agent that is activated periodically (at the highest
possible profiling granularity of231 − 1), in order simply to integrate the MCT of each thread into a
global MCT, and to reset some counters. This agent employs a JVM shutdown hook to generate the
resulting profile in a file upon program termination. On average, the slowdown due to JP is a factor
4.2–5.3 for the DaCapo suite, 3.2–4.3 for the SPEC JVM98 suite, and 3.2–4.0 for SPEC JBB2005.

In Fig. 7 and 8 we evaluated JP for 2 different settings: with bytecode counting based on the
‘Default BBA’, and with bytecode counting using the ‘Precise BBA’. In both settings, profiling of
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Figure 8. Profiling overhead (slowdown factor) for different profiler settings with Sun JDK 1.7.0 in server mode.

dynamic memory allocation was enabled and the profiling agent was activated exactly in the same
way. We have experienced that the overhead caused by bytecode counting is relatively small compared
to the overhead due to MCT creation.

We also tried to evaluate the extra time overhead due to the profiling of dynamic memory allocation.
When memory profiling is enabled, the workload of the profiling agent increases slightly, since it
has to compute the number of object allocations as explainedin Section 5.1 and to process the data
collected about array allocations. However, as we reduced the number of invocations of our profiling
agent to a minimum in our evaluation (it only processed the profiling data upon program termination),
this increased workload is negligible. Therefore, the mainoverhead in memory profiling comes from
the instrumentation of array allocations. However, in the end, the extra overhead due only to memory
profiling was not measurable in our setting.
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Table I. Memory occupation by all IC instances.

antlr bloat chart fop jython luindex lusearch pmd eclipse xalan hsqldb
#IC 555553 591237 24733 80007 1663347 21074 44268 769646 1870094 767972 127073
kB 21701 23095 966 3125 64974 823 1729 30064 73051 29999 4964

compress jess db javac mpegaudio mtrt jack JBB2005
#IC 2146 12063 5474 896256 3090 5803 49349 83295
kB 84 471 214 35010 121 227 1928 3254

7.2. Space Overhead

Besides the time overhead, we evaluated the extra memory occupied by the main profiling data
structures. On our test platform, we found the IC instance totake up 40 bytes. This leads to Table I,
which summarizes the number of IC instances created during one execution of the benchmarks, as well
as the corresponding physical memory occupation, in kiloBytes. This amount represents the estimated
size of the MCT created during one execution; it does not include any additional data structures
introduced by customized profiling agents.

7.3. Precision of Basic Block Analysis

In order to measure the imprecision caused by the ‘Default BBA’, we compared profiles of the
SPEC JVM98 benchmarks generated with the ‘Default BBA’ resp. with the ‘Precise BBA’ regarding
the total number of bytecodes counted in all method invocation contexts (bdefault resp.bprecise). We
measured the relative errorδb as follows:

δb =

(

bdefault − bprecise

bprecise

)

=

(

bdefault

bprecise

− 1

)

For the SPEC JVM98 suite, we found the biggest relative errorwith ‘jack’, whereδb is below 0.1%.
The bigger relative errorδb for ‘jack’ is not surprising, because ‘jack’ is known to be a particularly
exception-intensive program [17, 39]. We conclude that in practice, the imprecision caused by the
‘Default BBA’ is minor.

7.4. Reproducibility of Profiles

For fully deterministic applications, profiles are reproducible as long as exactly the same environment –
particularly the same Java class library – is used for profiling. However, in practice, many applications
involve some non-determinism. For instance, when algorithms (e.g., hashtable operations) make use
of the identity hashcodes of objects, they may follow different execution paths if the hashcodes vary
between different runs of the program. Concurrency and unknown thread scheduling policies contribute
to the observed non-determinism, too. Furthermore, on different platforms, distinct classes may be
instantiated, depending e.g. on system properties; the useof different text line terminators in I/O is a
well-known example.

We evaluated the reproducibility of SPEC JVM98 profiles collected on two different platforms. The
first one is an Intel Pentium 4, 2.66 GHz, 1 GB RAM; Linux FedoraCore 2; Sun JDK 1.6.004, build
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b12, ‘server’ mode. The second platform is an Intel Core2 Duo2.33Ghz, 2 GB RAM; Sun JDK 1.7.0,
‘early access’, build b25, ‘client’ mode.

We use anoverlap percentagemetric as in references [2, 26] to compare the profiles collected
on the two platforms. Informally, the overlap is the amount of profiled information (weighted by
execution frequency) that is present in both profiles. Two identical profiles have an overlap of 100%.
For computing the overlap percentage, we use the bytecode counter in each calling context.

For ‘compress’, ‘jess’, ‘mpegaudio’, and ‘mtrt’, we measured an overlap percentage higher
than 99.9%. However, for the other benchmarks, the overlap percentage was significantly lower: 69.3%
for ‘db’, 95.3% for ‘javac’, respectively 91.5% for ‘jack’.

We analyzed the reasons for the observed low overlap percentages, and found that they were due to
differences between the Java class libraries of JDK 1.6 and JDK 1.7. For ‘db’ and ‘jack’, the profile
differences are caused by methodnextElement() in the inner classjava.util.Vector$1,
which is a leaf method in JDK 1.6, but calls another method in JDK 1.7. Because this method is
called extremely frequently when iterating through a vector, the difference between the two JDK
versions causes a significant decrease in the overlap percentage. The ‘javac’ benchmark is also
affected by this, in addition to another, identical JDK difference in methoddigit(int, int) of
java.lang.Character.

8. DISCUSSION

In the following we discuss the strengths and limitations ofour approach.

8.1. Benefits

Our goal has been to enable platform-independent and portable profiling in a virtual execution
environment. The approach presented in this article, implemented by the Java profiler JP, is an
important step into this direction. Instead of measuring CPU time, we compute the number of bytecodes
that a program would execute without profiling. Hence, measurement perturbation is not an issue (at
least for programs with deterministic thread scheduling) because the presence of measurements does
not influence the measurement results, as it is the case with many existing profilers that may prevent
optimizations in the virtual machine. Moreover, we also useplatform-independent metrics to profile
dynamic memory allocation. Further metrics can be derived from the dynamic bytecode metrics and
the memory allocation metrics, such as e.g. the allocation density [23].

Another advantage of our approach is its portability. It canbe implemented without resorting to any
platform-specific features, as confirmed by our JP implementation: JP and all its runtime classes are
implemented in pure Java and all program transformations follow a strict adherence to the specification
of the Java language and virtual machine. JP has been successfully tested with several standard JVMs.

Our profiling framework can be customized by user-defined profiling agents, which themselves
can be programmed in a completely platform-independent way. This is in contrast to standard
profiling interfaces, such as the JVMPI [44] and the JVMTI [45], which require profiling agents to
be implemented in native code.

We offer a simple but flexible API to implement a wide range of different profiling agents. A profiling
agent can control the frequency of its periodic activation by adjusting the profiling granularity. The
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activation does not rely on the scheduling of the virtual machine (e.g., in the case of Java, scheduling
is not well specified in the language and virtual machine specifications [27, 35]), because each thread
in the system synchronously invokes the profiling agent after execution of a number of bytecodes that
approximately corresponds to the current profiling granularity.

In our approach, each method invocation (with the exceptionof native methods) is profiled. This is in
contrast to frequently used sampling techniques, where theprofiler is activated only periodically (e.g.,
every few milliseconds). While sampling causes less overhead, it is not always accurate: We evaluated
the overlap percentage [2] of a sampling profile produced by the ‘hprof’ profiling agent included in
standard JDK distributions (setting ‘cpu=samples,interval=1’) with a profile generated by
‘hprof’ in its exact profiling mode (setting ‘cpu=times’). For the SPEC JVM98 benchmarks [48], the
average overlap percentage was below 7%. Our profiling approach allows one to significantly reduce
the overhead of exact profiling (see measurements in Section7) which means that it also becomes
applicable in settings where sampling techniques had to be used because of long program execution
times.

In a system composed of multiple software components, it is possible to selectively instrument only
certain components of interest, thus reducing the overall overhead. However, classes that may be used
by different components, such as core classes of the virtualmachine, should always be instrumented.

8.2. Limitations

Concerning limitations, the major hurdle of our approach isthat bytecode instrumentation does not
cover the execution of native code. This is an inherent problem, since we rely on the transformation
of bytecode and focus on the computation of platform-independent metrics. For programs that heavily
depend on native code, dynamic bytecode metrics may not be relevant. We have nevertheless shown
in [10] that Java programs spend on average less than 5% of their execution time inside native code
(measurements made using Sun JDK 1.6.0 as platform, and SPECJVM98 and SPEC JBB2005 as
benchmarks).

A related problem with native code is that the MCT does not preserve the full call stack for
instrumented methods invoked by native code, which appear as children nodes of the root node in
the MCT. However, in practice this is not a serious problem, because these callbacks from native code
to instrumented code are not frequent.

The JVM specification [35] imposes restrictions on the size of different parts of a class file. For
instance, the size of the constant pool is represented by a 16bit unsigned integer. The size of methods
is limited, as well. Hence, the instrumentation may fail if these limits are exceeded after insertion
of static fields, methods, or bytecodes. However, this problem is very unlikely to occur with normal,
hand-crafted Java code.

Another limitation is that the introduction of extra methodarguments may break existing
code that relies on reflection. In Java, the methodsgetConstructors(), getDeclared-
Constructors(), getMethods(), andgetDeclaredMethods() of java.lang.Class
return arrays of reflection objects (i.e., instances of theConstructor resp.Method classes of
packagejava.lang.reflect), representing wrapper methods (with the unmodified signatures)
as well as methods with our extended signatures. If an application selects a method from this array
considering only the method name (but not the signature), itmay try to invoke a method with extended
signature, but fail to provide the extra arguments, resulting in anIllegalArgumentException.
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JP solves this issue by patching the aforementioned methodsof java.lang.Class to filter
out the reflection objects that represent methods with extended signatures. This modification is
straightforward, because in standard JDKs these methods are implemented in Java (and not in native
code).

The static fields inserted by JP are also accessible through reflection, and may in principle
break existing code. However, we have not yet encountered such a problem in practice. Regarding
serialization, while static fields are excluded by default,it is possible to customize the serialization
mechanism such that it fails in the presence of added static fields.

Our approach introduces wrapper methods for compatibilitywith native code. However, the
invocations of wrapper methods constitute extra stack frames, and may therefore break code relying
on stack introspection and assuming a particular invocation sequence. We solved this issue similarly to
reference [9], by cancelling ‘reverse’ wrappers for certain native methods and using code duplication
instead of wrapping for the affected callers of these methods.

During bootstrapping, the execution of instrumented code is prevented; as a consequence, methods
that started, but did not finish their execution before the end of bootstrapping will continue executing
their original method body even after bootstrapping. This is because the decision of executing either
the instrumented or the original method body is taken exclusively upon method entry; there is no
other similar conditional inside the instrumented code. Webelieve that this limitation is not important
in practice, because bootstrapping is already over before the application’s main method is invoked;
application code is therefore normally not affected.

As we try to preserve the full call stack without any depth limitation, the MCT may consume a
significant amount of memory in the case of very deep recursions. According to Ball and Larus, path
profiling (i.e., preserving exact execution history) is feasible for a large portion of programs [4], an
observation that is confirmed by our benchmarks. Nevertheless, our approach may easily be modified
to compute a Calling Context Tree of bounded depth [1] instead of a complete MCT.

9. RELATED WORK

In the following we review some related work regardingbytecode manipulationandprofiling.

9.1. Bytecode Manipulation

Altering Java semantics via bytecode transformations is a well-known technique [46] and has been
used for many purposes that can be generally characterized as adding reflection or aspect-orientedness
to programs. When working at the bytecode level, the programsource code is not needed.

There are many tools for manipulating JVM bytecode. The bytecode engineering library BCEL [21]
represents method bodies as graph structures. Individual bytecode instructions are mapped to Java
objects. JP is based on BCEL, because the graph representation of method bodies eases instrumentation
at the basic block level.

ASM [38] is a lightweight bytecode manipulation framework designed for dynamic load-time
transformation of Java class files. While the instrumentation process using ASM may in many cases be
more efficient than using BCEL, we found that BCEL gives finer control on the generated code, and
that its representation of method bodies is better suited for instrumentation at the basic block level.
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Javassist [14, 15], which is used by JBoss [31], enables structural reflection and provides convenient
source-level abstractions.

Soot [49] is a framework for analyzing and transforming JVM bytecode that offers four intermediate
code representations. For instance,Jimple is a typed, stack-less, three-address code intermediate
represention. Soot is often used for bytecode optimization.

JOIE [18], JikesBT [30], and Serp [5] are further examples ofbytecode manipulation libraries
implemented in Java.

Some tools for aspect-oriented programming in Java, e.g. AspectJ [32], work at the bytecode
level as well. However, usually such tools support only higher-level pointcuts, such as method
invocations, whereas our collection of bytecode metrics requires transformations at the basic block
level. Furthermore, the extension of method signatures, which we found essential to efficiently
compute thread-local, calling context-sensitive profiling data, is usually not supported by aspect-
oriented programming tools.

The use of AspectJ for profiling is explored in [41], and reported to yield mixed results. The AspectJ
language itself lacks a number of joinpoints, such as for intercepting array allocations, that would be
necessary for a complete coverage. From a performance perspective, it is difficult to compare their
approach with ours, as they chose to adopt sampling-based profiling instead of exact profiling.

A salient disadvantage of using current aspect-oriented languages or tools is that they are, to the
best of our knowledge, unable to process core libraries of the JDK, a decisive factor being that such
tools introduce difficult-to-circumvent dependencies with their own runtime libraries, which prevent
the JVM from bootstrapping.

9.2. Dynamic Metrics and Profiling

In [23] the authors present a variety of dynamic metrics, including bytecode metrics, for selected Java
programs, such as the SPEC JVM98 benchmarks [48]. They introduce a tool called *J [24] for the
metrics computation. *J relies on JVMPI [34, 44], which is known to cause very high measurement
overhead (see Section 7) and requires profiling agents to be written in native code, contradicting the
Java motto ‘write once, run anywhere’. Because of the high overhead, tools like *J may only be applied
to programs with a short execution time. In contrast, our approach reduces the overhead and can be
implemented in pure Java. Therefore, it is possible to instrument real applications in a way that is
portable across different virtual execution environments.

There is a large body of related work in the area of profiling. Fine-grained instrumentation of
binary code has been used for profiling by Ball and Larus [3, 33]. The ATOM framework [43] has
been successfully used for many profiling tools that instrument binary code. However, as binary code
instrumentation is inherently platform-dependent, this technique is not appropriate to build tools for
the platform-independent performance analysis of software components.

The NetBeans Profiler (http://profiler.netbeans.org/) integrates Sun’s JFluid
profiling technology [22] into the NetBeans IDE. JFluid exploits dynamic bytecode instrumentation
and code hotswapping in order to turn profiling on and off dynamically, for the whole application or
just a subset of it. However, this tool needs a customized JVMand is therefore only available for a
limited set of environments.

Whereas our approach is rather intended for use at development time, sampling-based profiling is
often employed in already deployed systems as support for feedback-directed optimizations in dynamic
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compilers [2, 50]; indeed, sampling-based profilers may yield a sufficiently low overhead to become
usable at production time. The framework presented in [2] uses code duplication combined with
compiler-inserted, counter-based sampling. A second version of the code is introduced which contains
all computationally expensive instrumentation. The original code is minimally instrumented to allow
control to transfer in and out of the duplicated code in a fine-grained manner, based on instruction
counting. This approach achieves low overhead, as execution proceeds most of the time inside the
lightly instrumented code portions.

In reference [8] we introduced a portable sampling profiler for the JVM based on bytecode counting.
A profiling agent is periodically invoked in a deterministicway after the execution of a certain number
of bytecodes (sampling interval). The profiling data structure generated by the sampling profiler can
be regarded as a partial MCT, covering only a subset of the calling contexts. While this data structure
allows us to accurately estimate the relative distributionof executed bytecodes in different calling
contexts, it completely lacks method invocation counters as well as memory allocation statistics. The
advantage of the sampling profiler is its lower overhead.

ProfBuilder [19] is a toolkit for building Java profilers. However, ProfBuilder does not address issues
regarding multi-threading and native code, and the generated profiling tools described in [19] cause
high overhead. The authors of ProfBuilder show with a case study that profiles based on dynamic
bytecode metrics are valuable to detect algorithmic inefficiencies and help the developer focus on
those parts of a program that suffer from high algorithmic complexity.

10. CONCLUSION

In this article we presented a novel approach for platform-independent, portable, and customizable
profiling in a virtual execution environment. We rely on program transformations at the bytecode
level in order to compute a calling-context-sensitive profiling data structure that collects platform-
independent dynamic metrics, such as the number of method invocations, the number of executed
bytecodes, as well as statistics on memory allocation. In addition to platform independence, our
approach ensures largely reproducible results, minimizedmeasurement perturbation, and largely
reduced overhead.

We implemented our approach as the Java profiler JP. JP, as well as user-defined profiling agents,
are programmed in pure Java. Thanks to its ability to performdynamic instrumentation, JP is, to the
best of our knowledge, the first Java profiling tool to ensure full coverage of executed bytecodes. Our
evaluation confirms that JP causes significantly less overhead than hprof, a prevailing profiler based on
a standard JVM profiling interface.
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Appendix A – INITIALIZATION WITH DIFFERENT CONSTRUCTORS

The computation of the number of object allocations in a constructor (Section 5.1) is based on
the assumption that each constructor (except the constructor of java.lang.Object) has exactly
one associated alternate or superclass constructor. This assumption is backed by the Java Language
Specification [27]. However, at the bytecode level, a constructor may invoke a different alternate
or superclass constructor depending on its arguments without causing any verification error [35].
The example in Fig. 9 illustrates this. The main method allocates two objects of the same type and
initializes them with the same constructor (but passing different constructor arguments). However, the
alternate constructor, which takes no arguments, is invoked only once. The output of the program is
‘count = 1’.

Fortunately, this kind of situation only occurs with hand-crafted bytecode. If a standard Java
compiler is used to generate bytecode from Java code, such bytecode is not created. Nonetheless,
the static analyzer that examines constructor code (see Section 5.1) is able to detect this situation and
produces a warning.

public class DifferentConstructors {
static int count = 0;

public static void main(String[] args) {
new DifferentConstructors(false);
new DifferentConstructors(true);
System.out.print("count = " + count);

}

DifferentConstructors(boolean x) {
// The following is manually crafted bytecode.
// Depending on the argument, the alternate or
// the superclass constructor is called:
aload_0
iload_1
ifeq superclassConstructor

alternateConstructor:
invokespecial DifferentConstructors/<init>()V
return

superclassConstructor:
invokespecial java/lang/Object/<init>()V
return

}

DifferentConstructors() {
super();
++count;

}
}

Figure 9. Depending on the constructor argument, the alternate or the superclass constructor is invoked.
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