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SUMMARY

Virtual execution environments, such as the Java Virtual Mahine, promote platform-independent software
development. However, when it comes to analyzing algorithncomplexity and performance bottlenecks,
available tools focus on platform-specific metrics, such as.g. the CPU time consumption on a particular
system. Other drawbacks of many prevailing profiling tools ae high overhead, significant measurement
perturbation, as well as reduced portability of profiling tools, which are often implemented in platform-
dependent native code. This article presents a novel profilg approach, which is entirely based on program
transformation techniques, in order to build a profiling data structure that provides calling-context-
sensitive program execution statistics. We explore the usef platform-independent profiling metrics, in
order to make the instrumentation entirely portable and to generate reproducible profiles. We implemented
these ideas within a Java-based profiling tool called JP. A ghificant novelty is that this tool achieves
complete bytecode coverage, by statically instrumentinghe core runtime libraries, and dynamically
instrumenting the rest of the code. JP provides a small and flable API to write customized profiling agents
in pure Java, which are periodically activated to process tie collected profiling information. Performance
measurements point out that, despite the presence of dynaminstrumentation, JP causes significantly less
overhead than a prevailing tool for the profiling of Java code
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1. INTRODUCTION

Virtual execution environments, such as the Java Virtuatiitee (JVM) [35] or Microsoft's .NET
framework [36], have become the basis for building complesterogeneous, component-based
software systems, because they enable the developmetiygddrtable software. The Java promoters’
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2 W. BINDER ET AL. SRE

slogan ‘write once, run anywhere’ is meant to emphasize litéopm-independence of compiled Java
programs, which are represented as JVM bytecode [35].

Unfortunately, when it comes to performance analysis feaJaxograms, platform independence
is lost. Prevailing profiling tools typically provide infaration concerning CPU time consumption
on a particular execution platform, which is a highly systepecific dynamic metric, depending on
hardware, operating system, and virtual machine impleatiemt. Similarly, memory consumption
is usually reported in bytes, a unit of measurement whiclesaikito account platform-specific
characteristics: object internal representation, alignnconstraints, header size, etc.

In addition to the lack of support for platform-independastformance analysis, prevailing profiling
tools often cause high overhead and therefore significgrglyurbate the measurement. In other
words, execution statistics reported by profiling tools demfiently not faithfully represent normal,
non-profiled program executions, which may mislead sofveievelopers searching for performance
bottlenecks. As another shortcoming, many profiling toolsvirtual execution environments consist
at least partly of platform-specific native code, limitifgetportability of these tools.

Concretely, most profiling tools for Java are based on tha ¥atual Machine Profiling Interface
(JVMPI) [44, 34] or its successor, the JVM Tool Interface W) [45]. These interfaces provide a set
of hooks into the JVM which signal events, such as methoddation, object allocation, etc. However,
many profiling events prevent optimizations within the wattmachine; even just-in-time compilation
may be disabled. Consequently, profiling can cause exeessierheads of more than factor 1 000
and completely perturbate the measurements. Moreovese thérfaces violate the ‘write once, run
anywhere’ motto, because they require profiling agents impé&mented in native code.

One important use case for platform-independent profiligni the area ofservice-oriented
architectures(SOA). SOA aims at the construction of applications by indigg advanced service
components [40], such as service repositories, matchrmagkervice composition and orchestration
engines, reputation mechanisms, etc. These componentymically deployed in heterogeneous
environments, which means that the actual target platfaresoften not known at development
time. Therefore, it becomes necessary to have platforrapiaddent profiling support that allows
the developer to detect algorithmic inefficiencies, assthated in [19], where the authors present a
profiling tool which enabled them to identify at the bytecbtiyvel an inefficient sorting algorithm in
a piece of non-trivial third-party software. Moreover, asiponents may involve complex algorithms,
such as planners for automated service composition, theureraent overhead has to be low in order
for such profiling tools to be applicable. Existing profilare not appropriate for this setting because
of their high overhead, their exclusive focus on highly fulan-specific metrics, and frequent suffering
from strong measurement perturbation.

In this article we present a novel approach for fully platfieindependent profiling in virtual
execution environments. We instrument programs in ordecréate a profiling data structure at
runtime, which stores various calling-context-sensitiypamic metrics. Each calling context includes
a method invocation counter, a bytecode counter, as welleasary allocation counters. As opposed
to sampling-based profiling, our approach aims at gengraiact profiles, tracking each method
invocation.

*In this article the term ‘bytecode’ is used as a synonym fotual machine bytecode instruction’.
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In this article we explain our approach using abstract gipest. We assessed our approach with a
Java implementation called JP. JP is implemented in pusealad supports custom profiling agents that
may be written in pure Java, too. Hence, JP is a fully portpldéling framework that can be used on
any JVM, also on those that support neither the JVMPI nor¥id Tl or that provide limited support
for profiling in general. A significant novelty is that JP abchieves complete bytecode coverage, by
statically instrumenting the core runtime libraries, agdamically instrumenting application code as
well as any required additional libraries.

JP offers much flexibility with respect to the generation anacessing of profiling data structures
at runtime. JP provides a simple API to implement customprediling agents. User-defined profiling
agents can thus be programmed, e.g. to preserve a trace ffllitbell stack or, on the opposite, to
compact it at certain intervals. This contrasts with ergtprofilers which frequently only support a
fixed maximal stack depth.

In this article we show that the overhead caused by JP ismathe&ompared to classical approaches,
since it does not prevent the underlying JVM from puttingtalbptimization facilities to work during
the profiling. The bigger part of the overhead is due to theegaion of calling-context-sensitive
profiling data structures, whereas the maintenance of bgieeand memory allocation counters causes
relatively little overhead.

The contributions of this article are, first, novel techragudor platform-independent profiling in
virtual execution environments based on program transitions, along with the introduction of
portable and customizable profiling agents, and seconghréfsentation of a Java-based profiling tool
that uses dynamic instrumentation to cover all executeeldoyte, a thorough analysis of the profiling
overhead in our implementation using the DaCapo benchnuiétek[d4 2], the SPEC JVM98 benchmark
suite [48] and the SPEC JBB2005 [47] benchmark, as well asrgpadson with the overhead caused
by ‘hprof’, a standard profiler that comes with many disttibas of the Java Development Kit (JDK).

This article is structured as follows: Section 2 introduttesplatform-independent dynamic metrics
used by our profiling approach. Section 3 presents our prgfilata structures using abstract datatypes.
Section 4 explains how call stacks are managed by the prdiitev applications are transformed
at the bytecode level to generate the needed profiling irdtiom, and how the number of executed
bytecodes is computed, which serves as profiling metricti®ed details our approach to profiling
memory allocation. Section 6 outlines the implementatibdR Section 7 presents our performance
measurements, Section 8 discusses the benefits and langadf our approach, whereas Section 9
compares our approach with related work. Finally, Secti®cdncludes this article.

2. PLATFORM-INDEPENDENT DYNAMIC METRICS

In the following we introduce the platform-independentfpireg metrics our approach focuses on: the
number of method invocations (Section 2.1), the number e€eted bytecodes (Section 2.2), and the
number of object and array allocations (Section 2.3).

2.1. Method Invocations

Our profiling approach aims at computing calling-contextsstive, platform-independent dynamic
metrics. For each calling context, we store the number ohotkinvocations (with the same stack of
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4 W. BINDER ET AL. SRE

callers). Information on the number of method invocatioma icommon metric supported by many
available profiling tools. However, while some profilers di differentiate between different calling
contexts or keep calling contexts only up to a pre-definedhdegur approach is able to maintain
arbitrarily deep calling contexts. Nonetheless, usemeéefiprofiling agents may discard or aggregate
execution statistics for certain calling contexts.

In Section 5.1 we will show that method invocation countemalde the computation of object
allocation statistics without causing extra runtime oeadhin Java environments.

2.2. Dynamic Bytecode Metrics

Most existing profilers measure the CPU consumption of @nmgrin seconds. Although the CPU
second is the most common profiling metric, it has severalbagks: It is platform-dependent (for
the same program and input, the CPU time differs dependingamdware, operating system, and
virtual machine implementation), measuring it accuratety require platform-specific features (such
as special operating system functions) limiting the palitgtof the profilers, and results are usually
impossible to reproduce faithfully. Furthermore, meameet perturbation is often a serious problem:
The measured CPU consumption of the profiled program mayfisigmtly differ from the effective
CPU consumption when the program is executed without pngfilThe last point is particularly true
on virtual machines where profiling disables just-in-tinmmpilation (e.g., profiling based on the
JVMPI [44, 34] prevents just-in-time compilation).

For these reasons, we follow a different approach, usingntimaber of executed bytecodas
profiling metric [6], which has the following benefits:

e Platform-independent profiles The number of executed bytecodes is a platform-independen
metric [23]. Although the CPU time of a deterministic progravith a given input varies very
much depending on the performance of the underlying hahsad virtual machine (e.g.,
interpretation versus just-in-time compilation), the raenof bytecodes issued by the program
remains the same, independent of hardware and virtual maamiplementation (assuming the
same virtual machine class library is used).

e Reproducible profiles For deterministic programs, the generated profiles ahgrfephroducible.

It must nevertheless be noted that few programs are acfudliihdeterministic. Timestamps and
hashcodes are often hidden sources of non-determinisog #iey depend on the time of the
day, respectively the underlying memory management polityen hashcodes are computed
from memory addresses. Also, the activity of system threddse JVM, such as the garbage
collector and finalizer thread, will introduce non-deteniaim at the application level via the
execution of finalizers or other callbacks.

e Comparable profiles Profiles collected in different environments are directiynparable, since
they are based on the same platform-independent metric.

e Accurate profiles: The profile reflects the number of bytecodes that a prograodvexecute
without profiling, i.e., the profiling itself does not affettte generated profile. However, for
multi-threaded, non-deterministic programs, the prdjilmay affect the thread scheduling,
resulting in some (usually minor) measurement perturbatio
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e Portable and compatible profiling scheme Because counting the number of executed
bytecodes does not require any hardware- or operating rsyspecific support, it can be
implemented in a fully portable way.

e Fine-grained control of profiling agent activation: User-defined profiling agents are invoked
in a deterministic way by each thread after the execution oémain number of bytecodes,
which we call theprofiling granularity. Profiling agents can dynamically adjust the profiling
granularity in a fine-grained way. Upon invocation, profjliagents may process the execution
statistics collected so far, which enables the generafi@oatinuous metrics [23]. Continuous
metrics represent profiling information at different stagéprogram execution.

e Reduced overheadThe overhead is rather low compared to classical approasines it does
not prevent the underlying virtual machine from puttingitdl optimization facilities to work
during the profiling.

Consequently, dynamic bytecode metrics are key to the simviof a new class of portable,
platform-independent profiling tools, with advantages floe tool users as well as for the tool
implementors:

On the one hand, bytecode counting eases profiling, bechasks to the platform-independence
of this metric [23], the concrete environment is not of imparce. Thus, the developer may profile
programs in the environment of his preference. Since fadoch as the system load do not affect the
profiling results, the profiler may be executed as a backgtpuncess on the developer’'s machine. This
increases productivity, as there is no need to set up andavai dedicated, ‘standardized’ profiling
environment.

On the other hand, bytecode counting enables fully porfafaiBling tools. This helps reducing the
development and maintenance costs for profiling tools, asgiesversion of a profiling tool can be
compatible with any kind of virtual machine. This is in catt to prevailing profiling tools, which
exploit low-level, platform-dependent features (e.gglbtain the exact CPU time of a thread from the
underlying operating system) and require profiling agemtsetwritten in native code.

Other researchers have also found it valuable to have piatiodependent profiling support, in
order to allow the developer to detect algorithmic ineffigies. In [19] the authors present a profiling
tool which uses bytecode counting and enabled them to fgestid replace an inefficient sorting
algorithm in a piece of non-trivial third-party software.

In [29], a dynamic platform-independent analysis is mada standard benchmark suite, which
enables the authors to propose a number of improvementddtingxJava compilers and execution
environments.

2.3. Memory Allocation Metrics

Concerning dynamic memory allocation, most profilers use tlumber of allocated bytes as
measurement unit. However, this metric depends on thecpéati virtual machine in use (object
representation in memory, alignment, size of referendes, e

In contrast, in our approach we track the number of allocateggcts of each type, for each
calling context [7]. This means that object allocations aescribed by triples of the form
(calling context, object type, number of instanceBhis metric gives the developer a detailed, high-
level view of object allocation in the profiled program. Ifsiied, an estimation of the number of
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allocated bytes may be computed from this metric. As explhiim Section 5.1, it is possible to
compute this object allocation metric directly from methioebcation counters without any additional
instrumentation. Consequently, there is no extra overledtte creation of profiling data structures
(concerning execution time as well as the amount of memanuired to store the profiling data
structures).

Regarding array allocation, we preserve the element tyygentimber of allocated arrays, and the
total number of array elements for each calling context.cCetely, array allocations are described
by 4-tuples of the form(calling context, element type, number of arrays, numberrafyselements
In the case of Java, the element type may be one of the 8 bams fyyt e, short,int, | ong,
char, bool ean, f | oat, doubl e), or a reference type. This metric may be used to compute othe
statistics, such as the average size of allocated array®adver, if the memory representation of arrays
in a particular virtual machine is known, the metric may beduso compute the number of bytes
consumed by allocated arrays.

For deterministic programs, these platform-independemmory allocation metrics yield
reproducible profiles that are directly comparable acrdgsrdnt machines. Measurement perturbation
is not an issue, as we measure the number of objects that thedified program (without profiling)
would allocate. In contrast, a metric such as the total arnofimemory in use would be seriously
perturbated by the measurement, since the profiling datetste itself consumes memory.

Our metrics for memory allocation do not expose the lifeetiof allocated objects. In general,
the life-time of objects is hard to determine in virtual exeon environments that rely entirely on
automatic memory management (garbage collection), shere tare no explicit de-allocation sites in
the bytecode.

Custom profiling agents may put memory allocation metriceelation to the number of executed
bytecodes, in order to derive metrics such as the allocdgosity, i.e., the number of object allocations
(or the approximate number of bytes allocated) per 1 000wrddytecodes [23].

3. PROFILING DATA STRUCTURES

In this Section we define the data structures used by ouripigpfilamework as abstract datatypes. Our
profiler JP implements these abstract datatypes in Java.

3.1. Method Call Tree (MCT)

In our approach, we transform bytecode in order to createtaddeCall Tree (MCT), where each node
represents all invocations of a particular method with #rae calling context (call stack). The parent
node in the MCT corresponds to the caller, the children nede®spond to the callees. The root of
the MCT represents the caller of the main method. With thegtian of the root node, each node in
the MCT stores profiling information for all invocations dfet corresponding method with the same
call stack. Concretely, it stores the number of method iatioos, the number of bytecodes executed
in the corresponding calling context (excluding the nunmdfdrytecodes executed by callee methods,
since each callee has its own node in the MCT), as well as meatiocation counters.

In order to prevent race conditions, either access to the M&sTto be synchronized, or each thread
has to maintain its own copy of the tree. To avoid expensivelssonization and to allow profiling
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agents to keep the profiling statistics of different thresefsarately, we chose to create a separate MCT
for each thread in the system.

The MCT is similar to the Calling Context Tree (CCT) [1]. Hovee, in contrast to the CCT, the
depth of the MCT is unbounded. Therefore, the MCT may consasignificant amount of memory in
the case of very deep recursions. Nonetheless, for mostagrsthis is not a problem: According to
Ball and Larus [4], path profiling (i.e., preserving exaateution history) is feasible for a large portion
of programs.

In the following we define two abstract datatypes to repres&iCT, the method identifievi Dand
the method invocation contekiC. An instance ofl C represents a node in the MCT. We assume the
existence of the typdsNT, STRI NG, andTHREAD, as well as the possibility to create aggregate types
(SET OF).

3.1.1. Method Identifier.

e createM D( STRI NG class, STRI NG name, STRI NG sig): M D
Creates a new method identifier, consisting of class namiyad@ame, and method signature.

e get C ass(M D mid): STRI NG
Returns the class namewofid.
getd ass(createM D(¢, z, y)) =c.

e get Nane(M D mid): STRI NG
Returns the method name wfid.
get Nane(createM D(z, n, y)) =n.

e get Si g(M D mid): STRING
Returns the method signaturerafd.
getSig(createM Dz, y, s)) =s.

3.1.2. MCT Creation and Method Invocation Counter.

e get O CreateRoot (THREAD ¢): IC
Returns the root node of a thread's MCT. If it does not exiss, created.

e profileCall (IC caller, MD callee): 1C
Registers a method invocation in the MCT. The returhé&tiinstance represents the callee
method, identified byaliee. It is a child node otaller in the MCT.

e getCaller(IC callee): 1C
Returns the caller C of callee. It is the parent node afullee in the MCT.

T At the implementation level, a thread-local variable maybed to store a reference to the root of a thread’s MCT. Eaehadh
gets its own instance of the thread-local variable. In Jdwaad-local variables are instanceg afva. | ang. Thr eadLocal .
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8 W. BINDER ET AL. SRE

getCaller(profileCall (¢, z)) =c.
This operation is not defined for the root of the MCT.

egetCalls(ICc): INT
Returns the number of invocations of the method identifiedgby M D( ¢) with the caller
getCaller(c).
getCall s(profileCall (z, y)) > 1.
This operation is not defined for the root of the MCT.

egetMD(IC¢): MD
Returns the method identifier associated with
getM D(profileCall (z, -callee)) =callee.
This operation is not defined for the root of the MCT.

e getCallees(ICc¢): SET OF IC
Returns the set of calldeCs of c.
Vx egetCall ees(c):getCaller(z) =c.
Vx e getCall ees(c):getCalls(z) > 1.

3.1.3. Bytecode Counter.

Each | C instance stores a bytecode counter, which is initially zérbe bytecode counter is
manipulated by the following operations:

e profilelnstr(IC ic, |NT bytecodes): 1C
Registers the execution of a certain number of bytecodes.iifhe bytecode counter it
is incremented byytecodes. Returnsic, after its bytecode counter has been updated. This
operation is not defined for the root of the MCT.

e getlnstr(l1Cic): INT
Returns the number of bytecodes executeit.in
getlnstr(profilelnstr(z, b)) > b.
This operation is not defined for the root of the MCT.

3.1.4. Array Allocation Counter.

Eachl Cinstance stores array allocation counters, which aralhjitzero. The array allocation counters
are manipulated by the following operations:

e profileArrays(1C ¢, TYPE ¢, INT arrays, |NT elements): |C
Registers array allocations ia. ¢ is the element type of the arraysrrays repre-
sents the number of allocated arrays, whilkments is the total number of elements
in all allocated arrays (i.e.¢lements is the sum of the sizes of the allocated arrays).
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profil eArrays(lIC, TYPE, INT, |INT) returnse, after its array allocation statistics
have been updated accordingly. This operation is not stggéor the root of the MCT.

TYPE denotes the different data types supported by the virtughma. In the case of the JVM,
t may take one of the following values:

— B: Signed byteljyt e).

— C: Unicode charactercthar).

— D: Double-precision floating point valudgubl e).
— F: Single-precision floating point valuél( oat ).

— | :Integer ( nt).

— J: Long integer( ong).

— S: Signed shortghort).

— Z: True or false §ool ean).

— R Reference.

The first 8 values correspond to the encoding of basic typéeeidVM [35]. The element typR
indicates that the array stores references to objectswhay be instances of ‘normal’ classes
or arrays.

e getArrays(IC ¢ TYPE t): INT
Returns the number of arrays of element typdlocated inc.
get Arrays(profil eArrays(uz, t, arrays, y), t) > arrays.
This operation is not supported for the root of the MCT.

e getElements(1C ¢, TYPE t): INT
Returns the number of elements in arrays of elementtygecated inc.
get El enent s(profil eArrays(x, t, y, elements), t) > elements.
This operation is not supported for the root of the MCT.

3.2. Activation Counter

In order to schedule the regular activation of a user-defprefiling agent in a platform-independent
way, our profilers maintain a counter of the (approximatanher of executed bytecodes for each
thread. If this counter exceeds the current profiling grarity, the profiling agent is invoked in order

to process the collected execution statistics. The alisti@atypeAC defined below represents an

activation counter for each thread.

e get Or Creat eAC( THREAD ¢t): AC
Returns the activation counter of a thread. If it does nagtexiis created.

e setVal ue(AC ac, INT v): AC
Returnsac, after its value has been updatedito
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e get Val ue(AC ac): I NT
Returns the value afc.
get Val ue(set Val ue(z, v)) = .

4. PROFILING BYTECODE EXECUTION

In this Section we describe our program instrumentatioesehfor platform-independent profiling,
focusing on the MCT creation and the maintenance of bytecodaters. The profiling of dynamic
memory allocation is the subject of Section 5.

In Section 4.1 we explain how programs are transformed tater®éICTs at runtime. While
Section 4.2 discusses the necessary code instrumentatioaintain the bytecode counters within the
MCTs, Section 4.3 explicates the periodic activation ofstam profiling agent. Finally, in Section 4.4
we illustrate the program transformations with an example.

4.1. MCT Creation

We transform bytecode in order to pass the method invocatotextic..;.. (typel C) of the caller
as an extra argument to the callee method (i.e., we extersighatures of all non-native methods with
the additional argument). In the beginning of a methidentified bymid.q;.. (typeM D), the callee
executes a statement corresponding to

iccallee =pr ofi | eCal | (iccalleri midcallee) ;
in order to obtain its own (i.e., the callee’s) method inugmacontextic.qjice -

Because native code is not changed by the instrumentatienadd simple wrapper methods
with the unmodified signatures which obtain the current adi® MCT root by calling
get O Cr eat eRoot (t), wheret represents the current thread. Therefore, native codeléstab
invoke methods with the unmodified signatufes.

For each method, we add a static field to hold the correspgndiethod identifier. In the static
initializer we callcr eat eM D( classname, methodname, signature) in order to allocate a
method identifier for each method.

4.2. Bytecode Counting

For each method invocation contéxt we compute the number of executed bytecodes. We instrument
the bytecode of methods in order to invogeof il el nstr (ic, bytecodes) according to the
number of executed bytecodes. For each (non-native) mgthengerform a basic block analysis (BBA)

to compute a control flow graph. In the beginning of each blalsick, we insert a code sequence that
implements this update of the bytecode counter.

fHere we do not distinguish between methods and constrydiersmethod’ stands for ‘method or constructor.

8For native methods, which we cannot instrument, we add Bedcaieverse’ wrappers which discard the extr& argument
before invoking the native method. The ‘reverse’ wrappdimnatransformed code to invoke all methods with the additio
argument, no matter whether the callee is native or not.
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In the case of our Java profiler JP, the BBA algorithm is notfanded; via a system property the
user can specify a custom analysis algorithm. JP itself®ffgo built-in BBA algorithms, which we
call ‘Default BBA resp. ‘Precise BBA. In the ‘Default BBA only bytecodes that may change the
control flow non-sequentially (i.e., jumps, branches, rodtreturn, exception throwing) end a basic
block. Method invocations do not end basic blocks of codeabse we assume that the execution will
return after the call. This definition of basic block corresgs to the one used in [11] and is related to
the factored control flow graph [16].

The advantage of the ‘Default BBA! is that it creates ratlaegé basic blocks. Therefore, the number
of locations is reduced where updates to the bytecode coate to be inserted, resulting in a lower
profiling overhead. As long as no exceptions are thrown,elalting profiling information is precise.
However, exceptions (e.g., an invoked method may termaiatermally throwing an exception) may
cause some imprecision in the accounting, as we always @lubytecodes in a basic block, even
though some of them may not be executed in case of an excepti@nend result is that, using the
‘Default BBA, we may count more bytecodes than are executed

If the user wants to avoid this potential imprecision, he nsaject the ‘Precise BBA, which
ends a basic block after each bytecode that either may chhegmontrol flow non-sequentially (as
before), or may throw an exception. As there are many bytestitht may throw an exception (e.g.,
Nul | Poi nt er Except i on may be raised by most bytecodes that require an object refeyethe
resulting average basic block size is smaller. This inbljteesults in a higher overhead for bytecode
counting, because each basic block is instrumented by JP.

4.3. Periodic Activation of Custom Profiling Agents

Our approach supports user-defined profiling agents whielpariodically invoked by each thread
in order to aggregate and process the MCT collected by theathrThe custom profiling agent
has to provide an implementation of the abstract dataBm i | i ngAgent , which includes two
operationsy egi st er (THREAD, | C) andprocessMCT( I C). In the case of JP, we mapped
Profil i ngAgent to a Java interface.

e register( THREAD ¢, |1 C root): | NT
This operation is invoked whenever a new threadis created. It is called by
get O Cr eat eRoot (t), if a new MCT root noderoot) has been allocated. For each thread,
this operation is invoked only once, when it starts exegutirstrumented code (a wrapper
method as discussed in Section 4.1). Aftegi st er (¢, root) has been called, the profiling
agent must be prepared to handle subsequent invocatignsoafessMCT( | C) by the thread
t.
regi ster(t, root) returns the current profiling granularity far i.e., the approximate
number of bytecodes to execute umtiill invoke pr ocessMCT( | C) for the first time.

e processMCT(I1C ic): |INT
This operation is periodically invoked by each thread in thgstem. Whenever
processMCT(ic) is called, the profiling agent has to process the currenatiseMCT. ic
is the method invocation context corresponding to the ntkthat is currently being executed.
The profiling agent may obtain the root of the current threddCT either from a map (to
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be updated upon invocations okgi st er ( THREAD, | C)) or by successively applying
getCaller(1C).processMCT(I C) allows the profiling agent to integrate the MCTs of
different threads into a global MCT, or to generate contisumetrics [23], which is particularly
useful to display up-to-date profiling information of longnning programs, such as application
servers.

processMCT(1 C) returns the current profiling granularity for the callingrehd, i.e.,
the approximate number of bytecodes to execute until theenturthread will invoke
processMCT( I C) again.

Each thread maintains an activation counte(type AC) in order to schedule the regular activation
of the custom profiling agent. The valueafis an upper bound of the number of executed bytecodes
since the last invocation qfr ocessMCT( | C) . In order to makexc directly accessible within each
method, we pass it as an additional argument to all invoratid non-native methods. If the value of
ac exceeds the profiling granularity, the thread cpliocessMCT( | C) of the profiling agent. Note
that the value ofic is not part of the profiling statistics, it is only used at iiom to ensure the periodic
activation of the profiling agent.

The value ofac runs from the profiling granularity down to zero, becauseeneayal a comparison
against zero is more efficient than a comparison againstiétnaty, user-defined threshold. Concretely,
the following polling conditional is used to schedule theipdic activation of the profiling agent and
to resetac (ic refers to the current method invocation context):

if (getValue(ac) <= 0) setVal ue(ac, processMCT(ic));

The updates ofuc are correlated to the updates of the bytecode countersnwitié MCT
(profilelnstr(IC, INT)). However, in order to reduce the overhead, the valuecos not
updated in every basic block of code, but only in the begigieach method, exception handler, and
loop. Each time it is decremented by the number of bytecoddgh®longest execution path until the
next update or until the method terminates. This ensurddlieavalue ofac is updated by an upper
bound of the number of executed bytecodes.

The polling conditional that checks wheth@arocessMCT( | C) has to be called is inserted in the
beginning of each method and in each loop, in order to ensiésence in recursions and iteration.
As an optimization, we omit the conditional in the beginnimfiga method, if before invoking any
method, each execution path either terminates or passes byharwise inserted conditional. For
instance, this optimization allows to remove the check elibginning of leaf methods. Note that we
do not implement full call/return polling [25], since we aih minimizing the polling overhead and
because variations in the number of executed bytecode®batinvocations of the profiling agent are
not a problem in our setting.

4.4. Program Transformation Example

The example in Fig. 1 illustrates the aforementioned prnogteansformations. To the left is the
classFoo with the methodsun{i nt, i nt) before transformation, to the right is the instrumented
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class Foo { class Foo {
private static final MD md_sum
static {
String cl
m d_sum

Cl ass. f or Name( " Foo") . get Nane();
createM D(cl, "sunt, "(II)I");

}

static int sun(int from static int sumiint from
int to) { int to, ACac, ICic) {
ic = profileCall(ic, md_sunm;
profilelnstr(ic, 2);
set Val ue(ac, getValue(ac) - 2);
0; int result = 0;
{ while (true) {
profilelnstr(ic, 3);
set Val ue(ac, getValue(ac) - 10);
if (getValue(ac) <= 0)
set Val ue(ac, processMCT(ic));
if (from>to) { if (from> to) {
profilelnstr(ic, 2);
return result; return result;

int result =
while (true)

}

profilelnstr(ic, 7);
result += f(from; result += f(from ac, ic);
++from ++f rom

} }

static int sum(int from int to) {
Thread t = Thread. current Thread();
return sum(from to, getO CreateAC(t),
get Or CreateRoot (t));

} \

Figure 1. Example program transformations for MCT creatinytecode counting,
and periodic invocation of a custom profiling agent.

versionf sun(i nt, int) computesthe following mathematical functismmn (a, b) = Zf:a f@@).
The methodi nt f (i nt), which is not shown in Fig. 1, is transformed in a similar way a
sum(int, int). In sum(int, int) we use an infinitewhi | e() loop with an explicit
conditional to end the loop instead of @r () loop that the reader might expect, in order to better
reflect the basic block structure of the bytecode.

YFor the sake of better readability, in this article we showtmnsformations on Java-based pseudo-code, whereas our
profiler implementation JP work at the JVM bytecode levele Tdperations on the abstract datatypdd, | C, AC, and
Prof i I i ngAgent are directly inlined in order to simplify the presentation.
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For this example, we used the ‘Default BBA' introduced in 88t 4.2.sun{int, int) has
4 basic blocks of code: The first one (2 bytecodes) initiglites local variable esul t with zero,
the second one (3 bytecodes) compares the values of thevlargablesf r omandt o and branches,
the third one (2 bytecodes) returns the value of the locahlber esul t , and the fourth block (7
bytecodes) adds the return valuefdff r om) to the local variable esul t , increments the local
variablef r om and jumps to the begin of the loop.

In the instrumented code, the static initializer allocdtesmethod identifiemi d_sumto represent
invocations ofsun{i nt, int) inthe MCT. The instrumented method receives 2 extra argtsnen
the activation counter (typ&C) and the caller's method invocation context (typ€). First, the
instrumented method updates the MCT and obtains its owncé@hee’s) method invocation context
(profileCall (I C, M D)). The bytecode counter within the callee’s method invaratontext
is incremented in the beginning of each basic block of codthbynumber of bytecodes in the block
(profilelnstr(IC, INT)).

The activation counteaic is updated in the beginning of the method and in the loop. Hédticed
by the number of bytecodes on the longest execution paththathext update or method termination.
For instance, in the loop it is incremented by BOK 7), as this is the length of the execution path if
the loop is repeated. The other path, which returns, exeautly 5 bytecodes3(+ 2). The conditional
is present in the loop, but not in the beginning of the metisat;e the only possible execution path
passes by the conditional in the loop before invoking anyhioght

A wrapper method with the unmodified signature is added tmafiative code, which is not aware of
the additional arguments, to invoke the instrumented ntethbe wrapper method obtains the current
thread’s activation counter as well as the root of its MCTobefinvoking the instrumented method
with the extra arguments.

5. PROFILING MEMORY ALLOCATION

In the following we present our approach for platform-indegent profiling of dynamic memory
allocation. While Section 5.1 deals with profiling allocats of objects that are not arrays, Section 5.2
addresses array allocations. The approach presentedshgpedific to Java, because we exploit the
mechanism by which the JVM allocates and initializes olsjeesp. arrays.

5.1. Profiling Object Allocation

Atthe Java level, objects are allocated and initializeddlgh class instance creation expressioes,
whereas at the bytecode level, object allocation and liziéiaon are separated. Objects are allocated
with the new<class> bytecode instruction, which leaves a reference to the edeabject instance
(of typeclasg on the stack. Before the object can be used, a constructdohze invoked in order to
initialize the object. At the bytecode level, constructnes special methods with the narieni t > that

are invoked with thd nvokespeci al <method-spee bytecode instructiofh.i nvokespeci al

i nvokespeci al is also used for other purposes, such as calling privateadstbr methods in a superclass.
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receives a reference to the previously allocated (anduwstititialized) object, as well as the method
arguments on the stack. The method selection is based onriygle-time type given imethod-spec
thus we can statically determine which constructor is imebk

One way to profile object allocation would be to instrumertheaccurrence of theew bytecode
instruction. However, as object allocation is rather frenju this approach would produce a non-
negligible overhead due to bytecode expansion and regudtitra execution time. Therefore, we
chose a different approach, taking advantage of the MCTishalready created. In the MCT, each
method invocation context maintains the set of non-natliee methods and their respective number
of invocations. As constructors must not be native (see [86¢tion 2.12.1: ‘Constructor Modifiers’),
all constructor invocations are presentin the MCT. Bec#usdVM ensures that objects are initialized
at most once and that uninitialized objects cannot be “dsgzbe [35], Section 4.8: ‘Constraints on
Java Virtual Machine Code’, and Section 4.9: ‘Verificatidrotass Files’), we assume that constructor
invocations correspond to object allocations. Henceeatsbf sequentially counting object allocations
as they take place, we use profiling data that is anyway deliee the number of constructor
invocations — to infer the total number of allocated objects

While this profiling scheme allows to compute the number ofecis allocated by ‘normal’
methods, tracking the number of objects allocated by coogirs requires some extra analysis,
because every constructor, except the constructpawf. | ang. Obj ect , also has to invoke either
an alternate or a superclass constructor. In other wordsalf@onstructors but the constructor of
j ava. | ang. Obj ect , we cannot assume that each constructor invocation camesgo an object
allocation. Even though the invocation of an alternate pesclass constructor usually happens in the
beginning of the constructor code, it is not necessarilyfitiseinvocation of a constructor in the code,
since the creation of the constructor arguments may invathyect allocation and initialization.

For instance, consider the example in Fig. 2, which showsaas@ with two constructors.
To the right is the constructor bytecode generated by a atdndava compiler. The first
constructorA() invokes the second constructé(j ava. | ang. Gbj ect) and passes a newly
allocated and initialized object instance. In the bytecoflé() , the invocation of the constructor
of java.l ang. Obj ect comes before the invocation o&(j ava.l ang. Obj ect). In the
MCT, A() has 2 callees, the constructor pava. | ang. Obj ect as well as the constructor
A(j ava. | ang. Qbj ect) , but only one of them corresponds to an object allocation.

In order to correctly profile the number of object allocatian constructors, we statically analyze
the bytecode of each constructor during the instrumemtatioorder to determine which alternate or
superclass constructor is invoked. We use abstract irgiion in order to simulate the evolution of
the stack and of local variables during execution of the wantr code. We only track thehi s
reference, which is initially passed to the constructohia fbcal variable 0, until the first invocation
on it (i.e., invocation of the alternate or superclass aoesdr). Our simulation is similar to the one
performed by the JVM bytecode verifier [35], but it is simplegcause we are only interested in the first
invocation on the hi s reference, whereas the JVM bytecode verifier has to ensueesd@roperties.

JP produces a mapM that associates each constructor (except the constructor o
j ava. | ang. Obj ect ) with the corresponding alternate or superclass constrittinvokes. In

**There are nevertheless abnormal cases where even receistdd/Mt prevent method invocations on uninitialized olject
such as inside finalizers. This issue is further discuss&ation 5.3.
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public class A {
A0 {

thi s(new Object()); al oad_0
new j ava/ | ang/ Qbj ect
dup

i nvokespeci al javal/lang/ Ghject/<init>()V
i nvokespeci al A/ <init>(Ljaval/lang/ Object;)V

return
}
A(Obj ect o) {
super () ; al oad_0
i nvokespeci al javal/lang/ Ghject/<init>()V
return

Figure 2. Constructor example.

the map, the constructors are identified by their fully diedi name and signature. This map is
loaded and accessed by the user-defined profiling agent ar twccompute the correct number of
object allocations from the MCT. In the following we considef : MID — MID a (partial) function
mapping a method identifier of a constructor to the methodtiier of the associated alternate or
superclass constructor. In the example in FigA2(createM D("A","<init>","()V")) =
createM D("A","<init>","(java.lang. Object)V'), and M(createM D("A",
"<init>","(java.lang. Qbject) V")) = createM D("j ava. | ang. hj ect ",
"<init>","()V').

Note that the assumption that each constructor (exceptahstruictor off ava. | ang. Qbj ect)
has exactly one associated alternate or superclass coastmay not hold for hand-crafted bytecode,
as illustrated in Appendix A. However, this assumption ikdvBor compiled Java code, and the static
analyzer is able to detect situations where the assumpioiplated, producing a warning.

Fig. 3 explains how to compute the number of object allocetifrom the information stored in
the MCT. Functionget Al | oc( | C) of Fig. 3 (a) returns the total number of objects allocated in
given method invocation context If ¢ does not correspond to a constructor (or corresponds to the
constructor of ava. | ang. Qbj ect ), thenget Al | oc( | C) returns the total number of constructor
invocations in the context of. If ¢ corresponds to a constructor (different from the construoft
j ava. | ang. Obj ect ), then the sum has to be reduceddst Cal | s(¢), because each time the
constructor corresponding tas invoked, it will call its associated alternate or supassl constructor
M(get M D(c)) once, without any object allocation taking place. Note i@t computation of
get Al 1 oc( | C) does not require the map1. Functionget Al | oc(1 C, STRI NG of Fig. 3 (b)
returns the number of objects of a certain typess allocated in a given method invocation context
c. In contrast taget Al | oc( I ©), functionget Al  oc(1 C, STRI NG differentiates between the
invocations of constructors of different classes.
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if midc.=getM D(c) A

_ get Name( mid:) =<i ni t > A
detCalls(m) getCalls(c) get O ass(mid.) #
;fgif;ﬁ;;ii)) java. | ang. Obj ect
getAlloc(1C ¢) = etName(mid, )=<init>
> getCalls(x) otherwise
xEgetCallees(c),

midg=getMID(x),
getName(mid, )=<init>

(a) Total number of objects allocated by the method invocationtexic.

if midc=get M D(c) A
get Name( mid:) =<i ni t> A

Z getCalls(z) | — getCalls(c) get d ass(mide) #
xEgetCallees(c), J ava. | ang. (1)] ect A
midy =getMID(z), get d ass(M(mid.)) =class
get Al l OC(| C ¢, getName(mid, )=<init>,

getClass(midy )=class

STRI NG class) =

> getCalls(x) otherwise

xEgetCallees(c),
midg =getMID(zx),
getName(midy ) =<init>,
getClass(midy )=class

(b) Number of objects of typelass allocated by the method invocation context

Figure 3. Computing the number of allocated objects base¢ti@number of constructor invocations.

5.2. Profiling Array Allocation

As array allocation does not involve any method/constnuicteocation, the approach presented in
Section 5.1 is not applicable to profile array allocationserefore, we instrument all occurrences of
bytecode instructions that allocate arrays in order togrkesstatistics of the type, number, and size of
allocated arrays.

In the JVM, the bytecode instructionsewar r ay<type>, anewar r ay<type>, and mul ti -
anewar r ay<type><allocDim> are used to allocate arrays. Whileewar r ay allocates a 1-
dimensional array of a basic typey(t e, short,i nt,| ong, bool ean, char,f | oat, doubl e),
anewar ray allocates a 1-dimensional array to hold references. Mliftiensional arrays are
represented as arrays of arragsiewar r ay may be used to allocate one dimension of a multi-

Copyright(©) 2008 John Wiley & Sons, Ltd. Softw. Pract. Expe2008;0:1-33
Prepared usingpeauth.cls



18 W. BINDER ET AL. SRE

dimensional array. If several dimensions of a multi-dimenal array are to be allocated at once, it
is more efficient to useaul t i anewar r ay, which subsumes the functionality néwar r ay and of
anewar r ay, and allows to allocate several array dimensions (the petena/ocDim) with a single
bytecode instruction.

newar r ay and anewarr ay receive the sizes of the array to allocate on the stack;must
be a non-negative integer value. In order to profile an arf&caion newar r ay<type>, we
insert a bytecode sequence directly before tieavar r ay bytecode instruction, corresponding
to profil eArrays(ec, t, 1, s), wherec represents the current method invocation context
and t the corresponding element type of the arrag, C, D, F, |, J, S, or Z). For
an array allocationanewar r ay<type>, we insert a bytecode sequence that corresponds to
profil eArrays(c, R 1, s).

mul t i anewar r ay<type><allocDim> receivesallocDim non-negative integer values on the
stack, which correspond to the sizes of the array dimengsmie allocated. IfullocDim = 1,
mul ti anewar ray could be replaced either hiyewar r ay or by anewar r ay. Hence, we can
profile the array allocation as described fawar r ay resp.anewar r ay.

If allocDim > 1, the actual number of arrays and of array elements have t@ut@d by
multiplying the sizes of the dimensions [20]. The dimensidy of the arrayurray Dim is encoded in
the array type descriptotype) [35]; allocDim < arrayDim. We distinguish two cases:

1. allocDim < arrayDim, or the base type of the array is an object type. In this cadg avrays
that have references as elemers4re allocated. For instance, the following array allamati
examples fall into this category:

enultianewarray [[[I 2

Allocates the first two dimensions of a 3-dimensional integeay.
e nultianewarray [[Ljaval/l ang/ Object; 2

Allocates a 2-dimensional array of objects.

In order to profile the array allocation, we insert a byteceeguence that corresponds to one
invocation ofpr of i | eArrays(1C, TYPE, |NT, |NT):f

allocDim—1 1 allocDim 1
profileArrays(c R S ILdimGy|. | . [ dimG)])
i=0  j=1 i=1  j=1

2. allocDim = arrayDim, and the base type of the array is a basic tipe this case, two types
of arrays are allocated: Arrays that have references aselsnR), as well as arrays that have
a basic type as elemenB8,C, D, F, | , J, S, or Z). For instance, the following array allocations
fall into this category:

e nultianewarray [[[] 3
Allocates a 3-dimensional integer array.

0
ttdim(4) refers to thej* dimension of the arrayfimn.(j) > 0,1 < j < allocDim. H z =1
j=1

Copyright(©) 2008 John Wiley & Sons, Ltd. Softw. Pract. Expe2008;0:1-33
Prepared usingpeauth.cls



SPE PLATFORM-INDEPENDENT PROFILING 19
&

new Object[2][3][5] — profileArrays(c, R 9, 38)
new Object[2][3][0] — profileArrays(c, R 9, 8)
new Object[2][0][5] — profileArrays(c, R 3, 2)
new Object[0][3][5] — profileArrays(c, R 1, 0)
new int[2][3][5] — profileArrays(e, R, 3, 8), profileArrays(e, |, 6, 30)
new int[2][3][0] — profileArrays(c, R, 3, 8), profileArrays(c, I, 6, 0)
new int[2][0][5] — profileArrays(e, R, 3, 2), profileArrays(e, I, 0, 0)
new int[0][3][5] — profileArrays(c, R, 1, 0), profileArrays(c, I, 0, 0)

Figure 4. Examples: Profiling the allocation of multi-dins@nal arrays.

enultianewarray [[Z 2
Allocates a 2-dimensional boolean array.

In order to profile the array allocation, we insert a bytecseguence that corresponds to two
invocations ofprof i | eArrays(I C, TYPE, |INT, INT):

allocDim—2 i allocDim—1 4

profileArrays(c R > I dimG)|, > I dimG))
i=0 j=1 i=1 j=1

allocDim—1 allocDim
profil eArrays(c, t, II dmG)|. | I dimG)|)
j=1 j=1

Fig. 4 illustrates the profiling of the allocation of multirdensional arrays with several examples.
At the implementation level, the inserted bytecode segaieaqrofile the allocation of a multi-
dimensional array is generated according to the algorithrRig. 5. While the size of each array

dimension is am nt , the results of the arithmetic operations may exceed thgerahani nt . Hence,
the variablegrod, arr, andel are of the typé ong (i.e., each of them occupies two local variables).

5.3. Accuracy of Memory Profiling

In this Section we consider the accuracy of the profiling sohgresented in Section 5.1 and in
Section 5.2. We discuss to which extent and under which tiondithe generated memory allocation
profiles are accurate.

An important limitation of our approach is that it cannot filethe execution of native code.
Nonetheless, as constructors cannot be native, the MCTr&a@lk constructor invocations. The
consequence is that, in general, the information regattimgllocation of objects that are not arrays is
present in the MCT, even though the profiled program may spec@hsiderable part of its execution
time in native code.

Concerning the allocation of objects that are not arraysatiproach described in Section 5.1 tracks
the allocation of all objects that are correctly initializg.e., the constructor returns normally). If an

Copyright(©) 2008 John Wiley & Sons, Ltd. Softw. Pract. Expe2008;0:1-33
Prepared usingpeauth.cls



20 W. BINDER ET AL. SRE

1. Save array dimensions (provided on the stack) in dedldatml variables. (As an optimization, the
first array dimension can remain on the stack.)

2. Allocate further local variables to hold the current dirsienal producprod, the number of arrays
arr, and the number of array elemenfs
prod := 1.
arr := 0.
el :=0.

3. For each dimensioin(l < i < allocDim):

(@) Ifi = allocDim = arrayDim and the base type of the array is a basic type:
i. InvokeprofileArrays(c, R arr, el).
ii. arr:=0.
el :=0.
(b) arr := arr + prod.
(c) Retrieve the size of thé" array dimensionlim (i) from the corresponding local variable. (The
first array dimension may be directly duplicated on the shack
(d) prod := prod * dim(3).
(e) el := el + prod.

4. Invokeprofil eArrays(ec, t, arr, el).
If allocDim = arrayDim and the base type of the array is a basic typmrresponds to that basiqg
type; otherwiset = R.

5. Restore the array dimensions from local variables. (Tis¢ dirray dimension may be still on the
stack.)

Figure 5. Algorithm to instrument allocations of multi-démsional arrays.

exception occurs after object allocation but before thedasion of the constructor (e.g., an exception
during the evaluation of the constructor arguments), thjeablallocation is not visible in the profile.
A rare situation, in conjunction with finalizers, is when amnitialized object is actually used, even
though its constructor has not been invoked. Also in thiecHse object allocation is not tracked.
If we wanted to detect such abnormal cases, we might nevesthadd instrumentation to count
all executions of thenew bytecode instruction, and check if this produces the sarseltras our
constructor-counting method.

If an exception is thrown in the constructor, the invocatidrthe constructor and hence the object
allocation is visible in the profile. Nonetheless, if the egtion occurs before the invocation of an
alternate or superclass constructor, the computationehtimber of object allocations within the
constructor according to Fig. 3 may be incorrect. Note that latter problem only concerns the
computation of the number of object allocations in congtits; but not in other Java methods.
Summing up, uninitialized objects may distort the compuitgigéct allocation profiles. Fortunately, this
is rarely a problem in practice, because constructors énatihate abnormally throwing an exception
are not frequent.

Regarding array allocation, we insert profiling code befiie bytecode instruction that allocates
the array. Thus, if the array allocation fails (e.g., theestf the array provided on the stack is
negative or the JVM runs out of memory), the profile may be msistent. We did not consider the
case of a negative array size, as this situation is usuallynaemjuence of a programming error. To
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JVM [k JVM K
perloflllr}g
gen

E stat‘i.iliwstr. __’Jdk» app dyn. instr. —’ app’
agent

(a) (b)

Figure 6. (a) Static instrumentation tool and (b) custonfifing agent and dynamic instrumentation agent of JP.

address this issue, we could insert conditionals in the Iprgfcode in order to skip the invocation
of profileArrays(IC, TYPE, |INT, |INT) if anegative array size was detected. As most
applications are not designed to deal with occurrenc€udofX Menor yEr r or , we did not consider
this issue either. l.e., our profiler is intended to be used@htested programs, which run successfully
without causing such exceptions/errors.

It is also possible to defer the invocation(s) mfofi | eArrays(1C, TYPE, |NT, |NT)
after the actual array allocation bytecode, so that theyskigiped in the case of an exception. This
requires a slight modification of the instrumentation aidyon presented in Fig. 5, as the integer
arguments oprofi | eArrays(1 C, TYPE, |INT, INT) have to be stored either on the stack
(below the slots with the array dimensions) or in local Viales.

6. IMPLEMENTATION OF JP

In the following we outline our implementation principléss illustrated in Figure 6, JP consists of (a)
a static instrumentation tool for the preparation of the JaKd (b) a runtime instrumentation agent
which transforms application classes (and any remainbrgties) on the fly for collaboration with the
custom profiling agent.

In order to implement the proposed profiling scheme, JP ammntethod (as well as constructor)
signatures and bodies, and adds new methods and fields omith I strictions, as described later). At
the same time, JP has to (1) ensure that inserted profilingwithot be executed before the JVM has
completed bootstrapping and (2) provide support for templgrdisabling the execution of profiling
code for each thread.

The first constraint is important in order not to disrupt ttetsip of the JVM, since current standard
JVMs may crash if certain JDK classes (e@j ect, St ri ng, Thr owabl e, Thr ead, etc.) are
initialized in an unexpected order because of additiorstiependencies. Another problemiis that, as
long as the JVM is not completely initialized, thread marédghion primitives may not behave according
to their specified functionality, and therefore have to bestdered as unavailable.
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The second constraint allows dynamic instrumentation fodsformed inside the same JVM process
that runs the instrumented application, without creatirnideets in the collected profiling data.

6.1. Bootstrapping Support

Since the JVM offers no standardized support for bootstreppith a customized JDK, we follow the
safe and portable approach of considering the whole bagising sequence as critical, and rely on
the Java Language Specification [28], which mandates lagsdhitialization, and hence guarantees
that classes are not initialized before their first use. JlRs@®n a so-called “Java programming
language agent” (for details, see the API documentationgjfava. | ang. i nst r unent package)
for dynamic instrumentation and for detecting the end oftstoapping.

JP ensures that inserted profiling code is not executed wWialdVM is bootstrapping. To this end,
the following rules have to be enforced during bootstragpin

e Method bodies that have been modified are not executedaimstiee original method bodies
need to be executed. To this end, JP keeps a copy of the dnigéathod body together with the
instrumented version and inserts a conditional in the beg@qof the method that branches to
the appropriate version depending on the state of the JVM.

e Added methods are not executed at all; they can only be i/bierofiling code after the end
of bootstrapping. JP also patches Java’s reflection API$arerthat added methods will not be
accidentally used by existing code that relies on reflection

e Classes used by profiling code are not initialized, unlesg #myway would be initialized when
bootstrapping an unmodified JDK.

¢ Nofields are added to classes that are loaded during bquisicg unless these fields are simply
initialized to their respective default value. This redidn is necessary to prevent the need for
executing profiling code inside static initializers or constors during bootstrapping. However,
for all classes loaded during bootstrapping, JP will crésitter classes”, the role of which is
to hold any required additional static fields, such as thénoidentifiers (MIDs) introduced in
Section 3. Because of lazy class initialization, and bee#lus added static fields are accessed
only by profiling code, the static initializers of the extriagses will not be executed during
bootstrapping.

6.2. Dynamic Instrumentation Support

As illustrated in Figure 6(b), JP is designed to execute §madhic instrumentation agent and the
instrumented application inside the same JVM.

Dynamic instrumentation necessarily involves the invimratof methods of the JDK, which
themselves are instrumented, since Java prohibits loaahinimstrumented and a non-instrumented
version of a same JDK class in different classloader nancespa herefore, in order to prevent
dynamic instrumentation from perturbing the collectiorpoffiling data, JP allows switching on and
off the execution of profiling code separately for each trea

While other approaches, such as the NetBeans profiler [&Flppn dynamic instrumentation in
a separate JVM process, and use inter-process communi¢HG) to synchronize and transfer all
class bytes, our in-process dynamic instrumentation hasdvantage that it avoids the overhead of
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IPC (which entails frequent process-level context swigdlaad the memory footprint of an additional
JVM process.

Our tighter architecture makes it potentially easier fog tleveloper to selectively disable the
profiling of either a set of classes (by temporarily switghaff dynamic instrumentation) or a number
of threads (by choosing to bypass any inserted profiling ;dlis in turn helps the developer reduce
the time spent profiling.

7. EVALUATION

In this Section we evaluate the overhead caused by our JafieepdP in different settings and compare
it with the ‘hprof’ profiling agent that is included in standialDKs.

To evaluate the overhead caused by our profiling scheme, @gkthe DaCapo benchmark suite [12]
(version ‘dacapo-2006-10-MR2’), the SPEC JVM98 benchrsaite [48] (with problem size 100), as
well as the SPEC JBB2005 benchmark [47] (warehouse sequere8, 4). SPEC JVM98 consists
of 7 benchmarks, whereas DaCapo, which is more recent, ainteizded to provide more realistic
workloads than SPEC JVM98 (a thorough comparison is givgaaf), consists of 11 benchmarks.
Our test platform is a Linux Fedora Core 2 computer (InteltRem4, 2.66 GHz, 1 GB RAM). The
metric used for DaCapo and SPEC JVM98 is the execution tinsedonds, whereas SPEC JBB2005
measures the throughput in operations/second. All bendtsmaere run in single-user mode (no
networking) and we removed background processes as mucissibie in order to obtain reproducible
results. For each setting and each benchmark, we took theameti15 runs. For the DaCapo and
SPEC JVM98 suites, we also computed the geometric mean géfipective benchmarks. Here we
present the measurements made with the Sun JDK 1.7.0 phatfearly access’, build b24) in its
‘client’ and ‘server’ modes.

7.1. Time Overhead

Fig. 7 and 8 show the profiling overhead for different seingith memory profiling enabled. For
the DaCapo and SPEC JVM98 benchmarks (resp. the SPEC JBR20@Emark), the overhead is

fexecution time with profiling operations/second without profilin
CompUted as a factor 0éxecution time without profiling resp. operations/second with profiling/ * To compare our

profiler with a standard profiler based on the JVMPI/JVMTI,als0 evaluated the overhead caused by
the *hprof’ profiling agent shipped with standard JDKs. Wartd the profiling agent *hprof’ with the
‘~agent | i b: hprof =cpu=ti mes’ option, which activates JVMTI-based profiling. The argurhe
‘cpu=ti nmes’ ensures that the profiling agent tracks every method inimcaas our own profiling
scheme does.

For ‘mtrt’, the overhead due to ‘hprof’ is a factor close toQD®r more, depending on the execution
mode (‘client’ or ‘server’). The ‘mtrt’ benchmark producky far the highest overhead with JP as
well. This is because this benchmark is made of a very highbraumof method invocations (according
to [23] it has the highest ratio of method invocations of tiREE JVM98 suite); method entries are
where most profiling activity takes place.

On the opposite side, ‘db’ produces the lowest overheady tith JP and hprof. This may be
explained by its unoptimized use of memory, since it spendist mf the time sorting a small database
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Figure 7. Profiling overhead (slowdown factor) for differ@nofiler settings with Sun JDK 1.7.0 in client mode.

using a simple algorithm that ignores data locality, whiesults in serious thrashing of the underlying
hardware memory management system [42]; therefore, thigram spends comparatively more time
in platform-level memory management operations than akegactual bytecodes. We have found
(using a predecessor tool of JP [13]) that ‘db’ executes upn®order of magnitude fewer bytecode
instructions per unit of time than other, more optimizeddyenarks of SPEC JVM98.

For the DaCapo suite, on average, the slowdown due to thefhgrofiler is a factor 201-275, for
the SPEC JVM98 suite, the slowdown is a factor 202—-362, wbil&SPEC JBB2005, it is 340-436.

In all tests with JP, we used a simple profiling agent that tvaied periodically (at the highest
possible profiling granularity a3 — 1), in order simply to integrate the MCT of each thread into a
global MCT, and to reset some counters. This agent employdvashutdown hook to generate the
resulting profile in a file upon program termination. On agerahe slowdown due to JP is a factor
4.2-5.3 for the DaCapo suite, 3.2—4.3 for the SPEC JVM9& saitd 3.2—4.0 for SPEC JBB2005.

In Fig. 7 and 8 we evaluated JP for 2 different settings: wittebode counting based on the
‘Default BBA, and with bytecode counting using the ‘PrexziBBA. In both settings, profiling of
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Figure 8. Profiling overhead (slowdown factor) for differ@nofiler settings with Sun JDK 1.7.0 in server mode.

dynamic memory allocation was enabled and the profiling tigas activated exactly in the same
way. We have experienced that the overhead caused by bgteoadting is relatively small compared
to the overhead due to MCT creation.

We also tried to evaluate the extra time overhead due to tifdipg of dynamic memory allocation.
When memory profiling is enabled, the workload of the profilexgent increases slightly, since it
has to compute the number of object allocations as expldam&ection 5.1 and to process the data
collected about array allocations. However, as we reduvectimber of invocations of our profiling
agent to a minimum in our evaluation (it only processed tludilimg data upon program termination),
this increased workload is negligible. Therefore, the nwai@rhead in memory profiling comes from
the instrumentation of array allocations. However, in thd,dhe extra overhead due only to memory
profiling was not measurable in our setting.
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Table I. Memory occupation by all IC instances.

antlr bloat chart fop jython luindex lusearch pmd eclipse lama hsqgldb
#IC 555553 591237 24733 80007 1663347 21074 44268 769646 00987 767972 127073
kB 21701 23095 966 3125 64974 823 1729 30064 73051 29999 4964
compress jess db javac mpegaudio  mitrt jack JBB2005
#IC 2146 12063 5474 896256 3090 5803 49349 83295
kB 84 471 214 35010 121 227 1928 3254

7.2. Space Overhead

Besides the time overhead, we evaluated the extra memomypiset by the main profiling data
structures. On our test platform, we found the IC instancke up 40 bytes. This leads to Table I,
which summarizes the number of IC instances created duriag@recution of the benchmarks, as well
as the corresponding physical memory occupation, in kiteByThis amount represents the estimated
size of the MCT created during one execution; it does notuhelany additional data structures
introduced by customized profiling agents.

7.3. Precision of Basic Block Analysis

In order to measure the imprecision caused by the ‘Defaul®B#&e compared profiles of the
SPEC JVM98 benchmarks generated with the ‘Default BBA' regth the ‘Precise BBA regarding
the total number of bytecodes counted in all method invooatbntexts §ge raui: r€SP.bprecise). We
measured the relative erréb as follows:

5b — (bdefault - bprecise) _ <bdefault _ 1>

bprecise bprecise

For the SPEC JVM98 suite, we found the biggest relative avittr‘jack’, wheredb is below 0.1%.
The bigger relative errofb for ‘jack’ is not surprising, because ‘jack’ is known to be argicularly
exception-intensive program [17, 39]. We conclude thatracpice, the imprecision caused by the
‘Default BBA' is minor.

7.4. Reproducibility of Profiles

For fully deterministic applications, profiles are reproitile as long as exactly the same environment—
particularly the same Java class library — is used for pngfilHowever, in practice, many applications
involve some non-determinism. For instance, when algastife.g., hashtable operations) make use
of the identity hashcodes of objects, they may follow défg@rexecution paths if the hashcodes vary
between different runs of the program. Concurrency and owkrihread scheduling policies contribute
to the observed non-determinism, too. Furthermore, oremdifft platforms, distinct classes may be
instantiated, depending e.g. on system properties; thefudifferent text line terminators in I/O is a
well-known example.

We evaluated the reproducibility of SPEC JVM98 profilesectied on two different platforms. The
first one is an Intel Pentium 4, 2.66 GHz, 1 GB RAM; Linux FedGare 2; Sun JDK 1.6.04, build
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b12, ‘server mode. The second platform is an Intel Core2 P38Ghz, 2 GB RAM; Sun JDK 1.7.0,
‘early access’, build b25, ‘client’ mode.

We use arnoverlap percentagenetric as in references [2, 26] to compare the profiles ctabbc
on the two platforms. Informally, the overlap is the amouhfpoofiled information (weighted by
execution frequency) that is present in both profiles. Tvemtital profiles have an overlap of 100%.
For computing the overlap percentage, we use the bytecaddarin each calling context.

For ‘compress’, ‘jess’, ‘mpegaudio’, and ‘mtrt’, we measdran overlap percentage higher
than 99.9%. However, for the other benchmarks, the ovedagemtage was significantly lower: 69.3%
for ‘db’, 95.3% for ‘javac’, respectively 91.5% for ‘jack’.

We analyzed the reasons for the observed low overlap pagestand found that they were due to
differences between the Java class libraries of JDK 1.6 Bid117. For ‘db’ and ‘jack’, the profile
differences are caused by methoext El enent () in the inner clas$ ava. util . Vect or $1,
which is a leaf method in JDK 1.6, but calls another methodDiK 1..7. Because this method is
called extremely frequently when iterating through a vectioe difference between the two JDK
versions causes a significant decrease in the overlap pageenThe ‘javac’ benchmark is also
affected by this, in addition to another, identical JDK €itnce in methodi gi t (i nt, int) of
j ava. |l ang. Char act er.

8. DISCUSSION
In the following we discuss the strengths and limitationsf approach.
8.1. Benefits

Our goal has been to enable platform-independent and pertabfiling in a virtual execution
environment. The approach presented in this article, imptged by the Java profiler JP, is an
important step into this direction. Instead of measuringy@me, we compute the number of bytecodes
that a program would execute without profiling. Hence, measent perturbation is not an issue (at
least for programs with deterministic thread schedulirgpause the presence of measurements does
not influence the measurement results, as it is the case vaitty @xisting profilers that may prevent
optimizations in the virtual machine. Moreover, we also pk#form-independent metrics to profile
dynamic memory allocation. Further metrics can be derivethfthe dynamic bytecode metrics and
the memory allocation metrics, such as e.g. the allocatirsitly [23].

Another advantage of our approach is its portability. It barimplemented without resorting to any
platform-specific features, as confirmed by our JP impleatant: JP and all its runtime classes are
implemented in pure Java and all program transformatidfmid@ strict adherence to the specification
of the Java language and virtual machine. JP has been shutlyetested with several standard JVMs.

Our profiling framework can be customized by user-definedilprg agents, which themselves
can be programmed in a completely platform-independent Ways is in contrast to standard
profiling interfaces, such as the JVMPI [44] and the JVMTI][4Bhich require profiling agents to
be implemented in native code.

We offer a simple but flexible API to implement a wide rangeiffedent profiling agents. A profiling
agent can control the frequency of its periodic activatigraldjusting the profiling granularity. The
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activation does not rely on the scheduling of the virtual hiae (e.g., in the case of Java, scheduling
is not well specified in the language and virtual machine ifipations [27, 35]), because each thread
in the system synchronously invokes the profiling agent &ftecution of a number of bytecodes that
approximately corresponds to the current profiling grarityla

In our approach, each method invocation (with the excemtforative methods) is profiled. Thisisin
contrast to frequently used sampling techniques, wherprbfder is activated only periodically (e.g.,
every few milliseconds). While sampling causes less owathieis not always accurate: We evaluated
the overlap percentage [2] of a sampling profile producedhleytiprof’ profiling agent included in
standard JDK distributions (settingpu=sanpl es, i nt er val =1’) with a profile generated by
‘hprof’in its exact profiling mode (settingpu=t i nes’). For the SPEC JVM98 benchmarks [48], the
average overlap percentage was below 7%. Our profiling agprallows one to significantly reduce
the overhead of exact profiling (see measurements in Se¢jiovhich means that it also becomes
applicable in settings where sampling techniques had toskd because of long program execution
times.

In a system composed of multiple software components, ib$sible to selectively instrument only
certain components of interest, thus reducing the ovevalllead. However, classes that may be used
by different components, such as core classes of the virtaahine, should always be instrumented.

8.2. Limitations

Concerning limitations, the major hurdle of our approacth& bytecode instrumentation does not
cover the execution of native code. This is an inherent grobkince we rely on the transformation
of bytecode and focus on the computation of platform-indéjeat metrics. For programs that heavily
depend on native code, dynamic bytecode metrics may notl&eard. We have nevertheless shown
in [10] that Java programs spend on average less than 5% iofttexution time inside native code
(measurements made using Sun JDK 1.6.0 as platform, and SPEG8 and SPEC JBB2005 as
benchmarks).

A related problem with native code is that the MCT does nosg@nee the full call stack for
instrumented methods invoked by native code, which appeahddren nodes of the root node in
the MCT. However, in practice this is not a serious probleetause these callbacks from native code
to instrumented code are not frequent.

The JVM specification [35] imposes restrictions on the sikzéifferent parts of a class file. For
instance, the size of the constant pool is represented byb# Wisigned integer. The size of methods
is limited, as well. Hence, the instrumentation may failliése limits are exceeded after insertion
of static fields, methods, or bytecodes. However, this @mkk very unlikely to occur with normal,
hand-crafted Java code.

Another limitation is that the introduction of extra metha@iguments may break existing
code that relies on reflection. In Java, the methgds Const ruct ors(), get Decl ar ed-
Constructors(),get Met hods(), andget Decl ar edMet hods() of j ava. |l ang. C ass
return arrays of reflection objects (i.e., instances of @ast r uct or resp.Met hod classes of
packagg ava. | ang. ref | ect), representing wrapper methods (with the unmodified sigea)
as well as methods with our extended signatures. If an ajuit selects a method from this array
considering only the method name (but not the signaturejait try to invoke a method with extended
signature, but fail to provide the extra arguments, resglih anl | | egal Ar gunent Excepti on.
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JP solves this issue by patching the aforementioned metbbdsava. | ang. O ass to filter
out the reflection objects that represent methods with ebe@rsignatures. This modification is
straightforward, because in standard JDKs these methedshatemented in Java (and not in native
code).

The static fields inserted by JP are also accessible throefigction, and may in principle
break existing code. However, we have not yet encountereld ayroblem in practice. Regarding
serialization, while static fields are excluded by defaitilis possible to customize the serialization
mechanism such that it fails in the presence of added stalitsfi

Our approach introduces wrapper methods for compatibilitth native code. However, the
invocations of wrapper methods constitute extra stack égrand may therefore break code relying
on stack introspection and assuming a particular invooa@muence. We solved this issue similarly to
reference [9], by cancelling ‘reverse’ wrappers for certaative methods and using code duplication
instead of wrapping for the affected callers of these method

During bootstrapping, the execution of instrumented cedaévented; as a consequence, methods
that started, but did not finish their execution before the @nbootstrapping will continue executing
their original method body even after bootstrapping. Thibécause the decision of executing either
the instrumented or the original method body is taken exadlys upon method entry; there is no
other similar conditional inside the instrumented code.B&keve that this limitation is not important
in practice, because bootstrapping is already over bef@application’s main method is invoked,;
application code is therefore normally not affected.

As we try to preserve the full call stack without any depthitation, the MCT may consume a
significant amount of memory in the case of very deep recassiAccording to Ball and Larus, path
profiling (i.e., preserving exact execution history) isdiéée for a large portion of programs [4], an
observation that is confirmed by our benchmarks. Neverssetaur approach may easily be modified
to compute a Calling Context Tree of bounded depth [1] irstdaa complete MCT.

9. RELATED WORK
In the following we review some related work regardmgecode manipulatioandprofiling.
9.1. Bytecode Manipulation

Altering Java semantics via bytecode transformations isb-kmown technique [46] and has been
used for many purposes that can be generally characteszadiding reflection or aspect-orientedness
to programs. When working at the bytecode level, the prograumce code is not needed.

There are many tools for manipulating JVM bytecode. Thednde engineering library BCEL [21]
represents method bodies as graph structures. Indivigdatdde instructions are mapped to Java
objects. JP is based on BCEL, because the graph represarnthtnethod bodies eases instrumentation
at the basic block level.

ASM [38] is a lightweight bytecode manipulation frameworksijned for dynamic load-time
transformation of Java class files. While the instrumeatgpirocess using ASM may in many cases be
more efficient than using BCEL, we found that BCEL gives fin@ntcol on the generated code, and
that its representation of method bodies is better suiteshédrumentation at the basic block level.
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Javassist [14, 15], which is used by JBoss [31], enableststial reflection and provides convenient
source-level abstractions.

Soot [49] is a framework for analyzing and transforming JViidzode that offers four intermediate
code representations. For instandenple is a typed, stack-less, three-address code intermediate
represention. Soot is often used for bytecode optimization

JOIE [18], JikesBT [30], and Serp [5] are further exampleshgfecode manipulation libraries
implemented in Java.

Some tools for aspect-oriented programming in Java, e.geétd [32], work at the bytecode
level as well. However, usually such tools support only biglevel pointcuts, such as method
invocations, whereas our collection of bytecode metricgires transformations at the basic block
level. Furthermore, the extension of method signaturesclwkve found essential to efficiently
compute thread-local, calling context-sensitive praflidata, is usually not supported by aspect-
oriented programming tools.

The use of AspectJ for profiling is explored in [41], and repdito yield mixed results. The AspectJ
language itself lacks a number of joinpoints, such as faro#pting array allocations, that would be
necessary for a complete coverage. From a performancegoikay it is difficult to compare their
approach with ours, as they chose to adopt sampling-baséting instead of exact profiling.

A salient disadvantage of using current aspect-orienteguages or tools is that they are, to the
best of our knowledge, unable to process core libraries@fDK, a decisive factor being that such
tools introduce difficult-to-circumvent dependencieshvitteir own runtime libraries, which prevent
the JVM from bootstrapping.

9.2. Dynamic Metrics and Profiling

In [23] the authors present a variety of dynamic metricduiding bytecode metrics, for selected Java
programs, such as the SPEC JVM98 benchmarks [48]. Theydintea tool called *J [24] for the
metrics computation. *J relies on JVMPI [34, 44], which isolim to cause very high measurement
overhead (see Section 7) and requires profiling agents toritienvin native code, contradicting the
Java motto ‘write once, run anywhere’. Because of the higirtoead, tools like *J may only be applied
to programs with a short execution time. In contrast, ouraggh reduces the overhead and can be
implemented in pure Java. Therefore, it is possible to umsént real applications in a way that is
portable across different virtual execution environments

There is a large body of related work in the area of profilinmeFgrained instrumentation of
binary code has been used for profiling by Ball and Larus [3, BBe ATOM framework [43] has
been successfully used for many profiling tools that inseoniinary code. However, as binary code
instrumentation is inherently platform-dependent, teishhique is not appropriate to build tools for
the platform-independent performance analysis of sofweamponents.

The NetBeans Profilerh¢tp://profil er. netbeans. org/) integrates Sun’'s JFluid
profiling technology [22] into the NetBeans IDE. JFluid exid dynamic bytecode instrumentation
and code hotswapping in order to turn profiling on and off dyically, for the whole application or
just a subset of it. However, this tool needs a customized il is therefore only available for a
limited set of environments.

Whereas our approach is rather intended for use at devehtpgime, sampling-based profiling is
often employed in already deployed systems as supportédbfck-directed optimizations in dynamic
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compilers [2, 50]; indeed, sampling-based profilers majdyéesufficiently low overhead to become
usable at production time. The framework presented in [Bsusode duplication combined with

compiler-inserted, counter-based sampling. A secondoreds the code is introduced which contains
all computationally expensive instrumentation. The eragicode is minimally instrumented to allow

control to transfer in and out of the duplicated code in a firgined manner, based on instruction
counting. This approach achieves low overhead, as ex@cptinceeds most of the time inside the
lightly instrumented code portions.

In reference [8] we introduced a portable sampling profibettie JVM based on bytecode counting.
A profiling agent is periodically invoked in a deterministiay after the execution of a certain number
of bytecodes (sampling interval). The profiling data stuuetgenerated by the sampling profiler can
be regarded as a partial MCT, covering only a subset of tHmgalontexts. While this data structure
allows us to accurately estimate the relative distributdbrexecuted bytecodes in different calling
contexts, it completely lacks method invocation countsra/all as memory allocation statistics. The
advantage of the sampling profiler is its lower overhead.

ProfBuilder [19] is a toolkit for building Java profilers. Mever, ProfBuilder does not address issues
regarding multi-threading and native code, and the geeénatofiling tools described in [19] cause
high overhead. The authors of ProfBuilder show with a casdysthat profiles based on dynamic
bytecode metrics are valuable to detect algorithmic iniefficies and help the developer focus on
those parts of a program that suffer from high algorithmimptexity.

10. CONCLUSION

In this article we presented a novel approach for platfandependent, portable, and customizable
profiling in a virtual execution environment. We rely on prag transformations at the bytecode
level in order to compute a calling-context-sensitive pirgfi data structure that collects platform-
independent dynamic metrics, such as the number of methadations, the number of executed
bytecodes, as well as statistics on memory allocation. Wiitiath to platform independence, our
approach ensures largely reproducible results, minimimegsurement perturbation, and largely
reduced overhead.

We implemented our approach as the Java profiler JP. JP, hasve$er-defined profiling agents,
are programmed in pure Java. Thanks to its ability to perfdymamic instrumentation, JP is, to the
best of our knowledge, the first Java profiling tool to ensutkecverage of executed bytecodes. Our
evaluation confirms that JP causes significantly less oaertiean hprof, a prevailing profiler based on
a standard JVM profiling interface.
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Appendix A — INITIALIZATION WITH DIFFERENT CONSTRUCTORS

The computation of the number of object allocations in a troator (Section 5.1) is based on
the assumption that each constructor (except the constrott ava. | ang. Qbj ect ) has exactly
one associated alternate or superclass constructor. $hisrgtion is backed by the Java Language
Specification [27]. However, at the bytecode level, a carcstr may invoke a different alternate
or superclass constructor depending on its arguments mitb@using any verification error [35].
The example in Fig. 9 illustrates this. The main method alles two objects of the same type and
initializes them with the same constructor (but passinfgdifht constructor arguments). However, the
alternate constructor, which takes no arguments, is irdvakdy once. The output of the program is
‘count = 1.

Fortunately, this kind of situation only occurs with handfted bytecode. If a standard Java
compiler is used to generate bytecode from Java code, suelkedae is not created. Nonetheless,
the static analyzer that examines constructor code (se®B8&cl) is able to detect this situation and
produces a warning.

public class DifferentConstructors {
static int count = O;

public static void main(String[] args) {
new Di fferent Constructors(fal se);
new Di fferent Constructors(true);
Systemout.print(“"count =" + count);

}

Di f ferent Constructors(bool ean x) {
/1 The following is nmanually crafted bytecode.
/1 Depending on the argunment, the alternate or
/'l the superclass constructor is called:
al oad_0
iload_1
i feq supercl assConstructor
al t ernat eConstructor:
i nvokespecial DifferentConstructors/<init>()V
return
super cl assConst ructor:
i nvokespeci al javal/lang/ Ghject/<init>()V
return

}

Di fferent Constructors() {
super () ;
++count ;

Figure 9. Depending on the constructor argument, the ateror the superclass constructor is invoked.
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