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Abstract

Given three or four synchronized videos taken at eye

level and from different angles, we show that we can ef-

fectively use dynamic programming to accurately follow up

to six individuals across thousands of frames in spite of sig-

nificant occlusions. In addition, we also derive metrically

accurate trajectories for each one of them.

Our main contribution is to show that multi-person

tracking can be reliably achieved by processing individu-

al trajectories separately over long sequences, provided

that a reasonable heuristic is used to rank these individu-

als and avoid confusing them with one another. In this way,

we achieve robustness by finding optimal trajectories over

many frames while avoiding the combinatorial explosion

that would result from simultaneously dealing with all the

individuals.

1. Introduction

In this paper, we show that we can effectively use dy-

namic programming in situations such as those depicted by

Fig. 1 to keep track of people who occlude each other. This

results in a fully automated system that can track up to 6

people in a room for several minutes using only four cam-

eras, without producing any false positives or false nega-

tives in spite of severe occlusions and lighting variations.

As shown in Fig. 1, our system also provides location esti-

mates that are accurate to within a few tens of centimeters.

We combine probabilities of occupancy of the ground

plane that are computed at each time step independently [3]

with color and motion models that let us enforce temporal

continuity. In contrast to most state-of-the-art algorithms

that recursively update estimates from frame to frame and

may therefore fail catastrophically if difficult conditions

persist over several consecutive frames, our algorithm can

handle such situations, since it computes global optima of

scores summed over many frames. This gives us great ro-
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Figure 1. Top row: tracking results. Bottom
row: cumulative distributions of the position

estimate error on a 3800-frame sequence.

See §6.1 for details.

bustness to data loss: As shown in Fig. 1, there is no measur-

able performance decrease if as many as 20% of the images

are lost, and only a small one if 30% are.

More specifically, we process the video sequences by

batches of one hundred frames and use dynamic program-

ming to compute the most likely trajectory of each individ-

ual. This batch processing introduces a 4s delay, but this

is quite acceptable for many surveillance applications. To

achieve consistency over the whole sequence, we only keep

the result on the ten first frames and slide our temporal win-

dow by ten frames. To handle entrances and departures, we

consider a virtual hidden location containing a very large

number of people, each with a very small probability of

entering the visible scene. Our mathematical framework

treats the visible and hidden individuals similarly and en-



trances occur when image data makes the optimal trajectory

of someone located in the hidden location cross into the vis-

ible space.

Our main contribution is to show that multi-person track-

ing can be reliably achieved by processing individual trajec-

tories separately over long sequences, given that a reason-

able heuristic is used to rank these individuals and avoid

confusing them with one another. Processing trajectories

individually lets us avoid the combinatorial explosion that

would result from explicitly dealing with the joint poste-

rior distribution of the locations of individuals in each frame

over a fine discretization. This is what lets us compute tra-

jectories that are optimal over many frames.

2. Related Work

State-of-the-art methods can be divided into monocular

and multi-view approaches that we briefly review in this

section. While our own method shares many features with

these techniques, it differs in two important respects. First,

we rely on dynamic programming to ensure greater stabil-

ity in challenging situations by simultaneously taking into

account multiple frames. Second, it relies on a discretiza-

tion of the full area of interest, and is therefore able to deal

with very flat distributions.Finally, our approach combines

the usual color and motion models with a sophisticated es-

timation of the probability of occupancy.

2.1. Monocular approaches

Approaches that perform tracking in a single view prior

to computing correspondences across views typically rely

on extracting groups of pixels, which can then be assigned

to individual people [6, 2, 8]. Tracking performance can

be significantly increased by taking color into account. For

example, in [9], the images are segmented pixel-wise into

different classes, thus modeling people by continuously up-

dated Gaussian mixtures. A standard tracking process is

then performed using a Bayesian framework, which helps

keep track of people under occlusion. When such a case

occurs, models of visible persons keep being updated, but

the update of occluded ones stops. This may cause trou-

ble if their appearances have changed noticeably when they

reemerge.

More recently, multiple humans have been simultane-

ously detected and tracked in crowded scenes [16] using

Monte-Carlo-based methods to estimate their number and

positions. In [13], multiple people are also detected and

tracked in front of complex backgrounds using mixture par-

ticle filters guided by people models learnt by boosting. In

[5], multi-cue 3D object tracking is addressed by combin-

ing particle-filter based Bayesian tracking and detection us-

ing learnt spatio-temporal shapes. This approach leads to

impressive results but requires shape, texture, and stereo in-

formation as input. Finally [15] proposes a particle-filtering

scheme with a MCMC optimization which handles natu-

rally entrances and departures, and introduces a finer mod-

eling of interactions between individuals as a product of

pairwise potentials.

2.2. Multi-view Approaches

Despite the effectiveness of such methods, the use of

multiple cameras soon becomes necessary when one wishes

to accurately detect and track multiple people and compute

their precise 3D locations in a complex environment. Oc-

clusion handling may be facilitated by the use of 2 sets of

stereo color cameras[10]. However, in most approaches that

only take a set of 2D views as input, occlusion is mainly

handled using the temporal consistency brought by a mo-

tion model, whether from Kalman filtering or more general

Markov models. As a result, these approaches may not al-

ways be able to recover if the process starts diverging.

Blob-based Methods In [11], Kalman filtering is applied

on 3D points obtained by fusing in a least-squares sense the

image-to-world projections of points belonging to binary

blobs. In [1], a Kalman filter is used to simultaneously track

in 2D and 3D, and object locations are estimated through

trajectory prediction during occlusion.

In [4], a best-hypothesis and a multiple-hypothesis ap-

proaches are compared to find people tracks from 3D loca-

tions obtained from foreground binary blobs extracted from

multiple calibrated views. In [14], silhouette-based visual

angles are obtained from motion blobs. In case of occlusion

ambiguities, multiple occlusion hypotheses are generated

given predicted object states and previous hypotheses. A

Bayesian framework is applied to test multiple hypotheses

using a state transition model, a dynamics model for transi-

tions between occlusion structures and the measurements.

Color-Based Methods [12] proposes a system that seg-

ments, detects and tracks multiple people in a scene using

a wide-baseline setup of up to 16 synchronized cameras.

Intensity information is directly used to perform single-

view pixel classification and match similarly labeled re-

gions across views to derive 3D people locations. Occlusion

analysis is performed in two ways. First, during pixel classi-

fication, the computation of prior probabilities takes occlu-

sion into account. Second, evidence is gathered across cam-

eras to compute a presence likelihood map on the ground

plane that accounts for the visibility of each ground plane

point in each view. Ground plane locations are then tracked

over time using a Kalman filter.

In [7], individuals are tracked both in image planes and

top view. The 2D and 3D positions of each individual are

computed so as to maximize a joint probability defined as

the product of a color-based appearance model and 2D and

3D motion models derived from a Kalman filter.



Table 1. Notations

We use bold letters for vectors and drop the indices to denote

a vector of values corresponding to several values of the said

indices, for example Lt and L
n below.

C number of cameras

G number of locations in the ground discretization (' 1000)

T number of frames processed in one batch (T = 100)

t frame index

It images from all the cameras It = (I1

t , . . . , IC
t )

Bt binary images generated by the background subtraction

Bt = (B1

t , . . . , BC
t )

Tt texture information

N∗ virtual number of people, including the non-visible ones

Lt vector of people locations on the ground plane or in the

hidden location Lt = (L1

t , . . . , L
N∗

t ) Each of these ran-

dom variables takes values into {1, . . . , G,H}, where H
is the hidden place.

L
n trajectory of individual n, Ln = (Ln

1 , . . . , Ln
T )

µc
n color distribution of individual n from camera c

Xk
t boolean random variable standing for the occupancy of lo-

cation k on the ground plane
`

Xk
t = 1

´

⇔ (∃q, L
q
t = k)

3. Overview and Notations

Here, we give a short overview of the complete algo-

rithm, before going into more details in the following sec-

tion. From now on, we will use the notations summarized

by Table. 1.

We process the video sequences by batches of T = 100
frames, each of which includes C images, and compute the

most likely trajectory for each individual. To achieve con-

sistency over successive batches, we only keep the result on

the first ten frames and slide our temporal window.

For a given batch, let Lt = (L1
t , . . . , L

N∗

t ) be the hidden

stochastic processes standing for the locations of individu-

als, whether visible or not. Assuming that the visible part of

the ground plane has been discretized into a finite number G

of regularly spaced 2–D locations, the Ln
t variables take dis-

crete values in the range {1, . . . , G, H}, where H denotes

a hidden location. The number N ∗ stands for the maximum

allowable number of individuals in our world. It is large

enough so that conditioning on the number of visible indi-

vidual does not change the probability of a new individual

entering the scene.

Given It, our task is therefore to find the values of the Lt

that maximize P (L1, . . . ,LT | I1, . . . , IT ).

3.1. Stochastic Modeling

Our optimization scheme optimizes trajectories succes-

sively, and the optimization of an individual trajectory relies

on an appearance model and a motion model.

The appearance model P (It |L
n
t = k) is a combination

of two terms. The first is an estimate of the probability of

occupancy of the ground plane that is computed at each time

step independently [3] given the output of a simple back-

ground subtraction algorithm. It is depicted by Fig. 2. The

second is a very generic color-histogram based model for

each individual. Note that the ground plane occupancy es-

timate says nothing about identity or correspondence with

past frames. The appearance similarity is entirely conveyed

by the color histograms, which has experimentally proved

sufficient for our purposes.

The motion model P (Ln
t+1 |L

n
t = l) is simply a distri-

bution into a disc of limited radius, which corresponds to a

loose bound on the maximum speed of a walking human.

Entrance into the scene and departure from it are natu-

rally modeled thanks to the hidden location H, for which

we extend the motion model. The probabilities to enter and

to leave are similar to the transition probabilities between

different ground plane locations.

3.2. Optimization

Given this model, we compute the optimal trajectories

over the whole batch, one individual at a time, including

the hidden ones who can move into the visible scene or not.

For each one, the algorithm performs the computation under

the constraint that no individual can be at a visible location

occupied by an individual already processed.

In theory, this approach could lead to undesirable local

minima, for example if our algorithm connected the trajec-

tories of two separate people. However, this does not hap-

pen often because our batches are sufficiently long. To fur-

ther reduce the chances of this, we process individual trajec-

tories in an order that depends on a reliability score so that

the most reliable ones are computed first, thereby reducing

the potential for confusion when processing the other ones.

This order also ensures that if an individual remains in the

hidden location, all the other people present in the hidden

location will also stay there, and therefore do not need to be

processed.

Our experimental results show that our method does not

suffer from the usual weaknesses of greedy algorithms, such

as a tendency to get caught in bad local minima.

4. Stochastic Modeling

We compute the MAP of P (L1, . . . ,LT | I1, . . . , IT ) by

processing trajectories individually. We show in §5.1 that

this requires only modeling at a given frame t the condi-

tional distribution P (It |L
n
t = k) of the images given the

location of one individual. We describe this modeling in the

present section.

From the input images It, we use background subtraction

to produce binary masks Bt and the pixels inside the blobs



Tt. The rest of the images is treated as background and

ignored. We have:

Appearance model
︷ ︸︸ ︷

P (It |L
n
t = k) =

P (It)

P (Ln
t = k)

P (Ln
t = k | It)

∝ P (Ln
t = k |Bt, Tt)

= P (Ln
t = k, Xk

t = 1 |Bt, Tt)

= P (Ln
t = k |Xk

t = 1, Bt, Tt) P (Xk
t = 1 |Bt, Tt)

= P (Ln
t = k |Xk

t = 1, Tt)
︸ ︷︷ ︸

Color model

P (Xk
t = 1 |Bt)

︸ ︷︷ ︸

Ground plane occupancy

where P (Ln
t = k |Xk

t = 1, Tt) is based on the color

model and P (Xk
t = 1 |Bt) is an estimate of the ground

plane occupancy.
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Figure 2. Original images from two cameras
(a), binary images produced by background

subtraction (green) and synthetic average

images computed from them (b). The sur-
face on (c) represents the corresponding oc-

cupancy probabilities ρk on the grid.

4.1. Estimating Ground Plane Occupancy

The first module of our tracking algorithm is a frame-by-

frame people detector that takes as input the binary masks

Bt generated by a simple background subtraction algorithm

and computes for each location in the ground plane the con-

ditional marginal probability of presence of an individual.

To this end, we have slightly improved our earlier Fixed-

Point Probability Field (FPPF) algorithm [3] by including

ad hoc descriptions of potentially moving parts of the back-

ground, such as sliding doors. This is legitimate since the

camera environment is fixed and known.

After discretization of the ground plane into a regular

grid (Fig. 2.b), this algorithm provides for every location k

with an estimate of

ρk = P (Xk
t = 1 |B1

t , . . . , BC
t ) (1)

where Xk
t stands for the occupancy of location k at time t

by any individual.

The correspondence between ground-plane locations and

the camera views is provided by the mean, for every cam-

era, of a collection of rectangles standing for human shapes

located at every position of the grid (Fig. 2.b). Those rect-

angles are computed from the average human height and the

homography mapping the ground plane in the camera view.

4.2. Color model

We assume that if somebody is present at a certain loca-

tion k, her presence influences the color of the pixels located

at the intersection of the moving blobs and the rectangle

corresponding to the location k. We model that dependency

as if the pixels were independent and identically distributed

and followed a density in the RGB space associated to the

individual.

If an individual was present in the frames preceding the

current batch, we have an estimation of her distribution,

since we have previously collected the pixels in all frames

at the locations of her estimated trajectory. If she is at the

hidden location H, her color distribution is flat.

Let T c
t (k) denote the pixels taken at the intersection of

the binary image produced by the background subtraction

from the stream of camera c at time t and the rectangle cor-

responding to location k in that same field of view (Fig. 2.b).

Let µc
1, . . . , µ

c
N∗ be the color distributions of the N∗ in-

dividuals present in the scene at the beginning of the current

batch of T frames, for camera c. We have

Color model
︷ ︸︸ ︷

P (Ln
t = k |Xk

t = 1, Tt) =
P (Ln

t = k, Xk
t = 1, Tt)

∑

q P (Lq
t = k, Xk

t = 1, Tt)

=
P (Ln

t = k, Tt)
∑

q P (Lq
t = k, Tt)

=
P (Tt |L

n
t = k)

∑

q P (Tt |L
q
t = k)



where

P (Tt |L
n
t = k) = P (T 1

t (k), . . . , T C
t (k) |Ln

t = k)

=

C∏

c=1

∏

ρ∈T c

t
(k)

µc
n(ρ)

4.3. Motion model

We opted for a very unconstrained and simple motion

model P (Lt = k |Lt−1 = τ). It simply limits the max-

imum speed allowed for the tracked people by being zero

for ||k − τ || greater than a maximum distance and constant

otherwise. We chose a tolerant maximum distance of one

square of the grid per frame, which corresponds to a speed

of almost 12mph. We also defined explicitly the parts of the

scene that are connected to the hidden location H. This is a

single door in the indoor sequences and all the contours of

the visible area in the outdoor sequences.

5. Optimization

We first describe how we compute the optimal trajectory

of a person given a batch of images. We then describe the

whole optimization scheme that processes trajectories one

after another and heuristically chooses an adequate process-

ing order.

5.1. Single trajectory

We consider in the following only the trajectory L
n =

(Ln
1 , . . . , Ln

T ) of individual n over T frames. We are

looking for the trajectory (ln1 , . . . , lnT ), taking values in

{1, . . . , G,H} where H is a hidden location. The initial

location ln1 is either a known visible location if the individ-

ual is visible in the first frame of the batch, or H if she is

not. The score to maximize is

P (Ln
1 = ln1 , . . . , Ln

T = lnt | I1, . . . , IT )

=
P (I1, L

n
1 = ln1 , . . . , IT , Ln

T = lnT )

P (I1, . . . , IT )

If we introduce the maximum of the probability of both the

observations and the most probable trajectory ending up at

location k at time t

Ψt(k) = max
ln
1

,...,ln
t−1

P (I1, L
n
1 = ln1 , . . . , It, L

n
t = k)

we can use the well-known Viterbi algorithm

Ψt(k) = P (It |L
n
t = k)

︸ ︷︷ ︸

Appearance model

max
τ

P (Ln
t = k |Ln

t−1 = τ)
︸ ︷︷ ︸

Motion model

Ψt−1(τ)

to perform a global search with dynamic programming.

5.2. Multiple trajectories

Given a batch of T frames I = (I1, . . . , IT ), we want to

maximize the posterior conditional probability

P (L1 = l
1, . . . ,LN∗

= l
N∗

| I).

We assume that optimizing trajectories altogether is the

same as optimizing one trajectory after another, provided

that it is done in an adequate order. We are thus looking for

l̂
1 = argmax

l

P (L1 = l | I),

l̂
2 = argmax

l

P (L2 = l | I, L
1 = l̂

1),

...

l̂
N∗

= argmax
l

P (LN∗

= l | I, L
1 = l̂

1, L
2 = l̂

2, . . .).

Such a procedure is correct under the assumption that a term

of the form P (Ln = l |L1 = l̂
1, . . . ,Ln−1 = l̂

n−1, I) can

not be substantially increased by choosing different trajec-

tories l̂
1, . . . , l̂n−1, at least not enough to change the max-

imum. This is true in our case, as long as the trajectories

l̂
1, . . . , l̂n−1 do not steal locations useful to l̂

n. We ensure

that property by using an heuristic to rank the processing of

the individuals. Note that under our model we have

P (Ln = l | I, L
1 = l̂

1, . . . ,Ln−1 = l̂
n−1)

= P (Ln = l | I, ∀k < n, ∀t, Ln
t 6= l̂kt ),

which can be seen as P (Ln = l | I) with a reduction of the

admissible locations in the grid.

We first extend the trajectories that have been found with

confidence in the previous batches. We then process the

lower confidence ones. As a result, a low probability tra-

jectory, that is likely to be problematic in the current batch,

will be optimized last and thus prevented from “stealing”

somebody else’s location. Furthermore, this approach in-

creases spatial constraints on such a problematic trajectory

when we finally get around to modeling it.

To this end, we use as a ranking score the concordance

of the estimated trajectories in the previous batches and the

localization cue provided by FPPF. Since there is a high de-

gree of overlapping between successive batches, the chal-

lenging segment of a trajectory – due to failure of the back-

ground subtraction or change in illumination for instance –

is met in several batches before it actually happens during

the ten kept frames. Thus, the heuristic would have ranked

the corresponding individual in the last ones to be processed

when the problem occurs.

This heuristic naturally pushes the trajectories starting in

the hidden location H – those not visible in the first frame

of the batch – to the end of the computation. The algorithm

does not actually compute all the N ∗ trajectories: It stops



as soon as one of the processed one remains in the hidden

location for the complete batch of frames, since all other

not-yet-processed individuals are identical and would do the

same.

6. Results

We estimated the performance of our algorithm on sev-

eral sequences shot indoor with four cameras and outdoor

with three cameras. The indoor sequences involve up to

six people and trajectories more complex than what hap-

pens usually in real-life situations. The outdoor sequences

were shot on our campus and involve people going about

their normal business, whose trajectories are actually sim-

pler. In all our experiments, the cameras are mounted at, or

just above, head level, and many occlusions occur.

Because the observed area is discretized into a finite

number of positions, we linearly interpolate the trajectories

on the output images to smooth them.

6.1. Indoor sequences

The indoor sequences were shot by a video-surveillance

dedicated setup of 4 synchronized cameras in a 50m2 room.

Two cameras were roughly at head level (' 1.80m) and the

two others slightly higher (' 2.30m). They were located

at each corner of the room. The sequences are about 3000
frames long and involve up to six individuals.

The area of interest was of size 5.5m × 5.5m ' 30m2

and discretized into G = 28 × 28 = 794 locations, corre-

sponding to a regular grid with a 20cm resolution.

On all those sequences, the algorithm performs very well

and does not lose a single one of the tracked persons. To in-

vestigate the spatial accuracy of our approach, we compared

the estimated locations with the actual locations of the indi-

viduals present in the room as follows.

We picked 100 frames at random among the complete

four individual sequence and marked by hand a reference

point located on the belly of every person present in every

camera view. For each frame and each individual, from that

reference point and the calibration of the four cameras, we

estimated a ground location. Since the 100 frames were

taken from a sequence with four individuals entering the

room successively, we obtained 354 locations.

We then computed the distance between this ground-

truth and the locations estimated by the algorithm. The re-

sults are depicted by the bold curve on Fig. 1. More than

90% of those estimates are at a distance of less than 31cm

and 80% of less than 25cm. We also computed similar

curves after having replaced a certain percentage of images

taken randomly over the complete sequence by blank im-

ages. The accuracy remains unchanged for an erasing rate

as high as 20%. The performance of the algorithm starts to

get worse when we get ride of one third of the images, as

shown with the thin curves on Fig. 1.

6.2. Outdoor sequences

The outdoor sequences were shot in front of the entrance

of a building on our campus. We used three standard and

unsynchronized Digital Video cameras and synchronized

the video streams by hand afterward. All cameras were

at head level (' 1.80m) covering the area of interest from

three angles. The ground is flat with a regular pavement.

The area of interest is of size 10m × 10m and discretized

into G = 40×40 = 1600 locations, corresponding to a reg-

ular grid with a resolution of 25cm. Up to four individuals

appear simultaneously. Despite disturbing influence of ex-

ternal elements such as shadows, a sliding door, cars pass-

ing by, and the fact that people can enter and exit the tracked

area from anywhere, the algorithm performs well and fol-

lows people accurately. In many cases, because the cameras

are not located ideally, individuals appear on one stream

alone. They are still correctly localized due to both the time

consistency and the rectangle-matching of FPPF, which is

able to exploit the size of the blobs even in a monocular

context. On outdoor sequences as well, the algorithm does

not produce one false positive or false negative, nor make

confusion between individuals.

7 Conclusion

We have presented an algorithm that can reliably track

multiple persons in a complex environment and provide

metrically accurate position estimates. This is achieved

through global optimization of their trajectories over 100-

frame batches. This introduces a 4 second delay between

image acquisition and output of the results, which we be-

lieve to be compatible with many surveillance applications

given the robustness increase it offers.

There are many possible extensions of this work. The

most obvious ones are improvements of our stochastic

model. The color model could be refined by splitting bod-

ies into several uniform parts instead of relying on the i.i.d.

assumption. Similarly, the motion model could take into

account consistency of speed and direction. Modeling the

avoidance strategies between people would also help.

Beside those straightforward improvements, a more am-

bitious extension would be to use the current scheme to au-

tomatically estimate trajectories from a large set of video,

from which one could then learn sophisticated behavior

models.
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