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surfaces
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ABSTRACT. We show that the mapping class group (as well as closely related
groups) of an orientable surface with finitely generated fundamental group has
uniformly exponential growth. We further demonstrate the uniformly non-
amenability of many of these groups.

1. Uniformly exponential growth

The main purpose of this note is to demonstrate that the mapping class group
of an orientable surface with finitely generated fundamental group has uniformly
exponential growth. This result is new for surfaces of genus at least one, with the
exception of the closed surface of genus two, and can be viewed as removing a
possible avenue for showing that such mapping class groups are not linear. In this
sense, our work is similar in spirit to the recent work of Brendle and Hamidi-Tehrani
[BH].

We go on to show that closely related groups of homotopy classes of homeomor-
phisms of surfaces, as well as analogous groups of automorphisms of free groups, also
have uniformly exponential growth. We remark that, while the linearity of most
surface mapping class groups is an open question, most automorphism groups of free
groups are known not to be linear. Specifically, as noted in Brendle and Hamidi-
Tehrani [BH], it is known that Aut(F},) is not linear for n > 3 and Out(F,) is not
linear for n > 4, whereas both Aut(F3) and Out(Fz) are linear. We also demon-
strate the uniform non-amenability of many of the groups considered in this note;
see Section 2.

We begin by reviewing some basic definitions. For a survey of exponential
growth and uniformly exponential growth, we suggest the article of de la Harpe [H]
and the references contained therein.

Let G be a finitely generated group, and let S be a finite generating set for
G. The length £s(g) of an element g € G is the least integer k so that g can be
expressed as g = s;, - - 55, where each s;; € SU S~!. We define the length of the
identity element of G to be 0. Let

Bs(n) ={g € G|ls(g) <n}
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be the ball of radius n about the identity element in G, and let |Bg(n)| be the
cardinality of Bg(n).
The exponential growth rate w(G,S) of G with respect to S is defined to be

w(G,S) = nILH;O Y/ |Bs(n)|.

(This limit exists, due to the submultiplicativity £s(gh) < £s(g)¢s(h) of the length
function on G.) The group G has exponential growth if w(G,S) > 1 for some (and
hence for every) finite generating set S. Note that if G has a free subgroup of rank
2, then G has exponential growth, though not conversely.

We can also remove the dependence on particular generating sets by considering

w(G) = i%fw(G, S),

where the infimum is taken over all finite generating sets S of G. The group G

is said to have uniformly exponential growth if w(G) > 1. For examples of groups

of exponential growth that do not have uniformly exponential growth, see Wilson
We make use of the following proposition from de la Harpe [H].

PROPOSITION 1 (from Proposition 2.3 of de la Harpe [H]). If G is a finitely
generated group and if G' is a quotient of G, then w(G) > w(G').

We use the following result of Shalen and Wagreich [SW] to show the uni-
formly exponential growth for certain groups related to the mapping class group
(see Corollary 7 and Corollary 8).

LEMMA 2 (from Corollary 3.6 of Shalen and Wagreich [SW]). Let G be a finitely
generated group and let H be a finite index subgroup of G. If H has uniformly
exponential growth, then G has uniformly exponential growth.

REMARK 3. To the best of our knowledge, it is not yet known whether the con-
verse of Lemma 2 holds. It seems the main difficulty lies in singling out an extended
generating set for G from one for H to give uniform embeddings on Cayley graphs.
In this note, such issues represent only a minor inconvenience. A positive answer
would prove uniformly exponential growth to be a commensurability invariant; we
congjecture that this should be true.

Eskin, Mozes, and Oh [EMO] consider the question of uniformly exponential
growth for finitely generated subgroups of GL(n, C). In particular, they prove the
following.

THEOREM 4 (Corollary 1.4 of Eskin, Mozes, and Oh [EMOJ). Let T be a finitely
generated subgroup of GL(n,C). The following are equivalent:

e I is not virtually nilpotent;
e I is of uniformly exponential growth;
e [ is of exponential growth.

The main tool we use is the following result, which should be viewed as an
immediate corollary of Theorem 4.

THEOREM 5. Let G be a finitely generated group, and suppose that for some
n > 2 there exists a homomorphism p : G — GL(n, C) whose image p(G) is not
virtually nilpotent. Then, G has uniformly exponential growth.



UNIFORMLY EXPONENTIAL GROWTH AND MAPPING CLASS GROUPS OF SURFACES 3

PROOF. Since p(G) is finitely generated and not virtually nilpotent, Theorem
4 yields w(p(G)) > 1 (that is, p(G) has uniformly exponential growth). Since p(G)
is the homomorphic image of G, it is a quotient of G. Proposition 1 yields that
w(G) > w(p(G)) > 1, and so G has uniformly exponential growth. O

It is known that virtually nilpotent groups have polynomial growth (and con-
versely, by work of Gromov [G]), whereas groups containing a free group of rank
at least two have exponential growth.

We are now ready to define the mapping class group of an orientable surface
with finitely generated fundamental group. We cite the survey article of Ivanov [I]
as our main reference for the mapping class group and its properties.

Let X be a closed orientable surface of genus g > 1, and let P be a finite set of
marked points on X, where n = |P| > 0. The mapping class group M (2, P) = M, ,,
is the set of homotopy classes of orientation preserving homeomorphisms f: ¥ — %
for which f(P) = P, where the homotopies are required to keep each point of P
fixed. Note that the elements of M, can permute the points of P. (We can also
view M, ,, as the mapping class group of a surface of genus g with n punctures.)

There is a natural surjective homomorphism from M, ,, to Symm(n), the sym-
metric group on n letters, given by restricting the action of My ,, to P. The kernel
PM,,, of this homomorphism is the pure mapping class group, which is the sub-
group of M, ,, fixing every element of P. Note that PM , is a subgroup of finite
index in Mg p,.

Now suppose n = |P| > 0 and let p € P. By forgetting the marked point p
we find that every homeomorphism f : ¥ — ¥ fixing P pointwise induces a home-
omorphism [’ : ¥ — ¥ fixing P \ {p} pointwise. In this way we get a surjective
homomorphism PM,,, — PMg4n_1; in particular, we see that PM,,, homomor-
phically surjects onto the mapping class group PM, o = M, o = M, of the surface
Y. with no marked points.

The extended mapping class group M;‘:’n is the group of homotopy classes of all
homeomorphisms of 3 fixing P setwise, and is a degree 2 extension of Mg ;.

We can make similar definitions in the case that ¥ is allowed to have non-
empty boundary. Let ¥ be a compact orientable surface of genus g > 1 and let
P be a finite set of n = |P| > 0 marked points in the interior of ¥. Let m
denote the number of components of 9X. The mapping class group Mg, m is the
group of homotopy classes of orientation preserving homeomorphisms of ¥. The
pure mapping class group PM g, m is the subgroup of M, », consisting of those
elements that permute neither the components of 9% nor the elements of P. As
before, PMg . m is a subgroup of finite index in Mg p, .. The extended mapping
class group M;n,m is the group of homotopy classes of all homeomorphisms of 3,
and is a degree 2 extension of Mgy, m.

We note that for a compact orientable surface ¥ with non-empty boundary,
there is a natural surjective homomorphism from PMg 5 to PMy 0 = P Mg,
obtained by gluing discs to all the boundary components of ¥ and extending the
homeomorphisms of ¥ across these discs; this is discussed in detail in Theorem
2.8.C of Tvanov [I].

We are now ready for the main result of this note.

THEOREM 6. For g > 1, the groups Mg and M}t have uniformly exponential
growth.
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PRrROOF. Let X be a closed surface of genus g > 1 and consider the mapping
class group M, of 3. Recall that M, is finitely generated. We show the result for
M; Lemma 2 then yields the result for ./\/l;t, which is a degree 2 extension of M,
as we noted above. The natural action of M, on H1(X,Z) = m1(X)/[m1 (), m1 ()]
yields a surjective homomorphism p : M, — Sp(2g,Z). Since Sp(2g,Z) contains
Sp(2,Z) = SL(2,Z) as a subgroup and since SL(2,Z) contains a Z * Z subgroup,
we see that p(My) = Sp(2¢,Z) is not virtually nilpotent. Hence, by Theorem 5,
we see that M, has uniformly exponential growth; by Lemma 2, we see that Mgi
has uniformly exponential growth.

[To see that Sp(2g,Z) contains Sp(2,Z) = SL(2,Z), recall that Sp(2g,Z) is
defined to be the group of 2g x 2g-matrices preserving a non-degenerate, skew-
symmetric bilinear form. If we take the form q(x,y) = 1y2—Zay1+- - -+ Tog—1y2g —
TagY24—1, then any block diagonal matrix of the form

A 02,942

02902 Ipg—o
preserves q and hence lies in Sp(2g, Z), where A lies in the group Sp(2, Z) preserving
the quadratic form qo(x,y) = x1y2 — Z2y1, Os¢ is the s x ¢t matrix of zeroes, and

I is the k x k identity matrix.]
O

We saw before that there is a surjective homomorphism from PM, ,, to PM 4 =
My, and that PM g, has finite index in My ,,. Further, M, , is finitely generated.
Proposition 1 and Lemma 2 then yield the following corollary.

COROLLARY 7. For g > 1 andn > 0, the groups PM g, Mg and ./\/lgfn have
uniformly exponential growth.

We also saw that, in the case of surfaces with boundary, there is a homomor-
phism from PMg ., m to PMy,, and that PMg , . has finite index in Mg p .
Further, Mg ,, m, is finitely generated. We thus get the following result, again using
Proposition 1 and Lemma 2 .

COROLLARY 8. For g > 1, m >0, and n > 0, the groups PMg nm, Mgnm
and M;E,n,m have uniformly exponential growth.

For g = 0, the methods we use here do not apply. We note that when n > 4,
it is a remarkable result of Bigelow [Bi] and Krammer [Kr] that each My, is
linear (and not virtually nilpotent) and hence has uniformly exponential growth by
Theorem 4. For g = 2 and n = 0, it is a result of Bigelow and Budney [BB] and
of Korkmaz [Ko] that Ma g is linear and hence has uniformly exponential growth,
again by Theorem 4.

2. Uniform non-amenability

We note that the same argument we have given for the uniformly exponential
growth of the mapping class groups M, also yields their uniform non-amenability.
Following Arzhantseva et al. [ABLRSV], given a finitely generated group G with
finite generating set X, define the inner boundary of a finite subset A of G to be

Ox(A)={ac Alaxr g A for some z € X UX '}
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The uniform Fglner constant of G is then

oo o |0x(A)]

Fol(G) = 1£1(f11f1xf Al
where the outer infimum is taken over all (finite) generating sets X of G and the
inner infimum is taken over all finite subsets A of G. We say that G is uniformly
non-amenable if Fol(G) > 0.

We make use of the following results about uniform non-amenability, which are
the analogues of the similar results for uniformly exponential growth. The first
notes how uniform non-amenability behaves under quotients.

PROPOSITION 9 (from Theorem 4.1 of Arzhantseva et al. [ABLRSV]). Let
G be a finitely generated group, and let N be a normal subgroup of G. Then,
Fol(G) > Fol(G/N).

The second describes the uniform non-amenability of linear groups.

THEOREM 10 (from Corollary 1.2 of Breuillard and Gelander [BrG]). Let T' be
a finitely generated subgroup of GL(n,C). Assume that T is not amenable. Then,
T is uniformly non-amenable.

We now consider the uniform non-amenability of mapping class groups.
THEOREM 11. The groups Mg are uniformly non-amenable for all g > 1.

PROOF. Proposition 9 states that if G’ is a quotient of the finitely generated
group G, then Fol(G) > Fol(G’); this takes the place of Proposition 1. Theorem
10 states that finitely generated non-virtually nilpotent linear groups over any field
are uniformly non-amenable; this takes the place of Theorem 4, and the analogue
of Theorem 5 for uniform non-amenability then follows immediately. The proof of
Theorem 6 then proceeds to show that the groups M, are uniformly non-amenable
for all g > 1. (I

Applying Proposition 9 then shows that any groups that surject onto one of the
My, for g > 1 are also uniformly non-amenable; see Corollary 7 and Corollary 8.
This leaves out /\/lgi, as the analogue of Lemma 2 is not known to hold for uniform
non-amenability.

3. Automorphisms of free groups

Analogous results hold for the automorphism group Aut(F,,) of the free group
F, of rank n and for the outer automorphism group Out(F,), the quotient of
Aut(F,) by the group of inner automorphisms.

THEOREM 12. For n > 2, the groups Aut(F,) and Out(F,) have uniformly
exponential growth.

PROOF. Begin with Out(F,,). The natural action of Out(F,,) on F,,/[F,, Fy,] =
Z" yields a surjective homomorphism p : Out(F,,) — GL(n,Z). Since GL(n,Z)
is finitely generated and is not virtually nilpotent (as SL(2,Z) C SL(n,Z) C
GL(n,Z)), Theorem 5 yields that Out(F},) has uniformly exponential growth.

That Aut(F,) has uniformly exponential growth follows from Proposition 1,
since Out(F,) is a quotient of Aut(F,). O
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As above, the same proof (with appropriate substitutions, as in the proof of
Theorem 11) shows that for n > 2, the groups Aut(F;,) and Out(F;,) are uniformly
non-amenable.
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