
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

acceptée sur proposition du jury:

Prof. M. Odersky, président du jury
Prof. R. Guerraoui, Prof. J. Vitek, directeurs de thèse

Prof. B. Garbinato, rapporteur
Prof. V. Kuncak, rapporteur

Prof. O. Lehrmann Madsen, rapporteur

Reflexes:
Programming Abstractions for Highly Responsive

Computing in Java

Jesper Honig SPRING

THÈSE NO 4228 (2008)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 31 OCTOBRE 2008

À LA FACULTE INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE PROGRAMMATION DISTRIBUÉE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2008

ii

Abstract

Achieving sub-millisecond response times in a managed language environment such as Java in-
troduces significant implementation challenges. The Achilles’ heel of Java is its reliance on
automatic memory management for reclaiming dead objects. Typically, the garbage collectors
used in commercial Java virtual machines are designed to maximize the performance of applica-
tions at the expense of predictability. Moreover, it is non-deterministic as to when and for how
long the garbage collector will run. As a consequence garbage collection introduces execution in-
terference that can easily reach hundreds of milliseconds, preventing the timeliness requirements
of the real-time systems from being satisfied.

Another source of interference relates to the integration of real-time tasks with a time-oblivious
application. Typical programming practices for sharing data between threads involve synchro-
nized access to some shared data structure through mutual exclusion. In a real-time system this
might lead to unbounded blocking of the real-time thread, so-called priority inversion, causing
serious deadlines infringements.

Faced with these challenges a system designer typically has two options: to deploy a real-
time garbage collector (RTGC), or to restrict the programming model. RTGCs achieve much
improved predictability over traditional stop-the-world garbage collectors by interleaving the
application execution with the garbage collection. Recent advances in real-time garbage col-
lection algorithms have reduced latency to approximately 1 millisecond. Nevertheless, some
applications, e.g., safety critical applications certified according to DO-178B, have temporal re-
quirements beyond what is possible with state-of-the-art RTGCs. Moreover, real-time garbage
collectors still face the problem of priority inversion.

This thesis presents Reflexes, a simple, statically type-safe restricted programming model fa-
cilitating the construction of highly-responsive applications in Java. Reflexes are designed to
make it easy to write and integrate simple periodic tasks or complex stream processors, both
observing real-time timing constraints in the sub-millisecond range, into larger time-oblivious
Java applications. Reflex tasks run in a part of memory free from garbage collection interfer-
ence, and maintain a class-based separation between object lifetimes, enabling reclamation of
periodic garbage in constant time. Tasks are organized in a graph and communicate through
uni-directional, non-blocking channels. Furthermore, Reflexes enable non-blocking interaction
between real-time tasks and time-oblivious code using methods with transactional semantics,
circumventing typical problems of priority inversion when using common programming practices
for synchronizing access to shared data. Reflexes specify a set of static safety checks preventing
dangling pointers and preventing a Reflex from observing heap-allocated objects in an inconsis-

iii

iv

tent state as they are, e.g., when being copied by a garbage collector. These checks are enforced
statically by an extension of the standard Java compiler to guarantee correctness.

We describe two implementations of Reflexes: a stand-alone prototype implementation built on
top of a research Java real-time virtual machine, and an implementation based on an integration
of Reflexes with two existing restricted programming models into a single unified framework,
Flexotask, running on top of an industrial-strength Java real-time virtual machine. Whereas the
prototype implementation of Reflexes is limited to a virtual machine with uni-processor support
and exploits non-standard features of the virtual machine, the latter implementation leverages
the multi-processor support of an industrial-strength virtual machine with minimal extensions.
For both implementations we report separately on a number of encouraging results from em-
pirical experiments using benchmark and real-world applications. Specifically, our experiments
show that Reflexes in both cases are capable of achieving sub-millisecond response time with a
high degree of predictability.

Keywords: Real-time systems, Java virtual machine, Memory Management, Ownership types.

Résumé

Dans un langage de programmation interprété comme Java, où les programmes s’exécutent
à l’aide d’une machine virtuelle, il est difficile d’atteindre des temps de réponses en dessous
de la milliseconde. Le talon d’Achille du langage Java dans un contexte temps réel est sa
dépendance au ramasse-miettes collectant les objets morts. Les ramasses-miettes implémentés
dans les machines virtuelles commerciales sont conĉus pour maximiser la performance au prix
d’une baisse de leur prédictabilité. De plus, le moment où ils se déclenchent tout comme la
durée de leur exécution sont non déterministes. L’exécution d’un ramasse-miettes interfère avec
celle du programme, causant facilement des retards de plusieurs centaines de millisecondes, ce
qui rend difficile le respect des contraintes temporelles du programme.

Une autre source d’interférence émerge lorsqu’une tâche temps réel se mêle à des tâches sans
contrainte temporelle. Lorsque des tâches différentes accèdent à une même ressource, une ab-
straction d’exclusion mutuelle est utilisée pour réglementer l’ordre d’accès à cette ressource.
Dans un système temps réel, cette abstraction peut s’avérer dangereuse dans la mesure où une
tâche temps réel peut se retrouver bloquée à attendre une tâche de plus faible priorité. Ce
phénomène est appelé inversion de priorité et peut causer de graves dépassement des délais
impartis á la tâche temps réel.

Face à ces défis, un concepteur de systèmes a en général deux options: déployer un ramasse-
miettes temps réel (RTGC pour Real-Time Garbage Collector) ou restreindre le modèle de
programmation. Un ramasse-miettes temps réel atteint une bien meilleure prédictabilité que
les ramasses-miettes traditionnels, basés sur une approche pause-pour-maintenance (stop-the-
world), en intercalant leur exécution tout au long de l’exécution du programme même. Des
avancées récentes dans ce domaine ont réduit la latence aux environs d’une milliseconde. Néan-
moins, certaines applications, comme les applications critiques certifiées D0-178B, ont des con-
traites temporelles que l’on ne peut atteindre avec ce type de ramasse-miettes.

Cette thèse présente Reflexes, un modèle de programmation restreint à la fois simple, sûr au
niveau du typage et qui facilite la conception d’applications Java hautement réactives demandant
une prédictabilité en dessous de la milliseconde. Les Reflexes sont conĉus de manière à faciliter
l’écriture et l’intégration de tâches périodiques simples et de traitements complexes de flux dans
des applications n’ayant pas de contraintes temporelles tout en respectant des délais impartis de
moins d’une milliseconde. Pour ce faire, les tâches Reflex s’exécutent dans une partie mémoire
où le ramasse-miette n’intervient pas et séparent en mémoire les objets de différentes classes,
ce qui permet de récupérer l’espace alloué périodiquement par ces tâches en un temps constant.
Ces tâches, communiquant par des canaux unidirectionnels non bloquants, forment un graphe.

v

vi

De plus, Reflexes autorise l’interaction non bloquante entre des tâches temps réels et non temps
réel en utilisant des sémantiques transactionnelles, ce qui évite le problème typique d’inversion
de priorité. Le modèle de programmation Reflexes spécifie un ensemble de règles statiques de
sécurité pour éviter des pointeurs pendants et empêche une tâche Reflex d’observer des objets,
alloués sur le tas, dans un état inconsistent (par exemple s’ils sont en train d’être manipulés par
le ramasse-miettes). Ces règles sont contrlées statiquement par une extension du compilateur
Java afin de garantir l’exécution correcte du programme.

Ce document présente deux implémentations de Reflexes: un prototype autonome implémenté
sur une machine virtuelle temps réel Java issue du monde de la recherche et une implémentation
basée sur l’intégration de Reflexes dans deux modèles de programmation existant, sur la plate-
forme unifiée Flexotask. Cette dernière s’exécute sur une machine virtuelle temps réel indus-
trielle Java de référence. Alors que le prototype de Reflexes est limité aux machines monopro-
cesseur et exploite des fonctions non standard de la machine virtuelle, la seconde implémentation
tire parti des architectures multiprocesseurs en ajoutant un minimum d’extensions à la ma-
chine virtuelle. Pour les deux implémentations, cette thèse présente des résultats encourageant
d’expérimentations, utilisant à la fois des jeux d’essai et de vraies applications. Plus partic-
ulièrement, les expériences montrent que Reflexes est capable dans les deux cas de respecter des
délais en dessous de la milliseconde tout en assurant un très haut degré de prédictabilité.

Mots-clés: Systèmes temps réel, machine virtuelle Java, gestion mémoire, types de propriété.

Acknowledgements

During my four and a half years at EPFL, I have met an amazing number of bright, funny,
grazy and exciting people from all over the world. Many of these have had a profound impact
on either me or my work, and thus deserve a proper token of appreciation.

Before starting, however, I would like to take the opportunity to thank Professor Martin Odersky
for presiding over my thesis exam, and thank the other five members of the jury for the time
spent examining my thesis and participating in my private defense.

First and foremost, I would like to thank my advisor Professor Rachid Guerraoui for accepting
me as a Ph.D. student in his LPD laboratory. Though my research path ended up in a different
direction from that of the laboratory, I have been extremely grateful for Rachid’s continuous
interest and encouragements, for always pushing for results and keeping me to the fire. In this
light, I am even more grateful for Rachid’s unreluctant willingness to always fund my travels
and other needs in order to achieve my research goals! Finally, thanks for forcing me to stay
physically in shape through our countless jogging trips to Morges and back, for all our interesting
discussions on ”interesting aspects of life”, and for having had a lot of fun times together!

I am deeply in debt to Professor Jan Vitek of Purdue University for a collaboration that to me
has been close to perfection, limited only by distance. Jan’s calm attitude, steady focus and
continuing pursuit of our goals has been truly motivating and inspiring! I am also very grateful
that Jan in January 2008 accepted to be my co-thesis director, for always taking time to give
advise, and for paying my way several times to visit his S3 laboratory at Purdue University. Also,
thanks to Jan’s wife and kids for making me feel welcome in their home on several occasions.

While at Purdue, I met a number of intesting people that contributed to my successful visits,
among others Antonio Cunei, Filip Pizlo, Jean Privat, and Jaques Thomas. Special thanks goes
to my good friend Patrick (Bob) Eugster for allowing my to stay at his place several times,
showing me around West Lafayette, and of course for our interesting countless discussions on
”frustrating aspects of life”.

From IBM Research, Hawthorne, New York, I would sincerely like to thank Joshua Auerbach
and David F. Bacon for a very motivating, serious and fruitful collaboration that dates back
to October 2007. Furthermore, I want to thank them and Erik Altman for hosting me during
my 2 months internship there, which I really enjoyed professionally as well as privately. Special
thanks goes to Joshua Auerbach, who not only stands out as one of the most brilliant computer
scientists I have ever met, but also has been perfect and inspiring to work with (though I
constantly struggled to keep up)!

vii

viii

From the EU-funded PalCom project, which I participated in during 4 years on behalf of EPFL,
I would like to thank Peter Andersen, Lars Bak, Kasper Verdich Lund, and my friend Dominic
Greenwood for a good collaboration. Thanks to Ole Lehrman Madsen for his efforts to team
me up with nice-looking girls during my days as single, and of course for his unforgettable,
nocturnal interpretation of O´ solo mio on the streets of Siena, Italy.

I am also thankful to all the other people I was brought to work with. Among these, I would
like highlight Benôıt Garbinato for his motivating support and time during the first year or two
of my work, as well as all the current and past members of the LPD laboratory for the nice
time I have spent there. Especially, I am grateful to my friends Sébastien Baehni, Ron Levy,
Maxime Monod and Bastian Pochon for helping me settle in Lausanne and constantly assisting
me with the french language. Our laboratory secretary, Kristine deserves a very big thank for
always caring for us students, for all her efforts in providing for a pleasent social lab-life, and
for simply being a very nice person!

Thanks to all my good friends in Denmark, especially Esben Krag Hansen and Per Qvist-
Sørensen, and those friends living in Lausanne for all their encouragements, and for always
being there for me.

Finally, I would like to thank the world’s best parents, Benedikte Birgitte Honig Jensen and
Jens Ove Spring for their endless love and support throughout my life and in particular through
this swiss endeavour. Also, endless thanks to my sister Heidi, her family, and of course to the
italian part of my family. Last but not least, thanks to my beautiful wife Gaetana for having
the courage to share her life with a computer scientist, and for having worked over-time at home
for the last 2 years to yield me time to work on my Ph.D. – tu sei veramente la mia storia
importante.

Preface

This thesis describes the Ph.D. work I did at the School of Computer and Communication
Sciences, EPFL, under the joint supervision of Professor Rachid Guerraoui, EPFL, and Professor
Jan Vitek, Purdue University, during the period April 2004 to September 2008.

The thesis also includes and describes work that is the outcome of my collaboration with Joshua
Auerbach and David F. Bacon of IBM Research, a collaboration that started in October 2007,
and which included a two month internship at IBM Research, T.J. Watson Research Center,
Hawthorne, New York, USA in March and April 2008.

The thesis focuses on programming abstractions for achieving highly responsive computing in
Java and its content is based on the following published, peer-reviewed articles, or articles under
submission.

[SGV08] Integrating Hard Real-Time Tasks into Java with Reflexes. Jesper H. Spring,
Rachid Guerraoui, and Jan Vitek. To be submitted to ACM Transactions on
Embedded Computing Systems – Special Issue on Java Technologies for Real-
Time and Embedded Systems (JTRES), 2008.

[ABG+08] Flexible Task Graphs: A Unified Restricted Thread Programming Model for Java.
Joshua Auerbach, David F. Bacon, Rachid Guerraoui, Jesper H. Spring, and
Jan Vitek. In Proceedings of the ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES), 2008.

[SPGV07a] Reflexes: Abstractions for highly responsive systems. Jesper H. Spring, Filip
Pizlo, Rachid Guerraoui and Jan Vitek. In Proceedings of the 3rd Interna-
tional ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments
(VEE), 2007.

[SPGV07b] Streamflex - High-throughput stream programming in Java. Jesper H. Spring,
Jean Privat, Rachid Guerraoui and Jan Vitek. In Proceedings of the 22nd An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2007.

ix

x

[GGH+07] Pervasive Computing with Frugal Objects. Benoit Garbinato, Rachid Guerraoui,
Jarle Hulaas, Maxime Monod, and Jesper H. Spring. In Symposium on Pervasive
Computing and Ad Hoc Communications (PCAC), 2007.

[GGH+06] Frugal Mobile Objects. Benoit Garbinato, Rachid Guerraoui, Jarle Hulaas,
Maxime Monod, and Jesper H. Spring. In Proceedings of the Euro-American
Workshop on Middleware for Sensor Networks, co-located with the 2nd Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS), 2006.

[GGH+05] Frugal Mobile Objects. Benoit Garbinato, Rachid Guerraoui, Jarle Hulaas,
Maxime Monod, and Jesper H. Spring. Technical Report, 2005.

Finally, related to this work, as part of their Innovation Cluster for Embedded Software (ICES)
initiative, Microsoft Research and Microsoft Switzerland announced on the 28th of August 2008
their willingness to sponsor funding of a 6 man year project within the LPD laboratory based
on a grant application describing the results presented in this thesis as a starting point for an
extension hereof and an implementation in C#, see press release [Micb].

Table of Contents

I Introduction 1

1 Introduction 3

1.1 Motivation . 3

1.2 Challenges . 4

1.2.1 Garbage Collection Interference . 4

1.2.2 Synchronous Communication . 5

1.2.3 System Calls . 5

1.3 Problem Statement . 5

1.3.1 Circumventing Garbage Collection Interference 6

1.3.2 Ensuring Type-Safety . 7

1.3.3 Enabling Type-Safe, Non-Blocking Communication 8

1.4 Approach . 8

1.5 Limitations . 9

1.6 Contributions . 10

1.7 Thesis Outline . 11

2 Related Work 13

2.1 The Java Programming Language . 13

2.2 Real-Time Garbage Collectors . 15

2.3 Real-Time Programming Models . 16

2.3.1 Concurrent Programming Models . 17

2.3.2 Synchronous Programming Models . 18

xi

xii TABLE OF CONTENTS

2.3.3 Programming Models with Direct Real-Time Support 19

2.4 Restricted Programming Models . 20

2.4.1 Real-time Specification for Java . 21

2.4.2 Eventrons . 23

2.4.3 Exotasks . 24

2.4.4 The Ravenscar Profile for Ada . 24

II Programming Model 27

3 The Reflex Programming Model 29

3.1 Overview . 29

3.2 Design Criteria . 30

3.2.1 Safety . 30

3.2.2 Expressiveness . 31

3.2.3 Simplicity . 31

3.2.4 Efficiency . 32

3.3 Programming with Reflexes . 32

3.3.1 Reflex Graph . 34

3.3.2 Reflex Task . 35

3.3.3 Private Memory Region . 36

3.3.4 Object Lifetime Distinction . 37

3.3.5 Stable Arrays . 38

3.3.6 Task Exceptions . 39

3.3.7 Task Reclaiming . 40

3.4 Reflex Communication . 40

3.4.1 Challenges Communicating between Tasks 40

3.4.2 Non-Blocking Channels . 41

3.4.3 Capsules . 43

3.4.4 Splitters and Joiners . 44

3.4.5 Challenges Communicating with Ordinary Java Threads 45

TABLE OF CONTENTS xiii

3.4.6 Obstruction-free Communication with Transactional Methods 46

3.4.7 Method Argument Restrictions . 48

3.4.8 Communicating through Static Variables 49

3.4.9 Choosing and Combining Communication Mechanisms 50

3.4.10 Synchronization Operations . 51

3.5 Scheduling . 51

3.6 Example: Intrusion Detector System . 52

4 Static Safety Checking 61

4.1 Checking Principles . 61

4.2 Partially Closed-World Assumption . 63

4.3 Implicit Ownership . 64

4.4 Static Reference Isolation . 66

4.5 Capsules . 70

4.6 Arrays . 70

4.7 Other Restrictions . 71

4.8 Class Library Reuse . 72

III Implementation 73

5 Reflex Implementation 75

5.1 Implementation Overview . 75

5.2 Scheduling . 76

5.3 Memory Management . 76

5.4 Transactional Methods . 78

5.5 Pinning of Objects . 79

5.6 Static Type Checker . 80

6 Empirical Prototype Evaluation 83

6.1 Methodology . 83

6.2 Virtual Machine Benchmarks . 84

xiv TABLE OF CONTENTS

6.3 Evaluation: Single Task Graphs . 85

6.3.1 Predictability . 85

6.3.2 Performance . 87

6.4 Evaluation: Stream Processing Graphs . 88

6.4.1 Predictability . 88

6.4.2 Performance . 90

6.5 Evaluation: Intrusion Detector System . 91

IV Integration 93

7 Flexotask Integration 95

7.1 Motivation . 95

7.2 Model Unification . 96

7.3 Introduction to Flexotasks . 97

7.3.1 Flexotask Graph . 97

7.3.2 Flexotask Task . 98

7.3.3 Memory Management . 100

7.4 Communication Differences . 101

7.4.1 Ports and Channels . 101

7.4.2 Transactional Methods . 102

7.4.3 Guard . 106

7.4.4 Shared Instance Objects . 106

7.5 Pluggable Scheduling . 107

7.6 Integration of Static Safety Checking . 108

7.6.1 Implicit Ownership Relaxation . 109

7.6.2 Capsule Type Relaxation . 110

7.7 Example: Avionics Collision Detection . 111

8 Flexotask Implementation 115

8.1 Eclipse Integration . 115

8.2 Scheduling . 118

TABLE OF CONTENTS xv

8.2.1 Time-Triggered Scheduler . 118

8.2.2 Scheduler for Stream-Based Applications 118

8.3 Unification of Safety Checking . 120

8.3.1 Initialization Time Checking . 121

8.3.2 Development Time Checking . 121

8.4 Pinning of Objects . 122

8.5 Transactional Methods for Multi-Processors . 123

8.5.1 Transformation Principles . 124

8.5.2 Call-Graph Privatization . 125

8.5.3 Transactionalizing Field Operations . 127

8.5.4 Wrapping Outermost Transactional Methods 129

8.5.5 Guard Class Generation . 130

8.6 Transaction Log . 132

9 Empirical Evaluation 133

9.1 Methodology . 133

9.2 Predictability . 134

9.3 Performance . 135

9.4 Static Analysis Performance . 136

9.5 Software Engineering Aspects . 137

V Conclusion 139

10 Conclusion 141

10.1 Contributions . 143

10.2 Open Problems . 145

xvi TABLE OF CONTENTS

List of Figures

2.1 Benchmark application execution illustrating difference in garbage collection la-
tency when running using (a) a standard copying garbage collector, and (b) a
time-based real-time garbage collector. The x-axes show the iteration number
and the y-axes the latency in milliseconds. 16

2.2 Comparing expressiveness versus worst case latencies of different restricted pro-
gramming models for real-time Java. There is a tradeoff between latency guar-
antees and expressiveness. The RTSJ/NHRT is arguably the most expressive
programming model with sub-millisecond latency, but it incurs throughput over-
heads due to run-time scope checks and faces the possibility of run-time failures.
Contrary, Exotasks, StreamFlex, Reflexes, and Eventrons all rely on static check-
ing and thus does not require the virtual machine to perform expensive run-time
checks. 21

3.1 Illustration of a memory representation of a Java application consisting of a time-
oblivious and a time-critical Reflex Graph. The Reflex Graph consists of three
inter-connected Reflex tasks allocated in separate private memory areas, and its
integration and interaction with normal, time-oblivious Java code. 33

3.2 An excerpt of the abstract ReflexGraph class to be subclassed by the program-
mer in order to create and connect tasks in the graph according to user-specific
requirements. 34

3.3 An excerpt of the abstract ReflexTask class to be subclassed by the programmer.
The ReflexTask class is the computational unit in the Reflex graph, and its
execute method must specify the user-specific functional behavior. The method
initialize is declared with an empty body that can optionally be overridden. 35

3.4 The memory model of a Reflex task enclosed in its own private memory region
(green area) within the public heap. The figure illustrates a Reflex task (hexagon)
in a private memory region with its object graphs of stable (red) and transient
(orange) objects (circles). 37

3.5 An excerpt of the Buffer class showing its declaration as a Stable class, whose
instance is to be allocated in the stable memory context of the task’s own private
memory area. 38

xvii

xviii LIST OF FIGURES

3.6 An excerpt of the StableArray base class for encapsulating arrays of primitive
types. The constructor takes the primitive type and the size of the array to
be created and encapsulated. The getArray method is used by the extending
subclasses to access the encapsulated array. 39

3.7 Example of a concrete extension of the StableArray base class for the encapsu-
lation of primitive integer arrays. 39

3.8 The synchronization idioms of the Java programming language (a) method syn-
chronization, and (b) block synchronization. 41

3.9 Excerpts of the CapsuleChannel and TimeChannel classes for transferring respec-
tively Capsule type data and time-stamps between tasks. 42

3.10 Reflex tasks communicate in zero copy style by passing on references to individual
capsules. These references are pushed and popped from a channel shared by the
two Reflexes. Both channels and capsules are allocated in a separate memory
area managed by the Reflex run-time engine. 43

3.11 Examples of splitter tasks distributing messages on the input channel: (a) using
a round-robin policy with count 1, and (b) using a duplicate policy. 45

3.12 A time-oblivious, ordinary Java thread communicates with a Reflex task by in-
voking transactional methods directly on the ReflexTask instance. Transactional
methods can pass in reference to heap-allocated objects (blue) that can be ac-
cessed from the default transient context in which the transactional method is
executed. 46

3.13 Example of declaration of method on ReflexTask class to be invoked with trans-
actional semantics by ordinary Java threads. 47

3.14 Illustrating the problem of having the garbage collector moving the heap-allocated
object used as argument for the transactional method. Transactional methods are
executed in the transient area of the Reflex task, and any references from here are
unreachable to the public heap garbage collector. Thus, if the garbage collector
preempts an ordinary Java thread while invoking a transactional method, and
moves a heap-allocated object, it cannot adjust any references to this object from
within the transient area. (a) illustrates the references to the heap-allocated
object from a transient one before the ordinary Java thread is preempted by
the garbage collector. (b) illustrates how the garbage collector has moved the
heap-allocated object referenced from within the transactional method, but not
adjusted the reference to the object from within the transient area, leading to a
dangling pointer. 49

LIST OF FIGURES xix

3.15 Communicating between ordinary Java threads and Reflex tasks through heap-
allocated static variables (black) is permitted but restricted to primitive and
reference-immutable types. Static variables of reference-immutable types are in
addition required to be pinned to their heap location throughout the lifetime of
the Reflex graph. 50

3.16 Each Reflex graph is triggered by a time triggered scheduler using the Clock task.
Threads are not required to be assigned to task following a one-to-one scheme.
As a minimum, a single thread is assigned to the Clock task that then traverses
the Reflex graph and executes all schedulable tasks. 52

3.17 Graphical representation of the Reflex graph of an Intrusion Detection System
consisting of six tasks and a clock task triggered periodically by a time triggered
scheduler. 53

3.18 Implementing a ReflexGraph subclass. The IDSGraph class extends the abstract
ReflexGraph class, declares a constructor for setting up the graph with default
priority and communication area. Note, how at the end of the constructor the
validate method is invoked, causing the graph to be validated. 54

3.19 An excerpt of the Ether Hdr capsule containing primitive byte arrays. 55

3.20 An excerpt of the PacketReader task that reads packets received from the or-
dinary Java thread and pushes them down in the graph. The write method,
invoked by the ordinary Java thread, is declared to have transactional semantics.
The ordinary Java thread and the PacketReader share a bounded buffer from
which they respectively write and read. 55

3.21 The main Java application instantiating the IDSGraph with some periodicity and
creating the Synthesizer generating the packets, and interacting with the Reflex
graph by invoking a transactional method on the PacketReader task. 56

3.22 An excerpt of the Buffer class shared by the ordinary Java thread and the
PacketReader to exchange data. Note, that the class is declared stable as it
is used as an instance field on the PacketReader task (which inherently is sta-
ble), and that as a stable class it uses the StableByteArray type to represent a
primitive byte array. 56

3.23 An excerpt of the VSIPFragment class responsible for detecting IP fragments that
are smaller than TCP headers. For this detection, it relies on a pattern matcher.
Note, how the task in its execute method reads a Ether Hdr packet from its input
channel, and, depending on the result of the pattern matcher, puts the packet on
different output channels for further processing, as also illustrated in Fig. 3.17. . 57

3.24 An excerpt of the VSIPFragmentMatcher class responsible for detecting small IP
packets. Note how the VSIPFragmentMatcher is not itself declared stable; rather
it inherits its stable property from the extension of the stable PatternMatcher
class. 58

xx LIST OF FIGURES

3.25 An excerpt of the general purpose PatternMatcher class used by several of the
Reflex tasks in the IDS graph for pattern matching. Note, how it declares several
stable types, which are used as field types in some of its instance fields. 59

4.1 The legal and illegal object references in and out of a Reflex task that the static
safety checks must ensure are respectively allowed and caught. The figure illus-
trates a ReflexTask in a private memory area with its object graphs of stable
and transient objects as well as a number of heap-allocated objects and static
variables, of which some are pinned. Object references are illustrated with green
and red arrows, representing legal and illegal references respectively. 62

4.2 A simple and conservative algorithm for analyzing the live set of classes, Slive,
in the class initializer, <clinit>. Specifically, this algorithm is used to infer
the possible types that can be assigned to a static variable having a reference-
immutable type. 68

5.1 An algorithm showing how tasks in a Reflex graph are executed in the Reflex
prototype implementation. The clock task triggers the execution by pushing a
timestamp on its outgoing channels after which the thread traverses downstream
in the graph, executing any receiving task that is schedulable. 76

5.2 An illustration of the effects of the modification made to the bytecode rewriter
of the Ovm compiler, wrapping the method body of a transactional method with
invocations to switch and reclaim the allocation context of the invoking thread.
Note, we use Java source code to illustrate the effects of the modification, but in
fact they are performed directly on the bytecodes. 77

5.3 An illustration of the effects of the modification made to the bytecode rewriter of
the Ovm compiler, inserting methods to pin and unpin reference type arguments
provided to the outermost transactional methods. Note again, we use Java source
code to illustrate the effects of the modification, but in fact they are performed
directly on the bytecodes. 80

6.1 Timeline showing how a missed deadline can cause an inter-arrival time between
two consecutive periodic executions to be larger than twice the period. 84

6.2 Comparing Java VMs on the SPECJVM98 benchmarks. The x-axis shows the
individual benchmark tests and the y-axis the relative performance compared to
Ovm (set to 1.0). 85

6.3 Histograms of inter-arrival time for (a) Reflex graph with a null task scheduled
for 45 µs periods, and (b) an equivalent the C variant also scheduled for 45 µs
periods. The x-axis shows the logarithm of the inter-arrival time in µs and the
y-axis shows the logarithm of its frequency. 86

LIST OF FIGURES xxi

6.4 Missed deadlines over time for respectively (a) Reflex graph with a null task
scheduled for 45 µs periods, and (b) an equivalent the C variant also scheduled
for 45 µs periods. The x-axis shows the executions (only 1 million iterations
shown) of the periodic task and the y-axis shows the logarithm of the size of the
deadline misses. 86

6.5 Histograms of inter-arrival time for respectively a (a) Reflex and (b) C variant
of an audio player task scheduled for 45 µs periods. The x-axis shows the inter-
arrival time in µs and the y-axis shows the logarithm of its frequency. 87

6.6 Missed deadlines over time for respectively a (a) Reflex and (b) C variant of an
audio processing task scheduled for 45 µs periods. The x-axis shows the periodic
executions (only 1 million iterations shown) of the time-critical task and the y-axis
shows the logarithm of the size of the deadline misses. 88

6.7 Structure of the Reflex graph for the BeamFormer benchmark. 89

6.8 Running Reflex implementation of SerializedBeamFormer with periodic thread
scheduled every 80 µs over 10,000 iterations. (a) depicts frequencies of inter-arrival
time. The x-axes depict the inter-arrival time of two consecutive executions in
microseconds of the periodic task whereas the y-axis depicts the frequency, (b)
shows missed deadlines over time (5,000 depicted). The x-axis depicts iterations
of the task whereas the y-axis shows the deadline misses in µs. 89

7.1 The design space of programming models illustrating how the different restricted
programming models relate to each other, and the scope of the Flexotask pro-
gramming model subsuming the four existing programming models. 96

7.2 Features of the four programming models unified into Flexotask. 97

7.3 Constructing a Flexotask graph by programmatically creating a graph template. 98

7.4 Constructing a Flexotask graph by help of a template preconstructed using the
development tool support of Flexotask. 98

7.5 The Flexotask interface to be implemented by classes, whose instances are to be
executed as a time-critical task. 99

7.6 The abstract AtomicFlexotask class to be extended by classes, whose instances
are to be executed as a time-critical task. Contrary to class implementing the
Flexotask interface, any subclass of AtomicFlexotask can and must declare
transactional methods reachable to the ordinary Java threads. Note, although
the abstract class appears to be empty, it is not. Rather it only contains fields
and method necessary for the internal functionality, i.e., not methods nor fields
that are part of the programming model. 99

7.7 Programmatically adding a Flexotask task to the graph template. Like graphs,
tasks are represented by a template that describe the task, e.g., providing the
implementation class of the task as well as its logical name. 100

xxii LIST OF FIGURES

7.8 Inter-task communication in Flexotask using single-stage buffer ports (red squares),
unidirectional connections. Flexotask supports communication with zero copy
semantics using heap-allocated, reference-immutable objects that are pinned (de-
picted) as well as deep copy semantics using stable types only. 103

7.9 Extending the ExternalMethods interface to declare methods on a Flexotask that
are reachable to and can be invoked by ordinary Java threads with transactional
semantics. Figure shows how a Flexotask variant of the PacketReader task, seen
in Fig. 3.20, would declare its transactional methods. 103

7.10 Using the PacketReaderIntf interface of Fig. 7.9 in the class declaration of a
Flexotask variant of the PacketReader task, seen in Fig. 3.20, to declare and
implement the transactional methods to be invoked by ordinary Java threads. . . 104

7.11 Communicating between time-oblivious, ordinary Java threads and a time-critical
task through transactional methods. In principle, the communication scheme for
Flexotask is equivalent with that of Reflexes, but there are two differences. First,
the allocation context of transient objects allocated during a transactional method
invocation is no longer the transient area of the task, but rather the public heap
(as illustrated). Second, in Flexotask the ordinary Java thread has no direct
reference to the time-critical task. Instead, a guard (green) is used as a delegate
through which ordinary Java threads can invoke the transactional methods that
are then delegated to the task running in the private memory area. 105

7.12 Excerpt code showing how to retrieve the guard of the time-critical task with the
logical name ”PacketReader”, a Flexotask variant of the PacketReader task seen
in Fig. 3.20. Note, how the guard object is referenced through the External-
Methods subinterface, in this case PacketReaderIntf– declaration hereof seen
in Fig. 7.9. 107

7.13 Excerpt code showing how to programmatically specify the timing annotations on
both a Flexotask graph and task – in the example a timing grammar supporting
periodic execution is selected. Note, the name ”TTScheduler” represents the
logical name of the time triggered scheduler. 108

7.14 The legal and illegal object references in and out of a Flexotask instance that
the static safety checks must ensure are respectively allowed and caught. The
figure illustrates a Flexotask instance in a private memory area with its object
graphs of stable and transient objects as well as a number of heap-allocated
objects, including the guard object, of which one is pinned. Object references
are illustrated with green and red arrows, representing legal and illegal references
respectively. Note that only transient objects allocated during the invocation of
a transactional method are heap-allocated. Transient objects allocated by the
real-time thread invoking the execute method of the task are allocated in the
transient area (if the stable/transient distinction is observed). 109

LIST OF FIGURES xxiii

7.15 Constructing a Flexotask graph through an XML-based template constructed
with the Flexotask editor integrated into Eclipse. 111

7.16 The DetectorTask, an AtomicFlexotask responsible for detecting aircraft colli-
sions. 113

7.17 A reference-immutable data structure shared between the ordinary Java thread
and the Flexotask task as a shared instance object brought into the task through
the initialize method. 114

8.1 Flexotask programs developed within the Eclipse IDE are validated at develop-
ment time against the type rules. Following successful validation, class files are
rewritten to include support for transactions. At initialization time, the Flexo-
task run-time engine constructs the Flexotask graph and performs a data-sensitive
analysis to ensure correctness, after which the graph is executed. 116

8.2 The Flexotask graphical editor integrated into the Eclipse IDE. Screenshot shows
the graphical creation of a Flexotask graph having three tasks. Note, the palette
to the right allowing the selection of components to be dropped in the editing
area. In the bottom, the properties of each component can be edited. 117

8.3 The phases of the Flexotask graph in order to create a schedule using the Stream-
Scheduler. 119

8.4 The Flexotask development time checker in action. Screenshot shows the devel-
opment time checker has detected two violations of the static safety checks in the
checked code. The errors are reported in the Problems View of Eclipse. Note also
how the two violating code statements are highlighted with a red marker, making
them easy for the programmer to identify. The reported violations concern the
fact that the Channel class is unexpectedly not declared Stable, and thus cannot
be used as field type on a AtomicFlexotask class. 123

8.5 Illustration of privatization of an AtomicFlexotask class, expressed in Java source
code. (a) shows the Java source code of the ExternalMethods subinterface declar-
ing the transactional method to be implemented by the HighFreqReader, (b)
shows the Java source code of the HighFreqReader implementing the transac-
tional method before privatization, and (c) shows the effects of privatizing the
transactional method. Note, only for illustration purposes are the effects of pri-
vatization expressed using Java source code. In reality, the actual transformations
are performed directly on the bytecodes. 126

8.6 Transformation of method invocations within privatized methods; redirecting the
invocation to privatized methods. (a) shows the bytecode of the method invoca-
tion before the transformation, (b) shows the bytecode of the method invocation
after the transformation, where the invocation is redirected to the privatized
method with its additional method parameter. 127

xxiv LIST OF FIGURES

8.7 Transactionalizing field operations in a transactional method. (a) shows the Java
source code of the transactional method, (b) shows the original bytecodes of the
method body, and (c) shows the bytecodes of the method body having applied
the subtransformation. Note how after bytecode rewriting each field is referenced
through a numeric index value, rather than through the constant pool index. . . 128

8.8 Illustration of the effects of wrapping the method body of an outermost trans-
actional method with a prolog and epilog. In lines 4-6, the inserted prolog code
can be seen, and in lines 9-31 the epilog code. The transformed method body of
the outermost transactional method is inserted at the placeholder of line 8 as in-
dicated by the code comment. Note, only for illustration purposes are the effects
of wrapping expressed using Java source code. In reality, the actual wrapping
subtransformation is performed directly on the bytecodes. 131

8.9 Illustration of the automatically generated guard class, delegating for an Atomic-
Flexotask class. Note, only for illustration purposes is the guard class expressed
using Java source code. In reality, the guard class is generated directly in bytecode
format. 132

9.1 Frequencies of inter-arrival times of an atomic Flexotask scheduled with a period
of 100 µs, executing concurrently with (1) an ordinary Java thread communicating
by transactional invocations, and (2) an ordinary Java thread simulating regular
memory consumption by continuously allocating at 2MB per second. The x-axis
depicts the inter-arrival time of two consecutive executions in microseconds. The
y-axis depicts the logarithm of the frequency. 134

9.2 Comparing performance of four different variants of the collision detector bench-
mark. The x-axes show the data frames processed, numbering from 1 (only a
representative set of frames are shown), and the y-axes the processing time in
milliseconds for the individual frame. 136

List of Tables

6.1 Performance measurements showing actual run-time in milliseconds of performing
10,000 iterations of the benchmark applications using respectively Reflex and the
Java variants of StreamIt on the Ovm virtual machine and on the Java HotSpot
virtual machine. 90

9.1 Static analysis times for the two benchmark applications. 137

xxv

xxvi LIST OF TABLES

Part I

Introduction

1

1
Introduction

1.1 Motivation

This thesis is concerned with programming abstractions enabling the programming of highly
responsive tasks in the Java programming language [GJSB00], and their integration and inter-
action with larger time-oblivious applications running on the same Java virtual machine.

Highly responsive systems are typically used for applications considered mission critical, such
as embedded control systems for airplanes, financial applications, etc. With response times
ranging from 10 microseconds to 10 milliseconds and the consequence of missed deadlines ranging
between an annoyance and catastrophe, these systems must be carefully engineered.

What characterizes such real-time processing systems are their temporal constraints; they must
react to stimuli from some external environment within a given time to avoid logical failure.
Moreover, in contrast to traditional computing systems, the logical correctness of a real-time
system is determined not only in terms of compliance with expected program behavior, but also
in terms of timeliness of the behavior. Here, timeliness does not necessarily imply speed. In
fact, it is a misconception that real-time systems are fast. Rather, the main difference between
real-time and non-real-time systems is concerned with the constraints and predictability of the
response times. In order to comply with temporal constraints, real-time systems are constructed
to observe explicit timeliness requirements in their various response times.

Traditionally, real-time systems have been dedicated to solving a particular real-time processing
task. However, the nature and role of real-time systems are evolving. Today, there is a trend of
integrating small real-time tasks with strong temporal constraints into mainstream applications
having no time constrained code. As examples hereof, both Sun Microsystems and BEA have

3

4 CHAPTER 1. INTRODUCTION

introduced real-time application servers. Consider also the example of the US Navy’s DD-1000
Zumwalt class destroyer, which is rumored to have millions of lines of code in its shipboard com-
puting system of which only small parts have real-time constraints. What these applications
have in common is that they do not look like traditional real-time systems - they are large, often
in the million of lines of code, and complex. Yet parts of them place stringent predictability
requirements on the execution environment and language implementation. Moreover, the in-
crease in complexity causes a proportional increase in the engineering and programming efforts
to realize these systems.

Over the last few years, the Java programming language has become a viable platform for
developing real-time applications. One reason for this has been in order to consolidate the
development efforts on a single platform and to increase productivity. Indeed, high-level pro-
gramming languages such as Java provide significant software engineering benefits over so-called
low-level programming languages, such as C [KR80], for the construction of complex appli-
cations as they provide rich libraries of programmer-friendly abstractions that together with
their execution environments hide and manage many low-level details, most notably memory
management. Furthermore, developing an application and its real-time subsystems using the
same language is beneficial. In particular, the complexity of integrating real-time tasks with the
non-real-time tasks can significantly exploit the benefit of having interfaces between the two in
the same language. Also, by consolidating the development efforts on a single platform one can
benefit from using the same development environment, debuggers, etc. As a consequence, we
argue for environments that seamlessly support mixed mode execution between non-, soft- and
hard-real-time tasks. The goal of this thesis is to study how to design such an environment in
a high-level programming language, such as Java.

1.2 Challenges

Using Java as the target platform introduces significant implementation challenges. In fact, it is
not at all obvious that Java is suitable for applications with stringent timeliness requirements,
even if these are required only for a small number of specific tasks, as it introduces a number of
non-trivial challenges that have to be addressed.

1.2.1 Garbage Collection Interference

The Java virtual machine is the source of many potential interferences impacting the predictabil-
ity of program execution. These interferences stem from maintenance of global data structures,
just-in-time compilation and, most notably, memory management. While internal data struc-
tures can be optimized, and just-in-time compilation avoided through ahead-of-time compilers,
the Achilles’ heel of Java is its reliance on automatic memory management used for reclaiming
dead objects. Identifying and deallocating such dead objects inevitably introduces some execu-
tion overhead. This overhead can consist of additional internal space requirements, additional
time requirements, or some combination of the two. Typically, the garbage collectors used in

1.3. PROBLEM STATEMENT 5

commercial Java virtual machines are designed to maximize the performance of applications at
the expense of predictability. Moreover, it remains non-deterministic when and for how long the
garbage collector will kick in. Consequently, garbage collection introduces execution interference
that often obstructs the timeliness requirements of the real-time systems from being satisfied. In
fact, garbage collection related interference can easily reach hundreds of milliseconds, plausibly
causing the real-time system to miss its deadlines.

1.2.2 Synchronous Communication

The interaction between the time-oblivious code and the real-time subsystems might also cause
for serious execution interferences. Typical programming practices for sharing data between
threads involve synchronization on access to some shared data structure through mutual exclu-
sion. In a real-time system this might lead to priority inversion, where a time-critical thread
running with high priority is blocked from accessing shared data by a time-oblivious, lower
priority thread holding the lock on the data. To complicate matters, the time-oblivious thread
might itself be preempted by the garbage collector for an unbounded period, thereby significantly
worsening the violations of the real-time subsystem’s timeliness requirements.

1.2.3 System Calls

Finally, any system calls performed by the real-time subsystems make up a separate problem
as, by their nature, they leave the virtual machine. Being outside the virtual machine such calls
are no longer under its control, and are thus subject to external execution interferences, which
make such system calls difficult to reason about their effect on predictability. In this thesis we
will not consider system calls further, but rather conclude that dealing with system calls in an
automated way is far from trivial and should be considered a research topic in its own right.
Instead, we thus make the assumption that the programmer is knowledgeable and aware of the
consequences on predictability of using such system calls in the time-critical code. Later in this
thesis we will demonstrate an example of using such system calls to write to an I/O device while
still achieving a high predictability precision.

1.3 Problem Statement

The goal of the research presented in this thesis is to non-intrusively extend an existing high-level
language (namely Java) and its run-time environment to support reliable real-time programming.
Moreover, we strive to support the development of real-time applications with response times
in the sub-millisecond range and their integration and interaction with larger time-oblivious
applications in the same mainstream execution environment, without restricting or modifying
legacy code.

Pursuing this goal, the body of work presented in this thesis is mainly focused on addressing
the following challenges.

6 CHAPTER 1. INTRODUCTION

1.3.1 Circumventing Garbage Collection Interference

Faced with the challenges imposed by garbage collection interference, a system designer is typi-
cally left with possible two strategies in order to reduce or circumvent it. The first is to deploy a
real-time garbage collector (RTGC). RTGCs achieve much better predictability than traditional
stop-the-world garbage collectors used in standard Java virtual machines by interleaving the
application execution with the garbage collection. In other words, with RTGCs the garbage
collection phases are divided into short-running bounded periods between which the application
mutator gets to run. These bounded periods increase the predictability of the garbage collection,
but comes at the expense of application utilization.

Even though RTGCs do achieve a significant improvement in predictability over traditional
garbage collection algorithms, they fall short on some of the challenges. While recent advances
in real-time garbage collection algorithms have enabled the reduction of the latency to approxi-
mately 1 millisecond [BCR03], there are applications with temporal requirements that go beyond
what is currently possible with state-of-the-art RTGCs. Of course, real-time applications may
have very different temporal constraints, but for certain types of highly responsive applications,
including those that are subject of this research, latencies of this magnitude may not be usable.
For instance, the category of real-time applications referred to as safety critical, such as those
certified according to the DO-178B standard used in the aviation industry, often have very strict
temporal requirements that cannot be guaranteed by current state-of-the-art real-time garbage
collectors. For such applications with latency requirements in the tens of microseconds, any
garbage collection delay in the millisecond area will cause a high-frequency task to miss its
deadline with devastating consequences. Furthermore, RTGCs do not address, and thus are still
vulnerable to, execution jitter stemming from priority inversion problems when synchronizing
access to data shared between time-oblivious code and the real-time subsystems.

The second applicable strategy is to restrict the programming model in order to avoid inter-
ference from the garbage collector. However, restricting the programming model to improve
predictability comes at the expense of expressive power, i.e., how much a legal program can do.
An example of such a restricted programming construct is the NoHeapRealtimeThread found
in the Real-Time Specification for Java (RTSJ) [GB00]. The NoHeapRealtimeThread executes
in a memory region that is out of reach from the garbage collector, though the regular public
heap is managed by the garbage collector as normal. However, from within the memory re-
gion, the NoHeapRealtimeThread is restricted from referencing any heap-allocated objects as
doing so could cause memory related errors. A memory region is an allocation context that
provides a pool of memory shared by threads executing within it. Specifically, RTSJ enables the
NoHeapRealtimeThread to allocate within two types of memory regions; ImmortalMemory and
ScopedMemory. In both of these regions, individual allocated objects cannot be deallocated. In
the former, the allocations remain for the lifetime of the application, whereas in the latter all
allocations are purged together in constant time as soon as all threads exit.

While the NoHeapRealtimeThread achieves the goal of avoiding interference from the garbage
collector by executing in a separate memory scope, it too has deficiencies. An important problem
relates to the fact that a NoHeapRealtimeThread is indeed a thread. Being a thread, it can do

1.3. PROBLEM STATEMENT 7

anything – it cannot statically be restricted. Instead, the virtual machine must assure referential
integrity at run-time by ensuring that the NoHeapRealtimeThread does not reference any heap-
allocated objects. These run-time checks are expensive and have been documented to introduce
a significant overhead [PV06]. Aiming for sub-millisecond execution intervals, avoiding such a
run-time overhead is imperative.

Another problem with the NoHeapRealtimeThread relates to the scoped memory in which it
executes. Programming with scoped memory entails a loss of compositionality due to sensitivity
of where at run-time an object is allocated. This significantly complicates reasoning about
program correctness as it is impossible to check all possible code paths in a program statically.
As a consequence, a successfully compiled program might at some point during run-time throw an
unanticipated runtime exception due to a memory integrity violation caused by the unexpected
location of some object. Hence, code that has to run in scoped memory requires greater care to
prevent errors than normal heap-allocated code.

Furthermore, relating to interaction, the NoHeapRealtimeThread also suffers from an isolation
problem. As such, a NoHeapRealtimeThread can block on a lock held by an ordinary Java
thread, again an example of priority inversion leading to serious deadline misses. This can occur
if both the NoHeapRealtimeThread as well as the ordinary Java thread have synchronized access
to some shared data, e.g, some object allocated in ImmortalMemory.

• Question: How can the latency introduced by garbage collection be circumvented such
that sub-millisecond predictability is not compromised, yet avoiding the deficiencies of the
NoHeapRealtimeThread?

1.3.2 Ensuring Type-Safety

Circumventing garbage collection by using region-based memory is attractive, but unfortunately
not without problems concerning how to ensure integrity of the memory region. Code executing
in a memory region might reference objects outside its region introducing a number of potential
memory related problems, such as the risk of having dangling pointers, or observing objects in
an inconsistent state as they are, for example, when being copied by a garbage collector.

With this in mind, it is imperative to prevent such unsafe references from occurring. In
the case of NoHeapRealtimeThread, unable to detect such unsafe accesses statically, the vir-
tual machine must insert non-trivial read and write barriers around all reference operations
to check for potential violations. Any violations detected will lead to dynamic exceptions,
such as IllegalAssignmentError and MemoryAccessError, being thrown back to the NoHeap-
RealtimeThread. Thus, while these dynamic checks prevent unsafe references from occurring,
the cost of doing so is significant, as described earlier. Moreover, the lack of static checking also
makes application development error-prone and brittle as any such memory integrity errors are
deferred until run-time.

• How can the run-time checks maintaining the memory region integrity be avoided without
compromising type-safety?

8 CHAPTER 1. INTRODUCTION

1.3.3 Enabling Type-Safe, Non-Blocking Communication

Integrating time-oblivious code with time-critical tasks introduces challenges when it comes to
the interaction between these. For instance, any synchronous interaction might cause priority
inversion situations, which will lead to compromised predictability. This could happen if a
running high priority real-time thread would have to block and wait for a lower priority ordinary,
time-oblivious thread to complete some work.

As described above, ensuring the integrity of a memory region is imperative when executing
code in a separate memory region. Interaction between time-oblivious code and real-time tasks
becomes even more problematic when it comes to communicating with references to objects
allocated in different memory contexts. In fact, running in a memory region, any reference
passed between a real-time and an ordinary, time-oblivious thread might cause type safety to
be compromised.

Furthermore, integrating real-time tasks with existing time-oblivious applications and having
them interacting is only a viable option if such scheme can be realized without requiring extensive
modification of the legacy code.

• How can threads observing sub-millisecond temporal requirements interact with time-obli-
vious threads in a type-safe manner without sacrificing predictability, and without requiring
extensive modification of legacy code?

1.4 Approach

The problems we have described cross the boundaries between programming abstractions, pro-
gramming languages and run-time system implementation. The thesis presents a multi-layered
solution based on the following principles.

Real-time threads should never experience any interference from the garbage collector causing
for a negative impact on predictability. To guarantee this, real-time threads should be able
to take execution priority over, and preempt all other, threads running in the virtual machine,
even the garbage collector. Only by granting such privileges to the real-time thread can memory
management induced deadline infringements be circumvented.

Preempting the garbage collector introduces problems with respect to type safety since real-
time threads might observe heap-allocated objects in an inconsistent state. This can occur if
a copying garbage collector is preempted by the real-time task while in the process of moving
some object. Therefore, real-time threads should be shielded from the garbage collectable area
(the heap), and should in general be restricted from observing any other heap-allocated objects.

Real-time threads should be able to interact with ordinary, time-oblivious threads. However, this
should be done strictly without impacting predictability. Any synchronous interaction between
tasks must be avoided and any interaction must be subject to the same type restrictions as
mentioned above. Only thereby can type-safety be guaranteed.

1.5. LIMITATIONS 9

Finally, enforcing these type restrictions should be achieved such that they do not impose any
negative performance impact on the real-time threads, nor prevent reuse of legacy code and
standard libraries.

To address these challenges, we pursue an approach combining:

• Priority Preemptive Thread Scheduling – We rely upon a priority preemptive thread
scheduling scheme enabling differentiation based on priority numbers between tasks run-
ning in the system. With this scheme high-priority real-time threads can preempt all other
threads, even the garbage collector, thereby avoiding the normal garbage collection latency
which is vital to achieving predictability at high frequencies.

• Private Memory Regions – We consider executing real-time threads within separate
private memory regions, thereby enabling allocation of objects that are outside the reach of
the garbage collector. However, memory regions do not eliminate the need for garbage col-
lection of objects outside the regions, i.e., on the public heap, nor the latencies introduced
when this process takes place.

• Static Safety Checks – Circumventing and preempting garbage collection through mem-
ory regions and priority preemptive scheduling is only safe in so far that, roughly speaking,
there are no object references pointing in and out of the regions. We enforce the safety
of region-based memory operations, yet permit certain operations such as those enabling
interaction between threads, by considering a set of static safety checks as a conservative
extension of the standard Java type system. These static safety checks also make it possi-
ble to bypass the expensive run-time checks performed by the virtual machine, helping to
achieve a high degree of predictability.

• Run-time Environment Support – Achieving sub-millisecond response times is im-
possible without support from the underlying run-time environment. We rely on the Java
virtual machine to support the necessary functionality, such as, region-based allocation,
pinning of objects, software transactional memory and priority preemptive scheduling, en-
abling the execution of highly responsive applications. Although many of these features are
found in an RTSJ-compliant virtual machine, we do not mandate such a virtual machine,
but note that it eases the implementation efforts.

The outcome of this approach is a simple, restricted programming model, called Reflexes1,
facilitating the development of highly responsive computing applications in Java.

1.5 Limitations

For the purposes of this thesis we restrict our focus to the Java programming language [GJSB00]
on a Java virtual machine [LY99]. Java is a pragmatic choice as it has become a mainstream

1Throughout this thesis, the name Reflexes is used to refer to both Reflexes [SPGV07a] and its superset
StreamFlex [SPGV07b]. The motivation for using the term Reflexes instead of StreamFlex is to highlight that
our approach is general, and thus not tied to stream processing particularly.

10 CHAPTER 1. INTRODUCTION

programming language with a high level of adoption due to its rich libraries and powerful tool
support. However, we believe that the results presented in this thesis are general enough to be
applied, directly or with modest modifications, to other high-level programming languages, such
as C# [HWG03] on the .NET Common Language run-time [Mica].

1.6 Contributions

The contributions presented in this thesis include the following:

• Programming Model – We present the design of a simple, type-safe restricted program-
ming model, Reflexes, facilitating the construction of highly responsive applications in
Java. The Reflex programming model makes it easy write and integrate simple periodic
tasks or complex stream processors, both observing real-time timing constraints in the
sub-millisecond range, into larger time-oblivious Java applications.

• Static Safety Checks – To avoid the need to apply expensive checks during run-time,
we describe an informal specification of a set of static safety checks inspired by ownership
types for statically ensuring the safety of memory operations within a Reflex task while
at the same time permitting communication with time-oblivious code. In particular, the
static safety checks propose a novel notion of implicit ownership, rendering superfluous
the need to declare ownership parameters on class declarations. Furthermore, the static
safety checks are non-intrusive by permitting unmodified reuse of legacy code with no
requirement to rewrite standard libraries.

• Obstruction-free, Transactional Communication Scheme – We describe a scheme
to facilitate non-blocking communication between time-critical tasks and time-oblivious
Java code based on obstruction-free, transactional communication, ensuring that the time-
critical Reflex task will not violate its temporal requirements following interaction with
time-oblivious code. Furthermore, we present a general design of the communication
scheme enabling implementations on multi-processors, where it cannot be assumed that
the release of the time-critical task causes for the immediate execution halt of a time-
oblivious thread running in parallel.

• Implementation and Integration – We report on two implementations of the Reflex
programming model. To demonstrate viability of the approach, we present a stand-alone
prototype implementation of Reflexes on a research virtual machine which has a uni-
processor design, and native support for transactional methods. In addition, we implement
extensions to the javac compiler to support the static safety checks.

To provide a more powerful and flexible programming model, we present an integration of
the Reflex programming model with two existing restricted programming models from IBM
Research into a unified programming model, Flexotask. To demonstrate the strength and
flexibility of our approach, we also detail an implementation of Flexotask on a commercial
virtual machine with a multi-processor design. Furthermore, we provide development tool
support for Flexotask into the Eclipse IDE, among other features the static safety checking.

1.7. THESIS OUTLINE 11

• Empirical Evaluation – For both our implementations, we report on a number of em-
pirical evaluations of the ability of the programming model to enable the development
of real-time applications providing (a) sub-millisecond response times with a high degree
of precision, and (b) throughput better or comparable to equivalent application variants
built for alternative approaches. In both cases we demonstrate encouraging results through
benchmark applications running simple periodic tasks in isolation to demonstrate the base-
line performance, as well as concurrently with communicating, ordinary Java threads to
demonstrate predictability and performance when interacting.

1.7 Thesis Outline

The thesis is organized as follows:

Part I: Introduction

Chapter 1: Introduction motivated the thesis, highlighted the challenges that have to be
addressed to achieve the research goals. Next, the problem statement of the thesis was
presented, after which the approach pursued to reach the goal was described. Finally, the
contributions of the thesis were presented.

Chapter 2: Related Work provides an overview of the target platform for our research, Java,
and pinpoints the main challenges in achieving high predictability. The chapter then goes
on to describe alternative approaches for improving predictability, ranging from specific
techniques to programming models for real-time systems. Finally, different programming
models that all restrict the expressive power for predictability are presented.

Part II: Programming Model

Chapter 3: The Reflex Programming Model provides an introduction to the Reflex pro-
gramming model, its basic concepts, and demonstrates by example how to program a
highly responsive real-time task, integrate it with a time-oblivious application, and have
them communicate.

Chapter 4: Static Safety Checking provides an informal description of the set of static
safety checks applied to enforce restrictions on the time-critical Reflex tasks in order to
ensure type-safety and reasons about the correctness of the checks.

Part III: Implementation

Chapter 5: Reflex Implementation describes the prototype implementation of the Reflex
programming model on a research real-time Java virtual machine designed with a uni-
processor design.

12 CHAPTER 1. INTRODUCTION

Chapter 6: Empirical Prototype Evaluation describes a number of empirical experiments
of the Reflex prototype implementation on top of the research real-time Java virtual ma-
chine using benchmark and real-world applications, and presents some encouraging results.

Part IV: Integration

Chapter 7: Flexotask Integration describes the integration of the Reflex programming mo-
del together with Eventrons and Exotasks from IBM Research into a unified restricted
programming model, Flexotask, and highlights differences in model and static safety checks
following this integration.

Chapter 8: Flexotask Implementation highlights the most interesting implementation chal-
lenges involved in getting Reflexes to run (as part of Flexotask) on an industrial-strength
real-time Java virtual machine designed with a multi-processor design.

Chapter 9: Empirical Evaluation describes a set of empirical experiments of the Flexotask
implementation on top of the IBM WebSphere Real-Time VM using benchmark and real-
world applications, and presents results clearly establishing that Flexotasks can achieve
high predictability in a challenging workload environment.

Part V: Conclusion

Chapter 10: Conclusion provides a summary of the findings of this thesis, the contributions,
and highlights some open problems that are avenues of future work.

2
Related Work

Having described the challenges faced when striving for highly responsive computing in a man-
aged language environment, this chapter gives some background and surveys some of the most
important alternative approaches, and compares them to approach adopted by the Reflex pro-
gramming model presented in this thesis.

The structure of the chapter is as follows. We first give a brief overview of the relevant aspects
of Java, the target platform for Reflexes, with emphasis on the fundamental reasons why man-
aged languages introduce latencies affecting predictability. In other words, we will not provide
a general introduction to Java, but rather assume that the reader is familiar with the language.
Next, we introduce the general concept of real-time garbage collectors and describe how deploy-
ing a real-time garbage collector in general might increase predictability, yet for some types of
applications still might not be sufficient to meet their temporal requirements. Thereafter, we
describe programming models designed specifically for real-time computing, including some of
their forerunner models, and point out their advantages when programming real-time systems.
Finally, we describe various efforts to increase predictability and lower latencies even further
than what is possible with standard real-time programming models through an approach based
on restricting the expressiveness.

2.1 The Java Programming Language

Over the last decade, the Java programming language has become one of the most widely used
programming languages in academia as well as in the industry. Java [GJSB00] was developed by
Sun Microsystems in the mid nineties as a strongly typed, object-oriented language that derived
much of its syntax from that of C; this familiarity is typically attributed as being one of the

13

14 CHAPTER 2. RELATED WORK

major reasons for its rapid adoption. Although its inspiration came from C/C++, Java adopted
a much simpler object model and dispensed many of the low-level facilities of C/C++ that were
common sources of program errors, most notably facilities related to pointer arithmetic and
memory management.

In order to satisfy one of the design goals of Java, that of being platform independent enabling
the execution of the same unmodified program on several hardware architectures, Java programs
are compiled into an intermediate representation – a simplified set of machine instructions
specific to the Java platform. Through this instruction set, a Java program can be made to
execute on any computing architecture with the help of a virtual machine, a platform dependent
program written in native code that can interpret and execute the Java bytecode instructions
on the specific architecture on which it runs. Multiple operating systems (the most ubiquitous:
Microsoft Windows, Linux, Mac OS X, Sun Solaris) running on different computer architectures
(Intel x86, x64, SPARC etc.) are currently supported by the Java virtual machine.

In the first versions of Java, the virtual machine ran in interpreted mode only, with significant
performance deficiencies as a consequence – compared to an equivalent natively compiled pro-
gram. In later versions followed Just-In-Time (JIT) compilers, which identifies most frequently
used bytecodes, and compile these code hot spots into faster executing native code. The result
of these JIT compilers are getting closer and closer to native performance.

Another feature that undoubtably helped to spark the rapid adoption of Java was its use of au-
tomatic memory management. Although automatic memory management by far was not some-
thing new, dating back to the sixties when applied to the Lisp programming language [MAE+84],
Java successfully brought it to a mainstream language. In programming languages with manual
memory management, the programmer is responsible for deallocating objects and return the
now free space that they occupied back to the system. Failing to do so will result in memory
leaks that eventually will exhaust the available memory and cause the entire program to fail.
With automatic memory management, the programmer no longer has these concerns, or rather
the concerns are much smaller. In fact, even with automatic memory management, some forms
of memory leaks can still occur, e.g., if an application allocates a large number of temporary
objects (or a few objects that take up large amounts of memory) that are referenced although
they are no longer needed. In Java, an object is ready to be deallocated and its memory can
be given back to the system only once it is not referenced from any other object. However, in
general, when using automatic memory management, memory leaks are significantly less likely
to occur than without. Central to the automatic memory management of Java is the garbage
collector – built in to the virtual machine – that transparent to the programmer scavenges the
memory (heap) at certain times for dead objects no longer referenced by any part of the run-
ning applications and reclaim the memory held by these. In standard Java virtual machines,
this scavenging is performed in a stop-the-world manner, where all running user-threads in the
virtual machine are paused during this process, introducing latencies in the hundreds of mil-
liseconds. Combined with the fact that it remains non-deterministic when and for how long
the garbage collector will step in to perform its duties, standard Java garbage collection is not
suitable for the requirements of real-time applications.

Finally, in addition to the language, a virtual machine and a compiler, official Java implemen-

2.2. REAL-TIME GARBAGE COLLECTORS 15

tations come with a rich set of standard class libraries, embracing high degree of development
productivity and code reuse. Furthermore, a huge community surrounding Java provides numer-
ous commercial and free development tools, including powerful debuggers, profilers and IDEs.

2.2 Real-Time Garbage Collectors

As pointed out, the standard Java garbage collection introduces latencies that not deterministi-
cally bounded. An alternative approach to normal garbage collection is to use real-time garbage
collection algorithms, ensuring deterministic upper bounds on the latency. Using a real-time
garbage collector is attractive as the semantics of the plain Java programs are left completely
unaffected. Instead, using a real-time garbage collector simply just concerns the internals of the
virtual machine.

However, there are some major drawbacks to the use of RTGC. For garbage collection to be
used in hard real-time applications, non-trivial, reasonable estimates of worst-case bounds must
be provided for: (a) garbage collection latency time, (b) throughput, and (c) allocation rate.
Because events that arrive while the collector is operating cannot be handled until the collector
yields, latency must be bounded. Furthermore, the mutator (i.e. application code) must not be
interrupted too frequently, causing a drop in utilization, i.e., throughput. In particular, the effect
on throughput must not be so severe as to prevent the application from handling events in a
timely fashion. Finally, all memory allocation requests must succeed, and thus if the application
has a high allocation rate, the garbage collector’s time quantas must be correspondingly large,
which inevitably comes at the expense of application utilization and thus throughput.

Work on real-time collection can be traced back to Bakers incremental copying collector [HGB78].
The central idea behind Bakers work is decreasing the intrusiveness of a collector by piggy-
backing work onto mutator operations. To ensure consistency, a small piece of code, called a
read barrier, is inserted by the compiler before every memory read to perform copying, and the
allocation code is modified to perform a bounded amount of collection work. The worst-case
in a program using Bakers collector involves a copy operation upon every read, and a (large)
unit of collection work on every allocation. Hence, even though individual pauses are small,
the worst case execution time of an allocation makes Bakers collector unsuitable for usage in
hard real-time systems. Put in another way, the garbage collection fails to bound its impact
on throughput. Bakers collector is said to be work-based, in the sense that work done by the
mutator leads to work by the collector.

As an alternative to work-based real-time collection, various time-based systems have been
proposed [BCR03, Hen98, Det04]. In time-based systems, the principal is that the collector
interleaves execution with the mutator at regular intervals. Constant-time read- (or write-)
barriers are still needed to maintain consistency, but allocation can be made in constant time.
The worst-case bounds on execution time in the mutator become more realistic, allowing the
collector to be used in hard real-time systems. In fact, recent advances in real-time garbage
collection for Java [BCR03] has made Java a viable platform for writing real-time applications
whose latency requirements are in the millisecond range.

16 CHAPTER 2. RELATED WORK

0 50 100 150 200 250 300
Iteration Number

20

40

60

80

100

120

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

Worst case = 114ms120

100

80

60

 40

20

0 50 100 150 200 250 300
Iteration Number

La
te

nc
y

(M
ill

is
ec

on
ds

)

(a) Standard GC

0 50 100 150 200 250 300
Iteration Number

5

10

15

20

25

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

Worst case = 18ms

0 50 100 150 200 250 300
Iteration Number

25

20

15

10

5

La
te

nc
y

(M
ill

is
ec

on
ds

)

(b) RTGC

Figure 2.1: Benchmark application execution illustrating difference in garbage collection latency
when running using (a) a standard copying garbage collector, and (b) a time-based real-time
garbage collector. The x-axes show the iteration number and the y-axes the latency in millisec-
onds.

Fig. 2.1 illustrates the execution time of periodic processing in a benchmark application when
executing on a Java virtual machine with (a) a standard copying garbage collector, and (b) a
time-based real-time garbage collector. With the standard garbage collector, the mutator thread
performs around 8 milliseconds of useful work in each iteration, but the garbage collector causes
some iterations to take up to 114 milliseconds causing multiple deadline misses. With the real-
time collector, the worst-case observed time is 18 milliseconds. This is interesting because, even
if the bound on any individual pause is 1 millisecond, the mutator thread takes twice as long to
complete because it is interrupted multiple times.

This clearly shows that pause times are only part of the cost of RTGC, one has to account for
the overhead of barriers and the frequency of pauses. In fact, the real-time garbage collector
approach currently appears limited to some lower bound on achievable latencies due to caching
and context-switching effects. Though this lower bound is somewhere around the 1 millisecond
range, there are still real-time applications having lower latency requirements than what can be
achieved with state-of-the-art garbage collection algorithms. For these applications, latencies
must be limited to the hundreds of microseconds.

2.3 Real-Time Programming Models

Even though a real-time garbage collector can significantly improve the predictability of an ap-
plication, doing real-time programming in a general purpose programming language like Java is
still cumbersome for the programmer. More specifically, being general purpose, such program-
ming languages do not offer any language support for common real-time programming idioms
enabling the programmer to control the temporal behavior of the program. This need has given
rise to a number of real-time programming models.

Before the days of programming languages specifically designed for real-time computing, real-

2.3. REAL-TIME PROGRAMMING MODELS 17

time systems were built using a combination of standard languages in combination with some
real-time operating system. With this approach, however, real-time properties like scheduling
and communication were managed by the operating system, and thus to a large extent out
of control of the programmer. Furthermore, the temporal aspects of the applications must be
designed carefully with the underlying platforms in mind, adjusting various periods and worst
case execution times accordingly. Inevitably, this dependency on the execution platform signif-
icantly limits the portability of such applications [Car02]. In contrast, programming languages
exposing real-time related primitives increase the level of portability and reusability in addition
to increasing general user-level control of the system behavior.

2.3.1 Concurrent Programming Models

The precursor to real-time programming languages as we know them today stem from the
eighties with the advent of concurrent programming languages, like Concurrent ML [Rep93],
Erlang [Arm97] and MultiLisp [RHH85]. What characterizes these concurrent programming
languages is that they provide the programmer with explicit control over concurrency in pro-
gramming model through some set of primitives enabling the creation of concurrent activities,
and defining their possible interaction.

Generally speaking, these concurrent programming languages adopt one of two approaches to
concurrency; synchronous or asynchronous. With the asynchronous model, system components
can execute in parallel, independently and at different frequencies. In contrast, the synchronous
model assumes the presence of some global clock that keeps all system component executions in
synchrony.

Erlang, developed as base for the creation of large, dynamic software systems, such as telephone
switches, is an example of a language exploiting the asynchronous model, specifically based on an
actor-based [Agh86] approach. Generally, in an asynchronous model, activities are programmed
to react independently to external stimuli, triggering their execution. Activities typically interact
by some means of asynchronous communication, such as Futures [RHH85] (or Promises [LS88])
used in MultiLisp, shared memory abstractions, or message-passing systems as used by Erlang
where messages are put on the activities’ inbound queues (if they match some interest pattern)
thereby triggering the subsequent execution of the receiver activities.

Although concurrent programming models effectively address the issue of handling concurrency,
they are typically non-deterministic in their execution, i.e., the sequence with which the activities
are executed is unknown at compile-time. Furthermore, the time-dependent handling is most
often not explicit in the programming model, and their semantics often vague. Consequently,
when it comes to classical concurrent systems it is non-trivial to reason about their predictability,
a crucial property when temporal constraints of a real-time systems have to be satisfied.

18 CHAPTER 2. RELATED WORK

2.3.2 Synchronous Programming Models

Synchronous languages, like Esterel [BG92], Lustre [CPHP87] and Signal [GGB87], build upon
a deterministic concurrency model. Shared by this group of languages is a perfect synchrony
hypothesis [BB02] that satisfies the temporal constraint through a conceptual assumption of
instantaneousness within the system. Here, instantaneous means that reaction, computation
and communication within the system takes no time, or, conceptually, that the program executes
on an infinitely fast machine. While the assumption of infinitely fast machines is usable when
verifying the correctness of synchronous programs, it must be relaxed to be implemented on real
computers. Typically, a notion of logical time, with a global clock having predefined intervals,
is used.

Hence, a synchronous program describes a total ordered sequence of activities that are executed
at different logical ticks in a global clock. Activities occurring at the same clock tick are con-
sidered concurrent, and the remaining activities simply follow their given order according to the
clock. Once triggered by an incoming event, activities perform computation and possibly com-
municate with other activities by generating new events in zero time. Consequently, activities
are conceptually able to produce their outputs synchronously with their inputs within the same
clock tick.

With this scheme determinism in the program execution is ensured, no matter how any con-
current activities are interleaved. One interesting question is, of course, how the zero time
hypothesis is achieved in practice. Providing specialized hardware support is one possible ap-
proach [Ber91]. For instance, realizing that zero time is logically equivalent to atomic execution
means that this condition can be satisfied by synchronous hardware. Moreover, it turns out
that satisfying the perfect synchronous hypothesis of zero duration is not strictly necessary in
order for a synchronous program to run correctly. Rather, the logical correctness criteria of syn-
chronous programs is that any input can be processed, and possible results being output, before
any new input can occur. For synchronous programs running on normal hardware architectures,
this condition can be satisfied simply by increasing the time unit of the global clock.

Evidently, synchronous activities are much more predictable than their asynchronous counter-
parts in that (1) the ordering of activities is deterministic and well-known at development-time,
(2) their execution times are known (conceptually assumed to be zero), and (3) the tick intervals
of the global clock are known. Indeed, synchronous programming languages have some desired
properties of real-time systems, such as a high degree of predictability. Nevertheless, the syn-
chronous languages fall short on a number of counts for building real-time systems. For instance,
with synchronous languages the notion of time relates to ordering of events rather than physical
time. Furthermore, although several clocks can be applied in a system, for complex applications
being strictly bound to the time ticks of the global clock might be rather limiting, for instance,
when interacting directly with hardware.

2.3. REAL-TIME PROGRAMMING MODELS 19

2.3.3 Programming Models with Direct Real-Time Support

Several programming models providing real-time support directly have been proposed, the fol-
lowing standing out as the most recent variants; Ada95 [ANS] and Real-Time Java [GB00]
(RTSJ). Furthermore, existing, widely-used languages, such as C [KR80] and C++ [Str91], have
also been adopted for real-time computing by extending them with standardized interfaces to
real-time primitives in the operating system, like the IEEE POSIX standard [CIEE94a] concern-
ing real-time extensions to POSIX P1003.1 standard [CIEE94b].

Compared to the previous approaches of concurrent and synchronous programming languages,
both RTSJ and Ada95 (through its Real-time Annex) provide direct support for real-time idioms
(periodic and event-driven tasks) in the languages, making it easier for the programmer to
obtain the desired real-time behavior in the application. Furthermore, having support directly
in the language significantly increases the level of portability and reusability of the applications.
Finally, since these programming languages in addition all are suitable for general purpose, they
support a wider range of application types, with respect to temporal constraints, than that of
previous approaches.

Both being object-oriented programming languages, Ada and Java provide significant productiv-
ity benefits to the programmer, particularly for programs with code-bases in the millions of lines.
Through object-oriented programming features, such as inheritance, encapsulation, namespace
management, the programmer can much better structure the project and exploit extensive reuse
of code etc. Contrary, as an imperative language C does not share these programming benefits.
Rather, the major advantage of C is in its support low-level facilities, such as giving direct
access to memory addresses etc.. Whereas in Java such low-level facilities mostly are abstracted
away or removed completely, Ada does provide some support through its System Programming
Annex. C++ falls somewhere in between; being object-oriented, it too benefits from the above
mentioned features. At the same time, building on C, C++ too provides rich support for low-
level facilities. However, typically only small portions of an entire program really depend on
this low-level support.

Concurrency support is crucial for most real-time systems, enabling various parts of the system
to respond concurrently to different events (or periods) with different priorities. Ada95 uses a
concurrency model based on a high-level abstraction, a task, rather than the lower-level thread
model adopted by Java. The C language does not provide any concurrency model directly.
Instead, with C/C++, the programmer is left few options but to explore external APIs, such
as the IEEE POSIX thread extension standard [CIEE95], for concurrency. Although such APIs
might provide the needed concurrency, given the fact that the language itself has no built in con-
currency model, the programmer is forced to consider how different libraries affect the behavior
of the application in a multi-threaded setup. Also, the POSIX specification enables flexibility in
the implementation rendering the possibility of portability compromises. These considerations
are not required for real-time programming languages with an integrated concurrency model.

It is well-known that the C/C++ programs can be unsafe, most notably relating to its memory
management and pointer arithmetic. Though many of the errors relating to these can be elim-
inated through various analysis techniques, higher-level programming languages typically offer

20 CHAPTER 2. RELATED WORK

better guarantees to avoiding such errors from ever happening. The type checking performed
by the C/C++ compiler is typically rather liberal, leaving behind many potential errors in
the code. In comparison, to achieve higher soundness, both the Ada95 and Java programming
models promote stronger typing, and thus the type checking performed by the Ada and Java
compilers inevitably will detect many more potential problems in the code. In fact, Ada goes a
step further than that of Java, by for instance having strongly typed scalars.

In terms of memory management, though the language semantics does nothing to prevent it, Ada
implementations typically do not have any garbage collection facility, unlike required by Java. As
a consequence, a running Ada program is not subject to interference from a garbage collector, a
key factor affecting predictability in Java. However, Ada puts the responsibility of doing storage
reclamation on the programmer, a traditional disadvantage with C/C++ programs, attributing
many program errors, such as memory leaks. In contrast, most RTSJ-implementations come
with a the virtual machine providing support for a real-time garbage collector enabling low
latencies, thereby providing a predictable run-time environment and abstractions for controlling
the real-time aspects of the application.

2.4 Restricted Programming Models

Although real-time garbage collection can significantly reduce latency and increase predictabil-
ity, there are applications that have temporal requirements beyond that. Pushing application
latency requirements beyond what is achievable using real-time garbage collection algorithms,
system designers are therefore faced with a dilemma, having to choose between adopting a new
programming language providing better timing guarantees, or achieving the application timing
requirements by restricting their preferred real-time programming language.

An interesting question here is, why one would restrict the programming language, especially
given the inevitable loss of expressive power. Restricting a programming model to a subset is
a pragmatic approach that serves two purposes; eliminating those parts in the programming
model introducing complex (and perhaps ambiguous) semantics and high overheads to have
a more reliable and temporally predictability programming environment, while concurrently
exploiting that the remaining parts are now more specialized (given limited usage patterns in
the restricted code), whereby better techniques can be applied to optimize those parts. The
end result is a programming model subset promoting an efficient and predictable computational
model.

In the Java community, the desire to achieve sub-millisecond latency has given rise to a number
of restricted programming models, each making different trade-offs and emphasize different ad-
vantage. These include the NoHeapRealtimeThread construct of RTSJ, Eventrons and Exotasks
from IBM Research, together with Reflex [SPGV07a] and StreamFlex [SPGV07b] presented in
this thesis. Fig. 2.2 tries to illustrate how these different restricted programming models compare
to each other in terms of their tradeoff of expressiveness and latency guarantees. Furthermore,
the figure also illustrates how standard Java and Java with a real-time garbage collector com-
pares.

2.4. RESTRICTED PROGRAMMING MODELS 21

Expressiveness

Latency

> 1ms

Exotasks

Eventrons

Reflexes

StreamFlex

Java Java/RTGC

RTSJ/NHRT

< 1ms

Figure 2.2: Comparing expressiveness versus worst case latencies of different restricted pro-
gramming models for real-time Java. There is a tradeoff between latency guarantees and ex-
pressiveness. The RTSJ/NHRT is arguably the most expressive programming model with sub-
millisecond latency, but it incurs throughput overheads due to run-time scope checks and faces
the possibility of run-time failures. Contrary, Exotasks, StreamFlex, Reflexes, and Eventrons
all rely on static checking and thus does not require the virtual machine to perform expensive
run-time checks.

2.4.1 Real-time Specification for Java

RTSJ was developed within the Java Community Process as the first Java Specification Request
(JSR-1) [Jav]. The RTSJ provides the means for applications to operate without interference
from the garbage collector, and even preempt the garbage collector, while the collector thread
is running.

Perhaps the most controversial feature added to RTSJ is the extension of the Java memory
management model to include dynamically checked region-based memory. A memory region
is an allocation context that provides a bounded pool of memory shared by threads executing
within it. Individual objects allocated in a memory region cannot be deallocated; instead, all
allocations made within the region are purged automatically in constant time as soon as all
threads exit it.

A memory region is typically used to contain objects with roughly equivalent lifetimes. The use
of nested scopes is needed if within a particular task, there is a subtask that repeatedly allocates
data with non-overlapping lifetimes. Nested scopes complicate reasoning about correctness -
thus, when possible they are avoided. Dynamically enforced safety rules check that a memory
scope with a longer lifetime does not hold a reference to an object allocated in a memory scope

22 CHAPTER 2. RELATED WORK

with a shorter lifetime. This means that a scoped memory region may not hold a reference to
an object allocated in an inner (more deeply nested) scope.

Programming with scoped memory, however, entails a loss of compositionality. This is because
scoped memory adds an extra dimension to memory allocations – where an object has been
allocated. This complicates reasoning about program correctness. For instance, components,
when tested in one memory context, may work correctly, but may break when put in a particular
scoped memory context. Consequently, code that has to run in scoped memory requires greater
care to prevent errors than normal heap-allocated code. It is therefore also not unusual to find
versions of a class specialized for use in scoped memory - and possibly specialized for a particular
arrangement of scoped memory regions.

The RTSJ also introduces two new kinds of threads: real-time threads (RealtimeThread) that
may access scoped memory regions; and no heap real-time threads (NoHeapRealtimeThread),
which are extensions of real-time threads protected from garbage collection latencies. Much like
Reflexes, the NoHeapRealtimeThread achieves this latency avoidance by executing in a memory
region that is out of reach from the garbage collector, and from within here being restricted from
referencing any heap-allocated objects. This restriction follows from the ability of the real-time
threads to preempt the garbage collector, introducing a number of potential memory related
problems, such as the risk of having dangling pointers, or observing objects in an inconsistent
state as they are, for example, when being copied by a garbage collector.

Enforcing the restriction of not referencing any heap-allocated objects poses a fundamental
problem with the NoHeapRealtimeThread. With NoHeapRealtimeThread the unit of restriction
is the thread itself. Being a thread, the NoHeapRealtimeThread is allowed to do everything,
and thus it is impossible to constrain it statically. Consequently, with the lack of any static
ways of restricting the thread, a number of dynamic checks must be applied by the virtual
machine to enforce this restriction. Specifically, the compiler inserts checks such that each read
from or assignment to a field of reference type by the NoHeapRealtimeThread is guarded by
read- and write-barriers, which are basically simple prologues of code executed to ensure safety
before the actual read/assignment operation. Inevitably, executing these checks upon each field
read/assignment introduce an execution overhead [PV06]. Aiming for sub-millisecond execution
intervals, avoiding such a run-time overhead is crucial. In comparison, with Reflexes, the type
restrictions are enforced statically, thereby avoiding the need to apply any run-time checks.
This is made possible from the fact that with Reflexes the thread executing the task is not
manipulable. Instead, the unit of restriction is the task itself rather than the thread, whereby it
is easier to statically enforce restrictions. In fact, of the existing restricted programming models,
only the RTSJ actually uses the thread as the unit of restriction.

Despite being shielded away from referencing heap-allocated objects, and executing a separate
memory region, the NoHeapRealtimeThread is still subject to problem of lacking isolation be-
tween real-time and non-real-time parts of the system. Hence, a NoHeapRealtimeThread can
block on acquiring a monitor held by an ordinary Java thread. For instance, this can hap-
pen if both the NoHeapRealtimeThread as well as the ordinary Java thread have synchronized
access to some shared data allocated in the RTSJ-defined ImmortalMemory region, in which al-
located objects can be referenced by both threads. To make matters worse, should the ordinary

2.4. RESTRICTED PROGRAMMING MODELS 23

Java thread happen to trigger a garbage collection, while the NoHeapRealtimeThread is being
blocked, the NoHeapRealtimeThread may experience unbounded blocking.

2.4.2 Eventrons

Achieving sub-millisecond response time in Java has been the topic of numerous research papers,
and several programming abstractions have been proposed with this objective in mind. Even-
trons [SAB+06] is one such proposal for a new programming abstraction, which successfully
manages to bring high responsiveness to real-time Java. Eventrons provide a simple program-
ming model that is both efficient and provably safe. Contrary to the NoHeapRealtimeThread,
Eventrons defines a task as the restricted unit, rather that the thread executing it.

One area that differentiates the various approaches relates to the trade-off between expressiveness
and safety of memory operations. Static safety often comes at the expense of expressive power.
The RTSJ defines an expressive API which supports many different real-time programming
styles. However, with RTSJ any operation on a reference variable can result in an exception,
and since no static checks are applied to prevent such errors, RTSJ relies on a number of
expensive dynamic run-time checks. In contrast, both Reflexes and Eventrons provide stronger
memory safety guarantees; once a program is successfully verified, no memory related errors will
ever occur. Following from this, both Eventrons and Reflexes can be expected to outperform
implementations of the RTSJ as they do not need run-time checks on reads/writes of references.

With the cost of increased predictability at the expense of expressive power, Eventrons are rather
restrictive and introduce a number of significant restrictions to the Java language and the RTSJ
APIs: they prevent allocation and mutation of any pointer structure. Reflexes fall in between;
they are strictly more expressive than Eventrons but clearly less so than RTSJ. Specifically,
Reflexes are executed in standard scoped memory enabling both allocation as well as pointer
manipulation in so far that the latter complies with the standard scoped memory policies.

Much like Reflexes, Eventrons circumvent interference with the collector and allow user code
to arbitrarily preempt the garbage collector. This is safe if: (1) the code does not allocate,
(2) performs no blocking operations, and (3) that in the part of the heap accessed by the
Eventrons code all reference fields are immutable and stay fixed through the execution. These
safety properties are validated per Eventron using a powerful inter-procedural static analysis
carried out precisely at application initialization-time, as it requires access to the in-memory
data structures manipulated by each Eventron. Once validated, Eventrons do not require further
run-time checks on memory access operations (as opposed to the NoHeapRealtimeThread in
RTSJ).

In terms of development productivity, whereas correctness for Eventrons is only ascertained
after deployment, the Reflex approach to static safety is arguably better as it relies on a small
extension to the Java type system. Any safety problems found in the code are thus detected
during development and reported to the programmer, rather than being deferred to run-time.
Finally, Reflexes improve on Eventrons in term of startup times and JVM footprint as Eventrons
must perform data flow analysis and compilation of the bytecode at startup. Oppositely, one

24 CHAPTER 2. RELATED WORK

could reasonably argue that with Reflexes there is an issue of trust, since the Reflex code is only
verified for type-safety statically; not at startup-time. In other words, any malicious changed
made to Reflex code between compile time and run-time would not be detected nor prevented.

2.4.3 Exotasks

Exotasks [ABI+07] is another restricted programming model that extends Eventrons on a num-
ber of accounts. Most importantly, Exotasks attempt to tackle the interesting problem of how to
ensure time-portability for real-time applications across platforms. Exotasks addresses this issue
using a scheduling policy based on logical execution time (LET) inspired by Giotto [HHK01].

As its name implies, Exotasks are (like Eventrons and Reflexes) task-oriented. Where Even-
trons are independent tasks only, Exotasks are organized in a graph connected by commu-
nication channels. Unlike Reflexes, which use a restricted capsule type to achieve zero copy
communication-by-reference between tasks, Exotasks only allow for communication between
tasks through scalar values or by deep copying objects passed over the channels between Ex-
otasks. Whereas in Eventrons ordinary Java threads could communicate with Eventron tasks
through scalar values, Exotasks completely prohibit this external communication. In contrast,
with Reflexes external communication with ordinary Java threads is possible through scalars
and transactional methods.

In terms of memory management, Exotasks, like Reflexes, are less restrictive than Eventrons in
that they are permitted to perform allocation in their private memory regions during run-time.
To manage memory allocations here, each private memory region of the Exotasks is maintained
by a private garbage collector. The collector is scheduled to run in succession to each execution of
the Exotask, assuming there is garbage to collect, thereby not causing any interference between
the time-critical code and the garbage collector. In contrast, Reflexes do not have garbage
collection of the private memory region. Instead, a separation of objects according to their
lifetime is proposed, where an object then either lives for the lifetime of the Reflex instance
itself, or for a periodic execution only.

2.4.4 The Ravenscar Profile for Ada

Restricted programming models are by no means exclusive to the Java language. The Ravenscar
Profile [Bur99] is an example of a restricted programming model for Ada designed for safety-
critical hard real-time systems. It has been standardized as part of Ada 2005 providing a subset
of the Real-time Annex of the Ada language standard [ANS].

The main purpose of this language subset is to remove high overhead or complex features to
improve memory and execution time efficiency, and to increase reliability and predictability,
by removing non-deterministic and non-analyzable features. The programs following these re-
strictions follow a computational model that is deterministic and predictable, enabling static
analysis in terms of functionality and timeliness before execution, e.g, schedulability analysis
and calculations of bounds on memory-usage.

2.4. RESTRICTED PROGRAMMING MODELS 25

Applications consist of a number of tasks, communicating through protected objects. With
applications declaring Profile(ravenscar) pragma, a set of restrictions are enforced by the
compiler on the application code. These restrictions mostly relate to tasks, protected objects
and delay statements.

The Ravenscar Profile mandates a scheduling model based on a priority preemptive scheduling,
where each task is assigned a priority. This scheduling model is designed to minimize the
upper bound on blocking time, to prevent deadlocks, and be verifiable that there is sufficient
processing power available to ensure that all critical tasks meet their deadlines. Finally, the
scheduling model assumes a single processor only [Rui05].

In terms of memory management, the Ravenscar Profile prohibits any dynamic allocation after
system initialization time for the purpose of schedulability analysis. Consequently, the set of
tasks in the application, and the protected objects with which the tasks communicate, must be
known at system initialization time. Knowing these sets, the memory requirements of executing
the task sets can be calculated and bounded. As mentioned earlier, Ada implementations rarely
provide any garbage collection affecting predictability, a crucial property for safety-critical ap-
plications. Furthermore, the Ravenscar Profile prevents tasks from acquiring dynamic memory
from the standard storage pool as this usage cannot be statically established [ANS]. Rather,
aggregate data-structures must either be declared globally, such that the memory requirements
can be calculated at initialization time, or the required storage must be allocated on the task
stacks. Finally, tasks and protected objects are also prohibited from being deallocated.

Besides requiring fixed sets of tasks and protected objects, other restrictions are also applied to
how tasks communicate. More specifically, a static synchronization and communication model
is required, where tasks only communicate using protected objects, as opposed to using so-called
rendezvous – the basic mechanism for synchronization and communication of Ada tasks. The
protected objects have monitor-like behavior for ensuring sequential access to these objects.
The Ravenscar Profile enforces that having entered such a monitor, the task is restricted from
performing any operations that could cause the task to become internally suspended, which could
cause other tasks to be blocked on the object. Furthermore, the Ravenscar Profile prevents task
deadlocks on accessing such protected objects by requiring that protected objects are assigned
a ceiling priority that is higher than the priorities of the tasks calling them.

26 CHAPTER 2. RELATED WORK

Part II

Programming Model

27

3
The Reflex Programming Model

This chapter provides an overview of the Reflex programming model, introduces the basic con-
cepts of the model, including the API, memory management and scheduling, and finishes off by
demonstrating an example of a challenging real-time network Intrusion Detection System.

3.1 Overview

The Reflex programming model is a simple, statically type-safe programming model facilitating
the construction of highly-responsive applications in the Java programming language.

Reflexes provide programming abstractions that makes it easy write and integrate simple peri-
odic tasks or complex stream processors, both observing real-time timing constraints in the sub-
millisecond range, into larger Java applications, and provide means for type-safe, obstruction-free
interaction between the two. The Reflex programming model is non-intrusive in that it does
not require changes to the standard Java syntax, nor does it require refactoring of existing code,
permitting a high degree of reuse of standard libraries and legacy code.

Type-safety is achieved through a set of static safety checks inspired by an implicit ownership
type system imposing a number of restrictions to the standard Java type system. The restrictions
ensure isolation of time-critical computational activities – thus allowing multiple activities to
run in parallel without blocking or experiencing data races – and provides a type-safe region-
based memory model that permits these activities to compute even when the garbage collector
is running, thereby circumventing garbage collection interference. These restrictions apply only
to the time-critical activities, leaving the time-oblivious parts of the Java application unaffected,
significantly increasing the ability to reuse and integrate legacy code.

29

30 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

The restrictions on the time-critical code are enforced statically at compile time through an
extension of the standard Java compiler, mandating an extra pass over the successfully compiled
Java source code. An interesting aspect of the restrictions is that although they put constraints
on what the time-critical code can perform, they are not more restrictive than to allow time-
critical code to be programmed using most of standard Java library classes. By enforcing the
type restrictions statically rather than during run-time, the Reflex run-time engine can bypass
the expensive run-time checks by the virtual machine, thus avoiding any negative impact on the
performance of the real-time threads, a significant drawback of NoHeapRealtimeThread in the
RTSJ.

Finally, Reflexes relies on a minimal extension set to the virtual machine, providing support for
region-based memory, preemptible atomic regions [MBC+05], and priority preemptive schedul-
ing.

3.2 Design Criteria

The inspiration to the Reflex programming model comes from the RTSJ. At first glance, one
might wonder what added value that the Reflex programming model brings over and above
RTSJ’s NoHeapRealtimeThread, which, after all, is designed explicitly for real-time tasks with
minimal latency requirements, and which is supported by all Java real-time virtual machines.
However, as reported extensively in the literature, experiences implementing [BR01, CC03,
PV03, ABC+06] and using [BCC+03, NB03, BN03, PFHV04, PV06] RTSJ have revealed a
number of serious deficiencies. In particular, these deficiencies center around the scoped memory
model of RTSJ, as described earlier.

With these deficiencies in mind, we have pursued a restricted programming model driven by the
following design criteria:

3.2.1 Safety

A real-time program should never experience any memory related run-time errors. In contrast,
with the RTSJ scoped memory model, and in particular in combination with the NoHeap-
RealtimeThread, any operation on a reference variable can result in a memory related run-time
exception.

Inevitably, preventing such errors from occurring during run-time means that the programming
model has to rely on some form of static checking to eliminate such potential risks before the
program starts. For this to be feasible, the programming model must facilitate such checking,
and this reveals one of the core problems of the NoHeapRealtimeThread construct of the RTSJ. In
RTSJ the restricted entity is the NoHeapRealtimeThread. Being a thread (specifically, a subclass
of java.lang.Thread), the NoHeapRealtimeThread can do anything, and thus restricting it
statically is impossible.

In contrast, Reflexes as well as both Eventrons and Exotasks propose alternative entities of

3.2. DESIGN CRITERIA 31

restriction. For instance, the Reflex programming model proposes a ReflexTask construct as
the restricted entity. Through applying restrictions on these entities, the Reflex programming
model as well as both Eventrons and Exotasks provide stronger run-time guarantees than RTSJ;
once a program has successfully been verified according to the safety checks, errors relating to
referential integrity are guaranteed not to occur.

3.2.2 Expressiveness

Guaranteeing static safety in the programming model by restrictions comes at the expense of
expressive power. Whereas the RTSJ has a rich API that supports many different styles of doing
real-time programming, Eventrons is rather restrictive, for instance, prohibiting the program
from doing any dynamic allocation and mutation of reference types. Reflexes and Exotasks fall
in between; they are strictly more expressive than Eventrons, both permitting limited allocation
and manipulation of reference types, but clearly less so than RTSJ.

The balance here is how to restrict the programming model just sufficiently, and in a general
manner, in order to ensure the static safety guarantees without concurrently limiting the expres-
siveness to such a degree that programming with it becomes inconvenient, hindering adoption,
or even rendered useless for certain types of real-time applications.

In the end, the true measure for the right level of expressiveness is a large base of applications
successfully implemented with the use of the programming model in question. Unfortunately,
there are only a handful of RTSJ programs available in open source form. Nevertheless, we have
successfully implemented a variety of applications ranging from applications with a single, peri-
odic real-time task, such as an audio-processing application converted from Eventrons [SAB+06],
and a more realistic avionics collision detector application, to more complex real-time stream
processors, such as a network intrusion detector system inspired by [SGVS99] and various digital
signal processing applications, such as a filter bank calculation converted from [TKA02].

3.2.3 Simplicity

Correctness is often correlated with simplicity. In that respect both Eventrons, Exotasks and Re-
flexes provide programming models that are simpler and easier to use than RTSJ, and following
from this, the correctness of the applications is easier to establish. For instance, an RTSJ
program might run for hours before reaching a piece of code violating the memory integrity
of the scoped memory model. Reproducing and debugging such violations is cumbersome and
often non-trivial.

In contrast, the Reflex approach to static safety is arguably better as it relies on a small extension
to the Java type system. With this approach, a Reflex program performing illegal memory
operations will be caught early in the development phase, resulting only in compiler errors with
direct references to the violating statements in the Java source code. Correctness for Eventrons
is only ascertained after deployment, and while this is certainly better than with RTSJ, it may be
harder for end-users to interpret error messages produced by a sophisticated program analysis.

32 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

3.2.4 Efficiency

Benefitting from the fact that the correctness of the real-time programs is established prior to
actual run-time, Eventrons, Exotasks and Reflex programs are expected to outperform imple-
mentations of RTSJ as they do not need expensive run-time checks in the form of non-trivial
read and write barriers around all reference operations to check for potential violations. Not
having to apply these run-time checks, a source to a significant execution overhead [PV06] can
be avoided.

Likewise, through a combination of static safety restrictions and support for obstruction-free
interaction between ordinary Java threads and real-time tasks, Reflexes do not have to support
priority inversion avoidance, and, finally, Reflexes have simpler memory region semantics than
RTSJ. Compared to Eventrons and Exotasks, the Reflex programming model provides improve-
ments in term of startup times and virtual machine footprint as the others must perform data
flow analysis and inspection of the bytecode at startup.

3.3 Programming with Reflexes

A Reflex program consists of a graph containing a non-empty collection of nodes connected
in some topology through a number of edges. The nodes in the graph represent Reflex tasks
and the edges represent unidirectional communication channels connected between two distinct
tasks. This choice relates directly to graph-based modeling systems, such as Simulink [Sim] and
Ptolemy [Lee03], that are often used to design real-time control systems, or to stream-based
programming languages like StreamIt [TKA02]. Fortunately, a single task is just a degenerate
case of a graph, and so selecting a graph-based approach does not result in any fundamental loss.
A Reflex graph and its tasks are constructed as a standard Java program following standard
Java programming conventions, and can thus be constructed using standard Java development
tools, such as IDEs and compilers.

A Reflex graph can run in pure isolation on the virtual machine or as part of a larger Java
application. Being integrated with a Java application, ordinary Java threads can interact with
the Reflex graph by invoking special methods on one or more Reflex tasks in the graph. Fig. 3.1
illustrates a Reflex graph consisting of three Reflex tasks, each in their own memory region, inter-
connected with unidirectional communications channels and its integration and interaction with
a plain Java application, represented through an ordinary Java thread.

The Reflex task acts as the basic computational unit in the graph, consisting of user-defined
persistent data structures, typed input and output channels, an (implicit) trigger on channel
states, and user-specific logic implementing the functional behavior of the task – the activity.
In order to ensure low latency, each task lives in a partition of the virtual machine’s memory
outside of the control of the garbage collector. Furthermore, the tasks in a graph are executed
with a priority higher than ordinary Java threads. This allows the Reflex scheduler to safely
preempt any ordinary Java thread, including the garbage collector. Hence, Reflex tasks can run
without fear of being blocked by the garbage collector. This memory partitioning also serves

3.3. PROGRAMMING WITH REFLEXES 33

Public Heap

 Java
Thread

 Java
Object

 Reflex Graph

Time-Oblivious Code Time-Critical Code

Figure 3.1: Illustration of a memory representation of a Java application consisting of a time-
oblivious and a time-critical Reflex Graph. The Reflex Graph consists of three inter-connected
Reflex tasks allocated in separate private memory areas, and its integration and interaction with
normal, time-oblivious Java code.

to prevent synchronization hazards, such as a task blocking on a lock held by an ordinary Java
thread, which in turn can by blocked by the garbage collector. Instead, transactional methods
are used for non-blocking synchronization when Java threads need to communicate with tasks
within the Reflex graph.

In terms of memory management, a Reflex graph is composed of three kinds of objects: stable
objects, transient objects and capsules. Stable objects include the task instance itself and its
internal state, their lifetime is equal to the lifetime of the task. Transient objects live as long as
the execution of the task’s activity. This split is motivated by real-time programming practices
where a periodic task has persistent data and also manipulates temporary data structures that
are reclaimed when it completes the current period’s work. Finally, capsules are data objects
used as messages between tasks, and are severely restricted in which data types they can carry.
The capsule objects are managed by the Reflex run-time engine in a separate communication
area. Specifying whether an object is stable, transient or capsule is done at the class level.

The Reflex run-time environment can execute multiple disjoint Reflex graphs concurrently. The
run-time engine includes a scheduler that is responsible for releasing tasks. While a task can
become schedulable any time new data appears on one of its associated input channels, the
scheduler does not make guarantees of timeliness. It only ensures that each task will eventually
be released. If the programmer requires timely execution of tasks, clocks must be used. When a
task is connected to a clock, the scheduler arranges for the target task to be released according
to the provided period. Hence, with this scheme a simple periodic activity would be modeled
in a Reflex graph as a Reflex task connected to a clock. While multiple threads can drive the

34 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

execution of tasks in the graph, Reflexes ensures that the individual tasks are single-threaded.

3.3.1 Reflex Graph

A Reflex graph is constructed by extending the built-in abstract ReflexGraph class, and the
programmer must implement one or more constructors. Fig. 3.2 shows an excerpt of the
ReflexGraph class. The constructor is responsible of creating the tasks in the graph and con-
necting them according to the desired target topology. Once a graph is fully constructed, the
constructor must invoke the validate method to check the graph. The validation, which is
performed at run-time, only checks the well-formedness of the graph, and is not concerned
with referential integrity of memory operations; those checks are performed statically during
compile-time, and have at this point been established.

public abstract class ReflexGraph {

public ReflexGraph() {...}
public ReflexGraph(int priority) {...}
public ReflexGraph(int priority, int commAreaSize) {...}

public final void start() {...};
public final void stop() {...}
protected final void validate() throws ValidationException {...}

protected final ReflexTask createTask(Class taskClass) {...}
protected final ReflexTask createTask(Class taskClass, int stableSize, int transientSize) {...}
protected final Clock createClock(int periodInMicrosecs) {...}
protected final ReflexTask createRRSplitter(int count) {...}
protected final ReflexTask createDupSplitter() {...}
protected final ReflexTask createJoiner(int count) {...}

protected final void connect(Clock source, ReflexTask target, String targetField) {...}
protected final void connect(ReflexTask source, String sourceField,

ReflexTask target, String targetField, int size) {...}
protected final void connect(ReflexTask source, String sourceField,

ReflexTask target, String targetField, int size, int rate) {...}
}

Figure 3.2: An excerpt of the abstract ReflexGraph class to be subclassed by the programmer
in order to create and connect tasks in the graph according to user-specific requirements.

The graph validation involves (1) verifying that all channels are connected to fields in tasks
expecting the same input/output types, (2) that there is sufficient space available within the
private memory areas of the tasks and the communication area, if needed, and (3) that clocks are
configured with periods supported by the underlying virtual machine.1 Note, in this validation,

1Most operating systems can provide periods in the millisecond range. In our experiments, we use a release of
Linux where the kernel has been patched to provide microsecond periods.

3.3. PROGRAMMING WITH REFLEXES 35

cyclic graphs do not pose a problem as they do not necessarily run indefinitely, e.g., if a task
outputs no elements on its output channel(s). If during validation, any violations to the well-
formedness of the graph are found, the validate method will throw a ValidationException.

From the point in time where the graph has passed the validation checks, the topology of the
graph will be fixed throughout the lifetime of the graph. Hereafter, the start method can be
invoked, causing the tasks in the graph to be scheduled. Any attempt to the invoke start
method on a graph that either has not been validated at all, or did not pass the validation, will
cause for an unchecked exception to be thrown.

The base ReflexGraph class provides methods for the reflective creation of tasks and channels,
including clocks, as well as connecting the tasks. Reflection is needed because the creation of
both channels and tasks must be allocated in the specific memory areas, it would be unsafe
to allocate any of these objects in the heap as they would then be reachable to the garbage
collector.

Finally, in order to enable communication between tasks in the graph, the ReflexGraph class
provides a base constructor that causes for the creation of a communication area having the size
of the provided constructor argument.

3.3.2 Reflex Task

The task is the computational unit in a Reflex graph, and is constructed by extending the
built-in abstract ReflexTask class. The ReflexTask is executed by a real-time thread that is
running at a higher priority than any other thread, including the garbage collector, in a priority
preemptive manner. More specifically, the task is executed by a real-time thread having the
priority provided to the ReflexGraph.

The programmer is responsible for providing an implementation of the abstract execute method,
which defines the functional behavior of the task. Fig. 3.3 shows an excerpt of the ReflexTask
class.

public abstract class ReflexTask implements Stable {

public ReflexTask(int transientSize, int stableSize) {...}
public abstract void execute();
public void initialize() {}
protected final Capsule makeCapsule(Class c) {...}
}

Figure 3.3: An excerpt of the abstract ReflexTask class to be subclassed by the programmer.
The ReflexTask class is the computational unit in the Reflex graph, and its execute method
must specify the user-specific functional behavior. The method initialize is declared with an
empty body that can optionally be overridden.

36 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

The execute method of each task is invoked by the scheduler when the task is schedulable. By
convention, the execute method is expected to eventually yield and give control back to the
Reflex run-time environment – in most applications it would be a programming error for an
activity to fail to terminate as this could block all tasks in the entire graph and cause serious
deadline misses to occur.

A task is schedulable upon the arrival of data on one of its input channels according to the
specified rate on the channels. More specifically, the rate specifies how much data the task
needs on its individual input channels in order to execute. By default, for each channel this rate
is set to one, but the programmer can optionally override the default input rate on the incoming
channels, providing an alternative rate when a task is schedulable.

Finally, the ReflexTask class also declares a method initialize. The purpose of this method is
to initialize the Reflex task, if necessary, before the tasks actually start. As such, the initialize
method is invoked once during the lifetime of the task. The body of the initialize method
is per default empty, but can optionally be overridden to provide task specific behavior. The
method is invoked by the Reflex run-time engine on all tasks in the Reflex graph as the first
thing when the start method on the ReflexGraph is invoked. Once the initialize methods
have all been invoked in the graph, the clock task(s) in the Reflex graph can then be started.

3.3.3 Private Memory Region

Like other restricted programming models, Reflexes execute in complete isolation from the public
heap garbage collector by letting the Reflex task run in its own heap-allocated private memory
region, illustrated in Fig. 3.4. The ReflexTask instance itself is allocated within its private
memory region to shield it away from the public heap garbage collector, while at the same time
being reachable by ordinary Java threads, facilitating communication between the Reflex task
and the plain Java application.

The memory region of a Reflex task is partitioned between a stable heap and a transient area.
This separation is motivated by the requirement to keep latency at an absolute minimum in
order to achieve the fastest response times possible. The sizes of both memory regions are
chosen when instantiating the task, as reflected in Fig. 3.3. Since the size of the stable heap
is fixed once the task is instantiated and the area is not garbage collected, allocations made
in the stable heap must be managed carefully by the programmer to avoid OutOfMemoryError.
The transient area is also fixed in size and serves as a per-execution allocation scratchpad. For
the execute method, the default allocation context is always the transient area. Once the
invocation of the execute method is complete, all allocations made in the transient area during
its execution will be naively reclaimed in constant time, no expensive tracing is needed; any
allocations made on the stable heap will remain. The strategy behind this design choice is that
allocation of persistent state is the exception, and happens on the basis of computations and
allocations made in the transient area.

Compared to this, in Exotasks [ABI+07] each task does not separate its private memory areas,
but rather operates with stable heap, which is garbage collected either per schedule or on-

3.3. PROGRAMMING WITH REFLEXES 37

Public Heap

Stable Heap
Transient

Private Memory Area

ReflexTask

Figure 3.4: The memory model of a Reflex task enclosed in its own private memory region (green
area) within the public heap. The figure illustrates a Reflex task (hexagon) in a private memory
region with its object graphs of stable (red) and transient (orange) objects (circles).

demand. While this approach is attractive from a programming standpoint, as the programmer
has to worry less about memory consumption, and efficient compared to a general garbage
collection scheme, given the relatively small size of the stable heap and thus the root set to
be collected, this approach might still be inappropriate for certain types of applications. For
instance, for applications having minimal latency requirements, but which at the same time
allocate a significant amount of data during each execution round to achieve a simple result set,
this approach will push up the barrier on the fastest possible response times.

3.3.4 Object Lifetime Distinction

Following the separation of the private memory area, the Reflex programming model allows for a
bimodal distribution of object lifetimes, and maintains two object graphs containing respectively
stable and transient objects. Objects allocated in the stable heap live as long as the Reflex task
itself, whereas objects allocated in the transient area only live for as long as the invocation of the
task’s execute method. This distinction in object lifetime fits well with the general execution
pattern of periodic tasks, where data is allocated temporarily to generate the period’s result
that should survive several periods.

Specifying whether the allocation context for an object is the stable heap or the transient area of
the Reflex task is done at the class level. By default, data allocated by a Reflex task is directed
to the transient area. Only objects of classes implementing the Stable marker interface will
be put on the stable heap and persist between invocations. Fig. 3.5 shows an example of a
declaration of a stable class Buffer.

38 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

public class Buffer implements Stable {...}

Figure 3.5: An excerpt of the Buffer class showing its declaration as a Stable class, whose
instance is to be allocated in the stable memory context of the task’s own private memory area.

The ReflexTask base class is declared stable, as seen in Fig. 3.3, and will always be allocated
in the stable heap of its own private memory area. Given the different lifetimes of the objects,
for type safety reasons, stable objects are restricted to referencing only objects of stable type,
whereas transient objects can reference both objects of transient and stable type. Referencing
a transient object from a stable object could lead to a dangling pointer once the transient area
has been reclaimed. Finally, allocations made by Reflex tasks are never directed to the public
heap; either they occur in its transient area or in the stable heap.

By using class granularity for distinguishing between stable and transient objects, we relinquish
the possibility of using the same class in both memory contexts. The alternative approach would
be to introduce some per-object annotation, e.g., one could write code like @stable HashMap
h = @stable new HashMap(). Unfortunately that is not sufficient. Specifically, the problem
is that the code within the HashMap class may itself perform allocations, and those allocations
would have to be destined in the exact same stable memory context to be consistent. Here, an
approach treating the annotation as a type parameter, e.g. new HashMap<@stable>(), would
help. However, this approach suffers a major drawback. While object granularity allows a
greater degree of reuse, it is more heavyweight and requires retrofitting all library classes with
generic parameters. The added effort and complexity does not seem warranted.

Another design choice is that the transient area is the default allocation context. Unlike for
stable classes, transient classes have no restrictions on the types of their fields. This choice
reflects the hypothesis that stable code is the smaller part of a Reflex and that it is less likely
that we need to reuse legacy libraries in stable classes (part of the reason is that the allocation
behavior of many library classes is not appropriate for an environment where objects are not
reclaimed).

3.3.5 Stable Arrays

As mentioned, the default allocation context within a Reflex task is its transient area, except for
classes explicitly marked stable. Following this design choice, primitive array objects allocated
using statements such as int[] ia = new int[10] are thus always allocated in the transient
area. As stable objects are restricted from referencing transient objects, it follows that stable
objects cannot reference standard array objects.

To facilitate that stable classes can contain reference primitive array types, the Reflex API
introduces a StableArray base class and provides a set of subclasses for each of the available
primitive types. These StableArray classes encapsulate the different primitive arrays, and
as their names imply, enable the allocation of these arrays in the stable heap. Fig. 3.6 shows

3.3. PROGRAMMING WITH REFLEXES 39

an excerpt of the abstract StableArray class. Besides its declaration as a stable class, its
constructor is noteworthy, taking the primitive type and the size of the array type to be created
and encapsulated.

public abstract class StableArray implements Stable {
protected StableArray(Class type, int size) {...}
protected final Object getArray() {...}
}

Figure 3.6: An excerpt of the StableArray base class for encapsulating arrays of primitive types.
The constructor takes the primitive type and the size of the array to be created and encapsulated.
The getArray method is used by the extending subclasses to access the encapsulated array.

Fig. 3.7 shows an excerpt of the StableIntArray class extending the StableArray class and
facilitating the encapsulation of primitive integer arrays.

public class StableIntArray extends StableArray {
public StableIntArray(int size) {

super(int.class, size);
}
public void set(int index, int value) {

((int[]) getArray())[index] = value;
}
public int get(int index) {

return ((int[]) getArray())[index];
}
}

Figure 3.7: Example of a concrete extension of the StableArray base class for the encapsulation
of primitive integer arrays.

Besides having the ability to create arrays of primitive types through the use of the StableArray
classes, the Reflex programming model also enables the creation of arrays of stable reference
type. In fact, if a class is declared stable then the array class derived from that class is simply
considered stable too.

3.3.6 Task Exceptions

Given this object lifetime distinction, exception handling within a Reflex task requires special
attention. When an exception is thrown within a Reflex task, the object is created with normal
Java semantics. Given the default allocation context of the Reflex task, the exception object and
its stack trace are created in the transient area within the Reflex task, and will thus be reclaimed
like any other object following the completion of the invocation of the execute method. If the

40 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

exception propagates out of the execute method, the stack trace is printed and the thread is
terminated.

3.3.7 Task Reclaiming

A Reflex task with its private memory region can be reclaimed by the public heap garbage
collector once the entire graph to which it belongs is no longer active, and the task (and the
graph it belongs to) is unreachable in the object graph of the Java application using it. Invoking
the stop method on the ReflexGraph eventually causes the graph to become inactive.

3.4 Reflex Communication

Integrating a Reflex graph with real-time tasks into a time-oblivious Java application necessitates
some form of communication means in order to share data. Likewise, the real-time tasks them-
selves might have a requirement to communicate internally in the graph. In time constrained
systems using common practice synchronization operations to facilitate such communication is
not appropriate and will cause for several problems.

The Reflex programming model enables type-safe, non-blocking communication as an alternative
to using the common practice synchronization operations. The approach described facilitates
two types of communication; (1) between the individual Reflex tasks in the graph – inter-task
communication, and (2) between ordinary, time-oblivious Java threads and time-critical Reflex
tasks – in both cases without causing the time-critical Reflex tasks to be blocked on a lock and
miss deadlines.

3.4.1 Challenges Communicating between Tasks

The obvious challenge to be addressed to start with is how in the first place to share data between
tasks that possibly can be executed by different real-time threads. Common programming
practices enabling data to be shared safely use some sort of synchronization scheme based on the
mutual exclusion. Java provides two different synchronization idioms, as illustrated in Fig. 3.8,
based on either method synchronization or block synchronization within a method.

Looking apart from the general, obvious risk of experiencing deadlocks when using a lock-based
scheme, for non-real-time applications such synchronization operations nevertheless make perfect
sense as they have no explicit temporal requirements. In other words, the correctness criteria
of such applications does not include the timing of the behavior. However, in real-time systems
this mutually exclusion scheme can have some devastating side effects that could easily cause for
temporal behavior of the tasks to be seriously compromised. Clearly, using such a lock-based
scheme for sharing data with time-critical tasks is problematic.

Another challenge is what data types to allow to be communicated between tasks. One extreme
would be to allow only primitive types, the approach adopted by the StreamIt project [TKA02].

3.4. REFLEX COMMUNICATION 41

public synchronized void foo() {
...
}

(a)

public void foo() {
synchronized(this) {

...
}
}

(b)

Figure 3.8: The synchronization idioms of the Java programming language (a) method synchro-
nization, and (b) block synchronization.

The advantage of allowing primitive types only is that one does not need to worry about memory
management or aliasing. On the other hand, if one wants to send complex sets of numbers, they
would have to be sent individually in some specific order. While this may be acceptable in
the case of simple data, encoding richer data structures is likely to be cumbersome for the
programmer. However, there are good reasons for restricting the data types transferred between
tasks. As soon as one adds objects to the computational model, it is necessary to provide support
for their automatic memory management. The problem is compounded if garbage collection
pauses are to be avoided. For instance, imagine a task retaining a reference to an object and
sending a reference to the object to another task. When is it safe to reclaim that object? There
is no obvious way, short of garbage collection, of ensuring that the virtual machine will not run
out of memory. One possible strategy for dealing with object communication between tasks
would be to simply deep copy the objects, the approach adopted by Exotasks. In other words,
rather than passing a reference to the object to be communicated, a fresh copy is made of it and
passed to the receiving task. While this is clearly safe and easy to manage in terms of memory,
the deep copying process is expensive and might consume non-trivial time.

3.4.2 Non-Blocking Channels

The inter-task communication in Reflexes is designed with a key requirement in mind; enabling
non-blocking, zero copy messaging between the tasks. A Reflex task communicates with other
tasks through non-blocking channels. A channel is a fixed-sized, typed buffer connecting two
Reflex tasks. Reflexes supports primitive type channels (all of Java’s primitive types) and time
channels holding periodic time stamps. Furthermore, Reflex channels can also carry objects,
though the set of objects is restricted to those of Capsule types. Any Reflex task in a graph is
required to have at least one input channel, except for the special Clock task.

Fig. 3.9 gives an overview of the CapsuleChannel class which is straightforward. The Time-
Channel class, also seen in Fig. 3.9, is different in order to avoid storing, potentially large,
numbers of clock ticks. Hence, it has two methods, one to put a current clock tick in microseconds
on the channel, and one to return the latest unread clock tick.

The operations performed on a task’s channels during a given release are atomic. Once the task

42 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

public class CapsuleChannel extends Channel {
public int size() {...}
public put(Capsule val) {...}
public Capsule take() {...}
public Capsule peek(int i) {...}
}

public class TimeChannel extends Channel {
public void putTime() {...}
public double getTime() {...}
}

Figure 3.9: Excerpts of the CapsuleChannel and TimeChannel classes for transferring respec-
tively Capsule type data and time-stamps between tasks.

starts executing, its channels are logically ’frozen’, no other task is allowed to modify them. All
changes to channels are published when the task successfully completes.

Channels are created upon connecting two ReflexTask instances using the connect method on
the ReflexGraph class, as seen in Fig. 3.2. The method will create the channel with its provided
size, and connect it to the two tasks using the provided references to the source and destination
ReflexTask instances. Specifically, the channel is connected reflectively to the fields in the two
tasks having the names provided as arguments to the method. By default, a channel has a rate
of one, but can optionally be overridden. The rate specifies how many elements the channel
should contain for the target ReflexTask instance to become schedulable.

Channels are allocated in a memory area separate from any of the Reflex tasks using them –
the communication area, as depicted in Fig. 3.10. In the event that the channels carry capsules,
the capsules are also allocated in this memory area. The memory area is, like the task’s private
memory area, free of interference from the public heap garbage collector. The memory area is
fixed-sized, and so the programmer has to carefully scale both the size of the memory area as
well as the number and sizes of the channels that it holds. While this at first appears limiting,
the actual number of capsule types used in an application as well as the instances created of each
type, in our experience, are typically bounded, and thus adjusting the size of the communication
area accordingly is feasible. The actual allocation of the memory area is performed by the Reflex
run-time as part of the instantiation of the ReflexGraph, see the constructor in Fig. 3.2.

The current version of Reflexes does not support growable channels and, in case of overflow,
silently drops packets. Other policies have been considered but have not been implemented.
Variable sized channels, for example, can be added if users are willing to take the chance that
resize operation does not cause for out of memory in the memory area holding the channels.

3.4. REFLEX COMMUNICATION 43

Public Heap

Stable Heap
Transient

Private Memory Area

ReflexTask

Capsules

Stable Heap
Transient

Private Memory Area
ReflexTask

Channel

Figure 3.10: Reflex tasks communicate in zero copy style by passing on references to individual
capsules. These references are pushed and popped from a channel shared by the two Reflexes.
Both channels and capsules are allocated in a separate memory area managed by the Reflex
run-time engine.

3.4.3 Capsules

Capsules, like channels, are designed with one key requirement: allow for type safe, zero copy
communication between tasks in a Reflex graph. This seemingly simple requirement turns out to
be challenging in a region-based system. Indeed, the question of where to allocate capsules, and
when to deallocate them is a difficult one. They cannot be allocated in the transient memory
of a task as they would be deallocated as soon as the task’s execute method completes, leaving
receiving tasks with a dangling pointer. Likewise, they should not be allocated in a task’s stable
memory as that area would quickly run out of space. Instead, as mentioned, the capsules are
allocated from a pool managed by the Reflex run-time engine within the communication area.
The invocation to the makeCapsule method on the ReflexTask class causes for a capsule of the
provided type to be returned. If a free capsule of the given type is available in the pool it is
returned. Otherwise, if possible, a capsule is instantiated in the pool by the Reflex run-time
engine and returned. Reclamation of the capsule into the pool is automatic as soon as the
capsule is not referenced by any task or channel.

There is, however, one case where copying capsules is unavoidable. If a task needs to put the
same capsule on multiple output channels, zero copy semantics cannot be enforced. Rather,
copies are created by the Reflex run-time engine when modifications to channels are published
after the task’s execute method returns.

44 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

In order to guarantee memory safety, Reflexes impose severe restrictions on capsule classes.
Specifically, to preserve isolation between tasks, a task must not retain a reference to a capsule
that has been pushed to its output channel, and a capsule should not retain references to the
task’s stable data. In fact, the thing to notice is that a capsule should not be able to leak any
references, i.e., it should be a reference-immutable construct. We address these requirements
with a number of constraints that ensure that capsules can be used safely. For pragmatic reasons,
however, we restrict the types carried by a capsule a bit further by limiting its field types to
those that are statically determinable to be reference-immutable. Thus, we define a user-defined
capsule to be a subclass of the Capsule class that can have fields which are restricted to either
primitive types, or final unidimensional primitive array types. While these constraints have
not proved too stifling so far, one could lift some of them if they prove to be too stringent,
e.g., by allowing capsules to have final fields of any reference-immutable types. However, such
easing of the constraints would come at the price of more complex set of static checks. Finally,
capsules are maintained solely by the Reflex run-time engine, and the Reflex tasks are restricted
from instantiating capsule instances. This way, we effectively prevent the capsule fields from
being assigned reference type values stemming from inside a Reflex task.

3.4.4 Splitters and Joiners

Concerning communication between tasks, the Reflex API provides special convenience tasks for
supporting data parallelization used in many stream applications. Inspired by StreamIt [TKA02],
the Reflex programming model offers two built-in task types, a splitter and a joiner. The pur-
pose of these special tasks is to enable implementations to multiplex/demultiplex data streams
between Reflex tasks. More specifically, the splitter allows an input stream to be split into N
output streams, and the joiner allows these streams to be merged again into a single output
stream.

Both the splitter and joiner are created on the ReflexGraph class, as seen in Fig. 3.2. As
illustrated by Fig. 3.11, the splitter comes with two different distribution policies; Round-Robin,
and Duplicate. With the Round-Robin policy, the SplitterTask takes the number of elements
provided in the count argument off its input channel and directs them to the next output
channel, following a zero copy round-robin scheme. With the Duplicate policy a zero copy
scheme is not possible as the same element has to go to all N output channels. Rather, the
elements can be put on one output channel with zero copy semantics, but for the remaining N-1
output channels copies of each element must be created and put on the channels. This copying
is performed transparently by the Reflex run-time engine.

The JoinerTask only has round-robin semantics, merging N input streams into a single output
stream by repeatedly taking the number of elements provided in the count argument off each
input channel, one after the other, using zero copy semantics.

3.4. REFLEX COMMUNICATION 45

X

Y

Z

Y X Z

(a) Round-Robin

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

(b) Duplicate

Figure 3.11: Examples of splitter tasks distributing messages on the input channel: (a) using a
round-robin policy with count 1, and (b) using a duplicate policy.

3.4.5 Challenges Communicating with Ordinary Java Threads

Integrating time-critical tasks into a time-oblivious application raises some interesting challenges.
Typically, in such an integrated system, threads are given priorities indicating their importance
to the scheduler. Using a priority preemptive scheduler, the high priority, time-critical task will
be able to preempt the ordinary, time-oblivious Java thread such that it can meet its temporal
requirements. However, just as using lock-based synchronization to share data between time-
critical tasks is problematic, as described earlier, the combination of thread priorities and lock-
based synchronization schemes is equally problematic. Specifically, this combination might lead
to situations of priority inversion, where the high-priority, time-critical task gets blocked and
prevented from – in timely manner – accessing some shared data, to which a lower-priority
thread holds the lock.

A number of well-known techniques exist to prevent priority inversion. For instance, in RTSJ
every Java object has an internal lock that supports priority inheritance. With priority inheri-
tance, a low-priority thread, TL, holding a mutual exclusion lock, L1, to some shared data will
have its priority raised to that of a high-priority thread, TH , if TH gets blocked on L1. How-
ever, assume now that TL itself is blocked on another mutual exclusive lock, L2. With priority
inheritance, the thread holding the lock L2 too must have its priority raised accordingly. In
other words, to get out of a priority inversion situation, the raising of the priority to that of
the high-priority thread, TH , must be applied transitively to any lower-priority thread holding
a lock waited for by TH . Consequently, given the extensive use of locking in common Java pro-
gramming practices, including the frequent usage hereof in the standard libraries, performing
such an operation at run-time can easily lead to a non-negligible run-time overhead.

46 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

Besides the problem of how to synchronize access to shared data, communicating with reference
types between Reflex tasks and ordinary Java threads also contradicts the isolation requirements
of the Reflex memory model, and introduces issues that might compromise integrity of the
memory region. As mentioned earlier, Reflex tasks avoid interference from the garbage collector
by being isolated in separate private memory areas, and thereby not having any references
to/from heap-allocated objects. However, prohibiting any reference types from passing the
memory area boundaries would effectively disable any non-primitive type communication. Thus,
a challenge is how to relax the isolation requirements to allow for certain references to pass the
boundaries, while concurrently ensuring that no other reference could leak in or out of the Reflex
task causing type safety problems.

3.4.6 Obstruction-free Communication with Transactional Methods

Besides the evident ability to communicate safely with ordinary Java threads through primitive
types, Reflexes prevent synchronous operations by replacing lock-based synchronization with an
obstruction-free communication scheme based on a simple form of transactional memory. More
specifically, Reflexes propose a scheme based on methods that have transactional semantics. The
principal behind transactional methods is to let an ordinary Java thread invoke certain methods
on the time-critical task to which it holds a reference. Once inside the transactional method,
the ordinary Java thread can access the data it shares with the Reflex task. Fig. 3.12 illustrates
how an ordinary Java thread invokes a transactional method on a Reflex task passing along a
reference to a heap-allocated object containing data to be put into the shared data structure.

Public Heap

Stable Heap
Transient

Private Memory Area Java
Thread ReflexTask

Time-Oblivious Code Time-Critical Code

Figure 3.12: A time-oblivious, ordinary Java thread communicates with a Reflex task by invoking
transactional methods directly on the ReflexTask instance. Transactional methods can pass
in reference to heap-allocated objects (blue) that can be accessed from the default transient
context in which the transactional method is executed.

3.4. REFLEX COMMUNICATION 47

In understanding the proposed transactional methods, it is useful to establish the semantics of
transactional methods as follows. Any memory mutations made by the ordinary Java thread
within the memory area of the Reflex task are only valid once the thread commits. If the
ordinary Java thread runs until completion and commits, all its mutations are made durable in
the private memory area of the Reflex task in which it invoked. More precisely, any transient
object allocations made during the transactional method are reclaimed once exiting the method
whereas mutations performed on stable objects are made durable. If, however, the Reflex task (or
rather the real-time thread executing the task) is released by the scheduler and starts executing
before the ordinary Java thread has committed, the ordinary Java thread is preempted, and
any mutations made by the ordinary Java thread are rolled-back before the real-time thread
will invoke the execute method of the ReflexTask instance. The ordinary Java thread will
transparently abort its invocation and implicitly retry once the Reflex task has finished its
execution. With this kind of transactional semantics, the time-critical Reflex task can run
obstruction-free without missing deadlines, while the ordinary thread (hopefully) eventually will
succeed with its invocation. Here, special care has to be taken by the programmer to avoid the
theoretical possibility of the ordinary Java thread never completing its invocation, but rather
retrying infinitely. Such a situation could happen if the time to complete the invocation of the
transactional method is invariably longer than the period of a continuously executing Reflex
task. Thus, the programmer must ensure that frequency of the time-critical task is such that,
at some point, between two consecutive executions of a Reflex task there eventually would be
enough idle time to allow for the ordinary Java thread to complete its transactional method
invocation.

Although the use of transactional methods are obstruction-free in the sense that the time-critical
task can respond immediately when it wants, and never will be blocked on an ordinary Java
thread, they are not free of costs. In fact, the responsibility of performing the actual roll-back
lies on the real-time thread, and thus adds a small run-time overhead with the complexity O(n),
where n is the number of entries in the transaction log. As such, the programmer will have to
take such a worst-case run-time overhead into account when choosing the frequency with which
to run the Reflex task. Choosing a too short period could otherwise cause for deadline misses
in the event that the Reflex task has to roll-back a transaction.

public class PacketReader extends ReflexTask {
...
@atomic public void write(byte[] b) {...}
}

Figure 3.13: Example of declaration of method on ReflexTask class to be invoked with trans-
actional semantics by ordinary Java threads.

Transactional methods to be invoked by ordinary Java threads are required to be declared on
a subclass of the ReflexTask class in order to be reachable. To obtain transactional semantics
on a method, the method signature must be annotated with @atomic as demonstrated with the
write method in Fig. 3.13.

48 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

An interesting question at this point is, how can the time-critical task run free of garbage
collection interference when the ordinary Java thread holds a direct reference to the ReflexTask
instance and thus its object graph? In other words, since the object graph of the ReflexTask
instance is reachable to the public heap garbage collector, is it not subject to interference? The
answer to this question is really dependent on the virtual machine implementation. However,
garbage collectors of RTSJ-compliant virtual machines typically perform range checks of pointers
and will scope the scanning once a pointer points to something that is not on the public heap.
We assume and rely on this property from the garbage collector. A garbage collector that would
behave differently would invalidate our approach to garbage collector interference avoidance.

3.4.7 Method Argument Restrictions

For reasons of type-safety, Reflexes restrict the possible types of the parameters in the signature
of the transactional methods to include only primitives and primitive array types. While this
might seem rather restrictive, most examples of Reflex applications that we have been able to
identify only deal with primitive values and arrays, thus we believe this is a sensible choice.

Special care has to be taken concerning the allowed heap-allocated arguments of primitive array
types to be passed to the transactional methods, since in Java these are considered normal
reference types. Though no references can leak when using a primitive type array, there could
be a potential type-safety issue if a reference to the primitive array type were to be stored in
a field in the Reflex task as such a reference would be unreachable to the public heap garbage
collector. Consequently, if the garbage collector subsequently were to move the primitive array
object on the public heap, e.g., for heap compaction purposes, the Reflex task would observe a
dangling pointer since its reference would not be adjusted.

It turns out, however, that the stable/transient distinction of Reflexes prevents this from hap-
pening in the first place. Recall, all primitive array types are always considered of transient
type, and thus can never be assigned to a field in the Reflex task, as Reflex tasks (as stable
types) are restricted from having fields of anything but stable types. Nevertheless, a related
problem remains concerning the type-safety of using primitive arrays in transactional methods.

Transactional methods execute in the transient area of the Reflex task, and as a consequence any
references from here are out of reach from the public heap garbage collector. This poses a problem
if an ordinary Java thread invokes a transactional method, bringing in as argument a reference
to a heap-allocated primitive array object. Specifically, if during the invocation, the garbage
collector preempts the invoking ordinary Java thread and moves the heap-allocated primitive
array object, the ordinary thread’s reference to that object will not be adjusted accordingly as
it too is not reachable by the garbage collector. This problem is illustrated in Fig. 3.14.

To encounter this, we rely on assistance from the virtual machine by requiring that such method
arguments are pinned to their location on the heap upon entering the transient area, as indicated
by the pinned heap-allocated object in Fig. 3.12. Once the ordinary Java thread returns from
the invocation of the transactional method, the arguments can safely be unpinned again.

The return type of a transactional method is even more restricted than its method arguments,

3.4. REFLEX COMMUNICATION 49

Public Heap

Stable Heap
Transient

Private Memory Area Java
Thread ReflexTask

(a)

Public Heap

Stable Heap
Transient

Private Memory Area Java
Thread ReflexTask

Move by GC

(b)

Figure 3.14: Illustrating the problem of having the garbage collector moving the heap-allocated
object used as argument for the transactional method. Transactional methods are executed
in the transient area of the Reflex task, and any references from here are unreachable to the
public heap garbage collector. Thus, if the garbage collector preempts an ordinary Java thread
while invoking a transactional method, and moves a heap-allocated object, it cannot adjust any
references to this object from within the transient area. (a) illustrates the references to the
heap-allocated object from a transient one before the ordinary Java thread is preempted by the
garbage collector. (b) illustrates how the garbage collector has moved the heap-allocated object
referenced from within the transactional method, but not adjusted the reference to the object
from within the transient area, leading to a dangling pointer.

allowing only primitive types. This further restriction is necessary first to prevent a heap-
allocated object from observing a dangling pointer, if the returned reference would originate
from a transient object that would be purged following the ordinary Java thread’s exit from the
transactional method, and second to prevent leaking of references to stable objects from within
the Reflex task.

3.4.8 Communicating through Static Variables

In addition to transactional methods, Reflex tasks can communicate with ordinary Java threads
(and for that matter among the tasks themselves) using static variables. In enforcing isolation of
a Reflex task, static variables pose a particular type-safety problem as references to objects allo-
cated in different Reflex tasks or on the heap, could easily pass the isolation boundaries through
these. To circumvent this leaking, the Reflex programming model restricts the use of static vari-
ables to primitive and reference-immutable types. Informally, an object of reference-immutable
type provides access to a graph of objects connected by references that recursively cannot change
but containing objects whose elements can change, e.g., fields of primitive type [SAB+06].

Like for heap-allocated arguments passed to the transactional method, accessing a static heap-
allocated variable from within the memory context of a Reflex task faces similar problems to that

50 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

illustrated in Fig. 3.14. If that public heap garbage collector was in the middle of moving the
static variable when it got preempted by the Reflex task, the task could find itself with a dangling
pointer, or observe the variable in an inconsistent state. Also here, we avoid experiencing such
situations by requiring that heap-allocated static variables are pinned on the heap. However,
unlike the arguments for the transactional methods, the static variables accessed by the tasks in
the Reflex graph must be pinned for the entire lifetime of the graph. Fig. 3.15 illustrates how
the Reflex task can access a pinned static variable located on the heap.

Public Heap

Stable Heap
Transient

Private Memory Area

ReflexTask

Time-Oblivious Code Time-Critical Code

 Java
Thread

Figure 3.15: Communicating between ordinary Java threads and Reflex tasks through heap-
allocated static variables (black) is permitted but restricted to primitive and reference-immutable
types. Static variables of reference-immutable types are in addition required to be pinned to
their heap location throughout the lifetime of the Reflex graph.

3.4.9 Choosing and Combining Communication Mechanisms

The Reflex programming model facilitates two different means of communication between ordi-
nary Java threads and time-critical Reflex tasks, and one might rightly ask when using one type
of communication is more appropriate than the other.

For the most part, the transactional methods option stresses precise knowledge of what was and
was not communicated, and hence is particularly useful when there needs to be coordination
(instead of traditional Java level synchronization) between tasks and ordinary Java threads. This
is appropriate when the amount of data transferred into the restricted portion of the program
is small.

On the other hand, a Reflex task’s transactional methods can delay the restricted thread during
a roll-back operation, and so this option is not a very good choice for bulk data transfer from
normal to restricted threads. Combining the two options in the same program is thus a very

3.5. SCHEDULING 51

powerful feature of Reflexes; it is usually possible to partition the communication capabilities so
that bulk data updates are done in a non-transactional way but notification and coordination
of state changes are done transactionally.

3.4.10 Synchronization Operations

Though they might have a significant impact on thread scheduling, the Reflex programming
model does not prevent the programmer from using synchronization operations nor the wait/-
notify protocols within a Reflex task. However, Reflexes do not mandate priority inheritance
semantics for locks, and thus it follows from here that avoiding priority inversion cannot be
guaranteed. Hence, the use of synchronization operations within a Reflex are generally discour-
aged.

Nevertheless, the reason for not prohibiting them is that there might be situations where back-
ward compatibility with library classes makes such usage unavoidable. Thus, while their usage
is permitted, their consequences on scheduling remains non-deterministic. In contrast, the pro-
posed approach to sharing data through transactional methods is type-safe and avoids problems
of priority inversion.

3.5 Scheduling

When the unit of restriction is a graph of tasks rather than a thread, threads must be managed
implicitly, and the executions of the individual tasks within the graph must be scheduled.

The Reflex programming model specifies a time triggered scheduling policy. This time triggered
scheduling is embodied in the Clock task, which supports periodic execution of the Reflex
graph. A Reflex graph is required to have one Clock task in order to execute. The Clock task is
connected to a TimeChannel that again is connected to a ReflexTask, as depicted in Fig. 3.16.
Upon triggering, the Clock task publishes a time stamp on its output time channel, causing for
the ReflexTask reading off this channel to become schedulable.

Multiple graphs running on the same virtual machine are executed by multiple threads, each
graph has a priority (where some graphs might have the same) that is set upon graph instanti-
ation. Tasks in a graph are executed with a thread having the priority inherited by the graph.
These threads are mapped directly to operating system threads.

Threads are not required to be mapped to tasks following a one-to-one scheme. However, as a
minimum of threads are assigned to Clock tasks that then, within the period, simply traverse
as far down in the graph possible and execute all schedulable tasks, a simple scheme that makes
sense on a uni-processor machine. On a uni-processor platform, executing the Reflex graph
using multiple threads would not contribute to any true parallelism, but rather extend the
total execution time of the graph by introducing an execution overhead of context switching
between the threads. Contrary, on a multi-processor machine applying multiple threads would
be beneficial for purposes of parallelism as different threads are run by multiple processors.

52 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

Public Heap

Scheduler

Reflex Graph

Figure 3.16: Each Reflex graph is triggered by a time triggered scheduler using the Clock task.
Threads are not required to be assigned to task following a one-to-one scheme. As a minimum,
a single thread is assigned to the Clock task that then traverses the Reflex graph and executes
all schedulable tasks.

3.6 Example: Intrusion Detector System

To demonstrate the power and applicability of Reflexes on real-world applications, we have
implemented a challenging real-time stream processing application in the form of an Intrusion
Detection System (IDS), inspired by [SGVS99], which analyzes a stream of raw network packets
and detects intrusions by pattern matching.

Stream processing is a programming paradigm suited for a class of data driven applications. In
a stream processing language, a program is an acyclic graph composed of tasks connected by
data channels. Each task in the graph is a functional unit that consumes data from its input
channel and pushes results on its output channels. More specifically, the behavior of each task is
entirely determined by the data on the channel and the task’s internal state. This last property
allows for parallel implementations, since task communication is restricted to channels, they can
be scheduled in parallel.

The stream processing paradigm is a challenging application area given some of its key require-
ments [ScZ05]; (1) keep the data moving meaning that data should be processed with as little
buffering as possible, and (2) the system should respond instantaneously, i.e., in a timely and
responsive fashion, such that execution pauses that might lead to dropped data can be avoided.

Fig. 3.18 shows the declaration of the Reflex graph class IDSGraph, which instantiates and
connects the tasks that combined implement the intrusion detection system. The argument to
the IDSGraph constructor is the period in microseconds provided to the clock task in the graph.
Fig. 3.17 provides a graphical illustration of the same Reflex graph, its tasks, and how the tasks

3.6. EXAMPLE: INTRUSION DETECTOR SYSTEM 53

PacketReader Clock

Time

Scheduler

Ok
Fail

TrustFilter VSIPFragment

TearDrop Joiner PacketDumper

Figure 3.17: Graphical representation of the Reflex graph of an Intrusion Detection System
consisting of six tasks and a clock task triggered periodically by a time triggered scheduler.

are connected.

The capsules being passed around the system represent different network packets: Ethernet, IP,
TCP and UDP. Object-oriented techniques are useful in the implementation as nested structure
of protocol headers are modeled by inheritance. For instance, the IP capsule class (IP Hdr) is
a subclass of the Ethernet capsule class (Ether Hdr seen in Fig. 3.19) with extra fields to store
IP protocol information.

Fig. 3.20 shows PacketReader class that creates capsules representing network packets from a
raw stream of bytes. For our experiments, we simulate the network with the Synthesizer class.
Fig. 3.21 illustrates the main method of the Intrusion Detector System application, showing
the creation of the Reflex graph and the synthesizer. The synthesizer runs as an ordinary Java
thread, and feeds the PacketReader task instance with a raw stream of bytes to be analyzed.
Communication between the synthesizer and the PacketReader is done by invoking the write
method on the PacketReader. This method takes a reference to a buffer of data (primitive byte
array) allocated on the heap and parses it to create packets. The write method is annotated
@atomic to give it transactional semantics, thereby ensuring that the task can safely preempt
the synthesizer thread at any time.

The PacketReader buffers data in its stable memory with the Buffer class, shown in Fig. 3.22.
Being referred from an instance field of the PacketReader task, the Buffer class itself is declared
stable (by implementing the Stable interface), and in addition contains a primitive array of
bytes. To satisfy the static safety constraints, we use the StableByteArray class to represent
the primitive array within the stable class.

The reader uses the readPacket method to initialize capsules from the data stored in the
buffer. The capsule instance itself in which to read the data is retrieved from the capsule pool
through the makeCapsule call. The methods startRead, commitRead, and abortRead are used
to ensure that only whole packets are read from the buffer. They do not need synchronization

54 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

public class IDSGraph extends ReflexGraph {
private Clock clock;
private PacketReader packetReader;
private ReflexTask trustFilter, vsipFragment, tearDrop, joiner, packetDumper;

public IDSGraph(int periodInMicrosecs)
throws ValidationException {
super(ReflexGraph.DEFAULT PRIORITY, ReflexGraph.DEFAULT COMMAREASIZE);
clock = createClock(periodInMicrosecs);

packetReader = (PacketReader) createTask(PacketReader.class);
trustFilter = createTask(TrustFilter.class);
vsipFragment = createTask(VSIPFragments.class);
tearDrop = createTask(TearDrop.class);
joiner = createTask(Joiner.class);
packetDumper = createTask(PacketDumper.class);

connect(clock, packetReader);
connect(packetReader, trustFilter, 10);
connect(trustFilter, vsipFragment, 10);
connect(trustFilter, "ok", joiner, 10);
connect(vsipFragment, "fail", joiner, 10);
connect(vsipFragment, tearDrop, 10);
connect(tearDrop, joiner, 10);
connect(joiner, packetDumper, 10);

validate();
}
}

Figure 3.18: Implementing a ReflexGraph subclass. The IDSGraph class extends the abstract
ReflexGraph class, declares a constructor for setting up the graph with default priority and
communication area. Note, how at the end of the constructor the validate method is invoked,
causing the graph to be validated.

since (1) potential higher priority tasks have no way to access the buffer (thanks to the isolation),
and (2) ordinary Java threads, that can access the buffer through the write method, cannot
preempt the Reflex task execution, assuming a priority-preemptive scheduling policy where the
task runs at higher priorities than ordinary Java threads.

The packets first go to the TrustFilter, which looks for packets that match a trusted pattern;
these packets will not require further analysis. Other packets are forwarded to the VSIPFragment
task. This task detects IP fragments that are smaller than TCP headers. These are dangerous
as they can be used to bypass packet-filtering firewalls. The TearDrop task recognizes attacks
that involves IP packets that overlap.

The three tasks, TrustFilter, VSIPFragment, and TearDrop have a similar structure: an input
channel (in) for incoming packets to analyze and two output channels, one for packets caught by

3.6. EXAMPLE: INTRUSION DETECTOR SYSTEM 55

public class Ether Hdr extends Capsule {
...
public final int ETH LEN = 6;
final byte[] e dst;
final byte[] e src;

private Ether Hdr() {
e dst = new byte[ETH LEN];
e src = new byte[ETH LEN];
}
}

Figure 3.19: An excerpt of the Ether Hdr capsule containing primitive byte arrays.

public class PacketReader extends ReflexTask {
private Channel out;
private Buffer buffer = new Buffer(16384);
private int underruns;

public void execute() {
TCP Hdr p = (TCP Hdr) makeCapsule(TCP Hdr.class);
if (readPacket(p) < 0) underruns++;
else out.put(p);
}

@atomic public void write(byte[] b) {
buffer.write(b);
}

private int readPacket(TCP Hdr p) {
try {

buffer.startRead();
for (int i=0; i<Ether Hdr.ETH LEN; i++) p.e dst[i] = buffer.read 8();
...
return buffer.commitRead();
}
catch (UnderrunEx e) { buffer.abortRead(); ... }
}
}

Figure 3.20: An excerpt of the PacketReader task that reads packets received from the ordinary
Java thread and pushes them down in the graph. The write method, invoked by the ordinary
Java thread, is declared to have transactional semantics. The ordinary Java thread and the
PacketReader share a bounded buffer from which they respectively write and read.

the tasks (ok or fail), the other one for uncaught packets (out). These tasks also mark caught
packets with meta-data that can be used in further treatment, logging or statistics. The task

56 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

public class IDSApplication {
public static void main(String argv[]) {

try {
IDSGraph graph = new IDSGraph(PERIOD MICROS);
new Synthetizer(graph.getPacketReader()).start();
graph.start();
}
catch (ValidationException e) {

System.err.println("Graph failed validation: " + e.getMessage());
System.exit(−1);
}
}
}

Figure 3.21: The main Java application instantiating the IDSGraph with some periodicity and
creating the Synthesizer generating the packets, and interacting with the Reflex graph by
invoking a transactional method on the PacketReader task.

public class Buffer implements Stable {
private final StableByteArray data;
private int pos, lastpos;

public Buffer(int cap) {
data = new StableByteArray(cap);
}

public int write(byte[] b) { ... }

public void startRead() { lastpos = pos; }
public int commitRead() { return pos−lastpos; }
public void abortRead() { pos = lastpos; }

public int read 32 throws UnderrunException { ... }
public short read 16 throws UnderrunException { ... }
public byte read 8 throws UnderrunException { ... }
}

Figure 3.22: An excerpt of the Buffer class shared by the ordinary Java thread and the
PacketReader to exchange data. Note, that the class is declared stable as it is used as an
instance field on the PacketReader task (which inherently is stable), and that as a stable class
it uses the StableByteArray type to represent a primitive byte array.

implementations rely on an automaton stored in stable space to recognize patterns on packet
sequences that correspond to attacks. For instance, the VSIPFragment (see Fig. 3.23) uses the
pattern matcher shown in Fig. 3.24. The different pattern matchers used in this example all
subclass the PatternMatcher class seen in Fig. 3.25.

3.6. EXAMPLE: INTRUSION DETECTOR SYSTEM 57

public class VSIPFragment extends ReflexTask {
private InCapsulePort in;
private OutCapsulePort out;
private OutCapsulePort fail;
private VSIPFragmentMatcher pm = new VSIPFragmentMatcher();
private TCPFragTable tcpFrag = new TCPFragTable();

public void execute() {
Ether Hdr p = (Ether Hdr) in.take();
if (p instanceof TCP Hdr) {

TCP Hdr t = (TCP Hdr) p;
if (pm.step(t)) {

tcpFrag.inc(t.saddr);
p.filtered = true;
fail.put(p);
return;
}
}
out.put(p);
}
}

Figure 3.23: An excerpt of the VSIPFragment class responsible for detecting IP fragments that
are smaller than TCP headers. For this detection, it relies on a pattern matcher. Note, how the
task in its execute method reads a Ether Hdr packet from its input channel, and, depending
on the result of the pattern matcher, puts the packet on different output channels for further
processing, as also illustrated in Fig. 3.17.

The convenience task, Joiner, is used to transform a stream of data from multiple input tasks
to a single stream of data. The last Reflex task, PacketDumper, gathers statistics of the whole
intrusion detection process thanks to the meta-data written on packed by the previous tasks.

58 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

public class VSIPFragmentMatcher extends PatternMatcher {
final int MY NET = ...
final int MY NET MASK = ...

private boolean myNetAddr(int addr) {
return (addr & MY NET MASK) == MY NET;
}

private boolean isFrag(TCP Hdr p) {
return (p.more frags) || (p.frag offset != 0);
}

public VSIPFragmentMatcher() {
final State rx = new State(this, true);
initState.bind(rx, new Condition() {

public boolean evaluate(Ether Hdr e) {
if (!(e instanceof TCP Hdr)) return false;
TCP Hdr t = (TCP Hdr) e;
if (myNetAddr(t.daddr) && isFrag(t) && t.tot len < 48)

return true;
return false;
}
});
}
}

Figure 3.24: An excerpt of the VSIPFragmentMatcher class responsible for detecting small IP
packets. Note how the VSIPFragmentMatcher is not itself declared stable; rather it inherits its
stable property from the extension of the stable PatternMatcher class.

3.6. EXAMPLE: INTRUSION DETECTOR SYSTEM 59

public abstract class PatternMatcher implements Stable {
protected final State initState = new State(this, State.S INIT, false);
private State currentState = initState;

static interface Condition extends Stable {
public boolean evaluate(Ether Hdr e);
}

static class Pair implements Stable {
...
}

State reset(Ether Hdr e) {
for (Iterator i = initState.transitions.iterator(); i.hasNext();) {

Pair p = (Pair) i.next();
if (p.c.evaluate(e)) return p.to;
}
return initState;
}

static class State implements Stable {
final static int ST INIT = ...
final static int ST NONAME = ...
private int name;
private boolean terminator;
private StableList transitions = new StableList();
private PatternMatcher pm;

public State(PatternMatcher pm, boolean terminator) {
this(pm, ST NONAME, terminator);
}

public State(PatternMatcher pm, int name, boolean terminator) {
...
}

public State evaluate(Ether Hdr e) {
for (Iterator i = transitions.iterator(); i.hasNext();) {

Pair p = (Pair) i.next();
boolean res = p.c.evaluate(e);
if (res) return p.to;
}
if (name == ST INIT) return pm.getInitState();
return pm.reset(e);
}
...
}

public boolean step(Ether Hdr e) {
currentState = currentState.evaluate(e);
return currentState.terminator;
}
}

Figure 3.25: An excerpt of the general purpose PatternMatcher class used by several of the
Reflex tasks in the IDS graph for pattern matching. Note, how it declares several stable types,
which are used as field types in some of its instance fields.

60 CHAPTER 3. THE REFLEX PROGRAMMING MODEL

4
Static Safety Checking

To avoid interference from the public heap garbage collector, Reflexes rely on strict isolation
between Reflex tasks themselves, and between Reflex tasks and time-oblivious Java code. The
goal of the safety checks is to statically guarantee this isolation by restricting unsafe code that
would violate the memory integrity and allow access to heap-allocated objects in inconsistent
states, and dangling pointers to be observed.

This chapter provides an informal specification of the set of static safety checks enforcing these
isolation requirements, and discusses some of the design choices. Furthermore, we report on an
experiment showing that the static checks are not more restrictive than allowing most of the
Java collection framework to be used unmodified within a Reflex task.

4.1 Checking Principles

Reflexes use an approach inspired by previous work on ownership type systems [ZBH+08] to
statically enforce the restrictions ensuring isolation and thus preventing dangling pointers and
observing inconsistent heap-allocated objects. Ownership types were first proposed by Noble,
Potter and Vitek in [NVP98] as a way to control aliasing in object-oriented systems. As with
other ownership type systems [CPN98, BLR02, BSBR03], there is a notion of a explicit domi-
nator declared on the class that encapsulates access to a subgraph of objects.

In contrast, the static safety checks used for Reflexes and presented here operate with implicit
ownership in that no ownership parameters are to be specified on the class declarations. Instead,
ownership is defaulted using straight-forward rules; every Reflex task encapsulates and owns all
objects allocated within its private memory region. Given this ownership, the static safety checks

61

62 CHAPTER 4. STATIC SAFETY CHECKING

ensure that references to objects owned by a Reflex task are never accessed from outside, that
the Reflex tasks cannot reference heap-allocated objects (except a few exceptions), and that
stable objects cannot reference transient ones. Fig. 4.1 illustrates the legal and illegal object
references between the time-critical and time-oblivious code to be respectively permitted and
prohibited by a type checker enforcing the static safety checks.

Public Heap

Stable Heap
Transient

Private Memory Area

ReflexTask

Time-Oblivious Code Time-Critical Code

Figure 4.1: The legal and illegal object references in and out of a Reflex task that the static safety
checks must ensure are respectively allowed and caught. The figure illustrates a ReflexTask in
a private memory area with its object graphs of stable and transient objects as well as a number
of heap-allocated objects and static variables, of which some are pinned. Object references are
illustrated with green and red arrows, representing legal and illegal references respectively.

Most ownership type systems require fairly extensive changes to the application code, by an-
notating individual classes with one or more owner parameters. Much like Java generics, these
parameters are expected to be erased at compile time. This approach, however, has an im-
portant drawback; it prevents reuse of legacy code, by requiring a complete refactoring of all
library classes in order to annotate the owner, and does not interact well with raw types. For
instance, the Vector class would have to be refactored to something like Vector<owner> in
order to record the owner of each vector. Hence, while an implicit ownership type system is
less expressive, the cost in complexity and the disruption to legacy code arguably outweighs the
benefits of the added expressive power.

In addition, an important property of the static safety checks is that the restrictions they enforce
only apply to the time-critical parts of the application code. In other words, the legacy code
interacting with the Reflex task is by no means subject to the restrictions imposed by the static
safety checks. One exception here is the data being shared between the time-oblivious code and
the Reflex task; since such data is referenced from the Reflex task, it is required to be type safe.
This scoping of the static safety checks is possible as the restricted unit is the Reflex task, and

4.2. PARTIALLY CLOSED-WORLD ASSUMPTION 63

not a thread as is the case with the NoHeapRealtimeThread. This clear distinction between Re-
flex code and time-oblivious code also has the effect of allowing for reuse of legacy code without
or with only a few modifications and enables seamless integration hereof with Reflex graphs.

Rather than proving the assertion that a Reflex task that is valid according to the static safety
checks is indeed type safe, the following sections informally describe a set of rules, that, together
with the fact that a Reflex task is allocated in a separate private memory area, establishes by
reasoning that neither the Reflex task nor the ordinary Java thread will experience dangling
pointers nor observe heap-allocated objects in inconsistent states.

4.2 Partially Closed-World Assumption

A key requirement for type-checking a Reflex task is that all classes that will be used within it
must be verified. To do so, we first construct a summary of classes, W, used within a Reflex
task based on an approximation of the live class set. The classes in W are categorized in three
disjoint sets of classes: stable, transient and capsule classes.

Using classes to scope the static analysis represents a rather coarse-grained approach, it is simple
and safe, and to a programmer it is intuitive – any class reachable from a Reflex task is subject
to the type restrictions. Indeed, the approach is rather conservative in that it might include too
many classes inW. For instance, if a Reflex task (a class inW) invokes a static method on some
class C, simply returning a primitive type value, then C too is included in W and is subject to
the restrictions regardless of any potential usage of the remainder of the class. Consequently,
parts of the class C that would never be reached by the Reflex task could nevertheless cause for
violations according to the restrictions.

The first thing the type checker has to ensure is that no class outside of W can be instantiated
within any task in the program. This can be done in a straightforward fashion by inspecting
the methods of the classes in W and checking that new objects are instances of class in W.

R1: Given a class instance creation expression new C(...) occurring in class C’, if
C’ or a subclass of C’ is in W then C must be in W. 2

The type checker will validate all classes inW and their parent classes. Classes that are not inW
need not be type checked, effectively excluding from W the parts of the Reflex application that
are not time-critical. The type checker will ensure that classes having static methods invoked
from within a task belong in W. Taken together rule R1 and R2 ensure that no object of a
class that is not in W will ever be created while evaluating code in W.

R2: Any invocation of a static method C.m() occurring in class C’, if C’ or a
subclass of C’ is in W then C must be in W. 2

64 CHAPTER 4. STATIC SAFETY CHECKING

4.3 Implicit Ownership

The key property to be enforced is that all objects allocated within a Reflex task are encapsu-
lated. This means that no object allocated outside of a task may refer to a stable or transient
object of that task. Conversely, no stable or transient object may refer to an object allocated
outside of the task. Since the Java application can hold a direct reference to a ReflexTask
instance, a set of restrictive rules must be put in place to enforce this encapsulation.

R3: The declaration of a non-private instance field of type T on a ReflexTask class,
or a subclass hereof, is only allowed if T is a primitive type. 2

By only allowing reference fields in a ReflexTask class if they are declared private, we ef-
fectively prevent any reference fields from being assigned directly by the ordinary Java thread
having a direct reference to the ReflexTask instance.

R4: The declaration of a non-private method M on a ReflexTask class, or a subclass
hereof, is only allowed if M is declared @atomic. 2

Prohibiting any public methods is actually a rather drastic solution. In fact, from the point
of view of type safety, it would be sufficient to restrict any non-private methods from having
reference type parameters or return types in their method signature. While this solution would
be type safe, it would, however, provide a possibility to share data without proper synchroniza-
tion. By enforcing that public methods are declared @atomic, we ensure synchronized access to
shared data.

R5: Methods declared @atomic on a ReflexTask class, or a subclass hereof, are
restricted to declaring parameters of primitive and primitive array types, and can at
most return primitive types. 2

Allowing the ordinary Java thread to invoke public transactional methods on the ReflexTask
provides a potential risk of references leaking through the parameters of the method signature.
Hence, method parameters are restricted to primitive and primitive array types, both having the
property that they do not leak references. The return type is even more restrictive, permitting
only primitive types. Allowing a reference to an object created during the invocation of the
transactional method would be dangerous, as either it would be transient, and thus a dangling
pointer once the ordinary Java thread exits the transactional method, or it would reference a
stable object, potentially allowing references to leak this way.

A reasonable assessment to make concerning this restriction is whether it is too restrictive, and
whether it would be possible to allow any reference type to be used as argument, rather than just

4.3. IMPLICIT OWNERSHIP 65

primitive arrays. Clearly, allowing all reference types to be used as arguments would not be safe,
as this would allow for random references to leak in and out of the time-critical task. However,
what about reference-immutable types in general? After all, primitive arrays are just a special
case of reference-immutable type objects, which are characterized by not allowing references to
mutate.

The nice property about primitive arrays is that it is statically determinable that they are
reference-immutable. Allowing reference-immutable types in general as method arguments, one
would similarly have to statically determine that the values that are actually passed are always
of reference-immutable type. As we will describe in the next section, an exact set of possible
value types is not computable statically, but must rely on an approximation. In other words,
there would be cases where, given the lack of information available at compile time, it can not
be statically guaranteed that providing reference-immutable types as arguments to transactional
methods is always safe.

Furthermore, an additional requirement to these transactional method arguments would be to
restrict them to transient types only. Passing in an argument to a heap-allocated stable object
could cause for that object to be assigned by the ordinary Java thread to a stable field in the
Reflex task. Type-wise the assignment would be valid, but unfortunately it would not be safe.
As mentioned earlier, during the invocation of the transactional method, the reference type
arguments are all pinned to ensure that they are not moved by the garbage collector. However,
exiting the transactional method, these objects are unpinned again, and could from this point
on be moved by the garbage collector. If at that point, a Reflex task held a reference to such
a heap-allocated stable object that were subject to moving by the garbage collector, the task
would observe the object in an inconsistent state or see a dangling pointer.

Finally, like is the case for the primitive array types, general reference-immutable types would
have to be pinned when used in the transactional method. However, anything referred to from
the reference-immutable type would have to be pinned too. Consequently, using reference-
immutable types as method arguments would require a recursive pinning and unpinning upon
every transactional method invocation, a process that is uncontrolled and can be a potentially
variable source of delay.

Given these circumstances, in the current version of Reflexes we refrain from allowing reference
type arguments to transactional methods (besides primitive array types), noting at the same
time, that transactional methods can freely use variables reference-immutable types if they are
declared static. Why this is possible, we will describe in a bit.

Another possible approach would be to allow exchange of objects by deep copy. This is safe
and would benefit from the fact that the same Java type can be used for both transient/stable
objects within a Reflex and for normal objects allocated on the heap. The downside, however,
is the overhead introduced by performing this deep copy, which, e.g., even for primitive arrays
can be significant if they have arbitrary length.

Finally, the reflective instantiation of a ReflexTask prevents any references from leaking in dur-
ing task instantiation since only default constructors are invoked by the Reflex run-time engine,
preventing reference types to leak in. Any attempt to circumvent this reflective instantiation

66 CHAPTER 4. STATIC SAFETY CHECKING

will result in an object that is not a Reflex since its private memory area and all its internal
structures are lacking.

R6: Instantiating a ReflexTask class only results in a Reflex when that instantiation
is done reflectively by the Reflex run-time engine. 2

Dangling pointers within the ReflexTask instance are prevented by segregating stable from
transient references. No (long-living) stable object may acquire a reference to a (short-lived)
transient object. This is done at the class granularity. If a class is declared stable, then it can
only refer to other stable classes.

R7: The type T of an instance field declaration in a stable class or a parent of a stable
class is legal if T is a primitive type or if T is a stable class. 2

Since the set of static safety checks tracks classes, it is critical to prevent instances of transient
classes from masquerading as stable types. This is achieved by mandating that descendant of
stable classes are stable.

R8: Assume C is a stable class in W, for any class C’ in W, if C’ extends C then C’
must be stable. 2

Following from here, since the ReflexTask class is declared stable by implementing the Stable
interface, any subclass hereof can only declare instance fields of primitive or stable types.

It should be noted that the above rule does not prevent a class declared stable in some W to
have subclasses that are not stable. That is allowed as long as these are not in W, i.e., not
used from within a Reflex task. Nothing prevents an ordinary Java thread from allocating a
stable class. This poses no problem as it will be allocated using standard Java semantics in
the memory context of the public heap where the stable property is harmless beyond of course
indicating that it is a type that (potentially) could be assigned to a stable field in a Reflex task.
However, the static safety checks described so far would prevent this reference from leaking in
to the ReflexTask instance.

4.4 Static Reference Isolation

Enforcing encapsulation also requires that communication through static variables be con-
trolled. Without any limitations, static variables can be used for unrestricted sharing of refer-
ences across encapsulation boundaries and thus open up opportunities for all kinds of program-
ming errors.

4.4. STATIC REFERENCE ISOLATION 67

A drastic solution is simply to prevent code in W from reading or writing static reference
variables. Clearly this is safe as the only static variables that a task is allowed to use are ones
with primitive types. The question is of course how restrictive is this rule? While it may be the
case that for newly written code it is straightforward to replace static variables with context
objects that are threaded through constructors, the same can not be said for library classes as
it would be difficult to refactor them and if one did, they would loose backwards compatibility.
Having too restrictive rules may thus seriously hamper code reuse.

The key observation to circumventing this restriction is that static variables are not dangerous if
they are not referenced or are never modified. This suggests introducing the notion of reference-
immutable types. These are types that are transitively immutable in their reference fields and
possibly mutable in their primitive fields.

R9: A field F in class C is effectively final if it is either (1) declared final and of
reference-immutable type, or (2) declared private, of reference-immutable type, and
not assigned in any non-constructor methods in class C and parent classes of C. 2

R10: A class C in W is reference-immutable if all non-primitive fields in the class
and parent classes are effectively final. 2

The analysis can infer which types must be immutable based on the use of static variables.
With the introduction of reference-immutable types, statics can restrictively be used without
compromising encapsulation.

R11: Let T be a class in W or a parent of a class in W. A static field access
expression occurring in T is legal if the field is a primitive or if the field is effectively
final and it can be statically determined that it is assigned a null or a value of
reference-immutable type. An assignment statement occurring in T is legal if the
left-hand side of the assignment is a static field of a primitive type. 2

This last rule represents a pragmatic choice balancing the desire for expressiveness in order to
reuse a maximal amount of pre-existing library code and the ability to statically ensure type-
safety.

However, it turns out that enforcing this rule statically is non-trivial. In fact, this boils down to
the problem of inferring the exact set of live classes, as mentioned earlier. The problem of the
rule centers around how to statically determine which values are assigned to static fields that
are read by Reflex tasks. In fact, because of the possibility for subtyping, it is not sufficient to
look at the type of the declared field only, but also the possible types of the values that can be
assigned to the field. For instance, say that the non-final type of the declared static field is T. If
T’ is a subclass of T, then the field may be assigned a value of type T’ (or a subclass hereof),

68 CHAPTER 4. STATIC SAFETY CHECKING

in addition to a value of type T. However, while T might be a reference-immutable type, T’ is
not necessarily as it might declare mutable reference type fields. Yet both values of type T and
T’ can be assigned to the field.

Contrary, if the type of the declared field is a final type (declared final) and is a reference-
immutable type according to R10, then it follows that reading from this static field is safe –
only a null value or a value of reference-immutable type can be read. However, for all non-final
types, for a static field assignment to be safe, it needs to be statically determined that only a
null or a value of reference-immutable type can be assigned to the static field.

Ensuring the set of live classes with exact precision is not possible. Instead, we use an approx-
imation based on the following principles. This set of live types W for the static variable can
be found by analyzing the class initializer, or <clinit>, of the class declaring it, and from here
looking at all the types that are used directly or indirectly by the class initializer. To calculate
this live set, we use a simple and conservative algorithm where all methods reachable from the
class initializer are analyzed together with their bytecodes, thereby refraining from doing any
control-flow and data-flow analysis. The algorithm is shown in Fig. 4.2.

function analyzeMethod(M)
set live set Slive := {Ø}
for all instructions i in method M do:

if (i is a new instruction of type T) then
Slive := Slive ∪ {T}

else if (i is an invocation of a method M ′ with return type T) then
if (T is void) then

ignore, does not affect live set
if (T is declared final) then

Slive := Slive ∪ {T}
if (T is not declared final) then

potential safety problem!
else if (i reads a static variable declared in type T) then

Slive := Slive ∪ {analyzeMethod(<clinit> method of T)}
else if (i reads an instance variable of type T)

if (T is declared final) then
Slive := Slive ∪ {T}

if (T is not declared final) then
potential safety problem!

Figure 4.2: A simple and conservative algorithm for analyzing the live set of classes, Slive, in the
class initializer, <clinit>. Specifically, this algorithm is used to infer the possible types that
can be assigned to a static variable having a reference-immutable type.

Having analyzed the class initializers and calculated a live set of classes from here, all classes
that are type incompatible with the type of the static field being read are discarded from the
live set as they can never be assigned to the field. The remaining classes in the live set then are
checked for reference-immutability following the rule in R10, and in the event that one or more

4.4. STATIC REFERENCE ISOLATION 69

types are not reference-immutable, there is a safety problem, and the violating code statement
will have to be rejected.

The ability to use static variables of reference-immutable type from within a Reflex task raises an
interesting question; does a static variable of reference-immutable type, T, pose a safety problem
if T is also declared stable? The potential problem relates to the fact that a heap-allocated object
hereby could be stored in a stable object within the task’s private memory area. From rule R7
we know that an object of stable type may point to any object of stable type. Consequently,
since the ReflexTask class is inherently declared stable, it may declare stable instance fields and
assign references to the heap-allocated stable object. The potential dangers here are twofold;
first, could references thereby leak in or out, and second could a dangling pointer occur since
the reference crosses memory boundaries? The former threat is eliminated by the fact that the
type T is required to be reference-immutable, according to rule R11. The latter threat can
be handled with some help from the virtual machine. In fact, the Reflex programming model
relies on the virtual machine to provide functionality to pin objects to their location on the
public heap. More specifically, the virtual machine will pin any static, heap-allocated variable
(stable or not) referenced by the ReflexTask instance throughout the lifetime of the ReflexTask
instance, preventing the garbage collector for moving and removing the variable. This way the
ReflexTask instance can safely reference the heap-allocated reference-immutable static variable,
as specifically illustrated in Fig. 4.1. Moreover, since any transient object can reference a stable
object, the heap-allocated static variable can also safely be used from the context of a transient
area of the ReflexTask instance.

Note also, ruleR11 prevents any stable class (that would be inW) from declaring static variables
of reference-immutable type as these would necessarily have to be assigned in the class initializers
of the stable class, and R11 prevents any assignment to a static variable.

Finally, we assume that all static variables are initialized a priori to the instantiations of the
Reflex tasks in the graph. More specifically, all class initializers of classes containing static
variables accessed by Reflex tasks must have been invoked before the graph executes. Without
this assumption, static variables could potentially be assigned a value allocated in the transient
area of the Reflex task causing for the class initializers to be invoked, which would lead to a
dangling pointer.

At this point, an interesting question is why allow static variables of reference-immutable type,
but not transactional method arguments of reference-immutable type? There are really three
reasons: First, to use reference-immutable types as transactional method arguments not only is
an approximation of the set of possible reference-immutable types required. Since transactional
method arguments are restricted to transient types only would have to make an additional ap-
proximation over which of the possible reference-immutable types are also transient. Second, the
continuous pinning and unpinning of an arbitrarily large reference-immutable type would have
to be further investigated in order to determine its impact on performance. Third, although
the reliance on static variables is often seen as poor programming practice, by combining trans-
actional methods with the use of static variables of reference-immutable type, one can achieve
more or less the same functionality as provided when passing in reference-immutable types to
the transactional methods. Thus, to summarize, we leave transactional method arguments of

70 CHAPTER 4. STATIC SAFETY CHECKING

reference-immutable type as an opportunity to be exploited as future work.

4.5 Capsules

A capsule is an object that is manipulated in a linear fashion. At any given time, it must be
enforced that the following holds: (1) there is at most a single reference to the capsule from
a single data channel, and (2) there can be multiple reference on the stack and in fields of
transient objects. With these invariants the implementation can achieve zero copy management
of capsules.

R12: A capsule is an instance of a subclass of Capsule, which (1) declares only fields
of primitive types and final primitive array types, and (2) declares only private
constructors. 2

The above rule is a pragmatic choice that effectively and easily ensures that capsules are
reference-immutable (without permitting general reference-immutable data structures) and can
only be instantiated by the Reflex run-time engine. The motivation is that the Reflex run-time
engine must be in charge of allocating and reclaiming capsules. Contrary, it would be possible
to allocate a capsule in transient memory and push to an output channel, eventually leading to
dangling pointer error.

R13: Capsule types in W are treated as transient types and are consequently not
allowed to implement the Stable marker interface. 2

From the point of view of stable and transient classes, a capsule is “just” like any other transient
class. Thus, we inherit the guarantee that when execute method returns there will be no
reference to the capsule in the state of a Reflex task.

4.6 Arrays

As a consequence of the default allocation context being transient, any primitive array type is
considered a transient type. With this categorization, Reflex tasks cannot declare instance fields
of primitive array types, as mentioned earlier, following R7. Instead, ReflexTask s must use
the set of array wrappers for encapsulating primitive arrays in the stable heap, as described
in Sec. 3.3.5. Through this distinction, primitive arrays can be used safely in both memory
contexts.

Besides being able to create arrays of primitive types through the use of the StableArray classes,
nothing, however, prevents a Reflex task from also creating arrays of stable type. In fact, if a

4.7. OTHER RESTRICTIONS 71

class is stable then the array class derived from that class is stable too. Thus, expressions like
Object[] ms = new MyStable[10] are perfectly valid since the array of MyStable itself is a
stable object, and transient objects, like ms, are allowed to reference stable ones. Of course,
even though ms can reference an array of stable type, its own declaration Object[] ms is still
transient (since Object is transient), and thus a field declaration of type Object[] in a stable
class would not be valid, according to R7.

4.7 Other Restrictions

In addition to the above mentioned rules, the static safety checks impose the following restric-
tions:

Finalization Every Java class inherits the finalize method from java.lang.Object class.
This method is normally invoked by the garbage collector when no other references are pointing
to the object, giving the programmer an opportunity to perform manual cleanup of typically
external resources before the object is being irrevocably discarded.

In Reflexes, the virtual machine does not invoke finalizers of transient objects allocated in a
ReflexTask; allowing finalizers would violate the constant time deallocation guarantee of the
transient area. Furthermore, given the isolated nature of the Reflex tasks, and their short-lived
nature, the justification and necessity for finalizers is doubtful.

Thread Creation A Reflex task is not allowed to create and spawn any threads using the
java.lang.Thread class, or any of its subclasses, as doing so would would affect scheduling.

Specialized References Any of the java.lang.ref.Reference types (weak, soft, and phan-
tom references) are not permitted within a Reflex task; semantically, they do not make sense
in the context of the transient area as all such transient allocations are not garbage collected
anyway.

Native Code While not restricted by the static safety checks, native code invoked from Java
methods poses a specific problem. Particularly, since the invocation will exit the virtual machine,
it is basically out of the control of the Reflex run-time engine, and could here perform various
operations that could have a negative impact on predictability in addition to being type unsafe,
e.g., through JNI callbacks. Rather than automatically restricting such methods, the Reflex
programming model relies on the programmer to manually validate the impact of the native
methods invoked, in other words, the programmer must ensure not to invoke native code that
would violate type safety or impact predictability.

72 CHAPTER 4. STATIC SAFETY CHECKING

4.8 Class Library Reuse

An interesting question is, how restrictive the proposed set of static safety checks really is, and
to what extent it allows for reuse of the standard Java class library? As an experiment, we tried
to type-check the collection classes, such as Vector and HashMap in the java.util package for
Java 1.4 (the GNUClasspath open source implementation). When inner classes are counted,
there are 126 classes and about 22,000 lines of code. We decided to treat the collection classes
as transient and ran the type checker.

The first set of errors were due to the use of classes such as String, StringBuffer and Random.
We declared them as intrinsics – special types that are treated as transient by the type checker
but considered safe, and thus not validated. After declaring these classes safe, there were still
over 200 type errors due to the use of static reference variables. The collection classes have a total
of 66 static fields, out of which only 10 fields are of reference type. They hold various singletons
used to represent empty collections, empty slots and empty keys. The key observation is that
these statics are examples of such that are never modified and are never reclaimed. Adding rules
allowing for reference-immutable static types eliminated all but a handful of errors.

Rooting out the last errors would require some refactoring of the collection classes. The problem
arises from the fact that some of the singletons, while they are in practice immutable, have non-
final fields. One can take care of those errors by refactoring some of the collection classes
to introduce immutable singleton classes. There is only one class that we did not attempt to
include in the experiment, WeakHashMap, as it drags in extra libraries and has no use within a
Reflex task since transient objects are not garbage collected.

In conclusion, we found that the majority of Java collection classes can be used without changes
within a Reflex task and a small number of classes require small modifications to be usable.

Part III

Implementation

73

5
Reflex Implementation

Having described the Reflex programming model and the set of static safety checks enforced on
the Reflex applications, this chapter describes our initial prototype implementation of Reflexes
on a research real-time Java virtual machine, highlighting the most interesting aspects of the
implementation.

5.1 Implementation Overview

As implementation platform, Reflexes uses the Ovm [BCF+06] real-time Java virtual machine,
which comes with an optimizing ahead-of-time compiler and provides an implementation of
the Real-time Specification for Java (RTSJ). The virtual machine was designed for resource
constrained uni-processor embedded devices and has been successfully deployed on a ScanEagle
Unmanned Aerial Vehicle in collaboration with the Boeing Company [ABC+06].

We leverage the RTSJ support in Ovm to implement some of the key features of the Reflex API.
For instance, the stable and transient memory areas in a Reflex task are implemented using
standard RTSJ ScopedMemory, and the threads executing the Reflex tasks are subclasses of the
standard RealtimeThread construct. The virtual machine configuration described here uses an
optimizing ahead-of-time compiler to achieve performance competitive to commercial virtual
machines [PV06]. Furthermore, in our implementation, we switched off any memory boundary
checks on the ScopedMemory that are normally performed by RTSJ-compliant virtual machines,
as we provide these guarantees statically through our static safety checks.

75

76 CHAPTER 5. REFLEX IMPLEMENTATION

5.2 Scheduling

Scheduling is implemented in the virtual machine. Ovm supports a scheme based on priority-
preemptive scheduling for real-time threads with a complete range of priorities from 1-42, the
subrange 12-39 are real-time priorities used by Reflex tasks and the remaining are used for
ordinary Java threads. The virtual machine’s mostly-copying garbage collector is run in an
ordinary Java thread.

The ReflexTask instances in each Reflex graph are executed by a single thread with real-time
priorities according to the priority given to the graph it belongs to. The thread is started as a
result of an invocation of start on the Reflex graph, which basically causes the thread of the
Clock task to start. Having started, upon reaching its period, the Clock will invoke put the
latest time stamp on channel, and traverse downstream in the graph and execute any tasks that
are schedulable, as illustrated by the algorithm in Fig. 5.1.

upon next period arrived
for all outgoing time channels Cout of clock task do

clock task pushes timestamp on Cout using Cout.putTime();
inspectDownstreamTask(Cout.targetTask);

function inspectDownstreamTask(T)
for all incoming channels Cin of task T do

if (elements in Cin >= rate of Cin) then // if size of inbound channel is equal or larger than expected rate
T .execute();
for all outgoing channels Cout of task T do

inspectDownstreamTask(Cout.targetTask);

Figure 5.1: An algorithm showing how tasks in a Reflex graph are executed in the Reflex
prototype implementation. The clock task triggers the execution by pushing a timestamp on
its outgoing channels after which the thread traverses downstream in the graph, executing any
receiving task that is schedulable.

With this single-threaded scheme, special care must be taken by the programmer to ensure that
the worst case graph traversal time is less than the period selected in the clock. If this is not
the case, inevitably the execution will span multiple periods, and deadline misses will occur.

5.3 Memory Management

For each ReflexTask, the implementation allocates a fixed size continuous memory region for
the Reflex’s stable area and another region for its transient area. The size of each of the above
is set programmatically in the Reflex API, as shown in Fig. 3.3. Furthermore, a buffer is set
aside for the transactional log. In our prototype implementation, the size of the transaction log
is growable, but not shrinkable, but the log can be reset and already allocated entries reused

5.3. MEMORY MANAGEMENT 77

between transactions. In other words, the size of the transaction log will at any point correlate
with the maximum number of memory mutations made in an invocation of a transactional
method. However, recall, that the transaction log only holds mutations to stable objects. The
ReflexTask object, the transaction log and all other implementation specific data structures
are allocated in the Reflex task’s stable area, and thus not subject to garbage collection.

Each thread in the virtual machine has a default allocation area. For ordinary Java threads,
this area is of course the public heap. For real-time threads executing the Reflex task’s execute
method, this area is the transient area of the task. Likewise, when an ordinary Java thread in-
vokes a transactional method on a Reflex task, the memory area has to be switched to the tran-
sient area of the task throughout the invocation, and reset once the invocation returns. To enable
this, we have modified the bytecode rewriter of the Ovm compiler to bracket all invocations of
transactional methods declared on the ReflexTask subclass with setCurrentArea/reclaim-
Area invocation pairs to ensure that when a transactional method is called the allocation area
is set to the transient region, as seen in Fig. 5.2.

@atomic public void update(int[] ia) {
MemoryArea publicHeapArea = ReflexSupport.setCurrentArea(this.transientArea);
try {

// body of method goes here
}
finally {

ReflexSupport.reclaimArea(this.transientArea);
ReflexSupport.setCurrentArea(publicHeapArea);
}
}

Figure 5.2: An illustration of the effects of the modification made to the bytecode rewriter of
the Ovm compiler, wrapping the method body of a transactional method with invocations to
switch and reclaim the allocation context of the invoking thread. Note, we use Java source
code to illustrate the effects of the modification, but in fact they are performed directly on the
bytecodes.

As can be seen from Fig. 5.2, the virtual machine exposes low-level functionality for setting
allocation areas through the ReflexSupport class. The method setCurrentArea allows the
Reflex implementation to change the allocation area for the current thread. Regions are reference
counted, each call to setCurrentArea increase the count of active threads by one. The method
reclaimArea decreases the counter by one for that area, if the counter is zero all objects in the
area are reclaimed. Essentially, the allocation pointer is reset to the start of the area.

Besides switching memory context, the virtual machine also is responsible for redirecting the
allocation of stable classes into the stable heap. For this purpose, the virtual machine exposes
another native method, setAllocKind(graph, class) for internally identifying stable classes.
This method is invoked by the Reflex run-time once for each stable class used by the tasks in the
Reflex graph to be executed. The list of stable classes is provided to the Reflex run-time engine

78 CHAPTER 5. REFLEX IMPLEMENTATION

as a result of the type checking of the given Reflex graph, as detailed later. By invoking this
method for a given class T , whenever an instance of T is created within the particular Reflex
graph, the stable heap of the current task is used as allocation context for the object.

The virtual machine also supports allocation policies for meta-data. In particular, we rely on
a policy for lock inflation that ensures that a lock is always allocated in the same area as the
object with which it is associated, regardless of the current allocation area.

5.4 Transactional Methods

To implement the transactional methods, we exploit the preemptible atomic regions [MBC+05]
facility of the Ovm virtual machine, a non-standard facility not supported by standard compliant
commercial Java virtual machines.

By exploiting the preemptible atomic regions facility any method annotated @atomic will be
treated specially by the Ovm compiler during compilation. More specifically, the compiler will
privatize the call-graph of a transactional method, i.e., recursively generate a transactional
variant of each method reachable from the transactional method. This transactionalized variant
of the call-graph is invoked by the ordinary Java thread, whereas the non-transactional variant
is kept around as the Reflex task might itself invoke (via the execute method) some of the
methods, and those should not be invoked with transactional semantics as they will always
succeed and thus never roll-back. The transactional method itself is not privatized; only any
methods that are invoked from here. In our prototype implementation, we do not prevent the
execute method from invoking a transactional method and thus the transactional variant of the
call-graph. However, the effects would not be dangerous; we know that the execute method
will always complete. Indeed, the Reflex thread invoking the execute method can be preempted
by a higher priority Reflex thread executing another task (in another Reflex graph), but it will
eventually complete and never roll back. In this light, the fact that part of the invocation is
executed with transactional semantics poses no problem, though we discourage it.

Furthermore, we have applied a subtle modification to the preemptible atomic region implemen-
tation. Rather than having a single global transaction log, a transactional log is created per
ReflexTask instance in the graph, assuming that it declares transactional methods. This change
ensures the encapsulation of each ReflexTask instance, and enables concurrent invocation of
different transactional methods on different ReflexTask instances.

The preemptible atomic regions use a roll-back approach in which for each field write performed
by an ordinary Java thread on a stable object within the transactional method, the virtual
machine inserts an entry in the transaction log and records the original value and address of field.
With this approach, a transaction abort boils down to replaying the entries in the transaction
log in reverse order. Running on a uni-processor virtual machine, no conflict detection is needed.
Rather, the transaction aborts are simply performed eagerly at context switches. Specifically, the
transaction log is rolled back by the high-priority thread before it invokes the execute method of
the schedulable Reflex task. Whereas the complexity of transaction aborts is proportional with

5.5. PINNING OF OBJECTS 79

the number of writes performed in the transactional method at the time of preemption, starting
and committing a transaction can be done in constant time. Upon resuming, the ordinary Java
thread will discover that it was preempted, and will subsequently retry the invocation of the
transactional method.

Should an exception occur within the transient area of a Reflex task, i.e., during the invocation
of the execute method, we rely on standard Java semantics that will cause the exception object
and its stack trace to be allocated in transient memory. If the exception propagates out of
the execute method, the stack trace is printed and the Reflex task computation is terminated.
Contrary, if the exception occurs during an ordinary Java thread’s invocation of a transactional
method and the exception propagates out of the outermost transactional method, we rely on
standard RTSJ behavior. The problem here is that the exception object is allocated in the
transient area within the task, and thus is out of reach of the receiving Java thread allocated on
the public heap. Leveraging RTSJ specific behavior, rather than receiving the specific exception
object, the ordinary Java thread will receive an unchecked ThrowBoundaryError with a String
based description of the actual thrown exception.

5.5 Pinning of Objects

As mentioned earlier, for type safety reasons static variables of reference-immutable type refer-
enced from within a Reflex task are required not to be moved by the garbage collector in order to
prevent a dangling pointer or observing the object in an inconsistent state. For static variables,
our implementation exploits the fact that standard RTSJ allocation policy for classes and static
initializers ensures that all objects are allocated in the ImmortalMemory area, a non-garbage
collected region.

The Ovm garbage collector supports pinning for objects. Pinned objects are guaranteed not to
move or be removed during a garbage collection, and will therefore always be in a consistent
state when observed by referent objects from other memory areas. Thus, they can safely be
accessed from a Reflex task. Although, we do not pin static variables, there is one other case
where pinning is required. Arguments to transactional methods are heap-allocated objects and
are thus pinned as the ordinary Java thread invokes a transactional method on the Reflex task
and unpinned again when the invocation exits. We have modified the bytecode rewriter of
the Ovm compiler to instrument the method bodies of the outermost transactional methods
(those methods on the ReflexTask declared @atomic) to pin and unpin any reference type
objects passed in. Fig. 5.3 illustrates in Java source code the effect of the modification of
the Ovm compiler, more specifically, the insertions of the invocations to the pinObjects and
unpinObjects methods.

80 CHAPTER 5. REFLEX IMPLEMENTATION

@atomic public void update(int[] ia) {
ReflexSupport.pinObjects(new Object[]{ ia });
try {

// body of method goes here
}
finally {

ReflexSupport.unpinObjects(new Object[]{ ia });
}
}

Figure 5.3: An illustration of the effects of the modification made to the bytecode rewriter of
the Ovm compiler, inserting methods to pin and unpin reference type arguments provided to the
outermost transactional methods. Note again, we use Java source code to illustrate the effects
of the modification, but in fact they are performed directly on the bytecodes.

5.6 Static Type Checker

The Reflex type checker is implemented as a pluggable type system through an extension of the
JavaCOP framework [ANMM06]. JavaCOP is a system for defining and enforcing constraints
on the structure of a Java program. It consists of a rule language for specifying semantic and
structural constraints on Java programs as well as a framework for validating structural and
semantic constraints. In our case, we have refrained from specifying the Reflex static safety
checks using the JavaCOP language, and instead simply extended the JavaCOP framework and
hardcoded the safety checks directly. The Reflex type checker is implemented as an extension
of the javac 1.5 compiler, adding an extra pass in the javac 1.5 compiler. This approach is
convenient as the rules are fairly compact and that error messages are returned by the Java
compiler – no extra tool is required and messages are returned with line numbers in a format
that is familiar to programmers.

Specifically, the Reflex static type checks is implemented by extending the AbstractConstraints
class of the JavaCOP framework and contains around 900 lines of code. This class implements
a visitor pattern [GHJV95], and can intercept and handle the visit of each node in the abstract
syntax tree of the Java program, where each node represents parts of the programs structure:
classes, methods, blocks, statements, expressions, identifiers etc.

Upon starting up, the Reflex type checker reads a text file containing the intrinsic types, i.e.,
those that have been manually declared safe types by the programmer, before commencing on
the actual checks. To this initial set belongs all the base classes of the Reflex API. The checks
are performed purely on a class-based level, which for the stable/transient checks is necessary
anyway. However, for the checking of reference-immutability, as described in the algorithm
in Fig. 4.2, the class-based level has its limitations as the actual values assigned to a field are
not know statically. Thus, should the Reflex type checker not be able to statically determine
that a given type assigned to a static variable is indeed reference-immutable, the checker will

5.6. STATIC TYPE CHECKER 81

report an error to the user, and thus the checking will fail. Due to the imprecision of the
approximation, this might or might not represent a real error. If it turns out not to be, and
the programmer is certain that the type is indeed reference-immutable and thus safe to assign
to a static variable, the type can be added to the file containing the intrinsic types, whereby its
usage will no longer cause an error to occur during type checking.

Upon a successful safety checking, the Reflex type checker generates an output file containing
the list of all stable types that were found in the checked application and used from within the
Reflex tasks. These types are found from a starting point consisting of classes implementing
the Stable marker interface and augmenting this set with those classes found according to the
static safety checks R7 and R8. The output file is subsequently read and used by the Reflex
run-time engine upon executing the checked application, and informs the Reflex run-time engine
about which types should be allocated in the stable heaps of the tasks, as described earlier.

82 CHAPTER 5. REFLEX IMPLEMENTATION

6
Empirical Prototype Evaluation

This chapter reports on a number of empirical evaluations of our prototype implementation of
Reflexes when executed on a research virtual machine. We evaluate Reflexes on two dimensions;
predictability and performance, both important properties of real-time systems. For this pur-
pose, we employ two benchmark applications and compare these to equivalent variants written
in C. We also report on a benchmark comparison of our research virtual machine with others,
to take into account their performance profiles.

6.1 Methodology

The purpose of the evaluation is to expose to which extent applications programmed with Re-
flexes achieve the response times of highly responsive applications, and how one such application
compares to an equivalent C variant in terms of performance.

All the conducted experiments were performed using a variant of the Ovm virtual built with sup-
port for POSIX high resolution timers, and configured it with an interrupt rate of 1 µs, disabled
the run-time checks of violations of memory region integrity (read/write barriers) and config-
ured the heap size to 512MB. Finally, non-determinism due to just-in-time (JIT) compilation is
avoided through the ahead-of-time compilation provided by Ovm.

As execution platform we used an AMD Athlon 64 X2 Dual Core processor 4400+ with 2GB
of physical memory running Linux. The kernel version used was 2.6.17 extended with high
resolution timer (HRT) patches [RT] configured with a tick period of 1 µs.

We evaluate Reflexes based on two metrics of predictability: precision of inter-arrival time, i.e.,
time between two successive executions of a Reflex task, and number of missed deadlines when

83

84 CHAPTER 6. EMPIRICAL PROTOTYPE EVALUATION

running Reflexes in isolation and in a mixed environment.

At this point, it is important to properly characterize a deadline miss. A missed deadline occurs
for the i’th firing of a Reflex with a period p if the actual completion time, αi, comes after its
expected completion time, εi, where εi = p(d(αi−1/p)e+1). When counting missed deadlines, we
will be conservative and consider both real deadline misses as well as absolute deadline misses;
the difference being that for a given period p, a single absolute deadline miss might cover i ∗ p
real deadlines, where i > 1. (So we will in this case count i deadline misses.)

Time

Missed
Deadline

 θ i-1 ε i-1

α i-1

 θ i ε i

p p
cur

p

Inter-Arrival Time

Periodic
Execution i-1

Periodic
Execution i

+1-1

Figure 6.1: Timeline showing how a missed deadline can cause an inter-arrival time between
two consecutive periodic executions to be larger than twice the period.

Note also that an inter-arrival time larger than twice the period p (but strictly less than three
times the period) does not necessarily imply more than a single deadline miss. Fig. 6.1 shows
that in the event of a deadline miss (when actual completion time, αi−1, lies after the expected
completion time, εi−1) of a i − 1’th firing, the expected completion time, εi, of the subsequent
i’th firing is set to be the end of the first-coming complete period, i.e., any time remaining in
the current period is skipped. If the start of the subsequent periodic execution, i, is delayed
(reflected in the actual start time, θi, lying after the period start) it can cause the inter-arrival
time between the two consecutive periodic executions, i − 1 and i, to be larger than twice the
period p.

6.2 Virtual Machine Benchmarks

Working on a research virtual machine always raises questions about applicability of the results
in the context of ’real’ systems. We report on the raw performance of Ovm on the SpecJVM98
benchmark suite and compare it with Hotspot 1.5 and GCJ 4.0.2. We evaluate two Ovm
configurations: the plain Java configuration and the RTSJ configuration which includes scoped
memory access checks. Fig. 6.2 shows that Ovm outperforms GCJ and fares surprisingly well
when compared to a commercial virtual machine.

The figure also illustrates the costs of RTSJ read/write barriers (up to 50%). SpecJVM is by no
means representative of a real-time application, but it gives an estimate of the cost of memory
access checks.

6.3. EVALUATION: SINGLE TASK GRAPHS 85

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

co
mpres

s
jes

s db
jav

ac

mpeg
au

dio
mtrt jac

k

Ovm 1.01
RTSJ Ovm 1.01
GCJ 4.0.2
HotSpot1.5.0.06

Figure 6.2: Comparing Java VMs on the SPECJVM98 benchmarks. The x-axis shows the
individual benchmark tests and the y-axis the relative performance compared to Ovm (set to
1.0).

6.3 Evaluation: Single Task Graphs

First, we considered benchmark applications consisting of single-task Reflex graphs. More specif-
ically, we experimented with a null task, i.e., a task with an empty execute method, to get some
baseline measurements on predictability, after which we adopted a music synthesizer to measure
performance using a standard audio periodicity.

6.3.1 Predictability

To evaluate predictability of Reflexes, we implemented a simple Reflex graph containing a single
null task, scheduled it for a 45 µs period (equivalent to frequency of 22.05 KHz, a standard
audio frequency), and let it execute over 10 million periods. We also implemented a C variant
of the same code, though the C variant relies on POSIX real-time extensions.

As depicted in Fig. 6.3 nearly all interesting observations centered around the 45 µs period,
though the Reflexes appear to be slightly less timely than the C variant, because the spread
in inter-arrival time is wider. Also note the observations clustered around 200-250 µs for both
variants, which we attribute to perturbations in the underlying operating system. Similar ob-
servations for an equivalent base performance benchmark are reported in [SAB+06].

Fig. 6.4 depicts missed deadlines for both Reflexes and the C variant. More precisely, with Re-
flexes 99.996% of the periods are completed in time with no absolute deadline miss (99.993% in
the case of real deadline misses). On the other hand, the equivalent for the C variant is 99.997%

86 CHAPTER 6. EMPIRICAL PROTOTYPE EVALUATION

100

101

102

103

104

105

106

107

108

100 101 102 103 104

Fr
eq

ue
nc

y

Inter-Arrival Time (µs)

(a)

100

101

102

103

104

105

106

107

108

100 101 102 103 104

Fr
eq

ue
nc

y

Inter-Arrival Time (µs)

(b)

Figure 6.3: Histograms of inter-arrival time for (a) Reflex graph with a null task scheduled for
45 µs periods, and (b) an equivalent the C variant also scheduled for 45 µs periods. The x-axis
shows the logarithm of the inter-arrival time in µs and the y-axis shows the logarithm of its
frequency.

100

101

102

103

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

De
ad

lin
e

M
iss

 (µ
s)

Iteration

(a)

100

101

102

103

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

De
ad

lin
e

M
iss

 (µ
s)

Iteration

(b)

Figure 6.4: Missed deadlines over time for respectively (a) Reflex graph with a null task scheduled
for 45 µs periods, and (b) an equivalent the C variant also scheduled for 45 µs periods. The
x-axis shows the executions (only 1 million iterations shown) of the periodic task and the y-axis
shows the logarithm of the size of the deadline misses.

(real: 99.993%). Interestingly, Fig. 6.4 indicates some pattern in deadline misses around 100-200
µs for both Reflexes and the C variant, though for the C variant there seems to more consistency
in that pattern. Also, it appears that both versions experience an equivalent amount of deadline
misses, but Reflexes have more variation in the actual sizes of the misses than the C variant. In
both cases, given the similar patterns in the missed deadlines lead us to believe that these must
be caused by the underlying operating system.

6.3. EVALUATION: SINGLE TASK GRAPHS 87

6.3.2 Performance

Having compared the predictability of Reflexes and corresponding C code, we next measured
the performance of Reflexes under a workload stemming from a mixed environment with an
ordinary Java thread and a (time-critical) Reflex task executed concurrently. We considered
here a music synthesizer application, developed at IBM Research for Eventrons [SAB+06], which
we modified to make use of Reflexes, including a transactional method.1 In short, the scenario
involves an ordinary Java thread that generates music samples, and writes these to a buffer on
the ReflexTask instance through a transactional method. These samples are then periodically
read by an audio player Reflex scheduled with 45 µs periods and which then writes the samples
individually to the sound device for playing. Note, this is an example of an application where
we successfully use native methods though, as mentioned earlier, in general their effects on
time-critical tasks might make them unsuitable. For the sake of comparison, we implemented a
corresponding C variant of the music synthesizer.

100

101

102

103

104

105

106

107

108

100 101 102 103 104

Fr
eq

ue
nc

y

Inter-Arrival Time (µs)

(a)

100

101

102

103

104

105

106

107

108

100 101 102 103 104

Fr
eq

ue
nc

y

Inter-Arrival Time (µs)

(b)

Figure 6.5: Histograms of inter-arrival time for respectively a (a) Reflex and (b) C variant of an
audio player task scheduled for 45 µs periods. The x-axis shows the inter-arrival time in µs and
the y-axis shows the logarithm of its frequency.

Fig. 6.5 depicts the inter-arrival time of the time-critical audio player thread for both the Reflex
and C variants. As already noted in Fig. 6.3, outlier clusters around the 200-300 µs range can
also be seen in Fig. 6.5 for both Reflexes and its C variant. However, in Fig. 6.5 these outliers
appear to have been enhanced, which we attribute to the effects of buffering congestion in the
sound device to which the time-critical task is writing (twice per execution)2.

The outlier clusters seen in Fig. 6.5 also seem to have a direct impact on the missed deadlines as
seen in Fig. 6.6. Specifically, for Reflexes 99.869% (real: 99.698%) of them complete in time and
do not cause deadline misses. For the C variant, this is the case in 99.949% (real: 99.799%) of

1Eventrons have been released under the name Expedited Real-Time Threads and is available from
http://www.alphaworks.ibm.com.

2First the upper 8 most significant bits of the short value are written to the sound device followed by the 8
least significant.

88 CHAPTER 6. EMPIRICAL PROTOTYPE EVALUATION

100

101

102

103

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

De
ad

lin
e

M
iss

 (µ
s)

Iteration

(a)

100

101

102

103

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

De
ad

lin
e

M
iss

 (µ
s)

Iteration

(b)

Figure 6.6: Missed deadlines over time for respectively a (a) Reflex and (b) C variant of an audio
processing task scheduled for 45 µs periods. The x-axis shows the periodic executions (only 1
million iterations shown) of the time-critical task and the y-axis shows the logarithm of the size
of the deadline misses.

the time. Of particular interest in Fig. 6.6 is to see how the perturbation causes regular deadline
misses around 180 µs. We consider these anomalies to most likely be caused by buffering on the
sound device or to stem from other interactions with the underlying operating system, and we
have learned (through private conversations) from the Eventrons project that they experienced
equivalent behavior when running at these frequencies. With Reflexes, however, there seems to
be further frequent deadline misses in the ranges 2-3 µs, 5-6 µs and around 110-120 µs. These
we attribute to the jitter in timeliness as described earlier and depicted in Fig. 6.3 and which
also appears to cause similar missed deadlines as seen in Fig. 6.4.

6.4 Evaluation: Stream Processing Graphs

To evaluate Reflex graphs consisting of more than a single task, we considered two benchmark
applications developed at MIT for the StreamIt project [TKA02], which we modified to make
use of the Reflex API. The benchmark applications used were (1) a beam-form calculation
on a set of inputs, and (2) a filter bank for multirate signal processing.3 Fig. 6.7 shows a
graphical representation of the Reflex implementation of the BeamFormer benchmark. It shows
the structure and number of tasks as well as their interconnections.

6.4.1 Predictability

To evaluate predictability of a Reflex graph with more than a single task, we considered the
SerializedBeamFormer benchmark application mentioned above, which we modified by schedul-

3A description as well as the actual code for both the utilized StreamIt benchmark applications, Serialized-
BeamFormer.str and FilterBankNew.str are available for download at http://cag.csail.mit.edu/streamit.

6.4. EVALUATION: STREAM PROCESSING GRAPHS 89

BeamFormer

AnonFilter_a2 AnonFilter_a2 AnonFilter_a2 AnonFilter_a2

BeamForm BeamForm BeamForm BeamForm

InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

Magnitude

Detector

BeamFirFilter

Magnitude

Detector

BeamFirFilter

Magnitude

Detector

BeamFirFilter

Magnitude

Detector

BeamFormer

Figure 6.7: Structure of the Reflex graph for the BeamFormer benchmark.

 0

 500

 1000

 1500

 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Inter-Arrival Time (µs)

(a)

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000

D
e
a
d
lin

e
 M

is
s
 (
µ

s
)

Iteration

(b)

Figure 6.8: Running Reflex implementation of SerializedBeamFormer with periodic thread
scheduled every 80 µs over 10,000 iterations. (a) depicts frequencies of inter-arrival time. The
x-axes depict the inter-arrival time of two consecutive executions in microseconds of the periodic
task whereas the y-axis depicts the frequency, (b) shows missed deadlines over time (5,000
depicted). The x-axis depicts iterations of the task whereas the y-axis shows the deadline misses
in µs.

ing the entry task, a void splitter task, with a period of 80 µs instead of being executed con-
tinuously. The graph was executed for 10,000 periods on an AMD Athlon 64 X2 Dual Core
processor 4400+ with 2GB of physical memory. The operating system used was Linux (kernel
version 2.6.17-hrt-dyntick5), extended with high resolution timer (HRT) patches [RT] configured
with a tick period of 1 µs.

As depicted in Fig. 6.8(a), nearly all interesting observations of the inter-arrival time are centered
around the 80 µs period with only a few microseconds of jitter. This is as it should be considering
that the average iteration time of the benchmark is to be around 50 µs, leaving sufficient time
for the underlying virtual machine to prepare and schedule the next period. In addition to the

90 CHAPTER 6. EMPIRICAL PROTOTYPE EVALUATION

expected peak around 80 µs, there is a number of outliers around 160 µs. We attribute these
perturbations to coincidental measurement noise, probably caused by buffering or flushing in
the underlying operating system.

Fig. 6.8(b) depicts missed deadlines over time for the Reflex benchmark application. Specifically,
out of 10,000 periodic executions, we observed 223 missed deadlines, corresponding to a miss-
rate of 2%. The missed deadlines are primarily centered around a range between 15-20 µs
throughout the iterations. Most likely, these missed deadlines are a consequence of a slight jitter
in the inter-arrival time, as depicted in Fig. 6.8(a). Additionally, Fig. 6.8(b) also conveys a
few observations randomly scattered around 30-50 µs. These deadline misses are directly linked
with the outlier observations of inter-arrival time around 160 µs in that, generally speaking, a
deadline miss between two consecutive periodic executions can cause for the inter-arrival time
of the two to be larger than twice the actual period, as explained in Sec. 6.1.

6.4.2 Performance

Both benchmark applications were configured to execute in a uni-processor, single-threaded
mode, and thus did not take advantage of the parallelization possibilities of the stream pro-
gramming paradigm. The performance experiments were performed on a 3.8Ghz Pentium 4,
with 4GB of physical memory. The operating system used was Linux (vanilla kernel, version
2.6.15-27-server).

For the sake of comparison, we performed baseline measurements on the automatically generated
Java variants of the StreamIt benchmark applications. The Java variants were benchmarked both
on the Ovm virtual machine as well as the Java HotSpot virtual machine, version 1.5.0 10-b03,
in mixed mode. Reported values are for the third run of the benchmark.

Reflex/Ovm StreamIt/Ovm StreamIt/HotSpot
BeamFormer 314 ms 1285 ms 1282 ms
FilterBank 1260 ms 4350 ms 3213 ms

Table 6.1: Performance measurements showing actual run-time in milliseconds of performing
10,000 iterations of the benchmark applications using respectively Reflex and the Java variants
of StreamIt on the Ovm virtual machine and on the Java HotSpot virtual machine.

As depicted in Tab. 6.1, Reflexes perform significantly better than the StreamIt/Java variant
also executed on Ovm. Specifically, the performance improvement amounts to a factor 3.5 to
4. It is interesting to compare Ovm and Hotspot. Looking at the results for the StreamIt code,
we see that HotSpot is somewhat faster (25%) than Ovm for FilterBank. The slowdown can
be in part explained by the fact that HotSpot is a more mature infrastructure and also because
of known inefficiency in Ovm’s treatment of floating point operations, which these applications
make heavy use of. It is interesting to observe that Reflex is a factor 2.5-4 times faster than the
StreamIt running on HotSpot. This underlines that the significant performance gains achieved
are not caused by the virtual machine itself.

6.5. EVALUATION: INTRUSION DETECTOR SYSTEM 91

6.5 Evaluation: Intrusion Detector System

Finally, we also performed various measurements of our Intrusion Detector System implemen-
tation, described in Sec. 3.6, on the Ovm virtual machine again configured with a heap size of
512MB, and running on an AMD Athlon 64 X2 Dual Core processor 4400+ with 2GB of physical
memory. The operating system used was Linux (kernel version 2.6.17-hrt-dyntick5), extended
with high resolution timer (HRT) patches [RT] configured with a tick period of 1 µs.

The timing of the Reflex graph was configured with a period of 80 µs, meaning that the Packet-
Reader creates capsules at a rate of 12.5 KHz. At this rate, the packet synthesizer, running as
an ordinary Java thread, is able to generate packets in to the attack detection pipeline without
experiencing any underruns. In other words, at a rate of 12.5 KHz the synthesizer can provide
packets at the rate which matches the rate with which the Intrusion Detector System can analyze
them. The time used to analyze a single network packet (from the capsule creation to the end
of the TearDrop task) varies from 3 µs to 23 µs with an average of 6 µs. One reason for this
variation is that some packets are identified as possible suspects by one of the tasks, and thus
require additional processing in the automata. If we consider raw bytes instead of network
packets, the intrusion detection system implemented using the Reflex API delivers an analysis
rate of 77MB per second.

92 CHAPTER 6. EMPIRICAL PROTOTYPE EVALUATION

Part IV

Integration

93

7
Flexotask Integration

This chapter describes the unified, restricted programming model, called Flexotask, resulting
from integrating Reflexes, StreamFlex (here considered separately from Reflexes) with Even-
trons and Exotasks from IBM Research. The description will mostly be limited to the impact
that the integration has had on the Reflex programming model, as described earlier, i.e., the
changes we have applied to Reflexes in order to integrate it with the other models. As such,
functionality in the Flexotask programming model adopted uniquely from the Eventrons and
Exotasks programming models will not be described further as that work is uniquely attributed
to their respective inventors. The chapter finishes off by providing code excerpts of a challenging
real-time avionics collision detector application demonstrating how to program with Flexotask.

7.1 Motivation

Pursuing the integration of these programming models was motivated by the following challenges.
First, the Reflex programming model, like that of Eventrons and Exotasks, represents a static
trade-off between expressiveness and latency. By integrating Reflexes with other programming
models making other trade-offs, we wanted to have a unified powerful programming model,
enabling the programmer to select between these trade-offs within the same programming model,
rather than having to choose between different programming models.

Second, we wanted to investigate the viability of porting Reflexes to another virtual machine,
without special research related features, such as the preemptible atomic regions, and thereby
demonstrate that the Reflex approach is virtual machine agnostic. Moreover, we wanted to
explore how Reflexes performed on an industrial-strength virtual machine. As both Eventrons
and Exotasks are implemented on the IBM WebSphere Real-Time VM, a virtual machine with

95

96 CHAPTER 7. FLEXOTASK INTEGRATION

multi-processor design and which comes with its own RTSJ-implementation, we decided to opt
for this platform as target, noting the extra challenges and possibilities of the multi-processor
support.

7.2 Model Unification

As mentioned, just like Eventrons and Exotasks, Reflexes and StreamFlex represent a static
set of trade-offs between expressiveness and latency appropriate to applications with different
requirements. Having four different programming models, a programmer would be forced to
choose between the different models in order to accommodate the application requirements in
the best possible manner. Thus, should the application requirements at some point change, the
programmer would be faced with the task of switching API and rewriting the time-critical parts
of the application according to the new restricted programming model.

Expressiveness

Latency

> 1ms

Exotasks

Eventrons

Reflexes

StreamFlex

Flexotask

Java Java/RTGC

RTSJ/NHRT

< 1ms

Figure 7.1: The design space of programming models illustrating how the different restricted
programming models relate to each other, and the scope of the Flexotask programming model
subsuming the four existing programming models.

Consequently, by subsuming these four complementary programming models into a unified pro-
gramming model, the programmer would get tremendous benefits and flexibility, in that he
would have a single model from which to choose various features without being forced to learn
a new API and rewrite the application, should the application requirements change. In contin-
uation of Fig. 2.2, Fig. 7.1 illustrates the scope of the Flexotask programming model, covering
Reflexes, StreamFlex with Eventrons and Exotasks, enabling the programmer to adjust the level
of expressiveness and latency within this area by choosing between various features of the unified
programming model.

7.3. INTRODUCTION TO FLEXOTASKS 97

Feature Eventrons Reflexes Exotasks StreamFlex Flexotask

Restricted Unit Task Task Graph Graph Graph
Long-term Storage Pre-allocated Stable region Private heap Stable region Private heap
Short-term Storage Stack variables Transient region Private heap Transient region Transient region
External Comm. Shared scalars Transactions None Transactions Shared and transactions
Synchronization Forbidden Discouraged Disabled Discouraged Allow, forbid, or disable
Scheduling Periodic Periodic Pluggable Data Driven Pluggable
Construction Direct Direct Via template Direct Via template
Intertask Comm. – – By Deep Copy By Reference Copy or reference
Enforcement Initialization Compilation Initialization Compilation Compilation + initial.

Figure 7.2: Features of the four programming models unified into Flexotask.

We used two main strategies to accomplish this unification. First, where a feature of one model
was general enough already to subsume another, the more general feature was chosen, and, simi-
larly, less restrictive rules were preferred over more restrictive ones. In choosing the more general
or less restrictive capability, we were aware that the less general or more restrictive one may have
had advantages of simplicity or efficiency. To recover simplicity for programmers who desire it,
we rely on selective veneer interfaces that provide a simplified semantics (for both Eventrons
and Reflexes). To recover efficiency for applications that can live within tighter restrictions,
we made some stronger checks available but optional (both allocation and synchronization are
allowed by default but may be forbidden by static checking).

Second, where two precursor models simply did something differently, we incorporated both
mechanisms, and either required a choice (if they conflicted) or allowed both to be used together
(if they did not). Thus, we retained the storage management semantics of both Exotasks and
Reflexes, the external communication mechanisms of both Eventrons and Reflexes, and the
intertask communication mechanisms of both Exotasks and StreamFlex. Fig. 7.2 summarizes
some key features of the four models unified as Flexotask, and depicts the feature choices made
for Flexotask.

7.3 Introduction to Flexotasks

Being an integration, Flexotask has an interface which is a mixture of the four models. Rather
than introducing the entire API, this section will only highlight those parts of the model and
API necessary to understand the differences concerning the functionality inherited from Reflexes,
including those parts needed to get a consistent picture of Flexotask.

7.3.1 Flexotask Graph

Just like in Reflexes, Flexotask operates with a graph of tasks. Unlike a Reflex graph, a Flexotask
graph is constructed indirectly by using a template that specifies the layout of the graph. This
template can be constructed programmatically or graphically using development tool support
(and stored in a special file format), as will be described later.

98 CHAPTER 7. FLEXOTASK INTEGRATION

The template idea, which stems from Exotasks, facilitates the transfer of information about
complex programs from development time to run-time, and the independent development of
tools that help in the construction of such programs. Fig. 7.3 and Fig. 7.4 shows excerpts of
code constructing a FlexotaskGraph by programmatically constructing a graph template and
through the use of a file containing a preconstructed graph template.

FlexotaskTemplate spec = new FlexotaskTemplate();
spec.setStableMode(StableMode.AUTO);
...
Map parameters = new HashMap();
...
FlexotaskGraph graph = spec.validate(SCHEDULER, parameters);
graph.getRunner().start();

Figure 7.3: Constructing a Flexotask graph by programmatically creating a graph template.

InputStream in = ...
FlexotaskTemplate spec = FlexotaskXMLParser.parseStream(in);
...
Map parameters = new HashMap();
...
FlexotaskGraph graph = spec.validate(SCHEDULER, parameters);
graph.getRunner().start();

Figure 7.4: Constructing a Flexotask graph by help of a template preconstructed using the
development tool support of Flexotask.

There are some key elements worth pointing out in Fig. 7.3 and Fig. 7.4. The graph template
only specifies how the graph should look like – it is not the runnable graph. The actual runnable
graph, the FlexotaskGraph instance, is returned as a result of the successful validation of the
Flexotask graph template against the safety checks. These checks are performed by the Flexotask
run-time engine upon invoking the validate method on the graph template. This validation
occurs at run-time, but before the graph has been started; we use initialization time to refer
to that point in time. Having passed validation, the tasks in the graph can be started by
invoking (indirectly) the start method on runner of the FlexotaskGraph instance. Details of
this initialization time validation will appear later.

7.3.2 Flexotask Task

A Flexotask graph is made up of a number of tasks. The Flexotask programming model dis-
tinguishes between a Flexotask and an AtomicFlexotask, the only difference being that the
latter can and must declare one or more methods with transactional semantics that can be in-
voked by ordinary Java threads. The former can declare no transactional methods, and thus not

7.3. INTRODUCTION TO FLEXOTASKS 99

share data with ordinary Java threads through this facility. More specifically, the Flexotask
is an interface that has to be implemented by a class providing task specific logic. Contrary,
the AtomicFlexotask is an abstract class that implements the Flexotask interface and must
be subclassed with task specific logic. Fig. 7.5 and Fig. 7.6 show respectively the Flexotask
interface and the AtomicFlexotask abstract class.

public interface Flexotask extends Stable {

public void initialize(FlexotaskInputPort[] inputPorts,
FlexotaskOutputPort[] outputPorts, Object parameter);

public void execute();
}

Figure 7.5: The Flexotask interface to be implemented by classes, whose instances are to be
executed as a time-critical task.

Note how a task in both Reflexes and Flexotask has the same two methods – the initialize
method used for task to prepare itself before execution starts, and the execute method invoked
whenever the task is schedulable. The usage of the arguments provided to the initialize
method are explained later.

public abstract class AtomicFlexotask implements Flexotask {

...
}

Figure 7.6: The abstract AtomicFlexotask class to be extended by classes, whose instances are
to be executed as a time-critical task. Contrary to class implementing the Flexotask interface,
any subclass of AtomicFlexotask can and must declare transactional methods reachable to the
ordinary Java threads. Note, although the abstract class appears to be empty, it is not. Rather
it only contains fields and method necessary for the internal functionality, i.e., not methods nor
fields that are part of the programming model.

Although the AtomicFlexotask class, seen in Fig. 7.6, appears to be empty, this is actually not
the case. Rather the class only contains fields and method necessary for the internals of the
task, i.e., it does not provide any methods or fields that are part of the programming model.
Later, we will describe part of the internal functionality relating to the implementation of the
transactional methods.

Like graphs, tasks are represented by templates themselves describing the implementing class
of the task, its logical name etc. With this scheme, tasks are also created indirectly along with
the rest of the graph during validation using a reflective scheme. Once described through a
template, the individual tasks are then added to the graph template, as depicted in Fig. 7.7.

100 CHAPTER 7. FLEXOTASK INTEGRATION

FlexotaskTemplate spec = ...
...
FlexotaskTaskTemplate task = new FlexotaskTaskTemplate();
task.setImplementationClass(PacketReader.class.getName());
task.setName("PacketReader");
spec.getTasks().add(task);

Figure 7.7: Programmatically adding a Flexotask task to the graph template. Like graphs, tasks
are represented by a template that describe the task, e.g., providing the implementation class
of the task as well as its logical name.

7.3.3 Memory Management

Similar to a Reflex task, a Flexotask task lives in a fixed size private memory area free of
interference from the public heap garbage collection. In Flexotask this private memory area can
have two configurations; either be partitioned in a stable and transient area, or only contain a
stable area.

By default, the private memory area is not partitioned. Rather, inspired by Exotasks, the
entire memory area is configured as a stable heap, and in addition has its own garbage collector
running independently of the public heap garbage collector. As argued in Sec. 3.3.3, although
this approach is attractive from a programming standpoint and efficient compared to a general
garbage collection scheme given the limited size of the object graph of the Flexotask, there
might be situations where one want to eliminate any avoidable overhead in order to minimize
the latencies as much as possible.

For the types of applications requiring the lowest latency requirements possible, Flexotask also
features the stable/transient distinction introduced with Reflexes, described in Sec. 3.3.3, in
which the transient area is used as an execution scratchpad whose allocations are reclaimed
after each execution. In Flexotask, the stable/transient distinction is selected on a per-graph
level through the graph template, using either the development tool support or programatically
by invoking the setStableMode method on the FlexotaskTemplate class, as seen in Fig. 7.3.
Flexotask operates with several stable modes of which the DEFAULT represents the mode where
no distinction between stable and transient classes should be observed, and thus the private
memory area should only be configured with a stable heap. In other words, in DEFAULT mode
any allocations made within the Flexotask task are considered stable and destined for the stable
heap. In contrast, the mode AUTO specifies a Reflex style distinction between stable/transient
classes based on the Stable marker interface, and of course causing the private memory area to
be divided into a stable heap and a transient area.1 Unlike Reflexes, in Flexotask the programmer
does not have to declare the individual sizes of the stable heap and the transient area. Rather,

1In fact, Flexotask operates with two other stable modes that really only differ in how stable classes are
resolved. Whereas AUTO uses the explicit declaration of a stable class using the Stable marker interface, the
INFER mode infers stable classes from the usage of the classes, and MANUAL mode expects and follows a manual,
programmer-provided list declaring, which classes to be considered stable.

7.4. COMMUNICATION DIFFERENCES 101

the stable heap and the transient area simply share the memory available within the private
memory area, and so the programmer is simply left with the task of estimating the size of the
area as a whole. By default, each Flexotask private memory area is given a default size that can
be overridden by the programmer.

Even when using the stable/transient distinction, the stable heap is by default garbage collected
with its own garbage collector, meaning that although Flexotask adopts the Reflex terminology
for stable objects, this does not invariably mean that stable objects are long-lived as in the
Reflex model. Rather, the stable heap garbage collector runs on either a scheduled basis, when
the task is not running, or on-demand, if memory is exhausted during task execution. By
applying a garbage collector to the stable heap (combined with the constant time reclamation
of transient objects), the likelihood of ever running out of memory significantly decreases. At
the same time, this approach is efficient as the majority of allocations made during an execution
are assumed to occur in the transient area, and the root set of the stable heap is thus very
limited. Of course, even though this approach is efficient, the programmer still has to take into
account the time needed to do a worst-case garbage collection within the task when choosing
the period with which the task should run. Since the garbage collection runs in succession of
the execute method, the period must be chosen such that there is enough idle time to perform
a garbage collection without missing deadlines. Full compliance with the Reflex model can,
however, be achieved as garbage collection of the stable heap programmatically can be disabled
by the programmer if the application has a steady state that does not require reclamation of
stable heap data.

7.4 Communication Differences

The Flexotask programming model enables communication between tasks in a graph, and with
ordinary threads through transactional methods and static variables, just like with Reflexes.
However, there are are minor differences in terms of semantics that are worth highlighting.
Furthermore, the Flexotask programming model enables a third way of communicating through
shared instance objects.

7.4.1 Ports and Channels

In Flexotask, tasks communicate amongst each other using ports and connections. Each task
has zero or more input ports and output ports. Each port has a data typed, specified with a
Java Class object. A connection is responsible for binding together an output port on one task
with the input port on another, both having the identical type. Although this approach at
first sounds similar to that used in Reflexes, there are some key differences between inter-task
communication in Reflexes and in Flexotask.

Whereas in Reflexes channels are constructed to hold a limited but flexible number of values,
connections in Flexotask are stateless. By default, each output and input port can hold a single
value only. However, Flexotask facilitates buffering of the ports such that they can hold multiple

102 CHAPTER 7. FLEXOTASK INTEGRATION

values received or to be sent. In particular this is relevant for data driven applications. Contrary
to Reflexes, a buffered port can hold as many values as can be stored within the stable heap of
the Flexotask task in which it lives, and is thus not bounded in size.

Like Reflexes, Flexotask facilitates zero copy communication by simply just passing along ref-
erences to objects over the connections, as illustrated in Fig. 7.8. However, compared to the
Reflex programming model, there are key differences. Rather than being restricted to Capsule
subtypes constrained to only containing fields of primitive and primitive array types, in Flexo-
task we exploit the fact that we perform initialization time checking, which is more precise than
static checking, and thus allow zero copy communication of objects of any reference-immutable
between the tasks. These objects to be passed around between tasks no longer live in a spe-
cial memory area and are no longer maintained by the run-time engine, unlike in Reflexes.
Rather, these objects are created externally to the Flexotask graph (on the public heap) and
are simple reference-immutable objects that are reachable to the tasks in the Flexotask graph –
either through static variables or through so-called shared instance variables, as will be described
shortly. Like any other heap-allocated reference-immutable object, however, they are required
to be pinned.

Besides facilitating zero copy communication, Flexotask also adopts the Exotask style of com-
munication by deep copying values between tasks. This type of communication is, however,
restricted to connections of stable types only (as it would be a violation to the static safety
checks for a stable type to reference a transient object). Although deep copying is expensive,
note, however, that this approach nevertheless effectively avoids any aliasing, which would oth-
erwise compromise the isolation requirements of the tasks.

Like other elements in the Flexotask graph, ports and connections are represented through
templates. The run-time representation of these, or rather the array of already connected in-
and output ports, are created by the Flexotask run-time engine and passed to the task through its
initialize method, as seen in Fig. 7.5. The programmer is hereafter responsible for assigning
them to appropriate instance fields.

7.4.2 Transactional Methods

A subtle difference between Flexotask and Reflexes is that they use different approaches to
declare transactional methods. As mentioned earlier, in Reflexes a transactional method is
declared directly on the ReflexTask class and is required to be annotated with @atomic, an
annotation informing the Ovm compiler to execute the method in a preemptible atomic region.
Flexotask uses no @atomic annotation, but rather requires any transactional method to be
declared in a separate interface that extends the ExternalMethods interface provided by the
Flexotask API, as seen in Fig. 7.9. The reason for introducing this interface is that Flexo-
task operates with an extra level of isolation by using a delegation pattern [GHJV95], as will
be detailed later, and the delegate class will implement this ExternalMethods subinterface –
exposing to the ordinary Java thread only what is truly reachable.

Following from the requirement to declare all transactional methods in a separate interface,

7.4. COMMUNICATION DIFFERENCES 103

Public Heap

Stable Heap

Private Memory Area

FlexoTask

Reference-
Immutable Objects

Stable Heap

Private Memory Area
FlexoTask

Port Port

Figure 7.8: Inter-task communication in Flexotask using single-stage buffer ports (red squares),
unidirectional connections. Flexotask supports communication with zero copy semantics using
heap-allocated, reference-immutable objects that are pinned (depicted) as well as deep copy
semantics using stable types only.

public interface PacketReaderIntf extends ExternalMethods {

public void write(byte[] b) throws AtomicException;
}

Figure 7.9: Extending the ExternalMethods interface to declare methods on a Flexotask that are
reachable to and can be invoked by ordinary Java threads with transactional semantics. Figure
shows how a Flexotask variant of the PacketReader task, seen in Fig. 3.20, would declare its
transactional methods.

the class declaration of the Flexotask task must use this interface. Continuing the Flexo-
task variant of the PacketReader example, Fig. 7.10 shows how a Flexotask task would use
this interface. Note, since the Flexotask task exposes transactional methods (by implementing
the ExternalMethods subinterface), the actual Flexotask task class is required to extend the
AtomicFlexotask class rather than implementing the Flexotask interface.

As can also be observed in Fig. 7.9, all methods declared on this ExternalMethods subinterface
are required to declare that they throw an AtomicException. This requirement follows a subtle
difference in the transaction semantics between Flexotask and Reflexes. In Reflexes, an abort of a
transactional method is transparent to the programmer; the programmer will never know if/when

104 CHAPTER 7. FLEXOTASK INTEGRATION

public class PacketReader extends AtomicFlexotask implements PacketReaderIntf {

...
public void write(byte[] b) throws AtomicException {

buffer.write(b);
}
...
}

Figure 7.10: Using the PacketReaderIntf interface of Fig. 7.9 in the class declaration of a
Flexotask variant of the PacketReader task, seen in Fig. 3.20, to declare and implement the
transactional methods to be invoked by ordinary Java threads.

the invocation of a transactional method was aborted. Rather, the scheduler will implicitly
re-invoke the transactional method until it eventually succeeds. Contrary, in Flexotask the
programmer is forced to be aware of the fact that an abort can happen, and must explicitly
handle AtomicExceptions indicating that the invocation of the transactional method aborted
(as the time-critical task was released before the transactional method committed). Typically,
though, this exception handling simply comes down to either retrying the transaction or giving
up; an option the programmer does not have with Reflexes, but which might be convenient.
However, by making the abort explicit in the programming model, the programmer has more
control over the transactional method, whereby the potential unboundedness of the transactional
method approach for Reflexes can be avoided.

An evolutionary change from Reflexes to Flexotask stems from the realization that transient ob-
jects allocated during the invocation of a transactional method do not really mandate a special
allocation area. In fact, from the point of view of the ordinary Java thread, transient objects are
fundamentally just like any other heap-allocated object. Consequently, in Flexotask transient
objects instantiated by an ordinary Java thread during the invocation of a transactional method
are simply allocated on the public heap. Thus, Flexotask still distinguishes between the object
lifetime of stable and transient objects, but the allocation context of transient objects is the
public heap, as depicted in Fig. 7.11. Note, transient objects allocated during the invocation
of the Flexotask task’s execute method are still allocated in the transient area, if the stable/-
transient distinction is observed; the change only affects transient objects allocated during the
invocation of a transactional method.

There are several benefits of this change. First, when estimating the size of the private memory
area, compared to Reflexes, with Flexotask the programmer has one factor less to worry about.
Ignoring the memory requirements needed for the transient allocations made during the invoca-
tion of transactional methods, the programmer can concentrate on the memory requirements of
the execute method. As for the transactional methods themselves, they have the whole public
heap at their disposal to allocate transient objects, and any transient object allocations made will
become normal garbage (as soon as the invocation of the transactional method exits) that will be
reclaimed by the public heap garbage collector. Second, the programmer is not forced to observe

7.4. COMMUNICATION DIFFERENCES 105

Public Heap

Stable Heap

Private Memory Area Java
Thread

 Guard

Flexotask

Time-Oblivious Code Time-Critical Code

Figure 7.11: Communicating between time-oblivious, ordinary Java threads and a time-critical
task through transactional methods. In principle, the communication scheme for Flexotask is
equivalent with that of Reflexes, but there are two differences. First, the allocation context of
transient objects allocated during a transactional method invocation is no longer the transient
area of the task, but rather the public heap (as illustrated). Second, in Flexotask the ordinary
Java thread has no direct reference to the time-critical task. Instead, a guard (green) is used as
a delegate through which ordinary Java threads can invoke the transactional methods that are
then delegated to the task running in the private memory area.

a stable/transient distinction within the time-critical task in order prevent a lot of garbage to
fill up the stable heap (as without the stable/transient distinction, objects allocated during the
transactional method invocation would be allocated as stable objects). Rather, the programmer
can configure the task with just a stable heap, yet still allow for transactional methods to be
executed without worrying about memory. Finally, by heap allocating transient objects, the ne-
cessity to pin any heap-allocated objects used as arguments for transactional methods becomes
void. Since transient objects are now also heap-allocated, and thus reachable to the garbage
collector, if the garbage collector moves the argument provided to the transactional method,
any reference to it from a transient object will be adjusted accordingly.

Note, that changing the allocation context of transient objects (in transactional methods) from
a dedicated area to the public heap, does not mean that we abandon the distinction between
a transient object (allocated on the heap) and other heap-allocated objects that are part of
the time-oblivious code. In fact, for type safety reasons, we maintain this distinction, and
furthermore although they are now heap-allocated, transient objects are still subject to the
same restrictions imposed by the static safety checks.

An interesting question at this point is, why not change allocation context for all transient
objects to the public heap, i.e., not only those allocated in transactional methods but also those

106 CHAPTER 7. FLEXOTASK INTEGRATION

allocated during the invocation of the Flexotask’s execute method. Unfortunately, there are
significant differences that makes this problematic. For instance, the time-critical Flexotask
might be executing with such a high frequency and thereby generate so many transient objects
(that immediately become garbage) that the public heap garbage collector might find itself
unable to keep up. Ultimately, this would lead to an exhaustion of the public heap, forcing a
garbage collection of the public heap that will be impossible for the Flexotask to avoid being
interfered by. Thus, we maintain the necessity for a dedicated transient area with constant time
reclamation for those transient objects instantiated by the real-time thread executing the task.

7.4.3 Guard

As mentioned above, Flexotask uses a delegation pattern for the communication between the
time-critical task and ordinary Java threads. This delegate is termed the guard and serves one
purpose; to effectively ensure isolation of the task by only exposing the transactional methods
declared in the ExternalMethods subinterface of the AtomicFlexotask subclass that it delegates
to. Thereby creation of any improper aliases can effectively be prevented.

The guard class is generated automatically by the Flexotask development tools in a process
detailed later. The guard is allocated on the public heap and holds a single reference to the
time-critical task running in its private memory area such that it can delegate invocations to it.
Fig. 7.11 shows the level of indirection introduced through the guard, forcing the ordinary Java
thread to invoke transactional methods directly on the guard rather than directly on the task
itself, the approach used in Reflexes as illustrated in Fig. 3.12. Consequently, tasks declaring
no transactional methods have no guards, and are thus not reachable for ordinary Java threads.
Such tasks should simply implement the Flexotask interface of the Flexotask API.

Furthermore, as seen in Fig. 7.11, since in Flexotask ordinary Java threads have no direct
reference to the time-critical task, an interesting consequence of this shielding is that, unlike a
Reflex task, a Flexotask task is not restricted from having non-private instance fields or non-
private, non-transactional methods, as detailed later. Although they are public, these fields and
methods are not reachable to the ordinary Java thread because of the shielding by the guard.

The guard is instantiated internally by the Flexotask run-time engine during construction of the
Flexotask graph, and can be retrieved through the getGuardObject on the FlexotaskGraph
object returned following the successful validation of the graph template. The invocation of the
getGuardObject must provide the logical name of the task to which to get the guard object for,
since multiple tasks in a graph may declare transactional methods, and thus have guard objects.
The programmer must cast the guard object to the ExternalMethods subinterface implemented
by the task, as seen in Fig. 7.12, to invoke the transactional methods on it.

7.4.4 Shared Instance Objects

Besides facilitating communication through static, heap-allocated variables and transactional
methods, like is possible in Reflexes, Flexotask also allows for a third way of communicating

7.5. PLUGGABLE SCHEDULING 107

FlexotaskTemplate spec = ...
...
FlexotaskGraph graph = spec.validate(...);
...
PacketReaderIntf guard = (PacketReaderIntf) graph.getGuardObject("PacketReader");

Figure 7.12: Excerpt code showing how to retrieve the guard of the time-critical task with the
logical name ”PacketReader”, a Flexotask variant of the PacketReader task seen in Fig. 3.20.
Note, how the guard object is referenced through the ExternalMethods subinterface, in this
case PacketReaderIntf – declaration hereof seen in Fig. 7.9.

using shared instance object, an approach inherited from Exotasks.

Shared instance objects are heap-allocated objects that can be shared between a Flexotask task
and an ordinary Java thread. These shared instance objects are subject to the same restrictions
as static variables in that they are required to be (recursively) reference-immutable object graphs,
as specified by the definition given in Sec. 4.4. However, shared instance objects are not acquired
through static variables.

Rather, in Flexotask references to shared instance objects can also be passed to each task at
run-time as part of its initialization, see the parameter parameter of the initialize method
in Fig. 7.5. Parameters were not a feature of any of the precursor models but created explicitly
for Flexotask, although Exotasks later have adopted the idea too in a later version [IBM]. Since
this passing of the parameter to the individual task cannot happen directly as the task creation
is managed by the Flexotask run-time engine, it has to go indirectly through a parameter map.
The parameter map is a mapping from the logical task name to the shared instance object to
be passed to its parameter. The parameter map is passed to the validate method on the
FlexotaskTemplate, as seen in Fig. 7.3 and Fig. 7.4, and the Flexotask run-time engine will
ensure that each parameter in the map is passed during the initialization to the appropriate
task with the correct logical name.

Like any shared heap-allocated objects referenced by a Flexotask task (or for that matter a
Reflex task), shared instance objects too are required to be pinned by the virtual machine to
their location on the public heap during the time when they are accessible from within the task.
In practical terms, this means that the shared instance objects must be pinned throughout the
lifetime of the Flexotask graph since they are passed in as part of the initialize method to
the task, seen in Fig. 7.5.

7.5 Pluggable Scheduling

Scheduling is handled differently in the Flexotask programming model. Rather than being
limited to a particular timing semantics like in Reflexes, Flexotask takes a more general approach
by promoting a looser coupling between model and timing semantics, an approach adopted from

108 CHAPTER 7. FLEXOTASK INTEGRATION

Exotasks. Central to this decoupling are timing grammars. A timing grammar provides a set of
rules for attaching timing annotations to the different elements in the Flexotask graph, e.g., the
graph itself, tasks, and the connections. The timing annotations are read and interpreted by a
pluggable scheduler that expects annotations on the graph elements conforming to the grammar.

At development time, as part of the graph template, Flexotask facilitates the specification of the
timing grammar to be used by a given Flexotask graph. More specifically, timing annotations
can be added to the graph itself as well as the elements of the graph. Like with the rest of the
graph template, the timing annotations can be specified either programmatically or as part of
the graphical editing provided by the development tool support integrated into the Eclipse IDE.

FlexotaskTemplate spec = ...
spec.setTimingData(new Period(periodInNanos ∗ 1000));
...
FlexotaskTaskTemplate task = ...
task.setTimingData(new SimpleTimingAnnotation(new long[]{0}));
...
FlexotaskGraph graph = spec.validate("TTScheduler", parameters);

Figure 7.13: Excerpt code showing how to programmatically specify the timing annotations
on both a Flexotask graph and task – in the example a timing grammar supporting periodic
execution is selected. Note, the name ”TTScheduler” represents the logical name of the time
triggered scheduler.

The timing grammar is supported by an associated scheduler capable of interpreting and real-
izing the timing requirements of the grammar. At run-time, the timing grammar specified in
the template is used to select and load the appropriate scheduler that will be responsible for
executing the Flexotask graph.

7.6 Integration of Static Safety Checking

Flexotask operates with two levels of isolation – strong and weak that can be selected by the
programmer. The strong isolation model is inherited from Exotasks, and while a part of the
Flexotask model, we will not focus more on it here, but only note that this isolation model puts
further constraints on the Flexotask task that the static safety checks, described in Sec. 4, by, e.g.,
prohibiting communication with ordinary Java threads, only allowing communication between
tasks by deep copy, and only allowing access to static variables if these are immutable (as opposed
to just reference-immutable). Rather, this isolation model is appropriate for applications that
are very self-contained and for which a high degree of determinism is required.

The weak isolation model in Flexotask is to a large extent equivalent to that of Reflexes. How-
ever, there are a few noteworthy variations that have an impact on the static safety checks.
Fig. 7.14 illustrates the legal and illegal object references in Flexotask between the time-critical
task and ordinary Java code.

7.6. INTEGRATION OF STATIC SAFETY CHECKING 109

Public Heap

Stable Heap

Private Memory Area

Flexotask

 Guard

Time-Oblivious Code Time-Critical Code

Figure 7.14: The legal and illegal object references in and out of a Flexotask instance that
the static safety checks must ensure are respectively allowed and caught. The figure illustrates
a Flexotask instance in a private memory area with its object graphs of stable and transient
objects as well as a number of heap-allocated objects, including the guard object, of which one
is pinned. Object references are illustrated with green and red arrows, representing legal and
illegal references respectively. Note that only transient objects allocated during the invocation
of a transactional method are heap-allocated. Transient objects allocated by the real-time
thread invoking the execute method of the task are allocated in the transient area (if the
stable/transient distinction is observed).

7.6.1 Implicit Ownership Relaxation

Comparing Fig. 7.14 with Fig. 4.1, it is obvious that the differences in legal/illegal references
between Reflexes and Flexotask relate to (1) the introduction of the guard, and (2) the deci-
sion to change the allocation context for transient objects allocated during the invocation of
a transactional method from a dedicated transient area to the heap. The consequence of this
latter change does, however, not affect the static safety checks as such, since transient objects
have been permitted to reference certain heap-allocated objects all the time. Rather, the change
affects the run-time requirement that these heap-allocated objects passed in as arguments to
the transactional method have to be pinned to be safely used. This requirement is no longer
necessary, as discussed earlier.

Concerning the guard, whereas in Reflexes, the Java application has a direct reference to the
ReflexTask object, in Flexotask the AtomicFlexotask instance is referenced indirectly through
its guard (A Flexotask instance is not reachable at all since it does not expose any transac-
tional methods). A direct reference to the AtomicFlexotask instance is simply not possible to
achieve due to the reflective way the Flexotask graph is instantiated by the Flexotask run-time

110 CHAPTER 7. FLEXOTASK INTEGRATION

engine. Rather, the Java application can only reference the guard instance, that in turn then
references the AtomicFlexotask instance, and, as mentioned earlier, the guard exposes only the
transactional methods of the AtomicFlexotask declared in its ExternalMethods interface.

Realizing the effective shielding provided by the guard, we can take advantage hereof and loosen
some of the static safety checks concerning Implicit Ownership. More specifically, the static
checks R3 and R4, described in Sec. 4.3, become irrelevant. Consequently, in Flexotask, an
AtomicFlexotask class declaring public fields of reference types or public, non-transactional
methods poses no type-safety concerns as these fields and methods are not reachable from the
Java application nor from any other tasks in the graph. Of course, since a Flexotask is not
reachable at all, the same relaxation of the restrictions applies to it.

7.6.2 Capsule Type Relaxation

As mentioned, Flexotask does not operate with a specific Capsule type like Reflexes. Rather, we
achieve the same functionality by supporting pass-by-reference for reference-immutable objects
allocated on the public heap that the Flexotask are allowed to access already – through either
static fields or shared instance objects. Thus, with this in mind we can relax the safety checks
concerning capsules, in Sec. 4.5. Given the fact that Flexotask performs initialization time
checking, and the code thus is subject to a more precise analysis than at development time,
we can relax the restriction from Reflexes that capsules can only contain fields of primitive and
primitive array types. More precisely, in Flexotask we allow any reference-immutable object to
be used for zero copy communication.

R12: Any heap-allocated instance of a reference-immutable type can be used for zero
copy communication. 2

With this change, in Flexotask the run-time engine does not maintain a communication area
containing some pool of reusable capsules, like in Reflexes. Thus, in Flexotask we do not have
to worry about reclamation of the objects used for communication between tasks in order to
reuse them. Rather, the complete set of reference-immutable objects used for communication
are passed to one or more tasks during initialization, and remains fixed throughout the lifetime
of the Flexotask graph as they are pinned, and therefore will not be reclaimed by the public heap
garbage collector. Thus, unlike in Reflexes, there is no danger of having a ’leak’ of communication
objects, if a task should keep a reference to such an object, as the set of objects is fixed. With
this property in mind, we can further relax the safety checks by eliminating R13 completely.
In other words, we no longer mandate that objects used for communication are transient, and
consequently allow a heap-allocated reference-immutable object to be of stable type and thereby
be assignable to a stable field within a task.

7.7. EXAMPLE: AVIONICS COLLISION DETECTION 111

7.7 Example: Avionics Collision Detection

To illustrate the usage of Flexotask, we present the example of an avionics collision detection
algorithm (based on the source code of [ZNV04]). Collision detection is performed by a single
atomic Flexotask, which periodically processes the latest frame it has received. Each frame
contains aircraft call signs paired with the positions and direction vectors of the aircraft. The
output of the algorithm is a warning each time any pair of aircrafts are on a collision course. In
our implementation, the aircraft call signs, positions and direction vectors are all provided by a
separately running ordinary Java thread that simulates this data based on symbolic execution
of a set of equations describing aircraft trajectories.

// Load template from XML−file
InputStream in = DetectorTask.class.getResourceAsStream("Detector.ftg");
FlexotaskTemplate spec = FlexotaskXMLParser.parseStream(in);

// Validate graph and provide sharedArray in parameter map
Map parameters = new HashMap();
RawFrameArray sharedArray = new RawFrameArray();
parameters.put("DetectorTask", sharedArray);
FlexotaskGraph graph = spec.validate("TTScheduler", parameters);

// Get reference to Detector guard
DetectorGuard detector = (DetectorGuard) graph.getGuardObject("DetectorTask");

// Start the graph (i.e., the tasks in the graph)
graph.getRunner().start();

...

// Communicate a new frame from ordinary Java thread to Flexotask
int frameIndex = detector.getFirstFree();
if (frameIndex == −1) { ... no buffer available }
frames.get(frameIndex).copy(lengths, callsigns, positions);
detector.setNextToProcess(frameIndex);

Figure 7.15: Constructing a Flexotask graph through an XML-based template constructed with
the Flexotask editor integrated into Eclipse.

This example illustrates the simultaneous use of both kinds of external communication, as was
discussed in Sec. 3.4.9. Because each frame potentially contains a fair amount of data, we do not
incur the overhead of transmitting this information atomically. Rather, we rely on a ring buffer
of RawFrame data structures, which is shared between the Flexotask and the simulator. These
handle the bulk data transfer. The coordination around availability of frames for use by either
the Flexotask or the simulator is handled by transactional methods on the Flexotask task. The
invariant maintained by these methods is that no frame is ever used simultaneously by both.

112 CHAPTER 7. FLEXOTASK INTEGRATION

The example also illustrates the tradeoff between the use of pure stable heap allocation and
stable/transient allocation discussed in Sec. 7.3.3. We were able to get the example working
quickly using pure stable heap allocation (in which no classes are declared stable), which was
necessary because the StateTable needed by the Flexotask used Java collection classes (that of
course are not declared stable). Then, to optimize the example, we replaced the Java collection
classes with a small number of custom classes that were stable according the rules of Sec. 4.3.
In all, this example required six classes to be labelled stable (in addition to the Flexotask itself,
which is implicitly stable, and arrays of stable classes, which do not have to be labelled).

A sketch of the main program is shown Fig. 7.15 which illustrates the reconstruction of a tem-
plate from one previously prepared in the development environment, and stored as an XML file.
The FlexotaskXMLParser class provides capabilities for loading templates and creating a Java
object representation. The template encapsulates the name of the single task (”DetectorTask”),
its implementation class (DetectorTask), and the list of stable and transient classes that were
marked and checked at development time. The validate() method selects a scheduler (plug-
gable, as in the Exotasks [ABI+07] system) and produces a runnable FlexotaskGraph. The
parameters argument passes in the shared instance objects that will be used for communica-
tion. The getGuardObject() method retrieves a reference to the guard for the task that can be
used to invoke task atomic methods by the ordinary Java thread. This object is automatically
generated from the DetectorTask class and its transactional interface DetectorGuard, a process
detailed later.

Fig. 7.16 shows the class DetectorTask which extends AtomicFlexotask and implements De-
tectorGuard. The initialize method establishes the sharing relationship by storing the
RawFrameArray parameter and initializes the StateTable to store stable state. In a graph
with more than one Flexotask task this method would also pass in representations of the task’s
ports to use for inter-task communication, and these would be saved in instance variables. The
execute method establishes the frame to be processed and analyzes the data it contains. Each
invocation of execute will create transient objects of types Detector and its numerous depen-
dent working objects, as well as new stable objects to represent call signs and vectors that will be
stored in the StateTable. The implementation of the getFirstFree and setNextToProcess)
methods represents the code as the programmer would write it. The actual code executed at run-
time is instrumented at the bytecode level so as to redirect all mutations (and subsequent reads
thereof) to a transaction log that is then committed by rolling forward the mutations in an epi-
log, as described later. As such, the transactionality of a method is completely transparent to the
programmer, except that the invoking program should catch and handle the AtomicException.

As previously mentioned, the RawFrameArray data structure must be reference-immutable in
order to be safely shared between the ordinary Java thread and the Flexotask task. The code of
this class is shown in Fig. 7.17. For reference-immutability to hold, the RawFrame data structure
must first be reference-immutable, which is easily accomplished since this class is just a set of
primitive arrays connected to their parent object by final references. But, an array of references
is not normally reference-immutable. This problem is solved in the Flexotask system as it is in
Eventrons by using a special ImmutableArray class. This class’s constructor copies its argument
and does not subsequently leak it, ensuring that no mutations occur to the enclosed array after

7.7. EXAMPLE: AVIONICS COLLISION DETECTION 113

public interface DetectorGuard extends ExternalMethods {
public void setNextToProcess(int frameIndex) throws AtomicException;
public int getFirstFree() throws AtomicException;
}

class DetectorTask extends AtomicFlexotask implements DetectorGuard {
private StateTable state;
private RawFrameArray frames;
private int nextToProcess;
private int firstFree;

public void initialize(..., Object parameter) {
frames = (RawFrameArray) parameter;
state = new StateTable();

}

public void execute() {
if (nextToProcess != firstFree) {

cd = new Detector(state, Constants.GOOD VOXEL SIZE);
cd.setFrame(frames.get(nextToProcess));
cd.run();
nextToProcess = firstFree = increment(nextToProcess);
// increment ’increments’ modulo a ring size
}
}

public int getFirstFree() throws AtomicException {
int check = increment(firstFree);
if (check == nextToProcess)

return −1;
int ans = firstFree;
firstFree = check;
return ans;
}

public void setNextToProcess(int nextToProcess) throws AtomicException {
this.nextToProcess = nextToProcess;
}
}

Figure 7.16: The DetectorTask, an AtomicFlexotask responsible for detecting aircraft colli-
sions.

114 CHAPTER 7. FLEXOTASK INTEGRATION

class RawFrameArray implements Stable {
private final ImmutableArray frames;

public RawFrame get(final int i) {
return (RawFrame) frames.get(i);
}

public RawFrameArray() {
RawFrame[] innerArray = new RawFrame[MAX FRAMES];
for (int i = 0; i < MAX FRAMES; i++)

innerArray[i] = new RawFrame();
frames = new ImmutableArray(innerArray);
}
}

Figure 7.17: A reference-immutable data structure shared between the ordinary Java thread and
the Flexotask task as a shared instance object brought into the task through the initialize
method.

construction.

8
Flexotask Implementation

This chapter highlights the most interesting aspects of the implementation of Flexotask on top
of the IBM WebSphere Real-Time VM. The Flexotask system comes with development tool
support integrated in the Eclipse IDE as well as virtual machine support implemented in the
IBM WebSphere Real-Time VM.

8.1 Eclipse Integration

The development tool support integrated in the Eclipse IDE provides powerful support for
easing the development of the Flexotask applications and enforcing the restrictions imposed by
the programming model. In addition, since the IBM WebSphere Real-Time VM does not have
support for preemptible atomic regions, like Ovm, the development tool support also facilitates
rewriting of bytecodes to enable transactional methods. More specifically, this development
tool support is provided through respectively a graphical editor to help the construction of the
Flexotask graph templates, and a project builder that is run subsequent to the standard Java
compiler to enforce the restrictions. Fig. 8.1 gives an illustration of the overview of the Flexotask
infrastructure.

At development time, Flexotask programs are written like any other Java program in the Eclipse
IDE. However, to enable full development support, the specific project must be configured as a
Flexotask project in Eclipse, a project setting that extends the standard Eclipse Java project.

Part of the development support integrated into Eclipse involves a graphical editor, as depicted
in Fig. 8.2, that we adopted from Exotasks and extended. The graphical editor enables the
programmer to graphically construct the Flexotask graph, rather than doing all of this pro-

115

116 CHAPTER 8. FLEXOTASK IMPLEMENTATION

Rewritten
Class Files

Java Compilation

Static Validation

Graph Construction

Validation

Execution

Development Time Runtime

Bytecode Rewriting
0100010
1010101
0101010
10

0100010
1010101
0101010
10

0100010
1010101
0101010
10

Figure 8.1: Flexotask programs developed within the Eclipse IDE are validated at development
time against the type rules. Following successful validation, class files are rewritten to include
support for transactions. At initialization time, the Flexotask run-time engine constructs the
Flexotask graph and performs a data-sensitive analysis to ensure correctness, after which the
graph is executed.

gramatically. Whereas the programmer does not really benefit from this editor support when
constructing simple-task programs, more complex graphs involving several tasks and many con-
nections clearly can leverage from this support. The output of this graph construction is an
XML-based specification file, that can subsequently be loaded and parsed by the Flexotask
run-time engine, as for instance seen in Fig. 7.15.

Following successful standard Java compilation of the Flexotask project, the Flexotask project
builder is invoked by Eclipse, causing for the code to be statically validated against the safety
checks, described in Sec. 4 and Sec. 7.6. Specifically, the validation is performed on the Java
bytecodes of the classes related to the time-critical code. If the code fails to validate correctly,
the programmer is notified with a list of errors and warnings in the default Problems View
of Eclipse. Contrary, if the code verifies correctly, classes reachable through the transactional
methods invoked by the ordinary Java threads are bytecode rewritten by the Flexotask builder,
a process detailed later.

Together with the classes of the remainder of the Flexotask application, the rewritten classes are
then transferred manually by the programmer from the development platform to the run-time
platform – in our implementation the IBM WebSphere Real-Time VM.

Then, after the code is loaded into the virtual machine and the graph has been instantiated, the
code (including the rewritten classes) is validated again against the safety checks, but this time
using run-time information about arguments and static variables. This architecture adopts the
best of the precursor models. The Reflex and StreamFlex models performed validation statically
at development time, which has the advantage of early detection of errors and convenience for

8.1. ECLIPSE INTEGRATION 117

Figure 8.2: The Flexotask graphical editor integrated into the Eclipse IDE. Screenshot shows
the graphical creation of a Flexotask graph having three tasks. Note, the palette to the right
allowing the selection of components to be dropped in the editing area. In the bottom, the
properties of each component can be edited.

the programmer by highlighting exactly the violating lines in the source code. The Eventrons
and Exotasks models performed validation at initialization time, i.e., after class initialization and
object construction but before run-time, using a data-sensitive analysis that is more precise and
admits a larger set of valid programs than the static validation. In addition, static enforcement
alone does not prevent untrusted code to be run in a restricted thread since there is no guarantee
that the code attempted executed actually went through and passed the appropriate validator.
To achieve the advantages of both kinds of checking, in Flexotask we do the checking twice, with
some of the (necessarily) more conservative checks during development reduced to the status
of warnings, whereas during initialization time checking these same checks result in status of
errors. In contrast to our approach where all validation occurs at two stages prior to the
actual run-time, the NoHeapRealtimeThread employs continuous run-time checking since with
NoHeapRealtimeThread it is much harder to determine statically whether a program is correct.

118 CHAPTER 8. FLEXOTASK IMPLEMENTATION

8.2 Scheduling

Whereas the Ovm implementation of Reflexes used the scheduler of the virtual machine for
scheduling, in Flexotask, we adopted the pluggable scheduler approach of the Exotasks model
as this represents the most general solution, and thereby giving the scheduler the responsibility
to schedule not only tasks, but also data movement between tasks and the garbage collection of
tasks. Included in the responsibilities of the scheduler is to perform any garbage collection of
the stable heap of the Flexotask tasks. Recall, that the garbage collection of the stable heaps
of Flexotask tasks is done on a scheduled basis, or on-demand, in case of a memory shortage.

8.2.1 Time-Triggered Scheduler

We carry forward a time triggered scheduler as from Reflexes, which supports periodic execution
of single tasks. The scheduler implementation used in Flexotask is inherited directly from
Exotasks, which provides richer support for graphs of tasks, with tasks being assigned specific
time offsets within the period. As in Exotasks, all restricted threads in Flexotask actually belong
to schedulers and the mapping of threads to tasks is usually not one-to-one (more typically, the
number of threads reflects the level of real concurrency available in the hardware).

8.2.2 Scheduler for Stream-Based Applications

In addition to a periodic scheduler, Flexotask also provides support for a data driven scheduler
for stream-based applications. Taking advantage of the fact that the IBM WebSphere Real-Time
VM supports multi-processors, this scheduler enables the execution of the tasks in the Flexotask
graph to be truly parallelized and optimized according to the number of processors available;
features not exploited in the time triggered scheduler. In fact, the stream-based scheduler
extends the time triggered scheduler in that it supports periodic executions. However, where
the time triggered scheduler only uses a single thread to execute single tasks, or simple graphs
of tasks, the stream-based scheduler will deploy several threads to execute complex graphs.

Central to this scheduler support for stream-based applications is a timing grammar for stream-
based Flexotask programs – StreamBasedTimingAnnotation. This timing grammar provides
support for annotating the input/output rates of a Flexotask task. More specifically, the rate
declarations allow each task to declare the number of buffer elements it consumes, the number
of buffer elements to which it peeks, and the number of elements it produces. A rate can be
declared as either a single digit integer number or a range of the form [N,M] – where M > N .
In the current design Flexotask does not support parameterized rates.

For parallelizing streams of data, Reflexes provide special tasks for multiplexing/demultiplexing
the elements between tasks – the splitter and joiner, as described in Sec. 3.4.4. In Flexotask
there are no such special tasks. Instead, the grammar for stream-based applications allows for
ports having multiple outgoing or incoming connections attached to specify respectively their
mode for splitting and joining the messages. The grammar enables an outgoing port to specify

8.2. SCHEDULING 119

a policy based on either round-robin or duplicating, and for an incoming port, round-robin only.
In other words, fully compatible with splitters and joiners in Reflexes.

Finally, in order for elements to fill up in the various buffers while waiting to be multiplexed/de-
multiplexed, the timing grammar enables ports to be annotated in order to support buffering.
For instance, given a round-robin policy in which two elements are taken from each incoming
connection, the single-slot port is not sufficient. A buffered port is unbounded within the size
of the task’s stable heap.

The StreamScheduler is implemented as a pluggable schedulers in the Flexotask framework and
is capable of interpreting the StreamBasedTimingAnnotation. Devising an optimized schedule
for a complex graph is not trivial. Rather than inventing our own algorithms for calculating how
many times each task should run, in which order, and on which processor, we exploit the basic
optimization algorithms from the StreamIt project [TKA02]. Thus, the StreamScheduler uses
the StreamIt API to device an optimized schedule. For this to be viable, the Flexotask graph
has to go through a number of steps as illustrated in Fig. 8.3.

Layout Scheduling

Convert
Flexotask Graph

to SIR format

StreamIt Compiler
Generate
Flexotask
Schedule

Figure 8.3: The phases of the Flexotask graph in order to create a schedule using the Stream-
Scheduler.

The StreamScheduler will first convert the Flexotask graph into an equivalent SIR graph, the
internal representation used by StreamIt to represent tasks. This step is necessary in order to
exploit the StreamIt API. Through this conversion, tasks in a Flexotask graph are represented
as SIRFilter in an equivalent StreamIt graph, and are given the same I/O rates as annotated
to the Flexotask tasks. One particular aspect about this conversion is how a Flexotask task
with multiple output connections is converted into two SIRFilters; one representing the task
logic itself, and one representing the splitter, SIRSplitter. Likewise, a Flexotask task having
multiple incoming connections will be converted into a joiner, SIRJoiner, and a subsequent
SIRFilter representing the logic.

Once this conversion has taken place, the StreamIt compiler is invoked on the SIR graph in order
to perform the calculation of the schedule. For this calculation, the number of processors for the
target platform is provided from the Flexotask graph template. In particular, the calculations
include the following phases (described in detail in [GTK+02]):1

• Scheduling – This scheduling phase consists of two parts. First, it performs rate matching
1In fact, the StreamIt compiler would perform two additional phases; graph expansion and partitioning. Since

we in Flexotask do not support parameterized rates, the graph is, however, already fully expanded. Partitioning
involves fission and fusion transformations for load balancing, but since we want to retain a one-to-one mapping
from a SIRFilter to a Flexotask task, this step is not needed either.

120 CHAPTER 8. FLEXOTASK IMPLEMENTATION

of the SIRFilters, calculating the filter multiplicity scale that tells the scheduler how many
times to run each filter. This is useful when running on a processor with a cache-based
architecture as cache locality can be exploited. Second, it performs a partitioning of the
stream graph into phases rather than a single stream, which from a cache perspective,
again, is beneficial as the individual nodes might be executed differently by the scheduler.

• Layout – The goal of the layout phase is to assign nodes in the stream graph to compu-
tational units on the target platform and orchestrate communication between these units.

Following these optimizations, an optimized schedule is returned. This schedule describes for a
single run-through of the tasks in the graph, how many times each task should be run, and on
which processors. However, the returned schedule comes in an internal StreamIt representation
and must be transformed into a Flexotask specific schedule. Specifically, we map each requested
computational unit to a real-time thread in the virtual machine with the knowledge that these
will likely be mapped to operating system threads on different processors.

The scheduler observes two run-time phases; a prime-pump phase in which each task in the
graph is executed in topological order the specific number of time to fill up the buffers, and a
steady-state phase, which from this point on is used to execute the tasks in the graph. Note,
in the steady-state phase the ordering with which tasks in the graph are executed is irrelevant.
However, for each graph run, each task in the graph must be executed the number of times in
the schedule. This independence between tasks makes it ideal for execution in parallel; the only
fix-point between the threads executing the various parts of the graph is the graph run-through.

8.3 Unification of Safety Checking

As seen from Fig. 7.2, prior to integrating the four restricted programming models, Reflexes
and StreamFlex enforce type safety statically at development time, whereas Eventrons and
Exotasks did so at initialization time. Realizing that one approach does not subsume the other,
and that both approaches have their advantages, in Flexotask we have implemented a common
framework for checking type safety both at development- and initialization time. This framework
is embodied in the Flexotask project builder integrated into Eclipse.

This framework is centered around an analysis engine that performs Rapid Type Analysis [BS96]
to build a summarized call graph rooted in the initially reachable methods of the individual
tasks in the Flexotask graph. More specifically, this graph takes starting point in the execute,
initialize methods of all the tasks, in addition to the set of all transactional methods declared
in the ExternalMethods subinterfaces, if the task is a subclass of AtomicFlexotask. From this
initial starting point, the analysis engine examines every bytecode of every reachable method
using the Apache Byte Code Engineering Library (BCEL) [Apa]. At initialization time, the
bytecodes to be analyzed are found in the already loaded and verified classes of the virtual
machine (and classloading is forced by the checker to ensure initialization hereof). Contrary, at
development time, bytecodes are read directly from the class files, which are loaded from the
project output path using a conventional class file parser.

8.3. UNIFICATION OF SAFETY CHECKING 121

The rules to be enforced include (1) segregation of classes into stable and transient, (2) checking
that parameters passed by reference to the tasks are reference-immutable, and (3) checking
that references acquired through static variables are reference-immutable too. The majority of
these checks being performed at development- and initialization time are common for the two.
However, one particular analysis which differs relates to inferring reference-immutability.

8.3.1 Initialization Time Checking

The initialization time checker performs its checking for reference-immutability in a data sen-
sitive fashion. That is, it maintains the set F of field signatures (static or instance) found to
be referenced (for reading or writing) in any method in the Flexotask call graph, and a set O
of objects residing on the public heap but accessible to Flexotask code. Initially, the set O
consists of objects passed as parameters to the initialize methods of the Flexotask s, but
it is augmented when a static field is accessed with a getstatic bytecode. Whenever a field
signature is added to F , the checker considers objects in O that contain a matching field. The
referents of such fields are added to O. Whenever an object is added to O, it is inspected for
fields that match F . Thus, an addition to either set can expand both sets up to a fix-point.
When objects are added to the O set, they are checked for effective finality. If this criteria is
not met, the initialization time checker will cause for an error message describing the safety
violation to be printed on the command-line.

Following a successful checking of the Flexotask graph, the initialization time checker has an
additional responsibility. The checker must pass a list of stable types to the Flexotask run-
time engine, such that these during run-time can be allocated in the stable heaps of the tasks.
How the actual list of stable types is constructed depends on the stable mode chosen in the
graph template. In the case of MANUAL stable mode, the list of stable types comes directly from
the graph template itself, where the programmer has declared them. In the three other stable
modes, the list is automatically generated by the initialization time checker using either the
Stable marker interface (AUTO), usage inference (INFER) or any reached class (DEFAULT).

The approach used here to directly inject the list of stable types from the type checker to the
Flexotask run-time engine is much safer compared to the approach taken in the prototype, as
described in Sec. 5.6, as the programmer cannot manipulate the list between the checking and
run-time stages. Recall, in Reflexes, the Reflex run-time engine blindly trusts the list of stable
types provided to it through a text file. In Flexotask, the programmer could maliciously try to
circumvent safety by manually providing an incorrect list of stable types. However, if unsafe,
the initialization time checker would simply reject the program, and the program would never
reach a point of execution.

8.3.2 Development Time Checking

The development time checker has two challenges not faced at initialization time. First, it does
not know the actual objects passed as parameters (neither to the initialize method, nor to
any transactional methods), nor does it know the actual objects present in any static variables

122 CHAPTER 8. FLEXOTASK IMPLEMENTATION

used by the Flexotask tasks. Instead, the development time checker relies on a class-based
analysis that is inevitably more conservative than the data sensitive.

The safety checking concerning the stable/transient distinction does not change as the rules are
based on classes rather than objects. However, because the set of potentially live classes inferred
by the analysis engine may be larger at development time, some potentially transient classes
may not be identified.

Checks for reference-immutability, however, are based on a class-based definition. To find the
relevant live classes, the class initialization methods must be examined as well as other methods
analyzed by the analysis engine, according to the algorithm seen in Fig. 4.2. If a class is checked
for reference-immutability and it can be statically determined not to be reference-immutable,
the development time checker will display an error message to the programmer in the Problems
View of Eclipse. If, however, its live class set cannot be statically bounded and thus it cannot
be determined whether or not the class is reference-immutable, the development time checker
will instead display a warning message to the programmer. The warning message simply serves
to inform the programmer that given the imprecision of the development time checker, some
type was found to be suspicious, and it might escalate to become an error during initialization
time checking.

A second challenge faced by the development time checker is that of incomplete information. The
development time checker analyzes each Flexotask graph template that it finds in the Eclipse
project classpath and any classes referenced by it, although this set of classes may be incomplete.
It also analyzes (individually) any orphan Flexotask classes not referenced by any template, on
the grounds that they may later be so-referenced. It continuously posts error and warning
indicators in the Problems View, which may be temporarily (or permanently) suppressed by
annotations. This is necessary since the initialization time checker, with more information, will
be more precise and may permit things that the development time checker flags as suspicious.
Fig. 8.4 shows a screenshot of how the Flexotask development time checker reports violations of
the static safety checks in its Problems View.

Following the successful checking of the code, the development time checker is responsible for
applying a set of program transformations on the bytecodes of an AtomicFlexotask in order
to facilitate for transactional semantics of the methods being invoked by ordinary Java threads.
These program transformations are described shortly.

8.4 Pinning of Objects

In Flexotask, identifying which heap-allocated objects to be pinned and performing the actual
pinning is the responsibility of the initialization time checker. Whereas our prototype imple-
mentation of Reflexes leveraged the standard RTSJ allocation policy of static variables and
consequently allocated them in a special memory area never garbage collected, in the Flexotask
implementation we do not rely on such an area. Rather, the objects to be pinned are exactly
those that the initialization time checker identified in the set O, described earlier. Not included
in O are objects passed as arguments to transactional methods.

8.5. TRANSACTIONAL METHODS FOR MULTI-PROCESSORS 123

Figure 8.4: The Flexotask development time checker in action. Screenshot shows the develop-
ment time checker has detected two violations of the static safety checks in the checked code.
The errors are reported in the Problems View of Eclipse. Note also how the two violating code
statements are highlighted with a red marker, making them easy for the programmer to identify.
The reported violations concern the fact that the Channel class is unexpectedly not declared
Stable, and thus cannot be used as field type on a AtomicFlexotask class.

8.5 Transactional Methods for Multi-Processors

As described in Sec. 5, the prototype implementation of Reflexes is implemented on top of the
Ovm virtual machine. Supporting transactional methods in Flexotask involve two non-trivial
challenges, both relating to the target platform, the IBM WebSphere Real-Time VM. Unlike
the IBM WebSphere Real-Time VM, Ovm (being a research virtual machine) provides built-in
support for transactional methods through its preemptible atomic regions feature in the virtual
machine as well as in its compiler that performs the actual rewriting of bytecodes. Furthermore,
whereas Ovm is designed for uni-processors only, IBM WebSphere Real-Time VM provides
support for multi-processors.

Moving from a uni-processor virtual machine to one that supports multi-processors breaks
a number of assumptions that together make the previously described approach insufficient.
Specifically, on a uni-processor with threading controlled by the virtual machine implementing

124 CHAPTER 8. FLEXOTASK IMPLEMENTATION

preemption by the scheduler is straightforward, as the scheduler immediately can roll back any
partially applied transactional change to the state of the task. Consequently, when a time-
critical task is released by the scheduler, any ordinary thread that might be executing one of its
transactional methods will be preempted effectively and thus not make any mutations in mem-
ory hereafter. Running on the IBM WebSphere Real-Time VM this assumption does not hold.
Instead, the IBM WebSphere Real-Time VM has a multi-processor design and (usually) maps
Java threads to operating system threads. In that type of implementation where threads can
run in parallel, it is very difficult to implement a roll-back approach for transactions, perhaps
impossible without introducing locking overheads that would substantially perturb execution
predictability.

In fact, it turns out that the roll-back approach used in Reflexes would not function in a multi-
processor setup. Specifically, the problem of knowing exactly when the ordinary Java thread
has been preempted such that it makes no more mutations is non-trivial, without using some
locking scheme. Not knowing if the ordinary Java thread has effectively been preempted prevents
the roll-back of the transaction log as the time-critical task cannot execute before the log has
been rolled back and memory reset to the previous state. However, the transaction log cannot
be rolled back before it has been established that no more mutations are being made (by the
ordinary Java thread).

Consequently, Flexotask uses roll-forward approach in which a transactional method defers all
memory mutations in a local transaction log until commit time. Having reached commit time,
it is checked whether the state of the task has changed during the method invocation, and if so
throws an AtomicException. The entries in transaction log can safely be discarded in constant
time as the mutations will not be applied. If not, the method is permitted to commit its changes
efficiently, with the scheduler briefly locked out.

Lacking the preemptible atomic regions feature and to provide support for roll-forward trans-
action logs, the Flexotask system uses a combination of program transformations and minimal
native extensions in the virtual machine to enable method invocations with transactional se-
mantics for a virtual machine with multi-processor support.

8.5.1 Transformation Principles

The principle of the program transformations is to provide transactional semantics to the meth-
ods on the Flexotask that are invoked by the ordinary Java thread. Classes not reachable
through the call-graph are not affected by the program transformations, and thus the semantics
of the rest of the application code should remain unchanged.

As mentioned, the actual program transformations are performed by the Flexotask development
tool support, following the initial standard Java compilation and subsequent successful static
checking of the Flexotask code against the static safety checks. The program transformations
are performed directly on the Java bytecode, rather than in the Java source code, and are thus
completely transparent to the programmer. The program transformations involves four parts;
call-graph privatization, transactionalizing field operations, wrapping of outermost transactional

8.5. TRANSACTIONAL METHODS FOR MULTI-PROCESSORS 125

methods, and guard class generation.

8.5.2 Call-Graph Privatization

The purpose of call-graph privatization is to generate a transactional variant of the call-graphs
of the transactional methods on the Flexotask task. Thus, following privatization for each call-
graph there are two variants; one having transactional semantics and a normal with standard
Java semantics. The former is invoked exclusively by the ordinary Java thread through the
guard, whereas the latter variant is kept around as the Flexotask might itself invoke some of its
own methods in the call-graph, and those should not be invoked with transactional semantics
as they will always succeed and thus never roll-back.

The starting point of the privatization transformation is the transactional methods declared on
the ExternalMethods subinterface and implemented by the AtomicFlexotask subclass, as seen
in Fig. 8.5(a). Starting from here, the call-graph(s) of those methods are traversed method-by-
method using Rapid Type Analysis [BS96] on the method bodies. For each reachable method,
a duplicate, synthetic method is generated and inserted into the same class where the method
originated. Fig. 8.7(c) illustrates this by having two variants of the methods write and update
following privatization, compared to Fig. 8.7(b) before the transformation.

Inevitably, such duplication of methods leads to an increase in the sizes of the affected class files.
However, in practice the size increase typically is rather insignificant. The constant pool with
its string literals describing classes, fields, types etc. contributes to a significant part of the size
of a class file. Duplicating and privatizing a method would, however, for the most part rely on
a reuse of existing entries in the constant pool, and apart from the duplication of the method
body bytecodes therefore not add significantly to the class file size.

The next step taken during privatization is to ensure that the two variants of each call-graph are
kept distinct such that a transactional method cannot invoke a non-transactional, or contrary.
This is ensured by adjusting any method invocations performed within the body of a privatized
method to invoke the privatized variant of that method. By default synthesized methods inherit
the exact same method signature as their original counterparts. This poses a problem since
the synthesized methods live in the same class as their original counterparts, and a class cannot
have two methods with exactly the same signature (see, [GJSB00] §8.4.2). To encounter this, the
synthesized methods are made distinct (from their original counterparts) by appending a dummy
parameter of a unique internal type Privatized to their signatures, as illustrated in Fig. 8.7(c).
Consequently, any method invocations occurring within synthesized methods must be adjusted
accordingly.

For the sake of simplicity in the transformation, the dummy parameter is appended to the end
of the existing list of parameters in the method signature. To adjust the method invocations
accordingly, the bytecodes making up the invocation of the synthesized methods are adjusted
by adding an additional parameter to the invocation call. For the actual value being provided
to this method invocation, a null-argument is simply provided as it is never used. Hence, in

126 CHAPTER 8. FLEXOTASK IMPLEMENTATION

public interface HighFreqReaderIntf extends ExternalMethods {
public void write(int value) throws AtomicException;
}

(a)

public class HighFreqReader
extends AtomicFlexotask
implements HighFreqReaderIntf {

public void write(int value)
throws AtomicException {
...
update(value);
}

private void update(int value) {
...
}

}

(b)

public class HighFreqReader
extends AtomicFlexotask
implements HighFreqReaderIntf {

public void write(int value)
throws AtomicException {
...
update(value);
}

public void write(int value, Privatized)
throws AtomicException {
...
update(value, null);
}

private void update(int value) {
...
}

private void update(int value, Privatized) {
...
}
}

(c)

Figure 8.5: Illustration of privatization of an AtomicFlexotask class, expressed in Java source
code. (a) shows the Java source code of the ExternalMethods subinterface declaring the trans-
actional method to be implemented by the HighFreqReader, (b) shows the Java source code of
the HighFreqReader implementing the transactional method before privatization, and (c) shows
the effects of privatizing the transactional method. Note, only for illustration purposes are the
effects of privatization expressed using Java source code. In reality, the actual transformations
are performed directly on the bytecodes.

the bytecodes an aconst null instruction is simply inserted just before the actual invoke*2

instruction. Fig. 8.6 shows the bytecode of the invocation of the method update(value), as
seen in Fig. 8.5, before and after the transformation.

2The instruction invoke* is used to denote the four invocation instructions of the Java bytecodes:
invokespecial, invokevirtual, invokeinterface, invokestatic.

8.5. TRANSACTIONAL METHODS FOR MULTI-PROCESSORS 127

This leads to an interesting case where a rewritten method invocation appears as if it could
match existing methods having different, yet matching, signatures. Continuing the example
in Fig. 8.5, this could happen if the HighFreqReader class, seen in Fig. 8.7(c), contained an
existing method, say, with the signature update(int, Ljava/lang/Object)V;. One might
wonder which method would be invoked by an invocation update(1, null) occurring in the
body of an existing method. This is a case of operator overloading. However, Java resolves
operator overloading statically, and thus, at the time of the bytecode rewriting, any overloading
issues for the un-rewritten has already been resolved by the standard Java compiler. What
remains is thus simply to ensure that the overloading issues of the synthesized methods are
resolved correctly.

aload 0
iload 1
invokespecial HighFreqReader.update(I)V
return

(a)

aload 0
iload 1
aconst null
invokespecial HighFreqReader.update(ILPrivatized;)V
return

(b)

Figure 8.6: Transformation of method invocations within privatized methods; redirecting the
invocation to privatized methods. (a) shows the bytecode of the method invocation before the
transformation, (b) shows the bytecode of the method invocation after the transformation, where
the invocation is redirected to the privatized method with its additional method parameter.

8.5.3 Transactionalizing Field Operations

The purpose of transactionalizing field operations taking place within a privatized method is to
redirect all field operations involving stable types to a transaction log, such that their effects
are deferred until commit time, rather than having them performed immediately in memory.
Here field operations include getfield and putfield bytecode instructions and all primitive
and reference-type array load and store bytecode instructions.3 Note, that in our current im-
plementation we actually transactionalize all field operations, stable or not. The consequence of
this missing optimization is a negligible run-time overhead caused by the fact that the number
of entries in the transaction log will be a bit larger as it will include mutations made to fields of
transient type too. Thus, the time to commit a transaction, i.e., roll-forward the entries in the
transaction log, will be a bit longer.

In addition, we do not transactionalize any writes to static variables within a privatized method.
This choice is deliberate. The purpose of the transactional methods is to provide non-blocking
access to shared data between the ordinary Java thread and the time-critical task. Since the
state of the time-critical task consists only of stable objects allocated in the stable heap of the

3Specifically, the following array instructions are included: aaload, baload, caload, daload, faload, iaload,
laload, saload, aastore, bastore, castore, dastore, fastore, iastore, lastore, sastore.

128 CHAPTER 8. FLEXOTASK IMPLEMENTATION

task, any shared state must relate to these objects. Hence, the transactionalization of the field
operations exclude writes to static variables.

This redirection of the field operations takes place as a subtransformation of the privatiza-
tion of the method. Specifically, upon detecting a field operation in the method body, i.e., a
getfield/putfield instruction, the bytecode instruction is replaced with an invokestatic in-
struction invoking an internal, type-specific native method on the virtual machine. Specifically,
the IBM WebSphere Real-Time VM has been extended with a class TransactionalOperations
to provide a native method for each primitive type, for each array of primitive type, as well as
a method for reference types and arrays of reference types.

public void write(int value) throws AtomicException {
state.current.value = value;
}

(a)

aload 0 // ’this’ object
getfield LState; HighFreqReader.state
getfield LChannel; State.current
iload 1 // value to be assigned to the Channel.value field
putfield I Channel.value

(b)

aload 0 // ’this’ object
iconst 0 // index of field ’HighFreqReader.state’
invokestatic com/ibm/realtime/flexotask/TransactionalOperations

.getReferenceField(Ljava/lang/Object;I)Ljava/lang/Object;
iconst 1 // index of field ’highfreqread/txn/State.current’
invokestatic com/ibm/realtime/flexotask/TransactionalOperations

.getReferenceField(Ljava/lang/Object;I)Ljava/lang/Object;
iload 1 // value to be assigned to field ’Channel.value’
iconst 2 // index of field ’Channel.value’
invokestatic com/ibm/realtime/flexotask/TransactionalOperations

.setIntField(Ljava/lang/Object;II)V

(c)

Figure 8.7: Transactionalizing field operations in a transactional method. (a) shows the Java
source code of the transactional method, (b) shows the original bytecodes of the method body,
and (c) shows the bytecodes of the method body having applied the subtransformation. Note
how after bytecode rewriting each field is referenced through a numeric index value, rather than
through the constant pool index.

8.5. TRANSACTIONAL METHODS FOR MULTI-PROCESSORS 129

Each bytecode instruction representing a field operation holds an index to an entry in the
constant pool of the class where the instruction takes place, uniquely identifying the actual field
to be manipulated. When redirecting the field operations to the transaction log, it is necessary
to maintain such unique identification of each individual field. However, using the constant
pool entry index is problematic since the scope of a transaction may cover several transactional
methods including several classes, thus introducing the risk of clashes of field indices. Instead,
during the rewriting of these field operations, the bytecode rewriter assigns unique indices to
each reachable instance field in all the classes of the call-graph of the transaction. This index
has to be provided as an argument to the invocation of the native methods in order to identify
the fields in the transaction log. Fig. 8.7 provides an example of transactionalizing the field
operations of a transactional method.

As can be seen in Fig. 8.7, the reference type getfield instructions are transformed into a
invokestatic instruction on the TransactionalOperations class that as arguments takes the
object on which the field read takes place, and an index uniquely identifying the field to be
read. The same is true for the primitive type putfield instruction, though here the value to be
assigned to the field is provided as an additional argument.

8.5.4 Wrapping Outermost Transactional Methods

The outermost transactional methods are those synthesized, transactional methods on the
AtomicFlexotask class that will be invoked indirectly by the ordinary Java thread, i.e., the
entry points of the ordinary Java thread to the AtomicFlexotask class.

Being the entry points to the AtomicFlexotask, these methods must be treated specially. Par-
ticularly, these entry point methods have to deal with the fact that the invocation by the ordinary
Java thread at this point will cross the boundary between the public heap and the memory area
of the AtomicFlexotask instance. Consequently, the method bodies of these outermost trans-
actional methods on the AtomicFlexotask are wrapped by the rewriter with a prolog and an
epilog. Wrapping these method bodies serves a number of purposes.

Upon entering the transactional method, the first thing occuring is an invocation of the native
performProlog method on the AtomicFlexotask class occurs, which will cause for the transac-
tion log to be prepared and the memory area of the ordinary Java thread to be switched. When
an ordinary Java thread invokes transactional methods, its memory context is the public heap.
However, the body of a transactional method has to be invoked in special allocation context
in which transient objects go to the public heap but the stable ones go to the stable heap of
the Flexotask. Thus, the memory context has to be switched before executing the actual in-
structions of the method body. Note how unlike in Reflexes, we do not pin any reference type
arguments (i.e., primitive arrays) that might be passed in to the transactional method.

Following the execution of the actual method body, the epilog will attempt to commit the trans-
action by invoking the native performEpilog method. The epilog checks whether the state of
the task has changed out during the method invocation, and if so causes for an AtomicException
to be thrown back to the ordinary Java thread. If not, the method is permitted to commit its

130 CHAPTER 8. FLEXOTASK IMPLEMENTATION

changes, with the scheduler briefly being locked out. Having committed or aborted the transac-
tion, the epilog then resets the memory context back to the public heap. The performProlog
and performEpilog methods both represent an extension to the virtual machine, and are de-
clared as part of the internal functionality on the AtomicFlexotask class, as seen in Fig. 7.6.

Locking out the scheduler during the commit phase of the performEpilog method makes it
vulnerable to being blocked indirectly by the garbage collector, because the committing thread
is an ordinary one that can be paused by the collector while holding the lock. We, thus, require
the thread to complete its commit and release the lock before yielding to the collector. Note,
that while on a uniprocessor machine transactional methods can be implemented in a lock-free
fashion, on a multi-processor machine this methodology does not work. In fact, in our implemen-
tation we actually rely on a lock-based approach with priority inheritance. The implications of
this scheme is that on a multi-processor machine, in order to support transactional methods, on
a lower level, we are subject to some of the deficiencies of lock-based schemes that transactional
methods should help us circumvent. However, we have strived for locking out the scheduler in
a minimal lockout window, thereby minimizing any negative impact on performance.

Finally, the epilog is also responsible for exception handling. More specifically, the epilog must
ensure that the invocation, in the event of an exception, does not escape the outermost trans-
actional method without having reset the memory context back to the public heap. The epilog
must handle three types of exceptions; user exceptions, if any, thrown by the outermost reachable
method, internal exceptions representing transaction aborts if the restricted thread is released
by the scheduler, and finally any unchecked exception that might otherwise occur.

If a user exception is thrown within a transactional method, the object is created with normal
Java semantics. By default the exception object and its stack trace are created in transient
memory. For the exception object to escape from a call to a transactional method from an
ordinary Java thread, the exception object has to be deep-cloned on to the heap before being
rethrown. In contrast, recall, in Reflexes we simply just relied on standard RTSJ exception
handling whereby the invoking ordinary Java thread would receive a ThrowBoundaryError.

Fig. 8.8 illustrates how the Java code skeleton version of the outermost transactional method
seen in Fig. 8.7(a) after having been wrapped with a prolog and epilog. The figure does not
show the transformed method body of the original method.

8.5.5 Guard Class Generation

At run-time, the rewritten AtomicFlexotask class will reside inside its own private memory
area, which the ordinary Java thread is given access to through the guard that delegates all
invocations. The guard is an instance of a synthesized, anonymous class that implements the
same set of ExternalMethods marker interfaces as the AtomicFlexotask subclass implements,
and is transparently provided to the time-oblivious Java code as a delegator for the actual
AtomicFlexotask.

Whereas the other program transformations are performed on existing classes, the guard class
is generated from scratch. Fig. 8.9 shows an example of a generated guard class for the Atomic-

8.5. TRANSACTIONAL METHODS FOR MULTI-PROCESSORS 131

1
2 public void write(int value, Privatized)
3 throws AtomicException, UserException {
4 Throwable t = null;
5 try {
6 performProlog();
7
8 // here comes the transformed method body of the original method
9 }

10 catch (Throwable e) {
11 t = e;
12 }
13 finally {
14 if (t instanceof ExecutionAbortedException) // ’performProlog’ failed;
15 throw t; // memory area could not be switched
16 try {
17 t = performEpilog(t);
18 }
19 catch (ExecutionAbortedException e) { // ’performEpilog’ failed;
20 throw new AtomicException(e); // transaction could not commit
21 }
22 if (t != null) {
23 if (t instanceof UserException) // handling of user exception types
24 throw t; // user code threw an expected exception type
25 if (t instanceof Error)
26 throw t;
27 if (t instanceof run−timeException)
28 throw t;
29 throw new IllegalStateException(t);
30 }
31 }
32 }
33

Figure 8.8: Illustration of the effects of wrapping the method body of an outermost transactional
method with a prolog and epilog. In lines 4-6, the inserted prolog code can be seen, and in lines
9-31 the epilog code. The transformed method body of the outermost transactional method
is inserted at the placeholder of line 8 as indicated by the code comment. Note, only for
illustration purposes are the effects of wrapping expressed using Java source code. In reality,
the actual wrapping subtransformation is performed directly on the bytecodes.

Flexotask subclass seen in Fig. 8.7(c). Note, the package and class name of the generated
guard class is equivalent to the AtomicFlexotask subclass that it delegates to, though a $Guard
suffix is added to avoid name clashes. The guard class must implement all the ExternalMethods
subinterfaces of the AtomicFlexotask subclass that it delegates to. Furthermore, for each of
the methods declared in these subinterfaces, a synthesized method with the equivalent method
signature is generated on the guard class, with a method body that simply relays the invocation
to the AtomicFlexotask instance that it holds a reference to.

To associate the guard with the actual AtomicFlexotask instance, all guard classes must have

132 CHAPTER 8. FLEXOTASK IMPLEMENTATION

public class HighFreqReader$Guard implements HighFreqReaderIntf {
private HighFreqReader flx;

public void setDelegate(AtomicFlexotask flx) {
this.flx = (HighFreqReader) flx;
}

public void write(int value) throws AtomicException {
flx.write(value, null);
}
}

Figure 8.9: Illustration of the automatically generated guard class, delegating for an Atomic-
Flexotask class. Note, only for illustration purposes is the guard class expressed using Java
source code. In reality, the guard class is generated directly in bytecode format.

a default setDelegate method expecting an argument of type AtomicFlexotask, as seen in
Fig. 8.9. This method is invoked by the Flexotask run-time engine during graph initialization
for setting the actual AtomicFlexotask subclass instance on the guard. When the Flexotask
graph terminates, the setDelegate is invoked again by the Flexotask run-time engine with a
null value to ensure that the guard does not keep alive a no-longer living task.

8.6 Transaction Log

The transaction log uses a roll-forward approach where all memory operations are redirected
and performed in a transaction log rather than on the actual memory addresses. During a
transaction, when a field in an object is being assigned, an entry representing that field in that
particular object is added to the transaction log. The entry points to the address in memory
holding the latest value that eventually should be assigned to the instance field upon commit.
If an entry representing that field is already in the log, the entry is changed to point to the
memory address of the new value. Likewise, when a field is being read, it is first sought for
in linear time in the transaction log. If found, the value at the memory address pointed to by
the log entry is returned. If no entry in the log represents the field, it means that the field was
never assigned during the current transaction. In that case, the field value is read directly from
the memory address of the field in the object. Only if the transaction commits will the memory
operations represented by the entries in the transaction log be performed directly in memory.

The actual transaction log is implemented in the native layer of the virtual machine as a unidi-
rectional linked list. In our current implementation the memory consumption of the transaction
log is unshrinkable, meaning that memory allocated for entries in the transaction log are never
freed again. Instead, upon resetting the transaction log, these entries are reset and put on a
free-list for reuse for subsequent transactions. Only if the free-list runs out of available log
entries are new allocated.

9
Empirical Evaluation

This chapter describes a number of empirical evaluations of our integrated Flexotask implemen-
tation. Like with Reflexes, we evaluate Flexotask on predictability and performance using two
applications, but this time a high frequency reader and an avionics collision detector. We also
report on the execution time for our static analysis at compile- and initialization-time for both
applications.

9.1 Methodology

The experiments were conducted using the IBM WebSphere Real-Time VM extended with sup-
port for Flexotask. The virtual machine includes support for high resolution timing on real-
time kernels, a real-time garbage collector [BCR03], and an implementation of RTSJ. The IBM
WebSphere Real-Time VM also includes experimental features added for Eventrons, providing
object pinning/unpinning and the ability to exempt certain threads from being paused by the
global heap garbage collector. The Flexotask implementation extends the Exotasks implemen-
tation [ABI+07, IBM], which provides private per-task heaps, and deep copying between heaps.
In addition, we added support for transient allocation and roll-forward transactions.

As our execution platform, we used an IBM blade server with 4 dual-core AMD Opteron 64 2.4
GHz processors and 12GB of physical memory. The operating system used was Linux (kernel
version 2.6.21.4 in the RHEL 5 real-time configuration).

133

134 CHAPTER 9. EMPIRICAL EVALUATION

9.2 Predictability

We evaluate predictability of a high frequency reader benchmark (540 lines of code). The appli-
cation has an atomic Flexotask scheduled at a period of 100 µs. At each periodic execution, the
task reads available data on its input buffer in circular fashion into its stable state. An ordinary
Java thread that runs continuously feeds the Flexotask with data on its input buffer by invoking
a transactional method on the task approximately every 20 ms. Out of 3,000 invocations of
the transactional method, 516 of them aborted, indicating that the atomic Flexotask feature
was being heavily exercised. To evaluate the influence of computational noise and garbage col-
lection, another ordinary Java thread runs concurrently, continuously allocating at the rate of
2MB per second, using 48 byte objects and maintaining a live set of 40,000 objects. To avoid
perturbations caused by the JIT-compiler, we ran this test in interpreted mode.

Figure 9.1: Frequencies of inter-arrival times of an atomic Flexotask scheduled with a period
of 100 µs, executing concurrently with (1) an ordinary Java thread communicating by trans-
actional invocations, and (2) an ordinary Java thread simulating regular memory consumption
by continuously allocating at 2MB per second. The x-axis depicts the inter-arrival time of two
consecutive executions in microseconds. The y-axis depicts the logarithm of the frequency.

Fig. 9.1 shows a histogram of the frequencies of inter-arrival times of the periodically scheduled
atomic Flexotask, i.e., the time between two consecutive executions. The figure contains obser-
vations covering almost 600,000 periodic executions. As can be seen in the figure, all observations
of the inter-arrival time are centered around the scheduled period of 100 µs. Overall, there are
only a few microseconds of jitter to be seen in the figure, with inter-arrival times ranging from
57 to 144 µs.

9.3. PERFORMANCE 135

9.3 Performance

To evaluate performance, we considered a larger application in the form of the avionics collision
detector described in Sec. 7.7. The collision detector (30,000 lines of code) consists of three
threads running concurrently: the DetectorTask running at a period of 20 ms, the simulator
thread generating flight data and communicating with DetectorTask every 20 ms, and the 2MB
per second allocator thread described in the previous section. Because the 20 ms period allows
more slack than in the predictability test (necessary both for realism and to allow the simulator
to keep up), we instructed the allocator thread to keep 150,000 objects live in order to cause
more garbage collection overhead and a greater opportunity for conflict.

To have a baseline with which to compare our measurements, we implemented two additional
variants of the collision detector, respectively a plain Java variant where the time critical thread
was just an ordinary thread, and a RTSJ variant making use of scoped memory areas. The plain
Java version was run both under a normal garbage collector (the non-real-time IBM J9 collector
with default parameters), and under the real-time garbage collector of the IBM WebSphere
Real-Time VM. For this experiment, we measured performance as time taken by the detector
to process a frame.

Fig. 9.2 shows the results of our measurements. For the plain Java variant with a non-realtime
collector Fig. 9.2(a), the worst-case observed processing time over the entire run was around
28 ms, which is not surprising given that the virtual machine uses an ordinary non-real-time
garbage collector. With the real-time garbage collector, this number declines substantially but
this comes at the expense of mutator utilization, thereby increasing the average processing time.
The smaller but non-negligible jitter in Fig. 9.2(b) happens because a varying number of the
garbage collector’s work quanta can fall within the relatively long processing times (about 4 ms)
for the detector.

Both the RTSJ variant Fig. 9.2(c) and Flexotask Fig. 9.2(d) are largely impervious to such
interference. We note that they are not entirely impervious: each has two spikes that correspond
to garbage collections though other garbage collections in the run pass without incident. In the
Flexotask version Fig. 9.2(d), the two spikes are due to a thread being preempted while holding
a lock needed by the scheduler, a known problem relating to the problem mentioned earlier that
an ordinary Java thread can be paused by the garbage collector during its commit. We will
address this small implementation problem as future work. In the RTSJ version the spikes are
unexplained but probably represent a flaw in the implementation of the virtual machine.

Clearly, the best-case performance time of the RTSJ variant is significantly slower than that of
any other variant. We attribute the slowdown to the dynamic checks imposed during run-time
by the virtual machine to ensure safety of pointer manipulation when using the RTSJ scoped
memory areas.

In summary, we have shown how four different variants of our collision detector application are
subject to a varying degree of interference caused by the presence of garbage collection. As
expected, the plain Java variant experiences infrequent, but large, latencies when running on
a non-real-time collector and much smaller latencies but still noticeable jitter when running on

136 CHAPTER 9. EMPIRICAL EVALUATION

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

1000  1500  2000  2500  3000  3500 

(a) Plain Java

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

1000  1500  2000  2500  3000  3500 

(b) Plain Java with RTGC

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

1000  1500  2000  2500  3000  3500 

(c) RTSJ with Scoped Memory

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

1000  1500  2000  2500  3000  3500 

(d) Flexotask

Figure 9.2: Comparing performance of four different variants of the collision detector benchmark.
The x-axes show the data frames processed, numbering from 1 (only a representative set of frames
are shown), and the y-axes the processing time in milliseconds for the individual frame.

the real-time collector. The RTSJ variant has low jitter but poor average-case performance. In
contrast to these, the Flexotask variant runs at high performance with the smallest amount of
jitter.

9.4 Static Analysis Performance

We measured the time needed for validating the code of our two benchmarks applications at
compile nd initialization time. Whereas initialization time validation was performed on the
platform described above, compile time validation occurred on a development machine running
JDK 1.5.0 07-87 on a Intel Core Duo, 2.16GHz with 2GB of physical memory.

9.5. SOFTWARE ENGINEERING ASPECTS 137

High Frequency Reader Collision Detector
Compile-time Validation 33 ms 173 ms
Bytecode Rewriting 10 ms 51 ms
Initialization-time Validation 332 ms 699 ms

Table 9.1: Static analysis times for the two benchmark applications.

Tab. 9.4 shows the empirical measurements of the time to perform the various stages of the
code analysis. As can be seen, it takes twice as long to validate the collision detector. This
is not surprising given the difference in code size. The longer time taken at initialization time
primarily reflects the fact that “validation” actually includes the time to instantiate and schedule
the Flexotask graph in addition to simple checking. Also, the checking is more detailed since it
is done in a data-sensitive fashion.

9.5 Software Engineering Aspects

We briefly comment on our experience refactoring the collision detector application to use Flexo-
task APIs. The collision detector code obtained from [ZNV04] consisted of 195 files, containing
241 classes (with around 30,000 lines of code), and employed RTSJ APIs. Converting it to
Flexotask required modification of 8 files and adding Stable declarations to 7 classes. The main
changes were in the setup portion of the application; the original version had code for creating
RTSJ-style real-time threads, whereas the Flexotask version created a single-node graph.

The other main change was in the communication between ordinary Java threads and the real-
time task. In order to pass the validation phase, we had to ensure that objects shared between
the two were reference-immutable. Finally, in a number of places where the RTSJ code had
to resort to reflective invocation, the calls were transformed into normal allocations of stable
classes in the Flexotask version. The effort going from the earlier version of the code was modest
and had the side-effect of making the code easier to understand.

138 CHAPTER 9. EMPIRICAL EVALUATION

Part V

Conclusion

139

10
Conclusion

This thesis presented Reflexes, a simple, statically type-safe programming model that makes it
easy write and integrate simple periodic tasks or complex stream processors, both observing real-
time timing constraints in the sub-millisecond range, into larger Java applications running on the
same Java virtual machine. Reflexes provide means for type-safe, obstruction-free interaction
between time-critical tasks and time-oblivious Java code. The Reflex programming model is
non-intrusive in that it does not require changes to the standard Java syntax, nor does it require
refactoring of existing code, permitting a high degree of reuse of standard libraries and legacy
code.

In this thesis, we set out to find the answers to a number of questions as described in the Problem
Statement. Below, we will summarize the conclusions of our findings.

Circumventing Garbage Collection Interference

• Question: How can the latency introduced by garbage collection be circumvented such
that sub-millisecond predictability is not compromised, yet avoiding the deficiencies of the
NoHeapRealtimeThread?

We presented the Reflex restricted programming model in which the unit of restriction and
execution is a task. Like in other restricted programming models, Reflex tasks execute free of
garbage collection interference by (1) executing in a separate private memory area that is not
reachable from the public heap garbage collector, and (2) being executed by real-time threads
running at higher priority than any other thread, including the garbage collector. The result of
these two features is that Reflex tasks at any point in time can preempt the garbage collector
and thereby not be subject to garbage collection-related latencies.

141

142 CHAPTER 10. CONCLUSION

Through a number of empirical experiments, both specific benchmark applications as well as
real-world applications, we documented that with Reflexes time-critical tasks achieve a very high
level of predictability in their execution, and that this occurs even at execution periods below a
millisecond.

Ensuring Type-Safety

• How can the run-time checks maintaining the memory region integrity be avoided without
compromising type-safety?

As we described and pointed out, the necessity for performing checks concerning memory region
integrity comes with the introduction of code being executed in different memory contexts,
and in particular, when references cross the boundaries of these contexts. Wanting to avoid
applying expensive run-time checks as with the NoHeapRealtimeThread to enforce memory
region integrity, we presented a set of safety checks that can be statically enforced and reasoned
about their correctness. We described how the static safety checks work by restricting the
expressive power of Reflex tasks, thereby ensuring that the tasks will never perform operations
that could cause the time-critical tasks nor the time-oblivious Java code to experience a dangling
pointer or observe a heap-allocated object in an inconsistent state.

While the static safety checks are strict enough to ensure type safety for time-critical tasks,
they are non-intrusive in that they allow for reuse of most standard library classes and legacy
code, as we investigated by subjecting the Java collection framework to the set of restrictions.
Furthermore, as we described, the scope of these checks concerns only the time-critical parts of
the code, not the remainder of the Java application, again promoting reuse and integration into
existing application code.

We also described and illustrated how, even having enforced the restrictions, it is necessary to
extend the virtual machine with the ability to enable pinning of certain objects on the heap as
they are referenced from objects in different memory contexts not reachable by the public heap
garbage collector. Concretely, in Reflexes, we identified heap-allocated, reference type static
variables and instance objects provided as transactional methods argument to be pinned.

In our integration of Reflexes together with the Eventrons and Exotasks models from IBM
Research into a unified, restricted programming model, Flexotask, we realized and presented a
relaxation of the set of static safety checks, as a direct consequence of the introduction of a guard
object, shielding and delegating to the time-critical task. Furthermore, relating to transactional
methods, through an evolutionary change of the allocation context of transient objects from a
dedicated transient area to the public heap, we could avoid the necessity for pinning of objects –
more specifically, we described how with this change, we no longer needed to pin heap-allocated,
reference type arguments provided to transactional methods.

10.1. CONTRIBUTIONS 143

Enabling Type-Safe, Non-Blocking Communication

• How can threads observing sub-millisecond temporal requirements interact with time-oblivious
threads in a type-safe manner without sacrificing predictability, and without requiring ex-
tensive modification of legacy code?

We described the challenges involved in enabling communication between time-critical tasks
and time-oblivious code, and presented the two means of communication possible in the Re-
flex programming model. We described how to safely communicate using static variables, by
restricting their types to those that are primitive or reference-immutable. We then introduced
an obstruction-free, transactional communication scheme based on special methods with trans-
actional semantics to be invoked by ordinary Java threads, and explained why it is required to
restrict parameters on such methods to those of primitive or primitive array types. Finally, we
discussed when to use which type of communication, and also proposed when to use a combina-
tion of the two.

We described our initial prototype implementation of Reflexes implemented on top of an ex-
perimental real-time Java virtual machine with a uni-processor design, and providing low-level
mechanisms for achieving transactional semantics by enabling memory mutations to roll-back.
We presented experimental results of running mixed mode applications, i.e., applications where
time-oblivious threads interact with time-critical tasks, of our prototype implementation, and
showed that transactional methods indeed enable obstruction-freedom for the time-critical task.
Specifically, our results demonstrate that time-critical tasks can achieve a high degree of pre-
dictability, even when running at high frequencies, while an ordinary Java thread invokes trans-
actional methods on it.

For our implementation of the unified Flexotask programming model, we described how we used
a standard industrial-strength real-time Java virtual machine with a multi-processor design that
does not provide low-level support for transactional methods. Hence, we presented a set of
program transformations and necessary native support in the virtual machine required in order
to achieve transactional semantics of method invocations, and described a new approach based
on a roll-forward transaction log in order for transactional methods to work correctly on a multi-
processor virtual machine. Also for this implementation we presented encouraging evaluation
results demonstrating the viability of transactional methods and the programming model in
general.

10.1 Contributions

Having described the conclusions of our findings to the questions posed in the Problem State-
ment, we now summarize the contributions of this thesis:

• Programming Model – We presented the design of a simple, type-safe restricted pro-
gramming model, Reflexes, facilitating the construction of highly responsive applications

144 CHAPTER 10. CONCLUSION

in Java. The Reflex programming model makes it easy write and integrate simple periodic
tasks or complex stream processors, both observing real-time timing constraints in the
sub-millisecond range, into larger time-oblivious Java applications.

• Static Safety Checks – Standard real-time programming constructs for circumventing
interference from garbage collection rely on the enforcement of type restrictions at run-
time; an approach that adds a significant run-time overhead relating to safety of memory
operations. To avoid the need to apply expensive checks during run-time, we described
an informal specification of a set of static safety checks inspired by ownership types for
statically ensuring the safety of memory operations within a Reflex task while at the same
time permitting communication with time-oblivious code. In particular, the static safety
checks propose a novel notion of implicit ownership, rendering superfluous the need to
declare ownership parameters on class declarations. Furthermore, the static safety checks
are non-intrusive by permitting unmodified reuse of legacy code with no requirement to
rewrite standard libraries.

• Obstruction-free, Transactional Communication Scheme – To facilitate non-block-
ing communication between time-critical tasks and time-oblivious Java code, we described
a scheme based on obstruction-free, transactional communication, ensuring that the time-
critical Reflex task will not violate its temporal requirements following interaction with
time-oblivious code. Furthermore, the thesis presented a general design of the communi-
cation scheme enabling implementations on multi-processors, where it cannot be assumed
that the release of the time-critical task causes for the immediate execution halt of a
concurrently running time-oblivious thread.

• Implementation and Integration – We described two implementations of the Reflex
programming model. To demonstrate viability of the approach, we developed a stand-
alone prototype implementation of Reflexes on a research virtual machine that comes with
a uni-processor design, and native support for transactional methods. In addition, we
added extensions to the javac compiler to support the static safety checks.

To provide a more powerful and flexible programming model, we integrated the Reflex
programming model with two existing restricted programming models from IBM Research
into a unified programming model, Flexotask. To demonstrate the strength and flexibility
of our approach, we implemented Flexotask on a commercial virtual machine with multi-
processor support. Furthermore, we integrated development tool support for Flexotask
into the Eclipse IDE, among other features the static safety checking.

• Empirical Evaluation – For both our implementations, we provided a number of em-
pirical evaluations of the ability of the programming model to enable the development of
real-time applications providing (a) sub-millisecond response times with a high degree of
precision, and (b) throughput better or comparable to equivalent application variants built
for alternative approaches. In both cases we demonstrated encouraging results through
benchmark applications running simple periodic tasks in isolation to demonstrate the base-
line performance, as well as concurrently with communicating, ordinary Java threads to
demonstrate predictability and performance when interacting.

10.2. OPEN PROBLEMS 145

10.2 Open Problems

In our pursuit of the answers to the questions posed in the Problem Statement, we have come
across a number of loose ends and challenges that are very intriguing:

• Evaluating the possibility of reference-immutable objects as transactional meth-
ods arguments. As described earlier in the thesis, allowing for any reference-immutable
type to be used as transactional method argument imposes two problems; statically deter-
mining the type safety, and during run-time the cost of constantly pinning and unpinning a
potentially large reference-immutable data structure for each method invocation. The lat-
ter challenge disappears when changing allocation context to the public heap, and pinning
is then no longer necessary. The challenges involved in statically determining the type
safety of using reference-immutable, transient types has already been described earlier
and remains clear. However, whereas at startup time shared instance objects and static
variables can be analyzed based on objects, the actual types of the transactional methods
arguments are not known before invocation time, and must thus be analyzed based on a
class-based level – even at startup time. How well this would work in practice, we would
like to try out.

• Validating safety of rewritten, transactional methods. In our current version of
our Flexotask implementation, the development time checker applies a number of program
transformations, described in Sec. 8.5, to facilitate transactional semantics on the transac-
tional methods. In our current initialization time checker, these program transformations
are blindly trusted and thus not checked to adhere to the safety requirements. This poses
a potential security problem in that these methods could be counterfeited to compromise
type safety. Thus, interesting work in this area include extending our initialization time
checker with the ability to not only check the method body of the rewritten classes accord-
ing to the static safety checks, but also to perform verification that the rewritten outermost
transactional methods indeed always execute their epilogs and that they perform all the
mutations in the transaction log.

• Scheduler support for non-periodic executions. The scheduling in the current ver-
sion of both Reflexes and Flexotask is based on the concept of a period, hence the time-
triggered scheduler. It could, however, be interesting to explore alternative, non-periodic
scheduling policies, e.g., event-based scheduling tied to low level I/O like reading from a
network interface.

• A stream-based scheduler for Flexotask. In Sec. 8.2.2, we have described a timing
grammar and scheduler for supporting complex stream processing applications in Flexo-
task. We would like to continue this work and perform experimental results comparing
the execution on a multi-processor virtual machine with an equivalent execution on a uni-
processor machine in order to learn the cost of parallelizing the application (given thread
context switches), and under which circumstances the performance increases outweighs
this cost.

146 CHAPTER 10. CONCLUSION

Bibliography

[ABC+06] Austin Armbuster, Jason Baker, Antonio Cunei, David Holmes, Chapman Flack,
Filip Pizlo, Edward Pla, Marek Prochazka, and Jan Vitek. A Real-time Java virtual
machine with applications in avionics. ACM Transactions in Embedded Computing
Systems (TECS), 2006.

[ABG+08] Joshua Auerbach, David F. Bacon, Rachid Guerraoui, Jesper H. Spring, and Jan
Vitek. Flexible Task Graphs: A unified restricted thread programming model for
Java. In Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES), pages 1–11, New York, NY,
USA, 2008. ACM.

[ABI+07] Joshua Auerbach, David F. Bacon, Daniel T. Iercan, Christoph M. Kirsch, V. T.
Rajan, Harald Roeck, and Rainer Trummer. Java takes flight: time-portable real-
time programming with Exotasks. In Proceedings of the ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES),
volume 42, pages 51–62, New York, NY, USA, 2007. ACM.

[Agh86] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, 1986.

[ANMM06] Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A framework
for implementing pluggable type systems. In Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems, languages, and ap-
plications (OOPSLA), pages 57–74, New York, NY, USA, 2006. ACM.

[ANS] ANSI/ISO. ISO/IEC 8652:1995 Information Technology – Programming Languages
– Ada ISO/IEC 8652:1995/Cor 1:2001 Information Technology – Programming
Languages – Ada.

[Apa] Apache – Byte Code Engineering Library. http://jakarta.apache.org/bcel/.

[Arm97] Joe Armstrong. The development of Erlang. In Proceedings of the 2nd ACM SIG-
PLAN International Conference on Functional Programming, pages 196–203. ACM
Press, 1997.

[BB02] Albert Benveniste and Gérard Berry. The synchronous approach to reactive and
real-time systems. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

147

148 BIBLIOGRAPHY

[BCC+03] Greg Bollella, Tim Canham, Vanessa Carson, Virgil Champlin, Daniel Dvorak,
Brian Giovannoni, Mark Indictor, Kenny Meyer, Alex Murray, and Kirk Reinholtz.
Programming with non-heap memory in the Real-time specification for Java. In
Companion of the 18th annual ACM SIGPLAN conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 361–369, 2003.

[BCF+06] Jason Baker, Antonio Cunei, Chapman Flack, Filip Pizlo, Marek Prochazka, Jan
Vitek, Austin Armbruster, Edward Pla, and David Holmes. A real-time java virtual
machine for avionics - an experience report. In Proceedings of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), pages 384–
396, Washington, DC, USA, 2006. IEEE Computer Society.

[BCR03] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage collector with
low overhead and consistent utilization. In Proceedings of the 30th SIGPLAN/SI-
GACT Symposium on Principles of Programming Languages (POPL), pages 285–
298, New Orleans, Louisiana, January 2003.

[Ber91] Gerard Berry. A hardware implementation of Pure Esterel. Technical Report 06/91,
Sophia-Antipolis, France, 1991.

[BG92] Gerard Berry and Georges Gonthier. The Esterel synchronous programming lan-
guage: Design, semantics, implementation. Science of Computer Programming,
19(2):87–152, 1992.

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In Proceedings of the 17th
Annual ACM SIGPLAN Conference on Object-Oriented Programming (OOPSLA),
November 2002.

[BN03] Edward G. Benowitz and Albert F. Niessner. Experiences in adopting real-time
java for flight-like software. In Proceedings of the International workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES), pages 490–496, 2003.

[BR01] William S. Beebee and Martin C. Rinard. An implementation of scoped memory
for real-time java. In Proceedings of the First International Workshop on Embedded
Software (EMSOFT), pages 289–305, London, UK, 2001. Springer-Verlag.

[BS96] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function
calls. In Proceedings of the 11th Annual ACM SIGPLAN Conference on Object-
Oriented Programming (OOPSLA), pages 324–341, 1996.

[BSBR03] Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, Jr., and Martin
Rinard. Ownership types for safe region-based memory management in Real-Time
Java. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM Press, 2003.

[Bur99] Alan Burns. The ravenscar profile. ACM SIGAda Ada Letters, XIX(4):49–52, 1999.

BIBLIOGRAPHY 149

[Car02] Jan Carlson. Languages and methods for specifying real-time systems. Technical
report, Mälardalen Real-Time Research Centre, Department of Computer Science
and Engineering, Mälardalen University, Sweden, August 2002.

[CC03] Angelo Corsaro and Ron K. Cytron. Efficient memory reference checks for Real-
time Java. In Proceedings of Languages, Compilers, and Tools for Embedded Systems
(LCTES), 2003.

[CIEE94a] Institute of Electrical CORPORATE IEEE and Inc. Staff Electronics Engineers.
IEEE Standard for Information Technology - Portable Operating System Interface
(POSIX): System Application Program Interface (API), Amendment 1: Realtime
Extension (C Language), IEEE Std 1003.1b-1993. IEEE Standards Office, New
York, NY, USA, 1994.

[CIEE94b] Institute of Electrical CORPORATE IEEE and Inc. Staff Electronics Engineers.
IEEE Standard for Information Technology - Portable Operating System Interface
(POSIX): System Application Program Interface (API), IEEE Std 1003.1-1993.
IEEE Standards Office, New York, NY, USA, 1994.

[CIEE95] Institute of Electrical CORPORATE IEEE and Inc. Staff Electronics Engineers.
IEEE Standard for Information Technology - Portable Operating System Interface
(POSIX): System Application Program Interface (API), Amendment 2: Threads
Extension (C Language), IEEE Std 1003.1c-1995. IEEE Standards Office, New
York, NY, USA, 1995.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative
language for programming synchronous systems. In Conference Record of the 14th
Annual ACM Symposium on Principles of Programming Languages (POPL), pages
178–188, Munich, West Germany, January 21–23, 1987. ACM SIGACT-SIGPLAN,
ACM Press.

[CPN98] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible
alias protection. In Proceedings of the 13th Annual ACM SIGPLAN Conference
on Object-Oriented Programming (OOPSLA), volume 33(10) of ACM SIGPLAN
Notices, pages 48–64. ACM, October 1998.

[Det04] David Detlefs. A hard look at hard real-time garbage collection. In 7th IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC), pages 23–32, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[GB00] James Gosling and Greg Bollella. The Real-Time Specification for Java. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[GGB87] Thierry Gautier, Paul Le Guernic, and Löic Besnard. SIGNAL: A declarative lan-
guage for synchronous programming of real-time systems. In Proceedings of the
Functional Programming Languages and Computer Architecture, pages 257–277,
London, UK, 1987. Springer-Verlag.

150 BIBLIOGRAPHY

[GGH+05] Benoit Garbinato, Rachid Guerraoui, Jarle Hulaas, Maxime Monod, and Jes-
per Honig Spring. Frugal Mobile Objects. Technical report, 2005.

[GGH+06] Benoit Garbinato, Rachid Guerraoui, Jarle Hulaas, Maxime Monod, and Jesper H.
Spring. Frugal Mobile Objects. In Proceedings of the Euro-American Workshop on
Middleware for Sensor Networks, co-located with the 2nd International Conference
on Distributed Computing in Sensor Systems (DCOSS), 2006.

[GGH+07] Benoit Garbinato, Rachid Guerraoui, Jarle Hulaas, Maxime Monod, and Jesper H.
Spring. Pervasive computing with Frugal Objects. In Proceedings of the IEEE 21st
International Conference on Advanced Information Networking and Applications
(AINA), Niagara Falls, Canada, May 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language Specification,
Second Edition: The Java Series. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[GTK+02] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,
Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, and
Saman Amarasinghe. A stream compiler for communication-exposed architectures.
ACM SIGARCH Computer Architecture News, 30(5):291–303, 2002.

[Hen98] Roger Henriksson. Scheduling Garbage Colection in Embedded Systems. PhD thesis,
Lund University, July 1998.

[HGB78] Jr. Henry G. Baker. List processing in real time on a serial computer. Communi-
cations of the ACM, 21(4):280–294, 1978.

[HHK01] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto:
A time-triggered language for embedded programming. In Proceedings of the First
International Workshop on Embedded Software (EMSOFT), pages 166–184, London,
UK, 2001. Springer-Verlag.

[HWG03] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[IBM] IBM Research – Expedited Real-Time Threads.
www.alphaworks.ibm.com/tech/xrts.

[Jav] Java Community Process – JSR-1: Real-Time Specification for Java.
jcp.org/en/jsr/detail?id=1.

[KR80] Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Ency-
clopedia of Computer Science, 1980.

BIBLIOGRAPHY 151

[Lee03] E.A. Lee. Overview of the Ptolemy project. Technical Report UCB/ERL M03/25,
EECS Department, University of California, Berkeley, 2003.

[LS88] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
pages 260–267, 1988.

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[MAE+84] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and
Michael I. Levin. LISP 1.5 Programmer’s Manual. MIT Press, Cambridge, Mas-
sachusetts, second edition, 1984.

[MBC+05] Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan, Marek Proc-
hazka, Bin Xin, and Jan Vitek. Preemptible atomic regions for real-time Java. In
Proceedings of the 26th IEEE Real-Time Systems Symposium (RTSS), December
2005.

[Mica] Microsoft – The .NET Common Language Runtime.
msdn.microsoft.com/en-us/netframework/aa663296.aspx.

[Micb] Microsoft Switzerland – Sieben zukunftsweisende Projekte für den ICES.
www.microsoft.com/switzerland/mediacorner/de/PressRelease.aspx?
id=e69971ae-2cb0-4882-b335-95debfc8d79b#msg.

[NB03] Albert F. Niessner and Edward G. Benowitz. Rtsj memory areas and their affects
on the performance of a flight-like attitude control system. In Proceedings of the
International Workshop on Java Technologies for Real-Time and Embedded Systems
(JTRES), pages 508–519, 2003.

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible Alias Protection. In Proceedings
of the 12th European Conference on Object-Oriented Programming (ECOOP), pages
158–185, London, UK, 1998. Springer-Verlag.

[PFHV04] Filip Pizlo, Jason Fox, David Holmes, and Jan Vitek. Real-time Java scoped mem-
ory: design patterns and semantics. In Proceedings of the IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Computing (ISORC), Vienna,
Austria, May 2004.

[PV03] Krzysztof Palacz and Jan Vitek. Java subtype tests in real-time. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), pages 378–
404, Darmstadt, Germany, July 2003.

[PV06] Filip Pizlo and Jan Vitek. An emprical evaluation of memory management alterna-
tives for Real-Time Java. In Proceedings of the 27th IEEE International Real-Time
Systems Symposium (RTSS), pages 35–46, Washington, DC, USA, 2006. IEEE Com-
puter Society.

152 BIBLIOGRAPHY

[Rep93] John H. Reppy. Concurrent ML: Design, Application and Semantics, volume 693
of Lecture Notes In Computer Science. Springer-Verlag, 1993.

[RHH85] Jr. Robert H. Halstead. MULTILISP: a language for concurrent symbolic compu-
tation. ACM Transactions on Programming Languages and Systems, 7(4):501–538,
1985.

[RT] High Resolution Timers. www.tglx.de/projects/hrtimers/2.6.17/.

[Rui05] J. F. Ruiz. Mission-Critical On-Board Software Using the Ada 95 Ravenscar Pro-
file. In DASIA 2005 - Data Systems in Aerospace, volume 602 of ESA Special
Publication, August 2005.

[SAB+06] Daniel Spoonhower, Joshua Auerbach, David F. Bacon, Perry Cheng, and David
Grove. Eventrons: a safe programming construct for high-frequency hard real-
time applications. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), volume 41, pages 283–294, New
York, NY, USA, 2006. ACM.

[ScZ05] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 requirements of
real-time stream processing. ACM SIGMOD Record, 34(4):42–47, 2005.

[SGV08] Jesper Honig Spring, Rachid Guerraoui, and Jan Vitek. Integrating Hard Real-
Time Tasks into Java with Reflexes. In ACM Transactions on Embedded Computing
Systems – Special Issue on Java Technologies for Real-Time and Embedded Systems
(JTRES), ACM Transactions on Embedded Systems. ACM, ACM, 2008.

[SGVS99] R. Sekar, Y. Guang, S. Verma, and T. Shanbhag. A high-performance network
intrusion detection system. In ACM Conference on Computer and Communications
Security, pages 8–17, 1999.

[Sim] Simulink. www.mathworks.com/products/simulink.

[SPGV07a] Jesper H. Spring, Filip Pizlo, Rachid Guerraoui, and Jan Vitek. Reflexes: Abstrac-
tions for highly responsive systems. In Proceedings of the 3rd International ACM
SIGPLAN/SIGOPS Conference on Virtual Execution Environments (VEE), 2007.

[SPGV07b] Jesper H. Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek. StreamFlex: High-
throughput stream programming in Java. In Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-Oriented Programming (OOPSLA), 2007.

[Str91] Bjarne Stroustrup. The C++ programming language. Addison Wesley, 1991.

[TKA02] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A language
for streaming applications. In Proceedings of the 11th International Conference on
Compiler Construction (CC), April 2002.

BIBLIOGRAPHY 153

[ZBH+08] Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek. Implicit owner-
ship types for memory management. Science of Computer Programming, 71(3):213–
241, 2008.

[ZNV04] Tian Zhao, James Noble, and Jan Vitek. Scoped types for real-time Java. In
Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS),
2004.

154 BIBLIOGRAPHY

Curriculum Vitae

Jesper Honig Spring, Danish citizen, born November 7th 1972 in Copenhagen of parents Bene-
dikte Birgitte Honig Jensen and Jens Ove Spring.

Joined the Distributed Systems Group of Prof. Eric Jul, Department of Computer Science, Uni-
versity of Copenhagen (DIKU), as well as Copenhagen Business School in autumn 1991 (evening
lessons). Completed B.A. in Informatics and Management Accounting from Copenhagen Busi-
ness School in spring 1998 and in winter 1999 graduated as M.Sc. in Computer Science with
grade A.

Hereafter pursued 4 years of industry experience, among others as invited visitor at IBM Al-
maden Research Center in year 2000, architecting a replicated version of IBM TSpaces based on
Master’s thesis results, and from 2001 as Senior Software Developer at Softwired AG, Zurich,
Switzerland, working on a clustered JMS messaging server. Holds a patent for a state-machine
approach to continuing message passing operations while still guaranteeing JMS semantics dur-
ing partial cluster failures, including network partitioning (USPTO #20030009511).

Commenced Ph.D. in April 2004 in the Distributed Programming Laboratory (LPD) under
the supervision of Professor Rachid Guerraoui of the School of Computer and Communication
Sciences at École Polytechnique Fédérale de Lausanne, and as of January 2008 also under
supervision of Professor Jan Vitek of the Computer Science Department at Purdue University.

155

