
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

acceptée sur proposition du jury:

Lausanne, EPFL
2008

Prof. C. Petitpierre, président du jury
Prof. A. Wegmann , directeur de thèse

Prof. C. Atkinson, rapporteur
Prof. S. Spaccapietra, rapporteur

B. Wood, rapporteur

SeamCAD:
a Hierarchy-Oriented Modeling Language and a

Computer-Aided Tool for Entreprise Architecture

Lam Son Lê

THÈSE NO 4225 (2008)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 12 novembre 2008

À LA FACULTé INFORMATIQUE ET COMMUNICATIONS

Laboratoire de modélisation systémique

SECTION DES SYSTÈMES DE COMMUNICATION

Abstract

Modeling Enterprise Architecture requires representing multiple diagrams of
an enterprise, which typically shows the multiples business entities, IT systems,
even software components and the services they offer. This could be done by a team
of stakeholders having different backgrounds. One way to do this is to structure the
model into hierarchical levels each of which can be of interest of just some, not all,
stakeholders. Due to the differences in their background, stakeholders - the
modelers may not want to use a single modeling approach, even a widely-
recognized one, to build the enterprise model, which can be shared by the whole
team. Developing a modeling framework that can be applied uniformly throughout
the entire enterprise model and that can be used by all stakeholders is challenging.
First, the framework should have a uniform approach to specifying the services
offered by business entities, IT systems and software components and to describing
their implementation across hierarchical levels. Second, the framework should
allow the stakeholders to represent the service specification and the service
implementation of multiple business entities and IT systems, even within the same
hierarchical level. Third, the services offered by those entities and systems should
be represented at different levels of granularity. Last but not least, the modeling
framework should maintain the well-formedness of the enterprise model and the
consistency between different diagrams opened by different stakeholders of the
team.

Today, there exist a few modeling methods or development processes in the
field of Enterprise Architecture, as well as in software and system modeling that
can address these issues to some extent. Among them, Adora, KobrA and OPM best
meet the aforementioned four criteria, although they were not initially developed
for modeling Enterprise Architecture. As a study on the state of the art, we
analyzed these methods with respect to the four aforementioned modeling
challenges. In this thesis, we define a modeling language and present a computer-
aided tool for modeling Enterprise Architecture hierarchically. This modeling
language allows the modeler to structure an enterprise into hierarchical levels, in
terms of both organization and services. The computer-aided modeling tool helps
the modeler visually build her model across levels and brings all levels together to
make a coherent, well-formed model. Enterprise models can be visually built and
represented in a notation that is based on the Unified Modeling Language using
this tool. The modeling language is formally defined in Alloy – a lightweight
declarative language based on first order logic and set theory. The data
manipulated in the tool is verified against the Alloy code that formalizes the
language. The modeling language and the computer-aided modeling tool constitute
a hierarchy-oriented framework called SeamCAD that specifically address the four
aforementioned issues. This framework has been applied several projects, both in
industry and academic settings. We evaluated it by inviting external practitioners,
researchers and master’s students in our university to use it and to give their
feedback.

Keywords

Enterprise Architecture, System Modeling, Computer-Aided Enterprise Modeling,
Reference-Model of Open Distributed Processing, Unified Modeling Language,
Alloy

Résumé

Modéliser une architecture d'entreprise exige la représentation de multiples
vues de l'entreprise qui, typiquement, montrent les entités métiers, les systèmes
informatiques, même les composants logiciels et les services offerts. Le modèle est
construit par une équipe d'intervenants provenant de domaines différents. Une
façon d'y parvenir est de structurer le modèle de manière hiérarchique. A chaque
niveau correspond des intervenants différents. L'élaboration d'un environnement
de modélisation qui peut être appliquées de façon uniforme dans tout le modèle
d'entreprise et être utilisé par toutes les parties prenantes est un défi. Tout
d'abord, l’environnement devrait avoir une approche uniforme pour représenter les
entités métiers, les systèmes informatiques, et les composants logiciels.
Deuxièmement, l’environnement devrait permettre de modéliser plusieurs entités
métiers et systèmes informatiques, à la fois comme boîte noire ou boîte blanche.
Troisièmement, le comportement des entreprises, des systèmes et même des
composants logiciels et de l'interaction entre ceux-ci devraient pouvoir être
représentés à différents niveaux de granularité. Enfin, l’environnement de
modélisation devrait permettre de maintenir la cohérence du modèle d'entreprise et
la cohérence entre les différentes vues ouvertes par les membres de l'équipe.

Aujourd'hui, il existe quelques méthodes de modélisation ou processus de
développement qui peuvent répondre en partie à ces questions. Parmi eux, Adora,
KobrA et OPM sont les mieux aptes à répondre aux quatre critères ci-dessus.
Aucun d’entre eux n’a été développé pour l'architecture d'entreprise. Le travail
présenté dans cette thèse définit un langage de modélisation hiérarchique pour
l'architecture d'entreprise. Ce langage de modélisation permet de structurer la
représentation de l’entreprise et de son environnement dans les niveaux
hiérarchiques organisationnels et comportementaux. La gestion du modèle se fait
au moyen d’un outil informatique de modélisation qui permet de construire son
modèle à différents niveaux (organisationnels ou fonctionnels). La notation
graphique s’inspire de UML. Le langage de modélisation est défini dans une façon
formelle en Alloy - un langage déclaratif basé sur le logique de premier ordre et la
théorie des ensembles. Le langage de modélisation et l’outil informatique
constituent l’environnement appelé SeamCAD. Il résout les quatre questions
mentionnées ci-dessus. Cet environnement a été appliqué dans une étude de cas lié
à un cours donné par notre groupe et dans plusieurs autres projets. Il a également
été évalué en invitant des praticiens externes et des étudiants de niveau master de
notre université à l’utiliser et à donner leurs commentaires.

Mots clés

Architecture d'entreprise, Modélisation de Système, Reference-Model of Open
Distributed Processing, UML, Alloy

TABLE OF CONTENTS

Preface .. 3
Acknowledgements .. 5
Chapter 1: Introduction... 7

1.1. Enterprise Architecture and Modeling .. 8
1.2. An Example ... 8
1.3. Motivation Problems ... 10
1.4. Framework for Modeling Enterprise Architecture Hierarchically 10
1.5. Research Methodology.. 13
1.6. Research Scope.. 14
1.7. Outlines.. 15

Chapter 2: State of the Art .. 17
2.1. Software and System Modeling... 18
2.2. Enterprise Modeling .. 20
2.3. A Comprehensive Comparison of Adora, KobrA and OPM............................... 21

2.3.1. Adora .. 21
2.3.2. KobrA ... 23
2.3.3. OPM ... 27
2.3.4. Comparison between AdorA, KobrA, OPM and SeamCAD 28

Chapter 3: The SeamCAD Modeling Language.. 31
3.1. Foundations ... 32
3.2. Informal Definition.. 33

3.2.1. Building blocks of the SeamCAD modeling language................................. 33
3.2.2. Explanation of the enterpise model of the online bookstore 39

3.3. Formal Definition .. 42
3.3.1. Meta-model... 42
3.3.2. Instantiation and well-formedness in the enterprise model of the online
bookstore .. 45

3.4. Formalization... 48
3.4.1. Formalization in Alloy ... 48
3.4.2. Testing and executing the formalization code.. 56

3.5. Notation ... 60
3.6. Solution to Four Modeling Challenges by SeamCAD Modeling Language....... 63

Chapter 4: SeamCAD Computer-Aided Tool.. 65
4.1. The Role of a Computer-Aided Tool in Modeling EA.. 66
4.2. Modeling EA with SeamCAD Tool .. 68

4.2.1. Explicit hierarchy that represents the organization and the environment of
enterprise .. 68
4.2.2. Explicit functional level hierarchy ... 71
4.2.3. A coherent model from which the diagrams are generated 72
4.2.4. Notation which is systemic, discipline-specific, understandable by UML
practitioners .. 75
4.2.5. Overview of the model, the diagram and the element.................................. 75
4.2.6. Solution to the four challenges by the SeamCAD tool................................. 77

4.3. Rendering and Layout ... 79
4.3.1. Diagram rendering.. 79
4.3.2. Automatic layout .. 80

4.4. Implementation of SeamCAD Tool... 83
4.5. Data Verification ... 86

 2

Chapter 5: Applications and Feedback .. 97
5.1. Applications... 98

5.1.1. A case-study enterprise model in a master’s course on EA and SOA.......... 98
5.1.2. Enterprise model of an ERP-seeking company in the market of watch parts
manufacturing... 104
5.1.3. Designing EA with the SEAM method and SeamCAD 109
5.1.4. Simulation of System Dynamics with SeamCAD...................................... 112
5.1.5. Lessons learnt from building enterprise models in SeamCAD 116

5.2. Feedback from Practitioners, Researchers and Students 116
5.2.1. Protocol for getting users’ feedback... 116
5.2.2. Ratings .. 117
5.2.3. Suggestions from the practitioners ... 118
5.2.4. Suggestions from the master’s students ... 120
5.2.5. What was learnt from the feedback? .. 121

Conclusion and Future Work.. 123
Appendix A: An Example of Specifying the Semantics of Actions and Refinement
Principles in SeamCAD.. 127

A.1. Declarative Modeling of Local Distributed Action – Net Effect 128
A.2. Declarative Modeling of Localized Action .. 130

A.2.1. One working object and its environment... 130
A.2.2. Multiple working objects without environment .. 132

A.3. Declarative Modeling of non-Local Distributed Action – Net Effect 135
A.4. Declarative Modeling of non-Local Localized Action..................................... 137

A.4.1. One working object and its environment... 137
A.4.2. Set of working objects with environment.. 137

A.5. Imperative Modeling of non-Local Distributed Action.................................... 139
A.5.1. One working object with its environment ... 140
A.5.2. Multiple working objects... 140

Appendix B: Tutorial and Questionnaire Used for Obtaining Feedback on
SeamCAD .. 145

B.1. Tutorial: Viewing a pre-Built Model in SeamCAD.. 145
B.2. Tutorial: Adding more Model Elements…... 148
B.3. Slides: Building Enterprise Model in SeamCAD ... 148
B.4. Questionnaire – Obtaining Feedback from Practitioners and Researchers....... 152
B.5. Questionnaire – Obtaining Feedback from Students .. 156

Appendix C: Modeling Tools in the Fields Related to Enterprise Architecture .. 159
Appendix D: Design of SeamCAD Tool.. 161
Bibliographic References ... 163
Curriculum Vitae ... 167
Representative publications .. 169
Publication list .. 171

 3

Preface

Graphical modeling is about creating a visual representation, which can help
people understand the domain they want to model better than they do with a
textual description. Today, problems in different domains can be described in
model-based representation. Drawing diagrams and maintaining them are
essentially important in modeling. People who doing modeling may consider them
modeling burdens due to large number of elements and diagrams they are dealing
with. However, these burdens can be relieved if an appropriate computer-aided
modeling tool is put in use. This is similar to the case of programming code.
Programmers usually need an integrated development environment with which
they can correctly write code and efficiently maintain it.

By the time that the research work presented in this dissertation commenced, I
participated in a small project to find a specific computer-aided tool that could meet
the modeling criteria set by xC – the obsolete name of the modeling method
developed by professor Alain Wegmann – my advisor and his research group. There
were two main criteria. First, it should be possible to work with multiple diagrams;
some of which should be object diagrams (as opposed to class diagrams). Second,
the tool should allow the user to draw a diagram in which she can represent people,
systems and collaboration between them altogether. We made a survey of more
than 20 modeling tools to see how they could be used for xC and unexpectedly came
to the conclusion that no tool, at that time, met our requirements. Note that UML 2
did not exist yet at that time. Some of the UML-based modeling tools support the
object diagram, but all of them do not allow putting an actor pictogram, a class (or
a package or a subsystem) together with a collaboration pictogram in a diagram. In
a use-case diagram, we can have both an actor and a use-case. In a class diagram,
we can have both a class and a pattern structure. The user-case and the pattern
structure can perfectly represent collaboration. However, putting the three
together in a diagram was simply impossible. In addition, we noticed that,
although it was possible to work with multiple diagrams on the same model, the
consistency between these diagrams was questionable. Apparently, the tools
manage a list of weakly-related diagrams (each of which has a set of model
elements) instead of maintaining a coherent model containing related model
elements. For example, a UML actor can appear in a use-case diagram, a class
diagram or a sequence diagram. However the user of the tool has almost no means
to state that they are simply multiple appearances of the same model element – a
person who interacts with the system.

We decided to develop a specific computer-aided tool for xC and gradually
changed the name of the method to SEAM. The goal was to be able to model IT
systems, business entities, people, the collaboration between them as well as their
internal design. We began to call this tool SeamCAD – accordingly to the name of
SEAM and the term Computer Aided Design though later we learnt that it was not
really a CAD tool. We defined the modeling terms for the SEAM method based on
the Reference-Model of Open Distributed Processing. The tool SeamCAD should
support the modeling terms of the SEAM method.

As suggested by my advisor, I made several prototypes of the tool by drawing
all possible diagrams for a specific case-study and linked them together through
HTML pages. I was amazed by the number of diagrams created for a quite simple
case-study. Finding a systematic way to link them and to efficiently navigate
among them was challenging. Eventually we found out that we needed to define
rules to do this. I started to realize that developing a computer-aided tool and

 4

defining a modeling language was inseparable. This is how the topic of this
doctoral thesis was born.

In the years that followed, we implemented the SeamCAD tool and the
SeamCAD modeling language in a mutual way. As soon as we improved to the tool,
we discovered some feature that was not defined yet in the language. We then
added them to the definition of the language. This was in turn beneficial to the
implementation of the tool in the sense that rigorous definition of the language can
be translated into an appropriate design of the data structure in the tool. For
instance, to represent the collaboration between IT systems and business entities
at different levels of granularity, we need to elaborate their representation to show
several sub collaborations. We then faced a problem: which model elements that
emerge in the detailed representation of the systems should be represented
together with certain collaboration? We found the following solution: the notion of
granularity level was applied not only to the collaboration but also to the model
elements that emerge in the representation of the IT system or the business entity.
As such, binding relations are established between the model elements that emerge
in the IT system or the business entity and a collaboration that is at the same level
of granularity. These binding relations were mapped to the references between
Java objects representing model elements in the implementation of the tool. An
algorithm was developed to generate diagrams that correctly render model
elements at a given granularity level. On the other hand, improving the tool to
implement newly-defined features in the language is a good way, if not the best, to
prove that the language practically works and I felt rewarding a lot in doing it.

Defining a modeling language requires doing meta-modeling. It usually ends
up with a meta-model consisting of a diagram that expresses building blocks of the
language and a list of well-formedness rules. While trying to come up with such a
meta-model for SeamCAD, I gradually took the following principle although I could
not prove it formally: the simpler the diagram is, the more complicated the well-
formedness rules are. In other words, if the building blocks are loosely expressed,
more well-formedness rules and more statements in each of these rules are needed.
I found it interesting to strike for the balance between the tightness of the
specification of the building blocks and the amount of well-formedness rules stated.

It is worth mentioning the relationship between the tool implementation and
the language specification. The tool was fully implemented in Java (using only
standard Java libraries). The modeling language (more precisely, the meta-model
of this language) was formally specified in Alloy – a formal declarative specification
language developed by Daniel Jackson and his group at MIT based on first order
logic and set theory. I enjoyed formalizing the meta-model of SeamCAD in Alloy in
the sense that this language still has an object-oriented syntax although it is
basically a declarative language. However, due the unlikeness in the nature of the
two languages (one is imperative, the other is declarative) and in the richness of
the user-interface they support (one implements a graphical editor, the other relies
on a tool do visualization), the Alloy code metrics and the Java code metrics are
significantly different. I was surprised by the fact that the Alloy code is nearly 300
times more compact than the Java code in terms of the number of lines of code, and
25 times in terms of the number of classes. What I learnt from these differences
was that automating (even partially) the implementation of the tool based on
declarative specifications is still a very difficult (and interesting too) problem. In
fact, what I successfully did on this matter is doing data verification on the
instance models that are manipulated in the tool against the Alloy specification
code that formalizes the modeling language.

 5

Acknowledgements

I wish to express my deepest appreciation and gratitude to my all people that
contributed to the success of this Ph.D. work. I am most grateful to Professor Alain
Wegmann – my advisor, for sponsoring and inspiring me continuously, for giving
me complete freedom in time management, and for continuously challenging me
with fabulous questions. I could thus perform my research from its beginning to its
completeness in an efficient, yet enjoyable way. For me, the experiences of tackling
research problems by trying alternative approaches, of reporting research results
without any personal opinion, of intensely debating on different modeling and
programming paradigms and of positioning research topics in a broader context
were absolutely unique.

I profoundly acknowledge the members of my Ph.D. jury (listed in an
alphabetical order): Professor Colin Atkinson - the leader of the Software
Engineering Group at the University of Mannheim for challenging me in
positioning my doctoral work in the field of SOA and modeling business processes,
Professor Stefano Spaccapietra – the head of the Database Laboratory in EPFL for
commenting on the way the SeamCAD modeling language was defined in the pre-
defense and on the terms that are used for formulating the motivation problems,
Bryan Wood – a very active researcher on RM-ODP from the United Kingdom for
thoroughly reading this dissertation and pointing out the diagram-to-code
inconsistencies and the insufficient explanations in the dissertation that was
submitted before the defense. I am thankful to Professor Claude Petitpierre (EPFL)
for chairing my thesis committee.

I would like to express my gratitude to the practitioners, the researchers in the
field of Enterprise Architecture and some of my colleagues who helped me validate
my research results by practicing the SeamCAD tool and giving their opinions
frankly. They are Mr. Henry Peyret – a senior analyst from Forrester Reasearch,
Dr. Thomas Baar from Tech@Spree, Mr. Frédéric Bouchet from Rolex, Mr. Patrick
Fleury – the director of DOP Gestions SA, Dr. Andrey Naumenko from Triune
Continuum Enterprise, Mr. Alexander Samarin – a consultant in Enterprise
Architecture, Dr. Kerstin Langenberg, Dr. Jiyong Zhang, Mr. Jan Schönbächler. I
am also thankful to (listed in an alphabetical order) Megha Agarwal, Florence Le
Goff, Yi Liu, Nebil Mansour, Hugo Marcelo Muriel, Erik Ragnerstam, Luis Téran,
Murielle Ange Tiambo and Anmol Tomar. They are master’s students at EPFL who
worked with me to validate the SeamCAD tool in a cooperative, yet friendly
manner.

I am deeply thankful to Mrs. Danielle Alvarez, Mrs. Angela Devenoge, Mrs.
Patricia Hjelt and Mrs. Evelyn Duperrex for their great administrative support,
Mr. Jean-Pierre Dupertuis and his colleagues for their countless professional
support on the computer systems I used for more than six years at EPFL and Mrs.
Holly Cogliati for the wonderful corrections on the English in my research papers.

It would be incomplete if I did not mention the people that helped me realize
the opportunity of doing doctoral work at the School of Computer and
Communication Sciences, EPFL - one of the greatest university institutes in
Europe. I would like to thank Dr. Nguyen Thanh Son from the University of
Technology of Ho Chi Minh City and Mr. Daniel Gorostidi – director of ELCA, for
encouraging me to pursue this doctoral work. I am also thankful to Mrs. Annette
Jaccard for her counsel on social matters she kindly gave to the foreign students of
EPFL during the first two years of my new life at Lausanne, Switzerland.

 6

I wish to share a big hug with my EPFL colleagues and my friends in
Switzerland – some still work at EPFL and others have left it, as well as those I
knew before heading for EPFL and still keep in touch with. I will definitely miss
the fruitful discussions that I had with Pavel Balabko (on RM-ODP terms and the
course OOAD), José Diego de la Cruz (on declarative programming in Alloy),
Andrey Naumenko (on ODP-based modeling), Gil Regev (on XML-based
marshalling and client-server architecture), Irina Rychokva (on meta-model
definition) and Amir Talaei-Khoei (on validating my research results with
undergraduate students). We also had many interesting chats on different topics
that were not necessarily related to research nor teaching. In the life outside of
EPFL, I very much enjoyed the way my friends shared in the spare time amazing
hobby interests on various subjects including football, hiking, computer games,
photograph, windsurfing, scenic driving, sightseeing, travelling, skiing… Making a
full list of them here is not possible. I would like to thank them all.

From the bottom of my heart, I am deeply grateful to my parents and my wife
for so many priceless things and so much great love they have always given to me.
My mother and my father have always given their spiritual support to any
achievements not only during the period I pursued my highest education in
Switzerland, but also during my student age in Vietnam. The more I mature, the
more I realize that I have benefited a lot from their teaching and pedagogical
professions in my childhood. My wife, Thi Tran Chau Nguyen, has accompanied me
in the later stage of my Ph.D. I am thankful to her for whatever she did behind the
scenes that silently contributed to the completion of this long-term work.

Chapter 1: Introduction

Overview: Enterprise Architecture captures the whole vision of an
enterprise in the various aspects regarding both business and IT
resources. We consider Enterprise Architecture as a discipline
that analyzes the services offered by an enterprise and its
partners to the customer, the services offered by the enterprise to
its partners and the organization of the enterprise itself. During
an Enterprise Architecture project, a team – typically a multi-
disciplinary team - develops an enterprise model that represents
the enterprise, its environment and its internals. It is possible to
represent the enterprise model hierarchically. However, it is
challenging to do so. Most notably, the team should: (1) have a
uniform approach to modeling the specifica ion and the
implementation of services provided, across organizational levels,
by all business entities and IT systems of the enterprise; (2)
represent the service specification and the service implementation
of multiple business entities and IT systems in the enterprise; (3)
model the services of the business entities and the IT systems at
different functional levels; (4) achieve the well-formedness of the
enterprise model and the consi tency between its views. It is ou
goal in this disserta ion to develop a modeling language and a
computer-aided tool for modeling Enterprise Architecture, which
specifically address the aforementioned challenges.

t

s r

t

 8

1.1. Enterprise Architecture and Modeling

Enterprise Architecture (EA) captures the whole vision of an enterprise in various
aspects regarding both business and information technology (IT) resources [1]. In EA,
the goal is to align the business resources and IT resources to maintain or improve the
competitiveness of the enterprise. EA is a discipline that analyzes the services offered
by an enterprise and its partners to the customer, the services offered by the enterprise to
its partners and the organization of the enterprise itself and of its IT. Making an EA
project can, for example, help the enterprise gain more customers, reduce the operation
costs or increase its agility. This can be done by better identifying the services that the
enterprise provides to the customer, by removing the duplication and inconsistencies in
business processes and/or information flow, by giving the management more IT-
supported facts for making decision with ease.

During an EA project, an EA team – typically a multi-disciplinary team - develops
an enterprise model that represents the enterprise, its environment and its internals. The
representation of the enterprise can include various aspects such as the services offered
by the enterprise, by the IT systems, as well as their implementation in terms of
business processes and IT application. Working with a model is important. When
making the model, the team develops an agreed and shared representation of the
enterprise, of its environment and of its internals. They also define what the project
needs to achieve.

There are different approaches of modeling EA. The enterprise model can represent
business and IT resources in different ways, for example, as a network, a hierarchy or
even in an ad-hoc manner. Because people tend to reason in terms of hierarchy [2],
representing the enterprise as a hierarchy is a convenient way to structure and to build
the enterprise model. In our research group, we focus on the hierarchical method. In
such an approach, model elements can be organized into levels of containment. For
example, we can model the way an enterprise provides its customers with services by
representing the enterprise as a value network that consists of several companies that
collaborate to fulfill the services offered by the value network. We can drill down
through the service hierarchy by representing each company as a set of departments
collaborating with one another; each company has IT applications and people; etc.

1.2. An Example

To illustrate typical difficulties the EA team face when developing an enterprise
model, we give a hypothetical example in this section. The example describes a
bookstore whose management decides to provide the company’s services via the
Internet. The management has a goal to specify the services that the bookstore can
provide its customers with and to describe how to implement them using business and
IT resources. The management creates an EA team in charge of this project. Figure 1
presents a simplified representation of the organization and services of the enterprise
using ad-hoc notation. In this figure, a regular rectangle represents a business entity or
an IT system or a software component. A rounded rectangle can be attached to a regular
rectangle to represent the main service offered by the business entity or the IT system
drawn under the regular rectangle. The smile symbol stands for people. The lines
connecting these entities and people denote the containment hierarchy. The entire
representation given in Figure 1 can be interpreted as follows. A book-selling market
contains a Bookstore Value Network and a Customer. The bookstore value network

 9

consists of there companies: a bookstore company named BookCo (responsible for the
service of processing the orders placed by the customer), a shipping company called
ShipCo (responsible for shipping the books ordered) and a publishing company PubCo
(responsible for supplying the books that were ordered but not yet available in the
inventory of the bookstore company). The departmental structure of the bookstore
company shows two departments: one for coping with the purchasing data
(PurchasingDep) and the other for managing an inventory (WarehouseDep). The
purchasing department has IT support (OpApp) and some Clerk who operates it. To
fully analyze the impact of this project, the EA team has to reason about the multiple
levels shown in Figure 1 (i.e. the market level, the value network level, the company
level, the department level, and the IT level) in order to analyze the services offered by
the business entities and the IT system (e.g. the service of Selling book offered by the
Bookstore Value Network to the Customer, Buying book offered by the Customer
to the Bookstore Value Network, Shipping book offered by the ShipCo to the
BookCo and PubCo) and to build a structural representation of the whole enterprise that
would commonly be shared by the members of the EA team.

Figure 1. Initial representation of the enterprise model of the online bookstore

In this project, the EA team essentially models the business entities, the IT system

(drawn under regular rectangles in Figure 1) and their environment, the services
provided to the customer by these entities, the company to company (and department to
department) business processes, information flow and interaction between the IT system
and the clerk and possibly the overall architecture of the IT system. The following
challenges are noticeable

• How can the services Selling book, Buying book, Processing order,
Shipping book, Supplying book, Invoicing, Packaging and Documenting,
which are offered by Bookstore Value Network, BookCo, ShipCo, PubCo,
PurchasingDep and OpApp, be specified within these business entities in this
model? The business entities and the IT system mentioned belong in fact to
different levels that are indicated in Figure 1. Can the same modeling technique
be applied for market, value network, company, IT level…?

• Given that the aforementioned services can be specified in this enterprise model,
can BookCo, ShipCo, PubCo and the collaboration between them be represented
to describe the implementation of the service Selling book, which is offered
by Bookstore Value Network? Similarly, how can PurchasingDep,
WarehouseDep and the collaboration between them be represented to describe

BookstoreMarket

Market

Bookstore Value Network Customer

ShipCo BookCo PubCo

PurchasingDep WarehouseDep

OpApp

Selling book Buying book

 Value Network
Supplying book Processing order Shipping book

Company
Packaging Invoicing

Department
Documenting Clerk

IT level

 10

the implementation of the service Processing order that is offered by
BookCo?

• How can these services be represented at different levels of granularity? For
instance, the service Selling book provided by the Bookstore Value
Network can be represented as whole or as a composition of three constituent
services that specifically deal with getting order, payment and delivery.

• Members of the EA team may need different diagrams that render different parts
of the enterprise model of the online bookstore. For instance, BookCo may
appear in a diagram made by a member who is interested in defining the
company to company business processes. It may also appear in another diagram
opened by another member whose interest is to define the internal structure or
the behavior of BookCo. How can we ensure that the two diagrams are always
consistent in rendering BookCo?

It is important for the EA team to solve these challenges in order to make an
enterprise model for the online bookstore. These concrete challenges will be generalized
as motivation problems in the next section.

1.3. Motivation Problems

Defining a common modeling framework that can be applied uniformly across
hierarchical levels is challenging. The following four modeling challenges are
generalized from the concrete ones identified in the previous subsection

• Uniformness: To have a uniform approach for modeling the specification and
the implementation of services provided by all business entities and IT systems
across hierarchical levels showing the organization of the enterprise

• Multi-entity: To represent the service specification and the service
implementation of multiple business entities and IT systems in the enterprise

• Granularity: To model services of the business entities and the IT systems at
different levels of granularity

• Well-formnedness: To maintain the well-formedness of the enterprise model and
the consistency between its diagrams

These four challenges will be referred to throughout this dissertation. The state of
the art in EA will be analyzed using criteria that are formulated from them. Our
contribution, in this thesis, is solutions to these problems.

1.4. Framework for Modeling Enterprise Architecture
Hierarchically

Today, there exist a few modeling methods or development processes in the field of
Enterprise Architecture, as well as in software or system modeling, which can address
these issues to some extent. Among those that meet the aforementioned four criteria to
some extent. KobrA, OPM and Adora are the best although they were not initially
developed for modeling Enterprise Architecture. A solution that specifically addresses
the aforementioned issues is needed. In our research group, we define a method for
modeling EA called SEAM [3] [4] [5]. This method can be used for doing requirement
engineering of an enterprise. Within SEAM, a modeling framework that consists of a
hierarchy-oriented modeling language and a computer-aided tool was developed. An
overview of this framework is presented in this subsection.

 11

Contribution: a Hierarchy-Oriented Modeling Language for EA

a)

b)

c) d)

e)

f)
Figure 2. Representation of the bookstore example

in the modeling language defined

Using the hierarchy-oriented modeling language that will be defined in this

dissertation, a model for the online bookstore can be built as illustrated in Figure 2. This
modeling language provides the modeler with building blocks to represent all business
entities and IT systems, as well as software components in the enterprise model of the
online bookstore. The business entities such as the book-selling market, the customer,
the value network of the bookstore are diagrammatically represented under block
arrows. The IT systems and software components, such as the web application in the

 12

purchasing department of the bookstore company, are drawn under the pictogram of the
UML (Unified Modeling Language) subsystem. The collaboration between these
entities and systems are drawn under dashed ellipses. The properties and the behavior of
each business entity or IT system can be represented under the UML class and action
pictogram. In terms of hierarchical level, Figure 2 a) represents the market level; Figure
2 b) the value network level; Figure 2 c) and 2 d) the company level; Figure 2 e) the
department level and Figure 2 f) the IT level. Note that the difference between Figure 2
c) and Figure 2 d) is the level of granularity of how the services are specified (the
challenge granularity is addressed).

Note that Figure 2 has dashed arrows that connect one pictogram from one diagram
to another pictogram in another diagram. The two pictograms, which are connected by a
pair of dashed arrows, represent the same business entity or IT system (or some
collaboration between them) but at different hierarchical levels. Overall, these arrows
illustrate the hierarchy of the enterprise model of the online bookstore. Throughout the
hierarchical levels that are illustrated from Figures 2 a) to 2 f), each business entity or
IT system can be specified either as whole or as composite. A pair of dashed arrows
runs from the pictogram that represents a business entity or an IT system as whole to it
seen as composite. An entity or a system seen as whole shows externally-observable
properties and actions that together characterize the services it offers to other entities or
systems. An entity or a system seen as composite consists of other entities and systems
that together show how the offered services are implemented. This illustrates how the
challenges C1 and C2 are addressed.

Contribution: a Computer-Aided Modeling Tool for Modeling EA

All the diagrams given in Figure 2 are taken from the computer-aided tool that was
developed as part of the modeling framework. The tool allows the modeler to visually
build the entire enterprise model of the online bookstore. Figure 3 is a typical screenshot
of this tool, which shows two things: an overview of the enterprise model in the top-left
corner and a diagram representing some part of the model. The overview is shown in a
tree-view widget and the diagram is shown in a graphical panel. The diagram represents
the market level and the value network level. This widget and panel are interactive in
the sense that the modeler can browse and edit the enterprise model of the bookstore by
interacting with them. For instance, if the modeler opens the enterprise model of the
online bookstore in the tool, she can get any diagram of Figure 2 by using the browsing
functionality of the tool. The modeler can also edit the diagrammatically represented
part of the enterprise model of the bookstore in this window.

In the tool, data structure of the enterprise model are engineered to capture not only
model elements that can be seen in the diagrams of Figure 2 but also the references
between them (for example, the link between the bookstore value network and the
bookstore company, the publishing company and the shipping company). The tool does
not manage a list of diagrams. Instead, it generates diagrams from this data structure
according to the modeler’s needs. The consistency between diagrams can thus be
achieved. This explains how the challenge well-formedness is addressed.

 13

Figure 3. The enterprise model of the online bookstore shown at the market

level and the value network level in a window of the computer-aided tool

1.5. Research Methodology

The modeling framework presented in this dissertation consists of two main parts:
the definition of a modeling language and the development of a computer-aided tool.
Figure 4 positions this framework as a research work in the Hevner’s Design Science
Research in Information System [6]. The knowledge base used for this research work
includes the Living Systems Theory [7], the Reference Model of Open Distributed
Processing [8], the SEAM method [3] [4] [5] and the state of the art on EA and related
fields. Two computer languages are used as the methodology for this research: Alloy as
formal declarative language (used for the formalization of the modeling language) and
Java as imperative programming language (used for the development of the computer-
aided tool).

Environment Knowledge Base Research

Figure 4. The proposed framework for modeling EA hierarchically

In the research block (see Figure 4), we define a modeling language (both

informally and formally) and we develop a computer-aided tool. Together, they are

 People Foundation
Property

Develop/Build

formalize

Working
object Distributed

ction •Hierarchy-oriented
Localized

Action •Miller’s LST
Hierarchical

Element
A

Ejfvbqwv evqrvqrvrqv wdvcqvq vwev evrvrv
4tbg4t
Verqver 3rv vfr3v rtn rb4t 4rg5znz64n 5g5
------r3r43 2ef32r—e3f32rf 3f32r ef23 3214f32 e32de2
3ef
E2e 2ee21 ervc3rvg2t4hb vb evc3r2fv23v

Working ObjectAction

Perspective •RM-ODP Action

sig seamHierarchicalElement {
 children : set seamHierarchicalElement,

ment parent : lone seamHierarchicalEle
}

fact acyclic {
 all e: seamHierarchicalElement | e
(e.^children + e.^parent)

not in

}

SeamCAD Meta-model
Alloy code

SeamCAD Computer-Aided Tool

implement
•Practitioners
interviewed •SEAM

•State-of-the-art on
EA and related fields

•To apply in industry
•To be used in master

 courses and student
projects Methodology EA models •Alloy •Java programming Organizations following MVC

approach •Tool needed
•Language and Tool and state-of-the-art

design patters

Obtaining Users’ Feedback

are inseparable
 Access Refine

Justify/Evaluate Technology Data Verification of the Tool •Feasible to build tool Application in Industry and within University

SeamCAD modeling language, Alloy code and java source code SeamCAD tool and its application

 14

called SeamCAD. The informal definition verbally explains the building blocks of the
SeamCAD modeling language and how they can be used for building an enterprise
model. The building blocks were initiated in the SEAM method that was developed in
our research group. The formal definition of SeamCAD includes a meta-model
(including a UML class diagram and a list of well-formedness rules) and its
formalization in Alloy - a formal declarative modeling language based on the first-order
logic and the set theory [9]. The SeamCAD computer-aided tool basically implements
the SeamCAD modeling language. This tool allows an EA team to build their common
enterprise model using the building blocks following the well-formedness rules of the
SeamCAD modeling language. It also enables the members of the EA team to generate
diagrams to view their enterprise model at different hierarchical levels. The data
structure that represents enterprise model in the SeamCAD tool was verified against the
Alloy code that formalizes the SeamCAD modeling language.

To evaluate our research work, we invited practitioners, researchers and master’s
students to evaluate the modeling language and the computer-aided tool. They used
SeamCAD and then give their evaluation and suggestions in a questionnaire. In
addition, SeamCAD was applied in several projects for building enterprise models and a
case-study in a master’s course given by our group.

The definition and development of SeamCAD augments our knowledge base.
Concretely, the Alloy code that formalizes the SeamCAD modeling language and the
Java open source code that implements the SeamCAD tool serve as a basis for further
researches in our group. Its applications in the industry sector and academic settings are
impacts of this work to the research environment block (see Figure 4).

1.6. Research Scope

As the dissertation is positioned in the filed of EA that can, in principle, include
various modeling aspects. In this section, we clarify the scope of this dissertation by
mentioning which aspects it addresses and which ones it does not.

The main objective in developing SeamCAD was to help the EA team in
documenting and discussing their enterprise model from a functional standpoint. The
members of the team can build a common enterprise model in SeamCAD, which can
serve as the centralized documentation of their project. Thanks to the SeamCAD tool,
the members of the EA team can navigate in the enterprise model and open diagrams
that show some part of the common enterprise model so that they can discuss their
project or make a project report out these diagrams. However, SeamCAD does not
support model execution. Although the order between services can be specified in
SeamCAD, the semantics of services is not defined formally enough to create an
executable model. It is considered as future work of this thesis. Appendix A gives an
example of how the semantics of actions can be specifed in SeamCAD.

This dissertation is about the SeamCAD framework that consists of a modeling
language and a computer-aided tool. However, it does not describe a modeling method.
In fact, SeamCAD can be regarded as one of the modeling languages and computer-
aided tools for SEAM – an EA modeling method developed at our group.

It is necessary to mention that the SeamCAD modeling language and tool do not
address the non-functional requirements. Specifically, the following aspects are not
addressed by the enterprise models created in SeamCAD: finance, governance, business
rules, quality of services, security, database, network, system interoperability and low-
level software design. The enterprise model created in SeamCAD is mainly about the
services and the organization of the enterprise being modeled.

 15

1.7. Outlines

This dissertation is structured as follows: Chapter 2 analyzes the state of the art in
modeling methods that are related to Enterprise Architecture; Chapter 3 presents the
SeamCAD modeling language; Chapter 4 describes the computer-aided tool that was
specifically built for the SeamCAD modeling language; Chapter 5 discusses certain
applications and evaluations of the contributions presented in Chapter 3 and Chapter 4.
Chapter 6 draws some conclusions and points out future research directions. Appendix
A presents the formalization in Alloy for the online bookstore model that is
diagrammatically represented throughout the chapters. The materials used for obtaining
users’ feedback are described in Appendix B. Appendix C analyzes different computer-
aided modeling tools that can be used for modeling EA hierarchically.

In Chapter 2, different modeling methods in the domain of enterprise architecture
and software/system development are analyzed, with respect to criteria formulated
based on modeling challenges that were identified for modeling EA hierarchically.
Among the analyzed methods, the three that best meet these criteria will be compared to
the SeamCAD modeling language in a more detailed grid that consists of not only
hierarchy-related issues but also fundamental modeling aspects such as black-box and
white-box.

Chapter 3 is dedicated to the SeamCAD modeling language. First, the foundation of
the modeling language and its relation to the RM-ODP are introduced. Then the
building blocks of the modeling language are informally defined in English. This
informal definition is followed by a meta-model of SeamCAD that consists of a
diagrammatic descriprion of building blocks and a list of well-formedness rules. Next,
the meta-model of the SeamCAD modeling language is formalized in Alloy - a
lightweight, declarative language based on set theory and first-order logic. The last
section of Chapter 2 presents the notation used in the SeamCAD modeling language and
tool.

In Chapter 4, the computer-aided tool that was specifically developed for the
SeamCAD modeling language is presented. This chapter begins by discussing the role
of such a tool in modeling hierarchical systems in EA and concludes with a list of
requirements a computer-aided tool for modeling hierarchical systems should fulfill.
Subsequent sections in this chapter explain the tool SeamCAD and show how this tool
can meet the identified requirements. Next, the way diagrams of SeamCAD are
generated from a coherent model and their automatic layout are described. The last two
sections of Chapter 4 address two proof-related issues: how to trace the design and the
implementation of the SeamCAD tool back to the meta-model of the SeamCAD
modeling language and how to verify that the models manipulated in the SeamCAD tool
match the Alloy code that formalizes the SeamCAD modeling language.

Chapter 5 presents some applications of SeamCAD and how it was validated by
practitioners and students. In the research group where this Ph.D. work was carried out,
SeamCAD was applied in several projects some of which were in conjunction with
industry. An enterprise model was built using SeamCAD for the case-study of a
master’s course given by our group. This case-study is about a company who
manufactures and sells lightweight aircraft engines. There is also an application made
with a company in which an enterprise model is built to manage sale processes and
customer relations of the company in the market of watch-parts manufacturing. Another
project used SeamCAD in making an enterprise model of one of the department
building on our university campus. This model was useful for specifying how the
building should be equipped and what IT system should be installed in the new

 16

building. An additional project was set up to investigate the possibility of furthering the
model created in SeamCAD to be able to simulate System Dynamics. Evaluations and
feedback for SeamCAD from 20 participants, including practitioners, researchers in EA
and our master’s students are also presented in Chapter 5.

This dissertation has three appendixes. Appendix A formalizes a diagrammatic
model built using the SeamCAD modeling language and its computer-aided tool in
Alloy. This appendix exemplifies the ideas for future researches that are pointed out in
the conclusion remarks. Appendix B presents the materials that were used for
obtainning evaluations and feedback on SeamCAD from practitioners, researchers and
students. These materials include a tutorial that helps practitioners in EA-related domain
use the tool and some slides that were used for working with students to validate the
SeamCAD tool and two questionnaires that were used for obtaining feedback from
practitioners and students, respectively. Appendix C analyzes existing tools in the field
of modeling enterprise, software and system.

Chapter 2: State of the Art

Overview: Today there exist many modeling methods and
frameworks. They can be classified into three categories:
enterprise modeling, system modeling and software modeling.
Knowing to which extent they can represent Enterprise
Architecture hierarchically is important for developing a
hierarchy-oriented modeling framework for Enterprise
Architecture. For this purpose, we evaluated them in terms of
four criteria that are necessary in order to represent Enterprise
Architecture hierarchically. Among the analyzed methods, the
three methods that best meet these criteria will be compared in a
more detailed grid that consists of not only hierarchy-related
issues but also fundamental modeling aspects like black-box /
white-box specification and sta e modeling. t

 18

Today there exist many modeling methods and frameworks. They can be
categorized into enterprise modeling, system modeling and software modeling. In this
chapter, they are evaluated in terms of

• expressing organizational hierarchy
• multi-system representation
• expressing behavioral hierarchy
• well-formedness of model and consistency between diagrams

The aforementioned criteria are originated from the four modeling challenges:
uniformness, multi-entity, granularity and well-formedness that are presented in Chapter
1, Section 1.3

2.1. Software and System Modeling

Many methods have been developed for system engineering and software
engineering. We describe here some of the approaches that can be used for modeling
EA hierarchically. We selected the methods that have features closest to the
aforementioned criteria. They are (listed in alphabetical order) Addora, Catalysis,
KobrA, OPM, SysML, UML Profile for EDOC and UML 2. Note that UML is not a
method but a modeling language.

Adora [10] is an object-oriented modeling method that features hierarchical
decomposition and the integration of all aspects in one coherent model. Objects in
Adora are composite by default. The organizational hierarchy can be reasoned in terms
of the composition of objects. This hierarchy is visually depicted in the tool of Adora.
The behavioral hierarchy can be thought of as tree-like hierarchy of scenarios (in Adora,
a scenario is similar to a use-case in UML). The hierarchy of scenario is not visible in
the tool, however. Adora is a system-centric modeling language.

Catalysis [11] is a component-based development process that analyzes and designs
in three levels: business, IT system and software components. It uses its own notation
that is inspired from UML. Catalysis put a lot of effort in making behavior refinement.
It made popular the notion of two kinds of action, namely joint action and localized
action. In principle, the organizational hierarchy of Catalysis is visible in the
containment hierarchy, which is typically up to three levels: context level, software
level and component level. As Catalysis defines development process for software-
intensive systems, it is a typical system-centric method. In Catalysis, the well-
formedness of model is maintained by keeping traceability between different
refinements.

KobrA [12] proposes a recursive model that describes IT systems/components.
KobrA takes the notation from UML. In KobrA, each component is described dually in
terms of specification and realization. The recursive approach of KobrA implicitly
suggests that this method can deal with as many organizational levels as the modeler
wishes to. But in practice, KobrA aims at representing only the context level and some
component levels. As KobrA tackles software development process, it is a typical
system-centric method although the concept of component can be used for representing
any business entity or IT system in an enterprise model. In KobrA, it is up to the
modeler to maintain the well-formedness of her model by practicing inter-diagram and
intra-diagram rules.

Object-Process Methodology (OPM) addresses the modeling of systems in general
[13]. It has its own notation and provides a modeling tool called OpCat [14]. The
building blocks of OPM are object, process, state and relations. The organizational
hierarchy can be described via object aggregation and the behavioral hierarchy can be

 19

reasoned in terms of process aggregation. Multiple systems can be designed in the same
OPM model. Although OpCat supports hierarchical modeling by allowing the modeler
to zooming in a specific object or process, it is up to the modeler to maintain the well-
formedness of her model by making sure that all diagrams are consistent.

Systems Modeling Language (SysML)1 is developed by the OMG. It is based on
UML. SysML targets the design of large industrial systems (e.g. aircraft, power plants).
In SysML, there are two organizational levels: the context of the system to be developed
and the internal structure of the system. Like most of UML-based modeling language,
SysML is system-centric. The behavior of the system to be developed can be refined
using UML state-chart and activity diagrams. The well-formedness of a SysML model
is up to the extent to which diagrams are kept in synch by the modeler.

UML2 is widely-used modeling language for representing software-intensive
systems. As such, UML is a system-centric modeling language and addresses
organizational levels not higher the context of software system, which is normally
shown using use-case diagrams. Although it is possible to represent multiple software
components or subsystems in a UML model, most of the project is built around one
system that is typically called the system of interest. Behavioral hierarchy can be
reasoned by in terms of actions and states in activity diagrams and state-chart diagrams.
The well-formedness of a UML model depends on the extent to which diagrams are
kept in synch by the modeler. The UML profile for Enterprise Distributed Object
Computing3 takes a step further by defining organizational structure of components,
making the organizational hierarchy visible.

Table 1 summarizes the evaluation of software and system modeling methods that
are listed in an alphabetical order.

Table 1. Evaluations of system/software modeling methods
Method Organizational

Hierarchy
Multiple Systems Behavioral

Hierarchy
Well-formedness

of Model
Adora x statechart &

scenarios

Catalysis Software level
Component level

x

KobrA x

OPM x

SysML System level
Component level

x x

UML Profile
for EDOC

 x

UML 2 System level one system,
many components

 x

The following limitations can be seen from the software/system development

methods that were analyzed
• The number of organizational levels is generally limited. However, Adora,

KobrA and OPM can have as many levels as the modeler wants.

1 OMG System Modeling Language, http://www.sysml.org/
2 Unified Modeling Language, http://www.uml.org/
3 UML profile for EDOC, http://www.omg.org/technology/documents/formal/edoc.htm/

http://www.sysml.org/
http://www.uml.org/
http://www.uml.org/

 20

• Most of methods are system-centric meaning they focus on one system, typically
an IT system.

• UML-based methods have weakly-related diagrams. The modelers are
responsible for the well-formedness of their model.

2.2. Enterprise Modeling

A number of methods have been developed for modeling enterprises. We analyze
the methods have features closest to the aforementioned criteria C1), C2), C3) and C4).
They are (listed in alphabetical order) Archimate, BPMN, CIMOSA, DEMO, IDEF,
TOGAF and Zachman.

Archimate proposes an integrated modeling framework for Enterprise Architecture
including organizational structure, business processes, information systems and
infrastructure [15]. This framework proposes 3 layers, namely business layer,
application layer and technology layer. Each of these layers can further be divided into
sub layers, making the organizational hierarchy virtually visible. The process can be
broken down into smaller processes, implicitly showing the behavioral hierarchy.
Archimate claims that different aspects of enterprise architecture are integrated in a
single model, but it does not discuss clearly how to maintain the well-formedness of
model.

Business Process Modeling Notation (BPMN)4 provides business users with a rich
notation for modeling business processes. The processes defined in BPMN are
hierarchical. Nevertheless, BPMN doesn’t address the organizational hierarchy although
multiples systems can be shown without any hierarchy in different pools of a BPMN
diagram. It is straightforward to maintain the well-formedness of a BPMN model if the
processes are organized into a tree-like structure.

The Computer Integrated Manufacturing Open System Architecture (CIMOSA, also
known as the ISO EN/IS 19440 standard) focuses on the modeling of processes in the
context of computer integrated manufacturing projects. CIMOSA defines four modeling
views: function view, information view, resource view and the organization view. The
resource view and the organization view address the structure of resources (humans,
machines, information systems…) but do not show an explicit organizational hierarchy.
Multiples systems can be represented in CIMOSA. The model well-formedness is not
specifically addressed.

Design & Engineering Methodology for Organizations (DEMO) is a method for
(re)designing organizations [16]. DEMO defines three types of models of an
organization: the black-box model, the white-box model, and the flow model. The
black-box model deals mainly with the external behavior of a system and supports the
functional refinement. In the flow model, a system is conceived as a network of nodes
transforming the input flows into output flows. The white-box model defines the
constructional refinement of the system. Multiple systems can be represented. The
organizational hierarchy and the model well-formedness are not discussed however.

IDEF5 (Integrated DEFinition Methods) is a set of methods that address many
aspects of enterprise modeling (e.g. function, data, process, object-oriented design). It
could be considered as a method for organizations to analyze and clearly state their

4 OMG Business Process Modeling Notation, http://www.bpmn.org/
5 Integrated Definition Methods, http://www.idef.com/

http://www.bpmn.org/
http://www.idef.com/

 21

information resource management needs and requirements. Multiple systems can be
elaborated in IDEF but no concept equivalent to the organization level is proposed. As
IDEF focuses on data modeling rather than behavior modeling, the behavioral hierarchy
is not addressed neither.

TOGAF6 and Zachman [17] propose ad-hoc modeling frameworks in which
multiple systems can be represented. But they do not have any explicit organizational or
behavioral hierarchy. The well-formedness of model is down to the burden of the
modeler in making her model.

Table 2 summarizes the evaluation of enterprise modeling methods that are listed in
an alphabetical order.

Table 2. Evaluations of enterprise modeling methods

Method Organizational
Hierarchy

Multiple
Systems

Behavioral
Hierarchy

Well-formedness
of Model

Archimate Layers process
decomposition

integrated model

BPMN Pool & Lane

CIMOSA Cell & Unit &
Element

x x

DEMO x x
IDEF x x x

TOGAF, Zachman Ad-hoc Ad-hoc x

The following limitations can be seen from the enterprise modeling methods that
were analyzed

• The number of organizational levels is generally limited.
• Behavior modeling is missing in some methods such as IDEF
• The modelers are responsible for the well-formedness of the model they created

2.3. A Comprehensive Comparison of Adora, KobrA and OPM

In this section, the three methods that best meet the evaluation criteria presented in
Section 2.1 and 2.2 are analyzed in details though the example of the online bookstore.
They will be compared to our modeling language in a more comprehensive grid than the
one used in Section 2.1 and 2.2.

2.3.1. Adora

Adora is a requirement engineering modeling method that features hierarchical
decomposition and the integration of all aspects in one coherent model. The modeling
language of this method has the following building blocks: object, state, scenario, role
and link. It comes with a tool (a prototype) that helps building Adora model. Figure 5
gives the grammar of the Adora modeling language.

Specification
specification ::= { specification fragment }
specification fragment ::= { model element }
model element ::= object state sc| | enario | relationship | annotation
Objects/States/Scenario declarations
object ::= object i | singleton object e | object set e

6 The Open Group Architecture Framework http://www.togaf.org/

http://www.togaf.org/

 22

system object ::= object i | state | scenario | singleton object e | object
set e
object i ::= singleton object | object set
singleton object ::= object name [obj body] end
singleton object e ::= object name “: external” end
object set ::= object set name [obj body] end
object set e :: object set al” end = name “: extern
env object ::= element of the environment name
obj body ::=
{annotation} [attributes {attribute}1]
[operations {operation}1] [contains {system object}1] attribute ::= . . .
operation ::= . . .
state ::= pure | starstate t state
pure state ::= state name [contains {state}1] end
start state ::= start state end
scenario ::= scenario name [scenario body] end
scenario body ::= . . .

Figure 5. An excerpt of the EBNF formalization of Adora [18]

Figure 6 illustrates the model of the bookstore created in the Adora tool. To the left
is a diagram that shows 3 organizational levels. To the right is an overview of the
model. BookCoMarket object is at the top organizational level; Bookstore Value
Network and Customer second organizational level and at the third level there are
BookCo, ShipCo, PubCo object. Note that Adora takes the box-in-box notation for
objects. The interaction between objects is represented via roles. Bookstore Value
Network takes the Seller role and Customer takes the Buyer role. These two roles
participate in the scenario sale, which is extended to three other scenarios: procure,
pay and deliver. The internal structure of an object and its state can dually be
represented in the same diagram. For example, inside the pictogram of Bookstore
Value Network, BookCo, ShipCo, PubCo object are visible. It three main states order
received, money received, shipping are also visible inside the pictogram. Also
visible is a scenario mfg_sale. The shipping state can be broken down further into
book loaded and book delivered. In terms of component objects, BookCo has
WarehouseDep, PurchasingDep, Inventory and Books as component objects. Note
that only Books is object set, the others are just singleton object. This difference is well
reflected in the pictograms used in the diagram. The Adora tool manages a coherent
model and show it in a tree-like view that we can wee in the right of the Figure 6. The
diagram can easily be customized by interacting with pictograms. For instance, the
BookCo object can be out-zoomed. As a result, every pictogram inside BookCo will be
invisible.

 23

Figure 6. Model of the online bookstore created in the Adora modeling tool

Adora does not differentiate black-box and white-box of an object. In Adora, black-

box and white-box are actually mixed in the same representation of the object. The
scenarios and component objects constitute the white-box whereas the states and
property-like objects (e.g. Inventory and Books) make up the black-box of the object
being mentioned. The white-box of behavior can be understood as the way scenarios are
extended from a given scenario (for example, the scenarios order, pay and deliver
extend sale).

2.3.2. KobrA

KobrA defines a recursive approach for developing component-based software
system [19]. Each component should be represented by sets of artifacts: specification
and realization. Both of them have structural and behavioral diagrams of a component.
The main difference is the specification describes the component as a black-box
whereas the realization shows the component as a white-box. As illustrated in Figure 7,
the specification consists of structural model (typically represented using UML class
diagram), behavioral model (typically represented using UML statechart diagram) and
other models. The realization has structural model (typically represented using UML
class diagram), activity model (typically represented using UML activity diagram) and
other models [12].

 24

Figure 7. Specification and Realization of Komponent in KobrA [12]

Figure 8 shows the specification for the component Bookstore Value Network.

The specification of this component consists of two diagrams. Figure 8 a) is a class
diagram that shows the component (its pictogram is rendered in bold) and main
concepts to represent the customer, the order, the book ordered and the book description
in the catalog. This diagram can be considered as a black-box representation of the
component Bookstore Value Network because it does not reveal any components that
constitute the Bookstore Value Network. Figure 8 b) is a statechart diagram that is
given to describe the behavior of the black-box of Bookstore Value Network: doing
nothing, processing order and notifying some failure in case the order cannot be
correctly completed. Note that the operations of Bookstore Value Network declared
in the class diagram should be represented in the transitions of the state-chart diagram.

One of the operations of Bookstore Value Network is createOrder. It takes the
identification number of the book to be sold and necessary information about the buyer
to create an instance of order that would be processed later. In KobrA, this operation
can be described as given in Figure 8 c).

Komponent

Structural model
(UML class/object

diagrams)

W3grq wergw 3rg
4thjg4th J4th45h43zil
6u5kop6ujrioetjhoi4hj
Wef Decision model

(textual)

Activity model
(UML activity

diagrams)

Interaction model
(UML collaboration

diagrams)

Decision model
(textual) Specification Ergwergh 34u4t3u

3rghj3iui wrgrg
Fef
kfjdvafvbrbrqeb

Structural model
(UML class/object

diagrams)

Behavior model
(UML statechart

diagrams)

Functional model
(operation

specifications) Ww 3rg
4thjg4th 3jj iow
453hjoi4h
J4th453zil

Realization

 25

a)

b)

 c)
Name createOrder
Description Once the customer has committed, an order is created

and ready to be processed
Receives PN of the book to buy, customer’s shipping address
Returns A newly-created order
Reads An instance of BookSpec and an instance of

CustomerAccount
Assumes input PN represents some book managed by the

Bookstore Value Network
Result An order is created that binds input PN and the ID,

address of the customer
Figure 8. Komponent specification of the Bookstore Value Network

Figure 9 illustrates the realization of the component Bookstore Value Network.

Figure 9 a) is a class diagram that is actually elaborated from the class diagram of the
specification (see Figure 8 a)) by adding more classes (filled in gray). Figure 9 b) is an
activity diagram is also elaborated from what is depicted in the statechart diagram of the
specification (see Figure 8 b)). This diagram describes what the component Bookstore
Value Network and other components that represent the customer, the post office and
the credit card service should perform to realize the sale.

Like the specification, operations defined in the realization need to be described in
details. Figure 9 c) gives detailed description for the operation payCompany of the
component Bookstore Value Network.

 26

a)

Post OfficeCreditCardService Bookstore Value NetworkCustomer

commitOrder

verify Credit Card

charge Credit Card

create Order

notify Customer

load Book

dispatch

deliver

b)

 c)
Name payCompany
Description Once the book has correctly been delivered to the

customer, ShipCo and BookCo are paid.
Changes Cash of ShipCo and cash of BookCo
Reads shiping_cost of Order
Assumes The book has correctly been delivered to the customer
Result The cash of ShipCo is increased by a predefined

shipping cost (field shiping_cost of class Order).
The cash of BookCo is increased by the book price
minus the predefined shipping cost.

Figure 9. Komponent realization of the Bookstore Value Network

In KobrA, the specification and the realization of a component correspond to the
black-box and the white-box representation. The state of a component can be shown as
black-box and white-box too (any state if the specification can be composite). The
component containment can be regarded as the organizational hierarchy. Black-box of
behavior can be seen in the statechart diagrams. White-box of behavior can be observed
in activity diagrams. Model coherence in KobrA is maintained by the intra-diagram and

 27

inter-diagram rules that are informally stated. It is up to the modelers to keep their
model consistent by following these rules.

2.3.3. OPM

Object Process Methodology (OPM) defines object, process, state and link as its
building blocks [13]. Object and process can be physical or informatical. Physical
objects are tangible whereas informatical objects can reside in short-term media like
information system, human mind... The composition of object and process can be
represented using aggregation link. Informatical objects can represent a physical object
as a black-box via exhibition link. Objects participate in process via agent link and
instrument link. Figure 10 summarizes building blocks of OPM.

Entity

Thing

Figure 10. Building blocks of OPM [13]

OPM is supported by a tool called OpCat. Using this tool, the modeler can create

her model that consists of diagrams and elements. Each element in a diagram can be in-
zoomed and out-zoomed. This zooming operation may result in creating an additional
OPM diagram. Figure 11 illustrates a diagram created in OpCat for the bookstore
model. BookMarket, Bookstore Value Network, Customer, BookCo, ShipCo, PubCo
are physical objects. Inventory, Cash and Catalog are informatical objects that
characterize the physical object Bookstore Value Network. Object Bookstore Value
Network is also characterized by the informatical process Sell. Similarly, WantedPN,
Cash and Bookshelf are informatical objects that, together with informatical process
Buy, characterize the physical object Customer. This characterization is expressed via
exhibition relations that is shown using lines with triangles having a smaller blackened
triangle inside. Physical process sale represents the interaction between the two
physical objects Bookstore Value Network and Customer. This process changes the
Cash and the Catalog of the Bookstore Value Network. On the side of the Customer,
its changes the Cash and the Catalog but takes the informatical object WantedPN as
input.

Aggregation relations (lines with blackened triangles) are used for specifying the
organizational hierarchy among physical objects and the behavioral hierarchy among
processes. The process sale is broken down into order, pay and deliver. On the side
of the Bookstore Value Network, process sale is broken down into receiveOrder,
credit and sendBook. On the side of the Customer, process Buy is broken down into
commitOrder, debit and receiveBook. Note that an informatical object called Order
is an output of commitOrder but an input of receiveOrder.

Object Proce

State

is a situation of

can be at

changes

 28

Figure 11. The model of the online bookstore created in OpCat

In OPM, the notion of black-box and white-box can be applied to both object and

process. The black-box representation of an object is its exhibition including
information objects and informatical processes. The white-box representation of an
object is its aggregation of other physical objects. The white-box of a process can be
considered as aggregation of other processes. The organizational hierarchy is expressed
via consecutive object aggregations. The behavioral hierarchy can be understood as
consecutive process aggregations. In the tool OpCat, an initial OPM diagram is made
when the model is created. When an object or process is in-zoomed, a new diagram is
created if this object or process is in-zoomed for the first times. It is up to the modeler to
keep the newly-created diagram to existing ones. The coherence of model is therefore
maintained by the modeler.

2.3.4. Comparison between AdorA, KobrA, OPM and SeamCAD

In the SeamCAD modeling language, the notion of black-box and white-box can be
applied to working objects, properties and behavior. The black-box of a working object
is represented in terms of its properties and localized actions. The white-box of a
working object is expressed in terms of working objects and distributed actions. For a
model element that is a property, a distributed action or a localized action, the black-box
is the model element itself and the white-box is its component model elements that must
be of the same kind. The way a working object is broken down into component working
objects is consistently carried out from the top working objects down to the leaf ones
forms the organizational hierarchy. Similarly, the way a model element that is either a
property, a distributed action or a localized action is broken down into component
model elements of the same kind is consistently carried out from the top one down to
the leaf ones forms the functional hierarchy. The well-formedness of model in the
SeamCAD modeling language is maintained by the computer-aided tool. This aspect
will be elaborated in Chapter 4.

Having analyzed OPM, Adora and KobrA in the previous sections, we compare
them to the SeamCAD modeling language (see Table 3) in a grid that covers not only
the four hypotheses used in evaluating modeling methods in the beginning of this

 29

chapter but also widely-known modeling issues such as black-box, white-box, state
modeling and notation. Specifically, the grids consists of the following criteria

• whether the method can distinguish the black-box from the white-box
• how systems can be described as black-box
• how systems can be described as white-box
• how the organizational hierarchy is described
• how the state can be represented
• black-box of behavior
• white-box of behavior
• behavioral hierarchy within the black-box of system
• behavioral hierarchy within the white-box of system
• model coherence and consistency
• notation

 30

Table 3. Modeling aspects of SeamCAD, Adora, KobrA and OPM
Modeling

Aspect
Adora KobrA OPM SeamCAD

Black-box /
White-box

applicability

None
Black-box and White-box are
mixed

Komponent
State

Object
Process

Working object
Property
Localized action
Distributed action

Black-box
of system

States of object.
Black-box and White-box are
mixed

Specification of
Komponent
Structural diagrams,
behavioral diagrams,
functional…

Exhibition of
object
Informatical objects &
informatical processes

Working Object as
Whole
Properties and localized actions

White-box
of system

Nested objects
Black-box and White-box are
mixed

Realization of
Komponent
Structural diagrams,
behavioral diagrams,
functional…

Aggregation of
Object

Working Object as
Composite
Component working objects
and distributed actions

Organizational
Hierarchy

Nested Objects Komponent
Containment

Aggregation of
Object

Working Objects
as Composite

State modeling

State

State Informatical
Object

Property

Black-box
of behavior

Scenario Action Process
Can be in-zoomed in
OpCat

Action as Whole

White-box
of behavior

Scenario
Connection
A scenario can be connected
to component scenarios

Activity Aggregation of
processes
Can be out-zoomed in
OpCat

Action as
Composite

Behavioral
hierarchy in the

black-box of
system

Connected
Scenarios
Black-box and White-box are
mixed

Composite state Aggregation of
Process that
characterize an
Object

Localized Action
as Composite

Behavioral
hierarchy in the

white-box of
system

Connected
Scenarios
Black-box and White-box are
mixed

Activity None Distributed Action
as Composite

Model well-
formedness

Diagrams are
rendered as partial
representations of
a coherent model

Rules (intra-
diagram, inter-
diagram,
containment…)

- Additional
diagrams are
created based
on the root
diagram
- Diagram
consistency is
up to the
modeler

Diagrams are
rendered as partial
representations of
a common
enterprise model

Notation UML-like UML OPM notation SeamCAD
notation

Chapter 3: The SeamCAD Modeling Language

Overview: We describe the SeamCAD modeling language in this
chapter. First, the foundations of the modeling language are
presented, including the SEAM method, the Living Systems
Theory and the Reference-Model of Open Distributed Processing.
Then the building blocks of the modeling language are informally
defined in English. This informal definition is followed by a meta-
model that consists of a diagram expressing the informally-
defined building blocks and a list of well-formedness rules that
must be respected by any enterprise model instantiated from the
meta-model. The definition of the SeamCAD language is
exemplified by an enterprise model of an online bookstore. Next,
the notation used in the SeamCAD modeling language is defined.
Last but not least, the meta-model is rigorously formalized in
Alloy - a lightweight declarative language based on the set theory
and the first-order logic.

 32

In this chapter, we first describe the foundation of the SeamCAD modeling
language. Then, we define the SeamCAD modeling language in three steps: informal
definition, a more formal definition and finally formalization. In each step, the example
of the online bookstore is used to illustrate the definition presented.

3.1. Foundations

The SeamCAD modeling language takes the Living Systems Theory, the Reference-
Model of Open Distributed Processing and the SEAM method as its foundations.

SEAM Method

SEAM is a method developed at our research group for modeling EA [3] [4] [5]. By
the time this Ph.D. work got started, the Living Systems Theory and the RM-ODP were
used by SEAM to define a vocabulary for modeling EA in a hierarchical way. This
vocabulary and the approach of representing EA hierarchically served as a basis for
several Ph.D. projects at that time including this dissertation. It was our goal for this
Ph.D. to develop a modeling framework based on the initiative of the SEAM modeling
vocabulary and spirit. To achieve this goal, we rigorously define the modeling terms by
means a meta-model, which is then formalized using a language that is capable of
processing the first-order logic. The notation of these modeling terms is also defined.
This notation definition includes the notation rules that specify the way notation
pictograms are put together in a diagram. Thanks to these rigorous definitions, it was
feasible to develop a computer-aided tool that specifically implements the defined
modeling terms. In summary, the main results of this Ph.D. are the definition of a
modeling language and the development of a computer-aided tool that are altogether
called SeamCAD. In other words, SeamCAD consolidates the modeling vocabulary and
spirit that were initiated in the SEAM method.

Living Systems Theory

James Greer Miller introduced the concept of level in [7]. He made a thorough cross-
discipline analysis and synthesis of the functions and behavior of living systems. He
published his results in 1978 (first edition) and in 1995 (second edition). His theory is
called the “General Theory of Living Systems” or “Living Systems Theory” (LST). To
develop his theory Miller analyzed 4000 publications from multiple living systems
disciplines. He then developed a model that can be used to reason about any living
system (from individual cells to supranational organizations such as the United Nations
Organization).

One of the most important concepts is that of level. According to Miller “…the
universe contains a hierarchy of systems, each more advanced or ‘higher’ level made of
systems of the lower levels”. He identifies seven distinct levels for living systems: cells
(free-living cells and aggregated cells), organs, organisms (such as humans…), group
(such as families, workgroups…), organization (such as commercial companies…),
society (such as countries) and supra-national systems (such as inter-governmental
organizations …). This level distinction is tightly linked to people’s experience in
perceiving and studying the world of livings systems. Depending on the goal of the
modeler, it is possible to have more or less levels.

 33

To be able to model enterprises, the language should define the model not only
confined to IT and software-intensive systems but also to business-related systems. In
SeamCAD, the enterprise model is structured in LST-inspired levels that are called
organizational levels. Making enterprise models hierarchical is also a convenient way to
structure the enterprise models as people tend to reason in terms of hierarchy [2].

Reference Model for Open Distributed Processing (RM-ODP)

Within the organizational levels, we use RM-ODP [8] to represent what is perceived.

RM-ODP is a standard that defines the concepts necessary to build “distributed
information processing services to be realized in an environment of heterogeneous IT
resources”. RM-ODP also proves to be suitable for general modeling.

The Reference Model for Open Distributed Processing (RM-ODP) is an ISO/ITU
standard. RM-ODP defines a modeling infrastructure for distributed IT systems within
organizations. The RM-ODP standard is composed of four parts. Part 1 is an overview
of RM-ODP and is non-normative. Part 2 defines the fundamental concepts needed for
modeling Open Distributed Processing systems. Part 3 presents an application of Part 2
for particular viewpoint specification languages (i.e. enterprise, information,
computational, engineering, technology viewpoints). Part 4 is a partial formalization of
the previous parts.

RM-ODP is known especially for its Part 3 that defines requirements for viewpoint
languages useful to describe an IT system and its environment [15] [20]. For example,
the enterprise viewpoint is useful for describing the enterprise in which the IT system
will be deployed; the information viewpoint is useful for describing the IT system
specification; the computational viewpoint is useful for describing the computing
structure of the IT system; the engineering and technology viewpoints are useful for the
implementation of the IT system. All these viewpoints refer to the terminology defined
in RM-ODP Part 2 (e.g. object, state, action, activity, type, and instance).

3.2. Informal Definition

In this section, the SeamCAD modeling language is presented informally. This
informal definition of the modeling language [21] is followed by explanation of an
enterprise model of the online bookstore using the defined building blocks of the
SeamCAD modeling language.

3.2.1. Building blocks of the SeamCAD modeling language

According to RM-ODP part 2 (i.e. the foundations), an entity is any concrete or
abstract thing of interest in the universe of discourse. An entity can be considered as
atomic or as non-atomic (i.e. composed of parts of the same kind). An entity is
represented in the model as a model element. So, a model element can be seen as whole
or as composite. A system may be referred to as an entity. A part of a system may itself
be a system, in which case it may be called a subsystem. The model element that
corresponds to a system is an object. An object can be seen as whole (i.e. this
corresponds to the external view of the object, also called model-based specification) or
as composite (i.e. this corresponds to the internal view, or implementation, of the
object). Other kinds of entities can be modeled as action and state. Action and state can
also be seen as whole or as composite. An action (state) seen as composite can be

 34

broken down into component actions (states); these component actions (states) can be
further broken down into smaller component actions (states). This hierarchy of actions
(states) corresponds to the functional level hierarchy. The functional level hierarchy
includes functional levels. It is orthogonal to the organizational level hierarchy defined
in the previous section (in which an object is broken down into its component objects).
In each organizational level, we can find multiple functional levels.

According to RM-ODP part 3 (i.e. the architecture), a system specification has five
viewpoints: enterprise, information, computational, engineering and technology
viewpoint. In the context of hierarchical systems, we model organizational levels (cf.
Miller) made of working objects (i.e. an object that represents a system). The working
objects can be specified by either an information specification or a computational
specification. An information specification represents a working object as whole (or
seen from outside). It consists of properties and localized actions. The properties
represent the states of the working objects. The localized actions model the working
object’s responsibility. A specification viewpoint represents a working object as
composite (or seen from inside). It consists of working objects and actions happening
between them that we call distributed actions. Note that as RM-ODP part 2 just defines
the term action, we have to define the localized actions (for the information
specification) and the distributed action (for the computational specification).

Organizational Level in Terms of Working Objects as Whole / Composite

A computational object seen as whole contains properties that represent either the
fact that a localized action executes (called transaction) or elements of “knowledge”
(called concepts) or parameters exchanged with the environment (called parameters).
These concepts describe “knowledge” of the working object about itself or about other
working objects belonging to the same organizational level. The distributed action is
described with pre-conditions and post-conditions in terms of the participating working
objects as whole. Once a working object is seen as composite, it contains component
working objects and distributed actions. By changing the view of the working object
from the whole to the composite, the modeler descends to the next organizational level.

Functional Level in Terms of Distributed Actions, Localized Actions and
Properties as Whole / Composite

Not only working objects but also distributed action, localized action and property
can be treated as whole and as composite. Once the modeler breaks down a distributed
action, she descends to the subsequent functional level. For the sake of level
consistency, all properties and localized actions that are semantically bound to this
distributed action should always be at the same level of granularity. They must be
broken down accordingly when she changes to subsequent functional level. In the
opposite direction, when she gets back to the precedent functional level by imploding a
distributed action, these properties and localized actions are imploded as well. This
principle is crucial for navigating in the model as it prevents properties and actions from
being represented at different level of granularity, which potentially makes the modeler
confused even for the very part of model created by her.

 35

Relation

The expressiveness of the enterprise model created in the SeamCAD modeling
language can be enriched by putting model elements in relation. There are three kinds of
relation that are intrinsic to the SeamCAD modeling language: i) between a model
element and its component model elements; ii) between a distributed action and
localized actions and properties that are bound to it; iii) between a localized action and a
distributed action that implements it. The first is called composition, the second goal
binding and the third means binding. Between a model element and each of its
component elements, there is a composition. For each distributed action, there could be
multiple participating working objects. In each of these working objects seen as whole,
there are essentially a localized action and its (stateless) transaction that represent the
responsibility of this working object when taking part in the distributed action. There
could be other (stateful) properties and localized actions that additionally represent this
responsibility. A goal binding relates any of these properties or localized actions to the
distributed action being mentioned. On the other hand, the means binding relates a
localized action of a working object seen as whole and a distributed action of the same
working object seen as composite that implements the localized action. This relation can
be understood in the sense that a distributed action of the working object as composite
represents collaboration between component working objects. The component working
objects and the way they collaborate with one another should implement some
responsibility of the working object, which is represented by some localized action
defined the in same working object seen as whole.

There are other kinds of relation in the SeamCAD modeling language that are
actually borrowed from the Unified Modeling Language. An association can be made
between two different properties of the same working object or from a property to itself.
For instance, in the model of the online bookstore, an order is associated with a
specification of the book being ordered. An association may have role names and
cardinalities at the two ends.

A transition is a directed relation that connects two actions or connects a single
action to itself. Transitions represent sequence constraints for the behavior of a working
object. From a localized action, there could be several outgoing transition and several
incoming transitions. A condition can be attached to each transition to determine how
the transition is fired. There are two special transitions: start transition and stop
transition. The former indicates that the action being connected can take place just after
the beginning of the behavior of the working object where it is defined. The latter
implies that the action being connected can take place before the end of the behavior of
the working object where it is defined. Like normal transitions, a condition can also be
attached to any of these special transitions. Note that if two different actions are
connected by a transition, they must be defined in the same working object.

A generalization is used for specifying an is-a relationship among model elements
of the same kind. Most frequently, generalization is exploited to describe a generic
property or working object from which concrete property or working object are
specialized. In the model of the bookstore, although not represented, it is possible to
have a working object that describes a generic company from which BookCo, ShipCo
and PubCo are specialized.

A participation link is an undirected relation that specifies which working object
takes part in which distributed action. A participation link determines the goal binding
between the distributed action being connected and the corresponding transaction and
the localized action of the working object being connected.

 36

Table 4 summarizes the informal definition of the SeamCAD modeling language.
The column to the left lists the building blocks. The column to the right lists the kinds
of the building blocks. The column in the middle is where we can find the verbal
description of the building blocks.

Table 4. Informal definition of the SeamCAD modeling language
Building block Informal definition Kind

Working Object

Represents any business unit, IT component or
software component of the enterprise.

Hierarchical
element

St
at

ef
ul

pr

op
er

ty

Externally-observable properties that characterize a
given Working Object seen as whole

Hierarchical

element

Pr
op

er
ty

St
at

el
es

s
Pr

op
er

ty

(T
ra

ns
ac

tio
n)

Representation of the occurrence of a localized
action. Transaction is also considered as a context
in which normal properties are defined

Hierarchical

element

Localized
Action

Externally-observable actions performed by a
given Working Object seen as whole. It also
represents a service offered by the working object.

Hierarchical
element

Distributed
Action

Interaction between multiple working objects that
are distributed into localized actions of
participating Working Objects seen as composite.

Hierarchical
element

Association Relation between two properties of the same

working object.
Expressive

relation
Generalization Relation between two properties or two working

objects
Expressive

relation
Transition Relation between two localized actions that are

parented by the same localized action
Expressive

relation
Start / Stop
Transition

Relation coming to for going from a localized
action

Expressive
relation

Participation

Relation between a working object and a
distributed action in which it participates.

Expressive
relation

Composition

Relation between a model element and its parent
model element.

Intrinsic
relation

Goal binding

Binding of a property or a localized action to a
distributed action that is at the same functional
level.

Intrinsic
relation

Means binding

Binding of a distributed action to a localized action
that it implements. The two actions must be hosted
by the same working object

Intrinsic
relation

To explain the actions and how they are related by goal/means bindings, Figure 12

gives some illustration [22]. The stereotypes used for model elements that are visible in
the diagrams of Figure 12 make explicit from which building blocks they are
instantiated. In Figure 12 a), working object S consists of two component working

 37

objects: AinS and BinS. They participate in a distributed action M_S. The working object
AinS has a localized action called M_A that represents the responsibility of AinS in
taking part in M_S. It also represents the main service of AinS. Similarly, the working
object BinS has a localized action called M_B that represents the responsibility of BinS
in taking part in M_S. It also represents the main service of BinS. There are two goal
bindings in Figure 12 a): from M_A to M_S and M_B from to M_S. Note that only S is seen
composite in Figure 12 a). The other elements are seen as whole in this diagram.

a)

b)

c)
Figure 12. Examples of actions and bindings

In Figure 12 b), the working object AinS is seen as composite whereas BinS and

M_S are hidden. AinS has three component working objects, namely CinA, DinA and
EinA. The distributed action between them, R_A, implements the localized action M_A
that is visible in Figure 12 a). There is a means binding from R_A to M_A, which can be
made explicit by a note attached to R_A as we can see in Figure 12 b). In this diagram,
there are three goal bindings: the goal binding from R_C to R_A, the goal binding from
R_D to R_A and the goal binding from R_E to R_A.

In Figure 12 c), the working object S is hidden. The distributed action R_A and the
three localized actions that are bound to it via goal bindings are seen as composite.
Being seen as composite, the localized action R_C looks like an activity. It has two
component localized actions: TinR_C and UinR_C. It has three transitions: the start
transition running to TinR_C, the transition between TinR_C and UinR_C, the stop
transition running from UinR_C. Note that there is also a goal binding between the
localized action TinR_C and the component distributed action TinR_A of R_A.

 38

Relationship to RM-ODP

A total of five viewpoints are defined in RM-ODP. They are enterprise viewpoint,
information viewpoint, computational viewpoint, engineering viewpoint and technology
viewpoint. These viewpoints describe the different aspects necessary to model an IT
system. Each viewpoint has its own modeling language. In our approach, the goal is to
have the same modeling language regardless of the subject to be modeled (e.g. business
entity or IT system) and to have a relatively small set of heuristics for the specific
aspects of each subject. Hence, we base our work directly on RM-ODP Part 2 and we
systematically use the concepts defined in RM-ODP Part 2 to represent systems that
span business and IT.

Our approach is original because it does not rely on the RM-ODP viewpoints [23]
[22]. These viewpoints describe the different aspects necessary to model an IT system.
Each viewpoint has its own modeling language. In our approach, the goal is to have the
same modeling language regardless of the subject to be modeled (e.g. business entities
or IT systems) and to have a relatively small set of heuristics for the specific aspects of
each subject.
 RM-ODP Part 2 first defines the basic interpretation concepts. These concepts are
necessary to relate the universe of discourse to the model and to define the model
elements. RM-ODP Part 2 then defines the basic modeling concepts (e.g. object, action,
and activity) and the specification concepts (e.g. type, instance). These are the concepts
necessary to fully specify the model elements.

RM-ODP Part 2 defines basic modeling concepts such as object, action, state. To
directly support system modeling with RM-ODP Part 2, we had to define a few more
concepts than those in the standard. We present these concepts in this section.

Our goal is to model systems. As defined in RM-ODP a system is something of
interest seen as a whole or as comprised of parts. We consider the concept of system as
an agreed conceptualization between the modelers. We define the working object as the
model element that corresponds to the system conceptualization. Working object is a
specialization of the concept of object defined in RM-ODP: The original object is not
associated with the system conceptualization. In the example of the online bookstore,
Bookstore Value Network, Customer, BookCoMarket, BookCo, PubCo and ShipCo
are all working objects. This means that they are all perceived as systems in the universe
of discourse.

We have also refined the definition of the different kinds of actions. In RM-ODP,
actions are divided into internal actions and interactions. In RM-ODP Part 2, it is
written: The set of actions associated with an object is partitioned into internal actions
and interactions. To model systems as we propose, we need two kinds of interactions:
distributed action and localized action. A localized action is an action of one working
object of interest (represented as whole) and involves one or more working objects in its
environment. A distributed action is an action of one working object of interest
(represented as composite) and involves one or more of its component working objects
and it may or may not involve working objects in the environment of the working object
of interest.

Finally, we have introduced concepts necessary to structure the state space. RM-
ODP Part 2 defines the concept of state as, at a given instant in time, the condition of an
object that determines the set of all sequence of actions in which the object can take
part. Our goal is to describe the state at the same level of detail as the behavior. For this
reason, it was important to add a means to structure the state. This is the concept of
property. Properties can be stateless or stateful. Stateless properties represent

 39

occurrences of actions. Stateless properties are called transactions. They are similar to
the stateless objects presented in [24]. One special transaction is the lifecycle
transaction that represents the overall working object lifecycle. Transactions are useful
for representing the context in which stateful properties exist. Stateful properties store
the system’s state. They are similar to UML attributes except that they can be
hierarchical (properties can be composite as well). Global properties exist in the context
of the system lifecycle. They are created at the system’s initialization and disappear at
the system’s termination. Local properties exist in the context of transactions with a
shorter lifespan than the lifecycle transaction.

In summary, RM-ODP Part 2 is well adapted as ontology for enterprise models but
it would require a few extensions to be perfectly suitable. The extension we propose
consists of: the way we model systems with objects, the definition of the distributed
actions and localized actions and the concept of properties to structure the state.

3.2.2. Explanation of the enterpise model of the online bookstore

In this subsection, we illustrate the SeamCAD modeling language by explaining the
details of the enterprise model of the online bookstore.

Figure 13 has a total of 5 diagrams that shows different organizational levels of the
bookstore model. As illustrated in Figure 13 a), at the top organizational level,
BookCoMarket as composite consists of two value networks: Bookstore Value
Network and Customer Value Network. They are all working objects. Members of
Customer Value Network place orders at the Bookstore Value Network, make
necessary payment and wait for the delivery of the books they ordered. The overall
collaboration between the two value networks is called distributed action sale. The
Bookstore Value Network performs the localized action Sell, which represents the
responsibility of Bookstore Value Network while taking part in the distributed action
sale. The Customer Value Network performs the localized action Buy - responsibility
of Customer Value Network while taking part in the distributed action sale. In these
two value networks, SellTxn and BuyTxn represent the occurrences of the localized
action Sell and Buy, respectively. Note that the two value networks are seen as whole
in Figure 13 a).

In the second organizational level (Figure 13 b), Bookstore Value Network as
composite is composed of there companies: BookCo, PubCo and ShipCo. They
collaborate with one another through a distributed action mfg_sell. This distributed
action implements localized action Sell of Bookstore Value Network seen as whole.
It represents the entire collaboration of the three companies: order procurement,
inventorial operation, invoicing and book delivery.

In the third organizational level (Figure 13 c), BookCo as composite is made up of
two departments: PurchasingDep (responsible for identifying the book described in the
customer’s order and invoicing) and WarehouseDep (responsible for picking book from
an inventory and packing it). Note that both of them are specified as whole when
participating in distributed action market. The responsibilities of the two departments
are represented under two localized actions called Invoicing and Packaging. The
distributed action market is actually the implementation of localized action Market of
BookCo in the previous organizational level. Figure 13 d) illustrates that the distributed
action market seen as composite has two constituent actions: procure (processing
order) and pack (book packaging) that all belong to the second functional level
(whereas distributed action market as whole belongs to functional level 1).

 40

Accordingly, PurchasingDep as whole is also specified in the second functional level
to have localized action Pick, Invoice and PickTxn, InvoiceTxn (properties
representing transactions of Pick and Invoice). The sequences between the two
localized actions Pick and Invoice are specified via transitions: the action Pick occurs
first, then the action Invoice is performed. This department also has property
BookCatalog which can be broken down independently of any distributed action.
WarehouseDep has two localized actions: Pick and Pack. Note that the localized actions
and their transaction are bound to the corresponding distributed action. This binding is
essential for rendering diagrams at different functional levels (the diagrams shown in
Figure 13 c) and Figure 13 d), for instance) illustrating how the challenge granularity is
addressed.

a)

b)

c)

 41

d)

e)
Figure 13. An enterprise model of the online bookstore

in the SeamCAD modeling language

In the fourth organizational level, PurchasingDep as composite shows that a clerk
operates an application called OpApp (Figure 13 e)). It is possible to have a fifth
organizational level to show the architecture of OpApp. This application seen as
composite has SearchServlet (a Java servlet responsible for searching a book), web

 42

page RegistrationPage.JSP (for customer registration) web page Order.JSP (order
processing), and database interface JDBC. Note that the pictogram used for departments,
the application and its components are different from that used for companies and value
networks. This difference in pictograms can remind the modeler of the organizational
level she is working: a business-related level or an IT-related one. A total of 5
organizational levels spanning market and IT implementation shows how the challenge
uniformness is solved. The way models are managed by the tool in terms of a set of
model elements (not as a set of weakly-related diagrams) linked together shows how the
challenge well-formedness is addressed. The two value networks, three companies and
two departments as well as the IT application can be specified as whole and as
composite. This illustrates how the challenge multi-entity is addressed.

3.3. Formal Definition

In this section, the SeamCAD modeling language is defined in a more formal way
than it was in the previous section. A meta-model that describing the building blocks
and the well-formedness rules of the SeamCAD modeling language is presented
followed by an explanation of the enterprise model of the online bookstore using in
terms as an instantiation from the meta-model.

3.3.1. Meta-model

A meta-model is needed for modeling the building blocks of a modeling language.
Typically, a meta-model consists of diagrams and rules. Diagrams visually show the
building blocks of the modeling language and how they are related. They can be drawn
using a widely-used diagrammatic language such as Unified Modeling Language
(UML). Rules capture the well-formedness of the modeling language. They are also
called well-formedness rules.

Figure 14 is a UML class diagram expressing building blocks of the SeamCAD
modeling language [25]. The Working Object, Property and Action are all subtypes
of a generic concept Hierarchical Element. This concept has a number of component
elements and may have at most one parent element. The component elements and the
parent element are expressed under association ends in this diagram: components and
parent, respectively. Note that the concept Action is further specialized into the two
kinds of action in SeamCAD: Distributed Action and Localized Action. All
relations in SeamCAD are subtypes of another generic concept Relation. Most of the
relations have a source element and a destination element, which represents the two
model elements that they connect. The types of the source element and the destination
element depend on the specific relation. For the Association, they are all Property.
For the Participation, they are Working Object and Distributed Action. For the
Action Transition, they are all Action. For the Generalization, they are all
Hierarchical Element. The source element and the destination element are again
expressed under association ends: source and destination, respectively. The only
exception is on the Start Transition and the Stop Transition. They connect only
one model element of the type Action.

A concept in the meta-model may have attributes. The most generic concept in the
meta-model is called Element. It has two attributes of which data type is string: name
and stereotype. As the concrete model elements and relations defined in the
SeamCAD modeling language are (indirect) subtypes of this concept, they all have a

 43

name and a stereotype. The concept Action has two attributes of which data type is also
string: pre and post that represent the pre-condition and the post-condition,
respectively. As the two concepts that define the localized action and the distributed
action in the meta-model are the subtypes of concept Action, each localized action or
distributed action in SeamCAD has a pre-condition and a post-condition.

Figure 14. The UML class diagram that expresses the building blocks of the

SeamCAD modeling language and how they are associated

The cardinalities shown in the diagram of Figure 14 indicate the number of

instances of a specific building block that can be associated to an instance of another

 44

building block. Each working object has at most one distributed action
(main_distributed_action), one localized action (main_localized_action) and
one property (main_property). Any distributed action, localized action or property is
associated to a working object where it is defined (host_object).

Each property or localized action is associated to at most one distributed action via
goal binding (goal_binding). Each distributed action is associated to at most one
localized action via means binding (means_binding).

Each expressive relation has exactly one source element and one destination
element. However, it is possible for a model element to be connected by more than one
relation. For instance, to express that a working object participates in two distributed
actions, we need two instances of Participation both of which run from the working
object. However, the two different instances of Participation run to different
distributed actions.

As a modeling language, the SeamCAD modeling language should have well-
formedness rules to ensure that the enterprise models created in this language are
consistent and coherent. For example, there must be no cycle in the organizational level
hierarchy. Another typical example is that, for a given model element, all of its
component model elements must be of the same kind. Table 5 lists a total of 19 well-
formedness rules that should be held for every model created using the SeamCAD
modeling language. This table has three columns. The column to the left of this table
gives enumeration names of the rules. The one in the middle presents informal
descriptions of the rules. These descriptions are written in English. As the rules cannot
be expressed in the class diagram given in Figure 14, the only way to relate them to this
diagram is to list the diagrammatically-expressed concepts on which each rule matters.
This is the purpose of the column to the right of Table 5.

In Chapter 1, we clarify that the work presented in this dissertation does not support
model execution or model simulation. More concretely, the operational semantics of
actions is not yet formally specified in the SeamCAD modeling language. This is in fact
considered as future work of this thesis. As such, the well-formedness rules listed in
Table 5 do not impose any grammar on the two attributes of an action: the pre-condition
and the post-condition. To give an idea how they may be formally specified, an example
is presented in Appendix A.

Table 5. The well-formedness rules of the SeamCAD modeling language
Rule Description Related concepts
R1 There is no cycle in the hierarchy via composition of any

hierarchical element.
Hierarchical

Element

R2

Any element listed as a child element via composition
relation of another element must take this element as the
parent.

Hierarchical
Element

R3

If an element takes another as its parent element via
composition relation, the former must be in the child list of
the latter.

Hierarchical
Element

R4

Any distributed action that takes a given working object as
host object must be either its main distributed action or a
descendant of the main distributed action of this working
object.

Distributed Action
and Working Object

R5

Any localized action that takes a given working object as
host object must be either its main localized action or a
descendant of the main localized action of this working
object.

Localized Action
and Working Object

 45

R6

Any property that takes a given working object as host
object must be either its main property or a descendant of the
main property of this working object.

Property
and

Working Object

R7
Component distributed actions must take the same host
object as the parent distributed action does.

Distributed Action
and

Working Object

R8
Component localized actions must take same host object as
the parent localized action does.

Localized Action
and

Working Object

R9
Component properties must take the same host object as the
parent property does.

Property
and

Working Object

R10
Two properties connected by an association must take the
same working object as host object.

Association,
Property

and Working Object

R11
Two actions connected by a transition must have the same
parent element.

Transition
and Action

R12

If a working object and a distributed action are connected by
a participation link, the distributed action being mentioned
must take the parent working object of the working object
being mentioned as host object.

Participation,
Distributed Action
and Working Object

R13

There is at most one participation link between any pair of a
working object and a distributed action.

Participation,
Distributed Action
and Working Object

R14

There is at most one transition between any pair of two
actions.

Transition
and Action

R15

The two actions connected by a transition must be of the
same kind.

Localized Action,
Distributed Action

and Transition

R16

A property or a localized action that is related to a
distributed action via a goal binding must take a working
object that is a component of another working object, which
hosts the distributed action being related to by the goal
binding, as host object.

Property,
Localized Action,
Distributed Action
and Working Object

R17

A distributed action and a localized action that are related
via a means binding must take the same working object as
host object.

Localized Action,
Distributed Action
and Working Object

R18 Two model elements connected by a composition must be of
the same kind

Hierarchical
Element and
Composition

R19

There is always a composition that relates a model element
and each of its component elements

Hierarchical
Element and
Composition

3.3.2. Instantiation and well-formedness in the enterprise model of
the online bookstore

This subsection exemplifies the way concrete model elements of the enterprise
model of the online bookstore are instantiated from the meta-model of the SeamCAD
modeling language and how the well-formedness rules of the meta-model are respected.

 46

Table 6. Concrete model elements of
the enterprise model of the online bookstore

Building block Concrete model element

Working Object
BookCoMarket, Bookstore Value Network, Customer,
BookCo, ShipCo, PubCo, OpApp, Clerk, SearchServlet,
Registration.JSP, Order.JSP, JDBC

Stateless

SellTxn, BuyTxn, MarketTxn, DeliveryTxn,
InvoicingTxn, PackagingTxn, InvoiceTxn, HandleTxn,
PickTxn

 Pr
op

er
ty

Stateful

Order, Customer’s info, BookCatalog, BookSpec1,
BookSpec2, BookSpec3

Distributed Action sale, mfg_sell, market, run, operate, pick
Localized Action Sell, Buy, Market, Delivery, Supply, Invoicing,

Packaging, Invoice, Pick, Handle
Association between Order and Customer’s info, between Order and

BookSpec1
Transition between Pick and Invoice of PurchasingDep, between

Pick and Handle of WarehouseDep,

Participation

between sale and Bookstore Value Network, between
sale and Customer, between mfg_sell and BookCo,
between mfg_sell and ShipCo, between mfg_sell and
PubCo, between market and PurchasingDep, between
market and WarehoouseDep, between operate and OpApp,
between operate and Clerk

Goal binding

between sale and Sell, between sale and SellTxn,
between sale and Buy, between sale and BuyTxn, between
mfg_sale and Market, between mfg_sale and MarketTxn,
between mfg_sale and Delivery, between mfg_sale and
DeliveryTxn, between mfg_sale and Supply, between
mfg_sale and SupplyTxn, between market and
Invoicing, between market and InvoicingTxn, between
market and Packaging, between market and
PackagingTxn, between procure and Invoice, between
procure and InvoiceTxn, between procure and Handle,
between procure and HanldeTxn, between pick and Pick,
between pick and PickTxn, etc…

Means binding

between mfg_sell and Sell, between market and Market,
between operate and Invoicing, between run and Work

Table 6 lists concrete model elements and relations of the enterprise model of the

online bookstore. They are classified by the building blocks from which they are
instantiated. By showing that the well-formedness rules of the SeamCAD modeling
language are respected, Table 7 illustrates that the enterprise model is well-formed.

 47

Table 7. Well-formedness rules are respected
in the enterprise model of the online bookstore

Rule How the rule is respected?

R1

There is no cycle along the the organizational hierarchy of working objects
BookCoMarket, Bookstore Value Network, BookCo, PurchasingDep, OpApp
and SearchService.
There is no cycle along the functional hierarchy of distributed actions market,
procure and pick; of localized actions Invoicing, Pick and Invoice; of
localized actions Packaging, Pick and Handle.

R2

R3

Bookstore Value Network and Customer are the component working
objects of BookCoMarket. BookCoMarket is their parent working object.
BookCo, ShipCo and PubCo are the component working objects of Bookstore
Value Network. Bookstore Value Network is their parent working object.
PurchasingDep and WarehouseDep are the component working objects of
BookCo. BookCo is their parent working object.

R4
R7

BookCo is the host object of distributed actions market, pick and procure.

R5
R8

PurchasingDep is the host object of localized actions Invocing, Pick and
Invoice.
WarehouseDep is the host object of localized actions Packaging, Pick and
Handle.

R6
R9

PurchasingDep is the host object of properties Order, Customer’s info,
BookCatalog, BookSpec1, InvocingTxn, PickTxn and InvoiceTxn.
WarehouseDep is the host object of properties PackagingTxn, PickTxn and
HandleTxn.

R10 PurchasingDep is the host object of properties Order, Customer’s info and
BookSpec1.

R11 Invocing and Pick have the same parent - localizd action Invoice.

R12

sale is hosted by BookCoMarket, which is the parent working object of
Bookstore Value Network and Customer.
mfg_sell is hosted by Bookstore Value Network, which is the parent
working object of BookCo, ShipCo and PubCo.
market is hosted by BookCo, which is the parent working object of
PurchasingDep and WarehouseDep.

R13 There is at most one participation link between any pair of a working object
and a distributed action.

R14 There is at most one transition between any pair of two actions.
R15 Pick and Invoice are localized actions.

Pick and Handle are localized actions.

R16

The localized action Sell takes Bookstore Value Network as host object,
which is a component working object of BookCoMarket, which hosts sale.
The stateless property SellTxn takes Bookstore Value Network as host
object, which is a component working object of BookCoMarket, which hosts
sale.
The localized action Buy takes Customer as host object, which is a component
working object of BookCoMarket, which hosts sale.
The stateless property BuyTxn takes Customer as host object, which is a
component working object of BookCoMarket, which hosts sale.

 48

R17

The distributed action mfg_sell and the localized action Sell, which are
related by a means binding, take Bookstore Value Network as host object.
The distributed action market and the localized action Market, which are
related by a means binding, take BookCo as host object.
The distributed action operate and the localized action Invoicing, which are
related by a means binding, take PurchasingDep as host object.
The distributed action run and the localized action Work, which are related by
a means binding, take OpApp as host object.

R18 BookCo, ShipCo, PubCo and Bookstore Value Network are all working
objects.

R19 Composition between BookCo and Bookstore Value Network, etc…

3.4. Formalization

In this section, the meta-model of the SeamCAD modeling language is formalized
in Alloy. The formalization code that is written in Alloy can be executed.

3.4.1. Formalization in Alloy

Representing the meta-model by means of class diagrams is widely-used techniques
for capturing building blocks of the language and possibly some relation between them.
Unfortunately, the meta-model presented in the previous section is not enough to
capture the well-formedness rules. It is necessary to formalize these rules. Either we
take an additional formal language like OCL [26] to declare the rules in combination
with the class diagram representing the meta-model, or we can use a declarative
language to wholly formalize the language in terms of both the language constructs and
the well-formedness rules.

Alloy is a lightweight declarative language based on set and relation theory [9]. It
comes with a tool called Alloy Analyzer7 that can execute Alloy code to either generate
an instance model or to find a counter example in a limited domain. Being able to
generate an instance model for the Alloy code that formalizes our modeling language
implies that the meta-model is consistent at least for the specified domain and thus a
concrete model can be made using the modeling language.

A model coded in Alloy typically has two main parts. The first part is the
declaration of concepts. In Alloy, keyword sig, which stands for Alloy signature,
declares a concept having fields that are always considered as sets. All elements of a set
of a field are of a specific type, which is defined by another signature or even the same
signature where the field being mentioned is declared. The second part is definitions of
rules that govern the way any instance model of declared concepts should be. These
rules are described as facts (with keyword fact) in Alloy. The syntax of Alloy facts is
very similar to that of the first order logic. Note that according to the syntax of the Alloy
language, these two parts are not necessarily separated. They can syntactically be
interleaved to better expose the semantics of the Alloy code that are related to a specific
Alloy signature.

7 Alloy Analyzer at MIT http://alloy.mit.edu

http://alloy.mit.edu/

 49

Formalization of Model Elements

The model elements can be formalized in a straightforward way. Each concept

expressed in the UML diagram shown in Figure 14 is declared under an Alloy signature.
An association end in this diagram is mapped to an Alloy field of the Alloy signature
that declares the concept from which the association comes. Any cardinality specified
for an association end is mapped to an appropriate Alloy keyword: (* mapped to set,
0..1 mapped to lone). The generalization in the UML diagram can be mapped to Alloy
keyword extends.

First, a generic model element is defined. Signature seamHierarchicalElement
represents a generic model element from which more concrete model elements are
derived. A generic model element has component elements (field components) and a
parent element (field parent). Another signature - seamAction is declared for the
generic action from which the localized action and the distributed action are specialized.
This signature is a subtype of seamHierarchicalElement.

sig seamHierarchicalElement {
 component set seamHierarchicalElement, s :
 parent : lone seamHierarchicalElement
}

sig seamAction extends seamHierarchicalElement {
}

Next, modeling terms of our modeling language are declared as subtypes of one of

the two signatures declared above. Each working object has at most one distributed
action, one localized action and one property. Each distributed action, localized action
or property refers to a working object in which it is defined. In addition, a property or a
localized action refers to at most one distributed action via a goal binding, and a
distributed refers to at most one localized action via a means binding.

sig seamWorkingObject extends seamHierarchicalElement {
 main_distributed_action : lone seamDistributedAction,
 main_property : lone seamInfoObject,
 main_localized_action : lone seamLocalizedAction
}

sig seamProperty extends seamHierarchicalElement {
 host_object : one seamWorkingObject,
 goal_binding : one seamDistributedAction
}

sig seamDistributedAction extends seamAction {
 host_object : one seamWorkingObject,
 means_binding : one seamLocalizedAction
}

sig seamLocalizedAction extends seamAction {
 host_object : one seamWorkingObject,
 goal_binding : one seamDistributedAction
}

All the well-formeness rules that matter over the concepts that are declared by the 5

signatures above will also be formalized in this subsection.

 50

Formalization of Relations

The way relations are formalized should be done in the same way model elements
are. First, a generic relation seamRelation is declared in the following Alloy line of
code.

sig seamRelation {}

Specific relations are declared in the following code fragment. In principle, each

relation has a source element and a destination element, both of which are either
working object, property, distributed action or localized action. For the signature that
declares a generalization, the union operator in the expression seamProperty +

seamWorkingObject signifies that the source element and the destination element can
either be a property or a working object.

Unlike other relations, the composition can be applied to any kind of model
element. For this reason, the source and destination element of a composition are
declared as variables of the generic element.

sig COMPOSITION extends seamRelation {
 source : one seamHierarchicalElement,
 destination : one seamHierarchicalElement
}

sig ASSOCIATION extends seamRelation {
 source : one seamProperty,
 destination : one seamProperty
}

sig GENERALIZATION extends seamRelation {
 source : one seamProperty + seamWorkingObject,
 destination : one seamProperty + seamWorkingObject
}

sig TRANSITION extends seamRelation {
 source : one seamAction,
 destination : one seamAction
}

sig PARTICIPATION extends seamRelation {
 source : one seamWorkingObject,
 destination : one seamDistributedAction
}

Formalization of Well-formedness Rules

The 19 well-formedness rules of the SeamCAD modeling language are formalized
using Alloy facts. Syntactically, each Alloy fact has a name and a body, which consists
of statements. Semantically, the way these facts are formulated should be the same way
as English sentences are transformed into first-order logic statements. Nearly all
statements of the Alloy facts that formalize the well-formedness rules have the
quantification ∀ of the first-order logic (keyword all in Alloy).

First, the rule R1 states that the hierarchy made by hierarchical elements must not
be cyclic. The acyclic fact says that no hierarchical element that can be found in either
its transitive closure of the parent field or its transitive closure of the components
field.

 51

fact acyclic {
 all e: seamHierarchicalElement | e not in (e.^components + e.^parent)
}

Next, the rule R2 and R3 are captured by fact mutual. This fact makes sure that if a

hierarchical element is a child of another element, the latter must be the parent of the
former. Note that the Alloy implication construct (with symbol =>) is exploited in the
statement of this Alloy fact.

fact utual { m
 all e, epc: seamHierarchicalElement | (epc = e.parent => e in epc.
components) and (epc in e.components => epc.parent = e)
}

The rule R4 is captured by the fact da_in_host. To state that the main distributed

action of a working object always refers to it but does not have any parent, an Alloy fact
is defined as follows

fact da_in_host {
 all wo: seamWorkingObject, j: seamDistributedAction | j =
wo.main_distributed_action => (j.host_object = wo and no j.parent)
}

The fact da_in_host is furthered to make sure that any distributed action that

refers to a given working object must be a descendant of the main distributed action of
that working object.

fact da_in_host {
 all wo: seamWorkingObject, j: seamDistributedAction | j =
wo.main_distributed_action => (j.host_object = wo and no j.parent)
 all wo: seamWorkingObject, j : seamDistributedAction -
wo.main_distributed_action | j.host_object = wo => j in
wo.main_distributed_action.^components
}

A similar fact is added to formalize the rule R5 that matters on properties.

fact pr_in_host {
 all wo: seamWorkingObject, p: seamProperty | p = wo.main_property =>
(p.host_object = wo and no p.parent)
 all wo: seamWorkingObject, p : seamProperty - wo.main_property |
p.host_object = p => p in wo.main_property.^components
}

Another similar fact is added to formalize the rule R6 that matters on localized

actions.

fact a_in_host { l
 all wo: seamWorkingObject, l: seamLocalizedAction | l =
wo.main_localized_action => (l.host_object = wo and no l.parent)
 all wo: seamWorkingObject, all l: seamLocalizedAction -
wo.main_localized_action | l.host_object = wo => l in
wo.main_localized_action.^components
}

The rules R7, R8 and R9 can be captured together in the fact same_host. Note that

the expression seamProperty + seamDistributedAction + seamLocalizedAction yields a
set of all properties, distributed actions and localized actions.

 52

fact same_host {
 all e, c: seamProperty + seamDistributedAction + seamLocalizedAction | c in
e.components => c.host_object = e.host_object
}

The following fact captures the rules R10, R11, R12. Note that the dot join can be
concatenated to reach the host_object and parent field.

fact no_crossing {
 all r: ASSOCIATION | r.source.host_object = r.destination.host_object
 all r: TRANSITION | r.source.parent = r.destination.parent
 all r: PARTICIPATION | r.source.parent = r.destination.host_object
}

In the following Alloy fact, the first statement assures that for any two different

participation links, either their source elements are different or their destination
elements are different. The second statement implies that for any two different
transitions, either their source elements are different or their destination elements are
different. So, the rules R13 and R14 are formalized by this fact.

fact niqueness { u
 all pl1, pl2 : PARTICIPATION | pl1 != pl2 <=> (pl1.source != pl2.source or
pl1.destination != pl2.destination)
 all lt1, lt2 : TRANSITION | lt1 != lt2 <=> (lt1.source != lt2.source or
lt1.destination != lt2.destination)
}

To formalize the rule R15, an Alloy fact is added. In the following Alloy code

fragment, the code block right after the declaration of signature TRANSITION is actually
an unnamed fact that is stated in the context of this signature. The two statements in the
body of this fact force the source and destination element of a transition to be of the
same kind of action.

sig TRANSITION extends seamRelation {
 source : one seamAction,
 destination : one seamAction
} {
 source in seamDistributedAction <=> destinatio in seamDistributedAction n
 source in seamLocalizedAction <=> destination in seamLocalizedAction
}

The following Alloy fact formalizes the rules R16 and R17. The first statement

says that for any localized action la and any distributed action da, if they are related by
a means binding, then they have the same host object. The second statement states that
for any property p and any distributed action da, if they are related by a goal binding,
then they have the same host object. The third statement implies that for any localized
action la and any distributed action da, if they are related by a goal binding, then they
have the same host object.

fact oal_means { g
 all la: seamLocalizedAction, da: seamDistributedAction |
 da.means_binding = la => da.host_object = la.host_object
 all p: seamProperty, da: seamDistributedAction |
 p.goal_binding = da => p.host_object.parent = da.host_object
 all la: seamLocalizedAction, da: seamDistributedAction |
 l.goal_binding = da => la.host_object.parent = da.host_object
}

 53

The code block right after the declaration of signature COMPOSITION is actually an
unnamed fact that is stated in the context of this signature. All fields of this signature
can be referred to without being prefixed by a variable of COMPOSITION and a dot
symbol. This fact assures that the source and the destination of a composition must be
variable of the same kind of model element, which is actually what the rule R18 means.

sig COMPOSITION extends seamRelation {
 source : one seamHierarchicalElement,
 destination : one seamHierarchicalElement
} {
 source in seamWorkingObject <=> destination in seamWorkingObject
 source in seamProperty <=> destination in seamProperty
 source in seamDistributedAction <=> destination in seamDistributedAction
 source in seamLocalizedAction <=> destination in seamLocalizedAction }

To capture the rule R19 (make sure that there is always a composition between any

pair of model elements that have parent-child relationship), a fact called
composition_link is defined as follows

fact cmps_link {
 all p, ch: seamHierarchicalElement | ch.parent = p <=> (some c: COMPOSITION
| c.source = p and c.destination = ch)
}

It is important to keep track of how the well-formedness rules that were presented

in the meta-model are formally declared in Alloy. Table 8 shows the mapping from
these rules to Alloy facts that have been explained in this section.

Table 8. Mapping between informal well-formedness rules

of the SeamCAD modeling language to Alloy facts
Rule Brief semantics Alloy fact
R1 No cycle in hierarchy acyclic
R2 Parent is the inverse of children mutual
R3 Children is the inverse of parent mutual
R4 Hierarchy of distributed action da_in _host
R5 Hierarchy of localized action la_in _host
R6 Hierarchy of property pr_in _host
R7 Working object of distributed actions same_host
R8 Working object of localized actions same_host
R9 Working object of property same_host

R10 No cross-boundary association no_crossing
R11 No cross-boundary transition no_crossing
R12 No cross-boundary participation link no_crossing
R13 No more than one participation link uniqueness
R14 No more than one transition between any two actions uniqueness
R15 A transition connects actions of the same kind attached to signature
R16 Goal binding spreading over two working objects goal_means
R17 Means binding for one working object goal_means
R18 A composition connects two model elements of the same kind attached to signature
R19 One composition for a model element and each of its components cmps_link

Complete Alloy Code

Putting all the declarations, facts and predicate that were presented above results in
the whole Alloy code that. Note that the orders in which these declarations and facts are

 54

put together are flexible. To check the consistency of the Alloy code that was presented
in the two previous subsections, we can define some Alloy predicate to generate some
instance model. If the Alloy Analyzer can generate an instance model, even a trivial
one, the Alloy code is syntactically correct and not over-constrained at least for the
domain specified when executing the code. In the following code fragment, predicate
trivial instantiates a trivial model.

pred trivial() {}

run trivial

Figure 15 gives the complete Alloy code that formalizes the SeamCAD modeling

language. The code has 12 Alloy signatures, 12 Alloy facts, 28 statements and 130 lines
of code.

module seamcad_meta

sig seamHierarchicalElement {
 components : set seamHierarchicalElement,
 parent : lone seamHierarchicalElement
}

sig seamAction extends seamHierarchicalElement { }

fact cyclic { a
 all e: seamHierarchicalElement | e not in (e.^components + e.^parent)
}

fact mutual {
 all e, epc: seamHierarchicalElement | (epc = e.parent => e in epc.
components) and (epc in e.components => epc.parent = e)
}

sig seamWorkingObject extends seamHierarchicalElement {
 main_distributed_action : lone seamDistributedAction,
 main_property : lone seamInfoObject,
 main_localized_action : lone seamLocalizedAction
}

sig seamProperty extends seamHierarchicalElement {
 host_object : one seamWorkingObject,
 goal_binding : one seamDistributedAction
}

sig seamDistributedAction extends seamAction {
 host_object : one eamWorkingObject, s
 means_binding : one seamLocalizedAction
}

sig seamLocalizedAction extends seamAction {
 host_object : one seamWorkingObject,
 goal_binding : one seamDistributedAction
}

fact a_in_host { d
 all wo: seamWorkingObject, j: seamDistributedAction |
 j = wo.main_distributed_action => (j.host_object = wo and no j.parent)
}

fact pr_in_host {
 all wo: seamWorkingObject, p: seamProperty | p = wo.main_property =>
 (p.host_object = wo and no p.parent)
 all wo: seamWorkingObject, p : seamProperty - wo.main_property |

 55

 p.host_object = wo => p in wo.main_property.^components
}

fact la_in_host {
 all wo: seamWorkingObject | all l: seamLocalizedAction |
 l = wo.main_localized_action => (l.host_object = wo and no l.parent)
 all wo: seamWorkingObject | all l: seamLocalizedAction -
wo.main_localized_action | l.host_object = wo => l in
wo.main_localized_action.^components
}

fact ame_host { s
 all e, c: seamProperty + seamDistributedAction + seamLocalizedAction | c in
e.components => c.host_object = e.host_object
}

sig seamRelation {}

sig ASSOCIATION extends seamRelation {
 source : one seamProperty,
 destination : one seamProperty
}

sig GENERALIZATION extends seamRelation {
 source : one seamProperty + seamWorkingObject,
 destination : one seamProperty + seamWorkingObject
}

sig TRANSITION extends seamRelation {
 source : one seamAction,
 destination : one seamAction
} {
 source in seamDistributedAction <=> destinatio in seamDistributedAction n
 source in seamLocalizedAction <=> destination in seamLocalizedAction
}

sig PARTICIPATION extends seamRelation {
 source : one seamWorkingObject,
 destination : one seamDistributedAction
}

fact no_crossing {
 all r: ASSOCIATION | r.source.host_object = r.destination.host_object
 all r: TRANSITION | r.source.parent = r.destination.parent
 all r: PARTICIPATION | r.source.parent = r.destination.host_object
}

fact niqueness { u
 all pl1, pl2 : PARTICIPATION | pl1 != pl2 <=> (pl1.source != pl2.source or
pl1.destination != pl2.destination)
 all lt1, lt2 : TRANSITION | lt1 != lt2 <=> (lt1.source != lt2.source or
lt1.destination != lt2.destination)
}

fact goal_means {
 all la: seamLocalizedAction, da: seamDistributedAction |
 da.means_binding = la => da.host_object = la.host_object
 all p: seamProperty, da: seamDistributedAction |
 p.goal_binding = da => p.host_object.parent = da.host_object
 all la: seamLocalizedAction, da: seamDistributedAction |
 l.goal_binding = da => la.host_object.parent = da.host_object
}

sig COMPOSITION extends seamRelation {
 source : one seamHierarchicalElement,
 destination : one seamHierarchicalElement
} {
 source in seamWorkingObject <=> destination in seamWorkingObject

 56

 source in seamProperty <=> destination in seamProperty
 source in seamDistributedAction <=> destinatio in seamDistributedAction n
 source in seamLocalizedAction <=> destination in seamLocalizedAction
}

fact cmps_link {
 all p, ch: seamHierarchicalElement | ch.parent = p <=> (some c: COMPOSITION
| c.source = p and c.destination = ch)
}

pred trivial() {}

run trivial

Figure 15. Complete Alloy code formalizing the SeamCAD modeling language

3.4.2. Testing and executing the formalization code

It is possible to test the Alloy code in the other way round by making it

overconstrained or underconstrained. This can be done by declaring a predicate
specifying an instance model that intentionally violates the declared Alloy facts or by
running a weakened version of the Alloy code with the removal of some Alloy facts.
Figure 16 a) is the result of running a predicate that specifies an instance model of 3
working objects that have a loop among the parent hierarchy. We can see that Alloy
Analyzer cannot find any instance model for this overconstrained code. Figure 16 b) is
the result of running an underconstrained version of the Alloy code in which the fact
acyclic is removed. Figure 16 c) is the result of running another underconstrained
version of the Alloy code in which the fact mutual is removed. We can see the presence
of a cycle and the lack of the link from component working objects to the parent one,
respectively.

In addition to testing, we can try to instantiate the Alloy code that formalizes the
meta-model of the SeamCAD modeling language. If Alloy Analyzer can generate
meaningful instance model out of this Alloy code, we can belive that the meta-model
does not have contraditions. In subsection 3.3.2, the instances of the model of the online
bookstore are described using the SeamCAD modeling language. These instances can
be created using the SeamCAD computer-aided tool8. It is possible to intuitively verify
that the enterprise model built in the tool matches the instance model generated by
Alloy Analyzer in an instance-by-instance manner.

8 The SeamCAD tool is presented in the next chapter

 57

a)

b)

c)
Figure 16. Samples generated by Alloy Analyzer after executing

overconstrained Alloy code and underconstrained Alloy code

In the following code fragment, predicate mxp instantiates the very first

organizational level of the bookstore model. We declare the model elements that we
want the Alloy Analyzer tool to instantiate as parameters of this Alloy predicate. In the
body of this predicate, Alloy statements define how these models element should be put
together in the bookstore example.

 58

pred mxp(BOOKMARKET, CUSTOMER, BOOKSTOREVN: one seamWorkingObject,
 sale: one seamDistributedAction,
 SellTxn, Book, BookSpec, Message, CustomerInfo: one seamProperty,
 Buy, Sell: one seamLocalizedAction, pl1, pl2: one PARTICIPATION) {
 Buy != Sell
 #(SellTxn + Book + BookSpec + Message + CustomerInfo) = 5

no BOOKMARKET.parent
no BOOKMARKET.main_localized_action
no BOOKMARKET.main_property
BOO sKMARKET.main_di tributed_action = sale
no sale.components
BOOKMARKET.components = BOOKSTOREVN + CUSTOMER
no BOOKSTOREVN.components
BOO oKSTOREVN.main_l calized_action = Sell
no Sell.components
BOOKSTOREVN.main_property = SellTxn
SellTxn.components = Book + BookSpec + Message + CustomerInfo
no CUSTOMER.components
no CUSTOMER.main_distributed_action
CUS cTOMER.main_localized_a tion = Buy
no CUSTOMER.main_property
no Book.components
no BookSpec.components
no CustomerInfo.components
pl1.source = BOOKSTOR and pl1.destination = sale EVN
pl2.source = CUSTOMER and pl2.destination = sale

}

run mxp for 11

Running the code in Alloy Analyzer yields an instance model that can be visualized

as we can see in Figure 17. All the variables that are declared in the header of the
predicate mxp are visualized as pictograms. The text inside these pictograms has two
lines. The line above is an internal name given by Alloy Analyzer (not so interesting).
The line below indicates the name of the variable (in parentheses). There are also
pictograms that represent compositions that are in fact not declared in the predicate mxp.
These compositions are generated by the Alloy fact cmps_link. Note that the links
connecting all these pictograms stand for the Alloy fields of the Alloy signatures of
which they are instantiated. Note that we customized the shape of the pictograms to
better illustrate that they are instances of different Alloy signatures.

 59

Figure 17. Visualization of the 1st organizational level of the bookstore example

generated by Alloy Analyzer

 60

3.5. Notation

The SeamCAD modeling language has a notation scheme, which defines pictograms
of different kinds of model element and relation are presented and the rules that
mandate the way these pictograms are put together in a diagram.

The notation of the SeamCAD modeling language has two principles: a) to visually
express both the organizational hierarchy and the functional hierarchy in diagrams; b) to
rely on some widely-used notation in modeling. To meet the first principle, nested
pictograms are taken because they visually show the containment. More specifically, to
visually show that a model element is a component element of another, the pictogram of
the latter surrounds that of the former. There is a popular alternative approach (but less
visual) to express the containment. The pictograms of a component model element and
its parent element are connected by a line that represents the containment.

To fulfill the second principle, most of pictograms are taken from Unified Modeling
Language (UML), which is a widely-practiced modeling language for software and
system development. UML has various pictograms for depicting not only systems and
their components but only their attributes, properties, states and behaviors. Today, the
notations of many modeling languages and development processes take their root from
UML.

In the SeamCAD modeling language, the working object may represent any
business unit or an IT system, a certain computer application or even a software
component. For the working objects that stand for system or software, the UML
subsystem notation is the best because it has two meanings: as a classifier and as a
package (in the UML meta-model, the subsystem inherits from both the classifier and
the package). As a classifier, it represents something that has both structural and
behavioral features. As a package, it can group other model elements, including
subsystems, like a container. For the working objects that stand for business units such
as companies, a block arrow Porter notation is used instead of a UML subsystem
notation to make the SeamCAD modeling language closer to business-minded modeler.
For the working objects standing for people, the UML actor notation is exploited. Note
that it is not interesting to model a human being as whole or as composite like the
manner in which a company or a software component is represented. Therefore, the
pictogram of people is not nested to show anything inside.

The property in the SeamCAD modeling language takes the UML class notation but
the two compartments where the class attributes and the class operations are visible.
Specifying association and generalization among properties of the same working object
results in a UML class diagram that is rendered inside a pictogram of a working object
seen as whole.

The localized action in the SeamCAD modeling language takes the UML action
notation. Specifying transitions among localized actions of the same working object
results in a UML activity diagram that is rendered inside a pictogram of a working
object seen as whole.

The distributed action in the SeamCAD modeling language takes the UML
collaboration notation. Specifying participation links among distributed actions and
working objects that either takes a given working object as the host object or are its
component objects results in a UML pattern structure that is rendered inside a pictogram
of a working object seen as composite.

Table 9 summarizes the pictograms and the syntax of the SeamCAD modeling
language notation. The notation syntax is in fact originated from the well-formedness

 61

rules of the modeling language, which are captured by facts of the Alloy code that
formalizes the SeamCAD modeling language.

Table 9. Building blocks of the SeamCAD modeling language and their notation

Notation syntax Term Informal Definition
Black-box White-box

Notation

Working
Object

Represents any
business unit or IT
component found in
enterprise systems.
They “work”
together.

Working Object as
whole is

characterized by
Properties and

Localized Actions
R5 & R6 &
R8 & R9

Working Object as
composite is characterized

by component Working
Objects and Distributed

Actions
R4 & R7

St
at

ef
ul

pr

op
er

ty
 Externally-visible

properties that
characterize a given
Working Object

Pr
op

er
ty

St
at

el
es

s P
ro

pe
rty

(T

ra
ns

ac
tio

n)

Representation of the
occurrence of a
localized action.
Transaction is also
considered as a
context in which
normal properties are
defined

Property as whole

does not show
anything nested

Property as composite is
characterized by

component Properties.
They must be of the same

working object.

R9

Localized
Action

Externally-visible
actions performed by
a given Working
Object seen as whole

Localized Action
as whole does not

show anything
nested

Localized Action as
composite shows

component Localized
Actions. They must be of
the same working object.

R8

Distributed
Action

Interaction between
multiple working
objects that are
distributed into
localized actions of
participating
Working Objects
seen as composite.

Distributed Action
as whole does not

show anything
nested

Distributed Action as
composite shows

component Distributed
Actions. They must be
mediated by the same

working object.
R7

 Source Destination
A property A property

Association

(P-P)

Relation between two
properties of the same
working object. The two properties must be of the same

working object. Rolename and cardinality
can be specified for each property.

R10

A property or a
working object

A property or a
working object

Generalization
(P-P)

(WO-WO)

Relation between two
model elements of the
same kind.

A localized action A localized action
Transition

(A-A)

Relation between two
actions of the same kind
that are parented by the
same action

The two actions must be parented by the
same action. Condition can be specified for

the transition. R11

Supplier

Application

account order

1 *

sale

ProductInfo

SellTxn

Deliver
[order committed]

 62

Start / Stop
Transition

Relation coming to for
going from a localized
action

The action must be parented by the action in
which the transition is defined. R11

A working object A distributed
action

Participation
(WO-A)

Relation between a
working object and a
distributed action in
which it participates.

The working object must be parented by the
same working in which the distributed

action is defined. Rolename can be
specified for the working object. R12

Working object,
property, localized

action or a distributed
action

The same kind of
model element as

the source. No
loop!

R1 & R2 & R3

Composition
(WO-WO)

(P-P)
(A-A)

Relation between a model
element and its parent
model element.

Nested notation is the diagram. Tree-like
notation in the model navigation panel.

A stateless property
or a localized action

A distributed action

Goal
binding
(P-A)
(A-A)

Implicit relation from
stateless property
(transaction) or a
localized action to a
distributed action

The stateless property represents the
occurenece of the localized action, which in
turn represents the responsibility of the
working object participating in the
distributed action. R16
A distributed action A localized action Means

binding
(A-A)

Implicit relation from a
distributed action to a
localized action

The distributed action implements the
localized action. They should be defined for
the same working object. R17

To illustrate what does the notation syntax means, Figure 18 gives some

exhaustive list) combinations of pictograms that are either legal or ille
SeamCAD modeling language. The legal combinations are ticked by a
whereas the illegal ones are marked with a diagonal cross.

Figure 18. Legal and illegal combinations of pictograms
according to the SeamCAD notation

Application

ProductInfoDeliver

sale Supplier

ProductInfo

sale Application

Product

Supplier

ProductInfo Supplier sale

Deliver

Supplier

sale

Deliver

seller

None

None

 (but not an
gal in the
checkmark

parent

 child1
 child2
 child3

 Info

sale

 63

3.6. Solution to Four Modeling Challenges by SeamCAD

 out how the SeamCAD modeling language addresses the
ur modeling challenges presented in Chapter 1. Specifically, the SeamCAD modeling

lang

e same pattern: working objects that participate in

•
siness entities and IT systems in the enterprise

•
nd properties that are bound to it. (granularity)

odel (well-

Modeling Language

In this section, we point
fo

uage solves them as follows
• The enterprise model is structured into organizational levels. Each level is

represented following th
distributed actions (uniformness)
Any working object can be represented either as whole or as composite making
it possible to represent multiple bu
model (multi-entity)
Any distributed action can be broken down, resulting in detailed representations
of localized actions a

• The well-formedness rules of the language are always enforced to maintain the
intrinsic relations in and the well-formedness of the enterprise m
formedness)

Chapter 4: SeamCAD Computer-Aided Tool

Overview: This chapter is dedicated to the SeamCAD tool - a
computer-aided tool that was specifically developed to support the
SeamCAD modeling language. First, the role of such a computer-
aided tool in modeling EA hierarchically is analyzed. This
analysis establishes a list of requirements that a computer-aided
tool should fulfill. Next, the tool that has been developed for
SeamCAD is presented. The way this tool meets the identified
requirements is also highlighted. The SeamCAD tool has the
following originalities: i) model hierarchy and model overview are
made explicit and visible in every window; ii) in a diagram,
pictograms of model elements can be nested to explicitly express
the hierarchical containment; iii) the tool manages a coherent
enterprise model so that it can generate diagrams (but does not
keep a list of diagrams) as limited views of the model; iv) multiple
diagrams can be opened at the same time and they are kept in
synch. A painting algorithm and a layout algorithm that realize
these feature are presented. Last, the tool design, its traceability
to the Alloy code that formalizes the SeamCAD modeling
language and the metrics of the tool implementation and are
discussed.

 66

4.1. The Role of a Computer-Aided Tool in Modeling EA

Let us consider a computer-aided tool that would manage the enterprise models of
the online bookstore. Figure 19 describes the tool and the people who would use it, the
EA team members. The universe of discourse (UoD) represents the perceived reality of
the team members. In the UoD, the team members perceive entities. Examples of
entities are markets, value networks, or actions performed by them. These entities are
represented as model elements in the enterprise model.

Figure 19. The role that a computer-aided modeling tool

plays in an EA multi-discipline team who build a multi-level EA model

In the EA team, there are specialists such as marketers, business process designers,

and IT designers. They are responsible for managing specific entities. For instance, the
marketers reason about business systems and markets. The business process designers
manage business processes. All of them use the tool to build the common enterprise
model. In general, each specialist is in charge of a specific level in the model. The
enterprise architect coordinates the specialists. Her goal is to insure the alignment
between all levels. The tool can help her validate this alignment.

The tool should allow the different specialists to work within the same enterprise
model at the level for which they are responsible. It is thus essential that the tool shall
explicitly manage an organizational hierarchy that represents the enterprise’s
environment and organization. This is the first requirement.

We have seen in that a system's functionality needs to be modeled at different levels
of granularity that make up the functional hierarchy. This is the second requirement.

 Enterprise Model

Marketer

Architect

Biz designer

work

Computer-aided tool

IT designer

 67

Not

aphical models are well adapted to represent systems as
they

s entities and IT systems could be
rep

es and IT systems
are

s.

of the common enterprise model managed by the tool

We also n e model and

handles diagrams. In most of the modeling tools, diagrams are normally listed and
org

e that one of the challenges for the tool designer is to provide an ergonomic way to
manage these two hierarchies (i.e. enterprise’s environment/organization and levels of
details in the functionality). If this is not achieved, the modeler might get confused
between these two hierarchies.

The members of the EA team expect to reason on graphical representations of the
enterprise model. In addition, gr

 make relations between systems more intuitive. This leads to the third requirement
that includes the following three characteristics:

- The notation should be systemic meaning that it should be adapted to represent a
hierarchical model. For example, all busines

resented in a uniform way regardless of their nature9. The notation should also
emphasize concepts such as traceability between levels, relations between a business
entity or an IT system and its environment, containment hierarchy…

- The notation should be discipline-specific, so that the specialists can visually
recognize what they are responsible of. Although the business entiti

represented in a uniform manner (e.g. all have properties and participate to actions),
the pictograms that represent the different kinds of entity or system can change from
one organizational level o another. For example, IT-minded people might want to use
UML subsystems to represent IT systems. Business-minded people might want to use
the Porter arrow rather than UML subsystems to represent companies.

- The notation should be close to UML whenever possible, so that UML
practitioners can have an intuitive feeling of what the notation represent

Figure 20. Diagrams are rendered as partial views

eed to specify the way the computer-aided tool manages th

anized into folders. Quite often, a graphical element such as a class or actor is
created in one diagram and will appear in other diagrams. Sometimes, the
synchronization between these diagrams creates problems. This synchronization is
crucial when modeling hierarchical systems in EA. It is very frequent that elements
appear in multiple diagrams. For instance, a company will appear in multiple diagrams.
If the name of the company changes, all diagrams need to change. For this reason,
diagrams should be generated by extracting the relevant elements and their relationships
from a common model (see Figure 20). In addition, the traceability between model
elements shown in different diagrams need to be stored in the common, coherent model
too. This common model is structured according to the meta-model of the SeamCAD
modeling language. This is the fourth requirement.

9 This is one of the key features of a systemic approach. A systemic approach is based on system theory. The

Cambridge Dictionary of Philosophy [27] Audi, R., The Cambridge Dictionary of Philosophy: Cambridge University

Press, 1999, isbn defines “system theory” as the “trans-disciplinary study of the abstract organization of phenomena,

independent of their substance, type, or spatial or temporal scale of existence”.

obj1

obj3

obj2

action1

 Enterprise Model rendering

Diagrams

rel1

rel2

 68

To summarize the requirements, the computer-aided tool shall:

that represents the

environment and the organization of the enterprise being modeled;

levels of

•
titioners;

4.2. M d

lfills the requirements identified in
e previous section [28] [29].

 that represents the organization and the
environment of enterprise

e modeler to work on multiple organizational levels.
The tool has a main window that shows the organizational level hierarchy of the model
in a

ened and/or edited. The
mo

• maintain an explicit organizational level hierarchy

• maintain an explicit functional level hierarchy for the systems that represent
the functionality of business entities and IT systems at different
granularity;
implement a notation which is systemic, discipline-specific, understandable
by UML prac

• manage a common, coherent model from which the diagrams are generated

o eling EA with SeamCAD Tool

This section explains how the SeamCAD tool10 fu
th

4.2.1. Explicit hierarchy

The SeamCAD tool allows th

 tree-view widget. This main window enables the user to open editing windows in
which some part of the model can diagrammatically be edited.

Figure 21 a) shows an editing window. A tree-view widget to the top left corner of
this editing window displays the hierarchy of the model being op

deler can interact with it to generate the diagram she wants to display. For example,
in Figure 21 a), the working object Bookstore Value Network is made context object.
The modeler can see in both the tree-view widget and in the diagram that, at the value
network level, Bookstore Value Network consists of BookCo (responsible for
purchasing and management), PubCo (responsible for providing books) and ShipCo
(responsible for delivering books) that collaborate together.

10 The SeamCAD tool is available at http://lamspeople.epfl.ch/lsle/SEAMtool/

http://lamspeople.epfl.ch/lsle/SEAMtool/

 69

Figure 21 a): Bookstore Value Network and its companies seen as wholes

Figure 21 b). BookCo and its departments at the company organizational level,

functional level 1.

Each editing window is dedicated to a particular organizational level. There is no

limit on the number of editing windows opened at the same time. For instance, the
modeler can open 3 editing windows and select Bookstore Value Network, BookCo
and PurchasingDep as context objects to see the organizational levels described in the
example. The tool ensures the consistency among all editing windows. Changes made in
any window will propagate to the others.

As can be seen in both Figure 21 a) and Figure 21 b), the top tree node of the tree-
view represents the first working object BookCoMarket of the organizational hierarchy.
The organizational level hierarchy is visible below this node.

The most frequent user interactions in the tree-view are expanding/collapsing a tree
node and making a node the context object. If the modeler expands tree node that stands
for a working object, it is equivalent to changing to a subsequent organizational level. If
the modeler selects a tree node that corresponds to a working object and makes it the
context object in the diagram (to the right of the editing window), the environment of
this working object is hidden. Note that selections in the tree-view and those in the
diagram are always synchronized. For example, the modeler selects the tree node of

 70

BookCo in Figure 21 a), expands it and makes it the context object. The SeamCAD tool
then displays a window shown in Figure 21 b) expressing the departmental structure of
BookCo - the company level. At this level, there are two departments: PurchasingDep
responsible for IT management of customer orders and books, WarehouseDep
responsible for inventory processing and packaging. In Figure 21 b), the modeler has
purposely chosen to hide the environment of BookCo. In contrast, collapsing a tree node
that represents a working object is equivalent to changing to a precedent organizational
level.

Figure 21 a) and Figure 21 b) illustrate what we mean by traceability. The localized
action Market in BookCo as a whole (in Figure 21 a)) is realized by the distributed
action market in BookCo as composite (in Figure 21 b)). In Figure 21, the role of
PuchasingDep is Invoicing. This role is also visible as the Invoicing localized action
and the InvoicingTxn transaction in PurchasingDep. These relationships are defined
as goal bindings and means bindings in the SeamCAD modeling language. In the tool,
they are explicitly represented in the data structure of the enterporise model being
edited. The modeler only needs to enter once the name of the distributed action
(market), the name of the system (PurchasingDep), the name of the localized action
(Market) and visually setting the means binding of Market to market. The tool will
manage the generation of the note (implementation of Market) and role names
(Invoicing).

Figure 22. A multi-level representation covering

Bookstore Value Network, BookCo, PurchasingDep and OpApp.

It is possible to see multiple organizational levels in one window. Figure 22 shows

an editing window in which the value network level, the company level and the

 71

department level are represented in one diagram. The user can obtain such a diagram by
expanding, in the tree-view widget shown in Figure 21 a), the tree nodes BookCo and
PurchasingDep. This diagram illustrate that the SeamCAD modeling language and tool
have a recursive and systematic approach for modeling the organizational hierarchy.

4.2.2. Explicit functional level hierarchy

Navigating through the functional level hierarchy without confusing the modeler is

a challenge. Two preliminary versions of SeamCAD were developed until we found
adequate solutions to this challenge. These preliminary versions of the SeamCAD
implemented organizational level and functional level as completely separate concepts.
For each working object, the user could select the functional levels and organizational
levels she wanted to display. This lead to problems as it was possible to see diagrams
with multiple objects shown at different levels of functionality.

Figure 23. Example of functional level refinement: same organizational level

and entities as Figure 21 b) but behaviors described at functional level 2.

We found a solution by enforcing a given level of functionality in all objects shown

in the diagram. All working objects participating in this distributed action are displayed
at the same level of functionality. This is achieved by giving to the modeler the choice
to view the distributed actions as whole or as composite. This feature considerably
simplifies the navigation in the functional levels as the concept of functional level is
hidden in the notion of distributed action as whole or as composite. It also keeps
separate the navigation through functional levels (done by selecting how distributed
actions are represented) from the navigation through organizational levels (done by
selecting how working objects are represented). The tool relies on the goal bindings that
are captured in the model it manages to correctly show all working objects at the same
the functional level.

 72

Figure 21 b) and Figure 23 illustrate this point. The market distributed action is
seen as a composite making the pick and procure component actions visible. So the
information viewpoints of PurchasingDep and WarehouseDep are seen as composite.
Note that these distributed actions have their equivalence in the participating working
objects. For example, the pick distributed action becomes the Pick localized action that
represents the service offered by PurchasingDep. A stateless property of this
department called PickTxn represents the occurrences of the corresponding localized
action. There is also a property called BookCatalog representing the list of books
available to the customer from the perspective of PurchasingDep. The SeamCAD tool
relies on the goal binding going the localized action Pick and the stateless property
PickTxn to the distributed action pick to determine that this localized action and this
property should be viewed in the same way as the distributed action pick is.

4.2.3. A coherent model from which the diagrams are generated

The SeamCAD computer-aided tool manages a coherent model. An overview of the

model is visible in every window. We can see that in any of the windows shown Figure
21, Figure 22 and Figure 23, a tree-view widget at the top-left corner shows an
overview of the whole enterprise model of the online bookstore. This overview is
actually a tree graph of which tree nodes are working objects and distributed actions of
the bookstore model. The organizational hierarchy can be seen in this tree graph as a
path from, for instance the tree node that stands for BookCoMarket to a tree node
representing SerachServlet. The functional hierarchy can be seen in a similar way.
When an editing window is opened, the context working object for this newly-opened
window is determined. Then the diagram is rendered starting from the context working
object down to the model elements that do not have any component elements.

To make sure that all diagrams are always kept in synch, a propagation mechanism
is implemented in the tool. This mechanism is implemented using the
Observer/Publisher pattern [30]. Any pictogram is an observer for any change made in
the diagram. It will inform the model element in the common model, which play the
role of the publisher, about the change. The change is then broadcasted to other
pictograms – the observers - in other editing windows to make necessary update. Figure
24 illustrates a situation in which the same working object BookCo is painted in two
different diagrams. It is seen as whole in the editing window to the left and is seen as
composite in the window to the right of Figure 24. Changes made to this working object
in one of these windows, for instance renaming it, will automatically propagate to the
other window.

 73

Figure 24. The same working object BookCo appears in two diagrams.

Changes made to BookCo in any of these diagrams
will automatically propagate to the other diagram.

The modeler has filtering options to control the diagram generation. There are

several ways of filtering:
- It is possible to filter out a specific working object or distributed action. Once an

element is filtered out, some cognitive change are made in both the tree-view widget
and the diagram of the editing window that the filtering is done. In the tree-view widget,
the corresponding tree node of the object or action is grayed. In the diagram, the
pictogram of the element is hidden. In addition, the pictogram of the parent element
becomes transparent. For instance, Figure 25 a) depicts an editing window in which the
WarehouseDep is filtered out. We can see that the pictogram of this working object
disappears in the diagram to the right and its tree node is grayed in the tree-view widget
to the top-left of the editing window.

 74

Figure 25 a). Example of information hiding: WarehouseDep is hidden.

Figure 25 b). WarehouseDep is hidden.

The behavior of PurchasingDep is hidden too.

- The modeler can decide to hide the environment of a specific working object. This
is done when the editing window is created. For example, Figure 21 a) makes the
environment of BookCo visible whereas Figure 21 b) hides it. Making the environment
visible is a powerful feature as it allows the modeler to make the knowledge of the
system about its environment explicit. The SeamCAD tool enables drawing a “trace”
dependency between an information object in a working object and a model element in
the working object’s environment to depict the relationship between a system and its
environment.

- A last feature allows the modeler to filter out the property objects or localized
actions, or both, of a specific working object. Through this feature, the modeler can
obtain diagrams that are close to UML diagrams. Figure 25 b) shows how this kind of
filtering is applied to the PurchasingDep in the editing window depicted in Figure 25
a). A UML class diagram inside the PurchasingDep working object is obtained by

 75

hiding its actions. This capability illustrates that the SeamCAD tool could be considered
as a UML-like tool in which the context can be systematically represented.

4.2.4. Notation which is systemic, discipline-specific,
understandable by UML practitioners

As presented in Section, SeamCAD uses discipline-specific graphical elements to

represent the working objects. For instance, in Figure 23, a Porter arrow represents the
company and the UML subsystem represents the departments. To make the notation
even more concrete, the modeler can attach pictures to a working object. For example,
in Figure 22, the plant picture is attached to the pictogram of BookCo. This feature helps
the modeler to recognize what she is looking at.

The systemic notation has the following features:
• Explicit context representation: model elements such as localized actions,

properties and distributed actions are always represented within a working
object. The working object makes explicit the system in which these elements
are defined. In a similar way, component actions are always represented within
the composite action that contains them. This makes the behavioral context in
which actions are explicitly defined. For instance, in Figure 23, the Invoice and
Pick localized actions are within Invoicing making it visible that they define
what Invoicing means. This feature is actually realized by the nested notation
of SeamCAD. The SeamCAD tool automatically resizes an enclosing pictogram
whenever the modeler moves nested ones.

• Representation of multiple entities and systems: the modeler can look
simultaneously at the specification of multiple business entities or IT systems at
the same time. For instance, it is possible to analyze the behavior of both
PurchasingDep and WarehouseDep in Figure 23.

• Holistic representation of state and behavior: In a working object seen as whole,
properties and localized actions can both be visible.

The SeamCAD notation is strongly inspired by UML. Many graphical elements
come from UML. The main differences are that the SeamCAD notation permits putting
all kinds of model element in a diagram and that SeamCAD pictograms are designed to
be nested to visually show the containment hierarchy.

4.2.5. Overview of the model, the diagram and the element

The visibility of the modeler is generally limited and she typically intends to get
focused on certain part, not the entire, of the model. It is thus necessary to provide her
with some overview of the scope. This principle is relevant at three levels: the model-
wide scope, the diagram-wide scope and the element-wide scope.

Overview of Model

Figure 26 is a screenshot of the main window of the SeamCAD tool. The panel in
the top left corner is a tree-view widget that gives an overview of the model being
opened in the tool. Below it, a list-view widget shows all editing windows being
opened. Selecting an item in this list-view will render a small overview in a certain scale
of the diagram of the corresponding editing window in a panel to the right of the main

 76

window. The modeler can quickly switch to an editing window by invoking a special
command (clicking a special button or double-clicking the list item that represents it).

Figure 26 a). The main window of the SeamCAD tool shows

an overview of the model and a list of editing windows being opened.

Overview of Diagram

To the right of each editing window, a graphics panel renders the diagram through
which the modeler edits or views her enterprise model. There is another, smaller
graphics panel to the left of the editing window (just below the tree-view widget). This
panel also renders the same diagram as the panel to the right of the window does but in
a smaller scale. The modeler can adjust the rendering scale using a vertical slider to
make sure that she can see an overview of the whole diagram in the smaller panel even
if the diagram cannot be entirely visible in the bigger one. Note that the diagram
rendered in the smaller panel is not interactive in the sense that the modeler can neither
move nor edit pictograms of the diagram while she can do so in the bigger graphics
panel.

 77

Figure 26 b). An editing window of the SeamCAD tool shows a diagram (to the

right). In addition, it shows an overview of the diagram and
an overview of the solely selected model element in the diagram.

Overview of Model Element

In the diagrams generated by the SeamCAD tool, each model element is rendered
under a pictogram. As the SeamCAD tool specifically implements the SeamCAD
modeling language, all the attributes specified for the concepts that are described in the
meta-model of the language should be, explicitly or implicitly, rendered by the tool.
Basic attributes of the model element including the name and possibly the stereotype are
printed inside the pictogram that renders the element. Other attributes such as the pre-
condition and the post-condition of an action can be rendered on a tooltip as illustrated
in Figure 26 b). When the modeler hovers over the pictogram of the distributed action
sale (by moving the mouse cursor over the pictogram and stopping for a few seconds),
a tooltip is popped up to display the pre-condition and the post-condition (and also the
functional level at which the distributed action sale is represented) of this action. Note
that the SeamCAD tool does not enforce any grammar on the text entered in the pre-
condition or post-condition. It does not offer any function to simulate an action neither.
Appendix A exemplifies how the pre-condition and the post-condition of an action can
be formally specified in terms of properties created in the working object where the
action is defined. To view and to change attributes of a model element, the modeler can
select its pictogram in the diagram and interacts with a widget panel (at the bottom-left
corner of the editing window) that provides her with editable text fields each of which
corresponds to an attribute of the model element. There are also non-editable text fields
that show the values of the association ends going from the concept of which the
selected model element is an instance (e.g. the name of the main distributed action of a
working object).

4.2.6. Solution to the four challenges by the SeamCAD tool

In this subsection, we point out how the SeamCAD tool addresses the four modeling
challenges that are presented in Chapter 1 and we summarize the originality of the tool.
Specifically, the four challenges are solved as follows

 78

• The organizational hierarchy is explicitly shown in an interactive tree-view
widget. The modeler can choose any organizational level from this tree-view to
work with (uniformness)

• The tool allows any working object to be toggled between whole and composite
and to become the context object in a diagram. As the working object stands for
a business entity, an IT system or a software component, it is possible to design
multiple business entities, IT systems ands software components (multi-entity)

• The functional hierarchy is explicitly shown in an interactive tree-view widget.
The modeler can choose any functional level from this tree-view to work with.
In the diagram, properties and localized actions are showed according the
distributed action they are bound to. (granularity)

• The tool can generate diagrams to partially represent the enterprise model which
is kept well-formed by preventing the modeler from doing anything that is
against the well-formedness rules defined in the SeamCAD language. The tool
keeps diagrams in synch by propagating updates to all diagrams whenever some
change is made to the enterprise model in one of the diagrams (well-formedness)

The following originalities of the SeamCAD tool enable the solution to the four
modeling challenges (uniformness, multi-entity, granularity and well-formedness)

• Model hierarchy and model overview are made explicit and visible in every
window

• In a diagram, pictograms of model elements can be nested to explicitly express
the hierarchical containment.

• The tool manages a coherent enterprise model so that it can generate diagrams
(but does not keep a list of diagrams) as limited views of the model.

• Multiple diagrams can be opened at the same time and they are kept in synch.
To obtain these originalities, the tool needs to be designed with the following

consideration.
• Model elements are painted recursively, starting from the context working

object. If a model element is out of the scope defined by the context working
object, it is not painted.

• The diagram typically has a lot of nested pictograms. Some of them can be
nested to more than 2 levels. The tool should have a feature to assist the modeler
in getting a good diagram layout.

• The well-formnedness of the model edited in the SeamCAD tool is guaranteed
by maintaining the references between model elements whenever a creation,
deletion or modification is made to the model.

The first two remarks are addressed in the next section. The third one is discussed in
the section that follows the next section.

 79

4.3. Rendering and Layout

This section presents how diagrams in the SeamCAD tool are rendered and how the
diagram layout works in the tool.

4.3.1. Diagram rendering

operation render_diagram
input cxt_obj // a context working object
begin
 paint (cxt_obj)
end

operation working_object_painting
input wo // a working object
begin
 if wo is seen as whole
 begin
 property_painting(the main property of wo)
 localized_action_painting(the main localized action of wo)
 end
 else
 begin
 distributed_action_painting(the distributed action of wo)
 for all component working objects c of wo
 working_object_painting(c)
 end
 raw graphics for wo d
end

operation property_painting
input p // a property
begin
 if p is seen as composite
 for all component working objects c of p
 property_painting(c)
 raw graphics for p d
end

operation distributed_action_painting
input da // a distributed action
begin
 if da is seen as composite
 forall component working objects c of da
 property_painting(c)
 draw graphics for da
end

operation localized_action_painting
input la // a localized action
begin
 if la is seen as composite
 forall component working objects c of la
 property_painting(c)
 draw graphics for la
end

Figure 27. Pseudo-code of the rendering algorithm

The SeamCAD tool manages a common model that is outlined in the tree-view

widget of all editing windows and of the main window. When an editing window is
opened, the context working object for this newly-opened window is determined. In

 80

most cases, it is the working object that was selected in the window where the open
command is issued. Upon opening the editing window, the rendering algorithm works
to paint the diagram to the right of the editing window. This is basically a recursive
algorithm. Starting from the context working object, component model elements are
painted until the properties, distributed actions and localized actions seen as whole are
reached. For the working object viewed as whole, its main property and main localized
action is painted. For the working object viewed as composite, its main distributed
action and its component working objects are painted. For the any model element that is
a property, a distributed action or a localized action seen as whole, the recursive branch
of the rendering algorithm paints the very this element and then stop. For the any model
element that is a property, a distributed action or a localized action seen as composite,
the recursive branch of the rendering algorithm paints the very this element and its
component elements. Note that the context working object is viewed as composite by
default. Attributes of model element that are necessary for painting (e.g. name,
stereotype) is fetched from the common model. The rendering algorithm also relies on
the references between a model element and its component elements maintained in the
data structure of the common model. Thanks to this rendering algorithm, all diagrams
are consistently rendered. Figure 27 gives pseudo code of this rendering algorithm.

4.3.2. Automatic layout

algorithm Main Loop for Horizontal Scan
 horizontalScan(list l)
 sort(l); //sort list according to x-centers
 element e0 := l(i − 1);
 element e1 := l(i);
 for i := 0 to l.length − 1 do
 if (e0.xCenter < e1.xCenter) then
 overlap := calculateBiggestOverlap(e0, l);
 //calculated according to equation (7)
 for j := i + j to l.length − 1 do
 shift(l(j), overlap)
 //shift all elements starting from j about the overlap to the
right
 end for
 else if (e0.xCenter = e1.xCenter) then
 //don’t shift the elements
 else if (e0.xCenter = e1.xCenter) && (e0.yCenter = e1.yCenter) then
 //center-points are the exact same
 overlap := calculateBiggestOverlap(e0, l);
 //calculated according to equation (7)
 end if
 end for

algorithm Main Procedure for Optimized FSA
 layout(list l)
 maxLevel := getLevels(l);
 for i := maxLevel to i = 0 do
 list of lists ll;
 //all lists on this level
 ll := getListsOnLevel(i);
 for j := 0 to ll.lenght − 1 do
 horizontalScan(ll(j));
 verticalScan(ll(j));
 i−−;
 end for
 end for

Figure 28. Force-Scan algorithm for shifting overlapped pictograms

 81

The modeler typically faces while interacting with diagrams of SeamCAD. Most
frequently, the modeler toggles between the two whole and the composite of some
model element in the diagram. As the numbers of pictograms nested inside these two
views as well as their relative positions to the enclosing pictogram are basically
different, the dimension of the pictogram of the model element being toggled computed
by the tool may suddenly be changed. This change could result in two extreme cases: a)
the new dimension of the pictogram of the model element being toggled is significantly
smaller than that before the toggling operation. As a result, the diagram has a lot of
unused space between pictograms; b) the new dimension of the pictogram of the model
element being toggled is significantly bigger than that before the toggling operation,
potentially get overlapped with other pictograms. In these two cases, the diagram layout
needs to be optimized.

A master project was carried out to find an automatic layout algorithm and to
realize it in the SeamCAD tool [31]. Initially, an algorithm called Force-Scan [32] is
defined and implemented to solve the problem of overlapping pictograms in the second
extreme case aforementioned. The following gives a brief informal description of the
algorithm:

1. Sort all the pictograms according to the values of their x-centers
2. Start the horizontal scan from the left-most node to the right
3. Sort the nodes according to the values of their y-centers
4. Start the vertical scan from the up-most node down to the bottom

The pseudo code of this algorithm can be found in Figure 28. The algorithm is then

extended to cope with the first aforementioned extreme case. The resulting algorithm
can compute a compact overlapping-free layout. This algorithm is implemented in
SeamCAD as a passive command which can be invoked by the modeler whenever she
feels an automatic layout is needed. Figure 29 illustrates the effect of this automatic
layout feature. Figure 29 a) is a screenshot of an editing window of which diagram
shows Bookstore Value Network and Customer Value Network within
BookCoMarket. The modeler toggles Bookstore Value Network, and gets the diagram
shown in Figure 29 b) where the pictogram of the distributed action sale is overlapped
with that of Bookstore Value Network. Note that there is unnecessarily large space
between the pictograms of the action sale and of the working object Customer Value
Network. After having invoked the automatic layout feature, the modeler gets a compact
layout as shown in Figure 29 c).

 82

a)

b)

c)
Figure 29. The modeler invokes a command in the tool

to change the diagram layout.

 83

The current implementation has some limitation, however. First, if the diagram has

many pictograms, the automatic layout feature needs to be invoked multiple times to get
the optimal layout. Second, pictograms of the notes are not counted in the layout
algorithm.

4.4. Implementation of SeamCAD Tool

We consider the Alloy code that formalizes the meta-model of the SeamCAD
modeling language as the formalization or the declarative specification of the
SeamCAD modeling framework. On the other hand, as the SeamCAD tool was fully
implemented in Java, this Java code can be considered as the realization or the
imperative implementation of the SeamCAD modeling framework.

In this section, we present the metrics of the implementation of the SeamCAD tool
and compare it to the formalization of the SeamCAD modeling language. A more
detailed presentation of the architecture and design of the SeamCAD tool can be found
in Appendix D. As presented in Chapter 3, the SeamCAD meta-model consists of a list
of building blocks and a list of well-formedness rules. We will discuss the
correspondence between the formalization and the realization of these two lists
separately.

Table 10. Correspondence between the formalization and the realization

of the SeamCAD building blocks
Building

block
Brief description Alloy code

Implementation

in Java

Working
Object

Represents any business unit or
IT system or software
component of the enterprise
being modeled.

signature

seamWorkingObject

Java class

Property

Externally-observable properties
that characterize a given
Working Object.

signature
seamProperty

Java class

Distributed
Action

Represents collaboration
between working objects.

signature
seamDistributedAction

Java class

Localized

Action

Externally- observable actions
performed by a given Working
Object seen as whole.

signature
seamLocalizedAction

Java class

Expressive
relation

Relation that can
diagrammatically be expressed
including association,
participation, transition and
generalization

signature
ASSOCIATION,
PARTICIPATION,
TRANSITION and
GENERIALIZATION

Java class

Intrinsic
relation

Goal binding
and
means binding

fields in signature
seamDistributedAction
seamLocalizedAction

and
seamProperty

Java fields

Table 10 shows the correspondence between the formalization and the

implementation of the SeamCAD building blocks. All the building blocks but the goal
binding and the means binding are formalized by Alloy signatures. Nevertheless, the
goal binding and the means binding are formalized by Alloy fields in the signatures

 84

formalizing the property, the localized action and the distributed action. In the
implementation of the SeamCAD tool, these building blocks are represented in a similar
way: all the building blocks but the goal binding and the means binding are realized by
Java classes whereas the goal binding and the means binding are realized by Java fields.
In other words, there is a straightforward correspondence between the formalization
code (in Alloy) and the implementation code (in Java) of the SeamCAD building
blocks.

Table 11 shows the correspondence between the formalization and the
implementation of the SeamCAD well-formedness rules. In the language specification,
all the well-formedness rules are formalized by Alloy facts. In the implementation of the
SeamCAD tool, these rules are represented in different ways. For instance, the rule R1
is implemented by the rendering and hit-testing algorithm of the box-in-box notation
that prevents the modeler from creating a loop along the organizational and functional
hierarchy. The rules R2 and R3 are implemented by some Java code that maintains the
integrity of the data structure whenever a creation or a deletion of a model eminent is
made. A special Java class offers several methods which can be invoked to check
whether a model element can be created inside the pictogram of an existing model
element. The checking result is determined based on the specific kind (i.e. working
object, property, localized action or distributed action) of the existing model element
and the would-be created model element. This class, called the “policy”, implements the
rules R4, R5 and R6.

Table 11. Correspondence between the formalization and the realization
of the SeamCAD well-formedness rules

Rule Brief semantics Alloy code Implementation in Java
R1 No cycle in hierarchy fact acyclic box-in-box notation rendering

and hit-testing algorithm

R2
Parent is the inverse of
children

fact mutual

reference to parent element is
maintained when a new child
is added

R3

Children is the inverse of
parent

fact mutual

reference to parent element is
maintained when a new child
is added

R4

Hierarchy of distributed
action

fact
da_in_host

Checked by a “policy” class
whenever a distributed action
is created

R5

Hierarchy of localized
action

fact
la_in_host

Checked by a “policy” class
whenever a localized action is
created

R6 Hierarchy of property fact
pr_in_host

Checked by a “policy” class
whenever a property is created

R7

Working object of
distributed actions

fact

same_host

Making host object is a query
attribute frees the burden of
setting value correct as if it is
a field

R8

Working object of
localized actions

fact

same_host

Making host object is a query
attribute frees the burden of
setting value correct as if it is
a field

 85

R9

Working object of
properties

fact

same_host

Making host object is a query
attribute frees the burden of
setting value correct as if it is
a field

R10 No cross-boundary
association

fact
no_crossing

R11 No cross-boundary
transition

fact
no_crossing

R12 No cross-boundary
collaboration link

fact
no_crossing

R13

No more than one
collaboration link

fact
uniqueness

Checked by a “policy” class
whenever a participation link
is made

R14

No more than one
transition between any
two actions

fact
uniqueness

Checked by a “policy” class
whenever a transition is made

R15

A transition connects
actions of the same kind

fact attached
to signature
TRANSITION

Checked by a “policy” class
whenever a transition is made

R16

Goal binding spreading
over two working objects

fact
goal_means

Binding is created by the tool
whenever a participation link
is created

R17

Means binding for one
working object

fact
goal_means

The localized action to which
a means binding can be
created by the user must be
chosen from a lists of
localized actions that relevant
to the distributed action from
which the means binding will
be created

R18

A composition connects
two model elements of
the same kind

fact attached
to signature
COMPOSITION

Checked by a “policy” class
whenever a new model
element is created

R19

One composition for a
model element and each
of its components

fact
cmps_link

Rendered as line connecting a
tree node to each of its child
nodes in the tree-view widget

As presented in Chapter 3, the Alloy formalization code has 12 Alloy signatures, 12

Alloy facts (2 of which are unnamed and attached to some Alloy signature), 28
statements, and 130 lines of code. The SeamCAD tool was implemented in standard
Java, requiring no special programming libraries other than the standard Java Virtual
Machine11. The full Java code that implements the SeamCAD computer-aided tool is
significantly more complex than the Alloy code that formalizes the SeamCAD modeling
language. Figure 30 gives the metrics summary of the latest version of this Java code. It
is actually a screenshot of a dialog opened in the SourceMonitor tool12 - a tool that
manages source code written in different programming languages. The total number of
lines of Java code is 38002, 37.3% of which are attributed to the comment lines (the

11 Sun Java Virtual Machine http://java.sun.com/docs/books/jvms/
12 SourceMonitor http://www.campwoodsw.com/sourcemonitor.html

http://java.sun.com/docs/books/jvms/
http://www.campwoodsw.com/sourcemonitor.html

 86

Java code was documented using JavaDoc13). There are a total of 296 Java classes and
interfaces. In average, there are 7.2 methods per class, 5.2 statements per method. The
total number of Java statements is 16662.

Figure 30. Metrics summary of the Java code

that implements the SeamCAD tool

Table 12 compares the metrics of the Alloy code and that of the Java code. It is

obvious that the metrics of the Java code is much more enormous than that of the Alloy
code due the difference between the two programming paradigms: Alloy is a declarative
language and Java is an imperative language. In addition, the Java code implements the
user-interface of the SeamCAD tool whereas the Alloy code does not (the execution of
the Alloy code is visualized by the Alloy Analyzer tool).

Table 12. Comparison of Alloy code metrics and Java code metrics

Alloy code Java code
Number of signatures 12 Number of classes and interfaces 296
fact / signature ratio 1.0 Average number of methods per class 7.2
Number of statements 28 Number of statements 16662
Number of lines of code 130 Number of lines of code 38002
Percentages of comment lines 0% Percentages of comment lines 37.3%
Number of files 1 Number of files 256

4.5. Data Verification

 In this section, we present an efficient way to automatically verify the data
manipulated by SeamCAD, for compatibility with the meta-model expressed in Alloy
[33]. We check that each instance of the model elements and their relations that is
created in the design fulfills the constraints of the meta-model in Alloy. This can be

13 Sun JavaDoc http://java.sun.com/j2se/javadoc/

http://java.sun.com/j2se/javadoc/

 87

efficiently done using CrocoPat14, a tool for relational programming [34]. First, we
export from SeamCAD all model element instances and their relations into a fact base
as text file in the relational standard format RSF [35]. Second, we translate the well-
formedness rules of the SEAM modeling language that are effectively formalized in
Alloy into a relational program in Relational Manipulation Language (RML) -
CrocoPat’s programming language. The generated RML program contains for each
well-formedness rule the corresponding statements to check whether the constraint
holds for the whole input fact base (given as RSF file to CrocoPat). If the exported fact
base successfully passes the RML program, we are guaranteed that the design as
produced by our modeling tool does not break any of the constraints of the meta-model
in Alloy.

From Alloy to RML

 CrocoPat is an interpreter for imperative, relational programs. By storing the
relations internally using a highly tuned representation that is based on binary decision
diagrams (BDD), the tool is able to perform complex operations on large relations
efficiently. To illustrate the translation from Alloy to CrocoPat, we take a fragment of
Alloy code that formalizes the SeamCAD modeling language. A hierarchical element is
a generic model element the meta-model. A working object can have a number of child
elements and optionally a parent element.
 Figure 31 gives the Alloy code fragment. The hierarchical element is declared as a
signature and the hierarchy of these elements is constrained by the two Alloy fact
acyclic (no loop in the hierarchy) and mutual (parent and children should be in turn).

sig seamHierarchicalElement {
 containment : set seamHierarchicalElement,
 parent : lone seamHierarchicalElement
}

fact cyclic { a
 all e: seamHierarchicalElement | e not in (e.^containment + e.^parent)
}

fact mutual {
 all e, epc: seamHierarchicalElement | (epc = e.parent => e in epc.
containment) and (epc in e. containment => epc.parent = e)
}

Figure 31. The hierarchical model element is declared in Alloy.

 Figure 32 shows the RML (Relational Manipulation Language) code for
CrocoPat that is semantically equivalent to the Alloy fact acyclic in Figure 31. The
Alloy signature seamHierarchicalElement is represented by a unary relation (i.e., a
set) with the same name; the Alloy fields are represented by binary relations with the
same name. The transitive closures are explicitly stored in our example, by the binary
relations TCContainment and TCParent. The fact acyclic is represented by an
expression whose result is assigned to relation notAcyclic (“FA” stands for “for all” in
RML). In our relational program, we use the negation of the fact, because we are
interested in providing the user with a counterexample if the fact is not valid. Therefore,
the RML expression computes the set of objects that do not fulfill the constraints of the

14 CrocoPat: A Tool for Simple and Efficient Relational Programming http://www.cs.sfu.ca/~dbeyer/CrocoPat/

http://www.cs.sfu.ca/~dbeyer/CrocoPat/

 88

fact acyclic. Similarly, fact mutual is represented by an expression whose result is
assigned to relation notMutual. The print statements output the computation results to
the standard output. Note that Figure 32 shows only the translation of the two facts. For
encoding the cardinality constraint lone for the field parent, we would have to add the
following constraint to the conjunction in Figure 32: FA(x,y, (parent(e,x) &
parent(e,y)) -> x=y).

TCContainment(x,z) := TC(containment(x,z));
TCParent(x,z) := TC(parent(x,z));
notAcyclic(e) :=
 !(seamHierarchicalElement(e) -> (!TCContainment(e,e) & !TCParent(e,e)));
notMutual (e) :=
 !(seamHierarchicalElement(e) -> FA(c, containment(e,c) -> parent(c,e) &
 (parent(e, epc) -> containment(epc, e))
);

IF(notAcyclic(e) = FALSE(x)) {
 PRINT "Fact acyclic is valid.", ENDL;
} ELSE {
 PRINT "Fact acyclic is not valid for the following objects:", ENDL;
 PRINT notAcyclic(e);
}
IF(notMutual(e) = FALSE(x)) {
 PRINT "Fact mutual is valid.", ENDL;
} ELSE {
 PRINT "Fact mutual is not valid for the following objects:", ENDL;
 PRINT notMutual(e);
}

Figure 32. An RML program for the Alloy code fragment given in Figure 31.

 Figure 33 shows a correct fact base, i.e., relational representation of a design in
RSF, for the RML program given in Figure 32. The design consists of four objects:
object0 has no parent but one child, object1 has object0 as parent and two children,
object11 and object12, which have both object1 as parent. The unary relation
WorkingObject contains all objects, while the parent and child relationships are listed
by the binary relations parent and containment, respectively.
 CrocoPat is a command-line tool that can be easily integrated into other tools. It
gets as input the RML program from Figure 32 and the RSF file from Figure 33, and
produces the validity result as ouput. In the negative case it outputs a list of
counterexamples.

WorkingObject object0
WorkingObject object1
WorkingObject object11
WorkingObject object12
containment object0 object1
containment object1 object11
containment object1 object12
parent object1 object0
parent object11 object1
parent object12 object1

Figure 33. An RSF example describing elements and their relations that is
considered as valid design by the RML program

 Verification

The Alloy/CrocoPat translator is implemented by integrating the RML code
generation into the Alloy parser, using the visitor design pattern. The Java class that

 89

translates Alloy to RML is approximately 1400 lines of Java source code. The
translation from Alloy to CrocoPat is straightforward for most expressions (both are
based on first-order predicate calculus), at the exception of some “syntactic sugar”
notations in Alloy. As RML language is based on pure predicate calculus,
“abbreviations” in Alloy need to be transformed into compound expressions, i.e., the
definition of the notation is inlined. Table 13 summarizes the basic Alloy operators that
our prototype implementation can currently translate to RML code.

Table 13. Translation from Alloy to RML

 (negation for counterexample extraction included)
Alloy RML

Quantified formulas
all x: sig_A | formula CE(x) := !(sig_A(x)-> <rel expression>)
no x: sig_A | formula CE(x) := sig_A(x) -> <rel expression>

Element formulas
y in x.attr attr(x, y)

x.attr != y.attr !FA(z, attr(x, z) <-> attr(y, z))

Boolean expressions
left_formula && right_formula <expression 1> & <expression 2>

left_formula || right_formula <expression 1> | <expression 2>

left_formula <=> right_formula <expression 1> <-> <expression 2>

Relational expressions
left_expr & right_expr <rel expression 1> & <rel expression 2>

left_expr | right_expr <rel expression 1> | <rel expression 2>

left_expr - right_expr <rel expression 1> & !<rel expression 2>

Transitive closure
y in x.^attr TC(attr(x, y)

The SeamCAD tool can export the model being edited to a local file in RSF

format. As soon as we have RML program that translated from the Alloy code that
formalizes the SEAM modeling language, we can run CrocoPat to verify whether the
model edited in the SeamCAD tool match the formalization of the SeamCAD modeling
language. Figure 34 is the complete RML that was translated from the Alloy code that
formalizes the SeamCAD modeling language. Note that the declaration of child and
parent elements as well as the related Alloy facts are repeated among the RML code that
deal with specific kind of model element.

PRINT "===", ENDL;
PRINT "=====================Verification of SeamCAD model=====================", ENDL;
PRINT "===", ENDL;

PRINT ENDL, "*****Gathering statistics...", ENDL;
PRINT "Number of computational objects: ", #(seamCompuObject(x, y)), ENDL;
PRINT "Number of information objects: ", #(seamInfoObject(x, y)), ENDL;
PRINT "Number of joint actions: ", #(seamJointAction(x, y)), ENDL;
PRINT "Number of localized actions: ", #(seamLocalizedAction(x, y)), ENDL;
PRINT "Number of associations: ", #(ASSOCIATION(x)), ENDL;
PRINT "Number of collaboration links: ", #(COLLABORATION(x)), ENDL;
leafCompuObject(w, n) := seamCompuObject(w, n) & !EX(c, containment(w, c));
PRINT "Number of leaf computational objects: ", #(leafCompuObject(x, y)), ENDL;
mainCompuObject(w, n) := seamCompuObject(w, n) & !EX(p, parent(w, p));
PRINT "Main computational object: ", mainCompuObject(x, y);

//---Signature: seamCompuObject
PRINT ENDL, "*****Checking the cardinalities of 'seamCompuObject'...", ENDL;

 90

not_lone_main_joint_action(a, n) := seamCompuObject(a, n) & EX(x, y, m, k,
seamJointAction(x, m) & seamJointAction(y, k) & main_joint_action(a, x) &
main_joint_action(a, y) & x != y);
IF (not_lone_main_joint_action(a, n) = FALSE(x)) {
 PRINT "declaration {main_joint_action : lone seamJointAction} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the declaration {main_joint_action : lone
seamJointAction}", ENDL;
 PRINT not_lone_main_joint_action(a, n);
}

not_lone_main_property(a, n) := seamCompuObject(a, n) & EX(x, y, m, k, seamInfoObject(x,
m) & seamInfoObject(y, k) & main_property(a, x) & main_property(a, y) & x != y);
IF (not_lone_main_property(a, n) = FALSE(x)) {
 PRINT "declaration {main_property : lone seamInfoObject} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the declaration {main_property : lone
seamInfoObject}", ENDL;
 PRINT not_lone_main_property(a, n);
}

not_lone_main_localized_action(a, n) := seamCompuObject(a, n) & EX(x, y, m, k,
seamLocalizedAction(x, m) & seamLocalizedAction(y, k) & main_localized_action(a, x) &
main_localized_action(a, y) & x != y);
IF (not_lone_main_localized_action(a, n) = FALSE(x)) {
 PRINT "declaration {main_localized_action : lone seamLocalizedAction} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the declaration {main_localized_action : lone
seamLocalizedAction}", ENDL;
 PRINT not_lone_main_localized_action(a, n);
}

compu_not_lone_parent(a, n) := seamCompuObject(a, n) & EX(x, y, m, k, seamCompuObject(x,
m) & seamCompuObject(y, k) & parent(a, x) & parent(a, y) & x != y);
IF (compu_not_lone_parent(a, n) = FALSE(x)) {
 PRINT "declaration {parent: lone seamCompuObject} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the declaration {parent: lone
seamCompuObject}", ENDL;
 PRINT compu_not_lone_parent(a, n);
}

//---Signature: seamInfoObject
PRINT ENDL, "*****Checking the cardinalities of 'seamInfoObject'...", ENDL;

info_not_one_compu_host(a, n) := seamInfoObject(a, n) & !(EX(x, m, seamCompuObject(x, m)
& compu_host(a, x)) & !EX(x, y, m, k, seamCompuObject(x, m) & seamCompuObject(y, k) &
compu_host(a, x) & compu_host(a, y) & x != y));
IF (info_not_one_compu_host(a, n) = FALSE(x)) {
 PRINT "declaration {compu_host : one seamCompuObject} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the declaration {one compu_host}", ENDL;
 PRINT info_not_one_compu_host(a, n);
}

info_not_lone_parent(a, n) := seamInfoObject(a, n) & EX(x, y, m, k, seamInfoObject(x, m)
& seamInfoObject(y, k) & parent(a, x) & parent(a, y) & x != y);
IF (info_not_lone_parent(a, n) = FALSE(x)) {
 PRINT "declaration {parent: lone seamInfoObject} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the declaration {parent: lone seamInfoObject}",
ENDL;
 PRINT info_not_lone_parent(a, n);
}

//---Signature: seamJointAction
PRINT ENDL, "*****Checking the cardinalities of 'seamJointAction'...", ENDL;

joint_not_one_compu_host(a, n) := seamJointAction(a, n) & !(EX(x, m, seamCompuObject(x,
m) & compu_host(a, x)) & !EX(x, y, m, k, seamCompuObject(x, m) & seamCompuObject(y, k) &
compu_host(a, x) & compu_host(a, y) & x != y));

 91

IF (joint_not_one_compu_host(a, n) = FALSE(x)) {
 PRINT "declaration {compu_host : one seamCompuObject} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the declaration {compu_host : one
seamCompuObject}", ENDL;
 PRINT joint_not_one_compu_host(a, n);
}

joint_not_lone_parent(a, n) := seamJointAction(a, n) & EX(x, y, m, k, seamJointAction(x,
m) & seamJointAction(y, k) & parent(a, x) & parent(a, y) & x != y);
IF (joint_not_lone_parent(a, n) = FALSE(x)) {
 PRINT "declaration {parent: lone seamJointAction} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the declaration {parent: lone
seamJointAction}", ENDL;
 PRINT joint_not_lone_parent(a, n);
}

//---Signature: seamLocalizedAction
PRINT ENDL, "*****Checking the cardinalities of 'seamLocalizedAction'...", ENDL;

localized_not_one_compu_host(a, n) := seamLocalizedAction(a, n) & !(EX(x, m,
seamCompuObject(x, m) & compu_host(a, x)) & !EX(x, y, m, k, seamCompuObject(x, m) &
seamCompuObject(y, k) & compu_host(a, x) & compu_host(a, y) & x != y));
IF (localized_not_one_compu_host(a, n) = FALSE(x)) {
 PRINT "declaration {compu_host : one seamCompuObject} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the declaration {compu_host : one
seamCompuObject}", ENDL;
 PRINT localized_not_one_compu_host(a, n);
}

localized_not_lone_parent(a, n) := seamLocalizedAction(a, n) & EX(x, y, m, k,
seamLocalizedAction(x, m) & seamLocalizedAction(y, k) & parent(a, x) & parent(a, y) & x
!= y);
IF (localized_not_lone_parent(a, n) = FALSE(x)) {
 PRINT "declaration {parent: lone seamLocalizedAction} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the declaration {lone parent}", ENDL;
 PRINT localized_not_lone_parent(a, n);
}

//---Facts:
//Fact: fact viewpoint
PRINT ENDL, "*****Evaluating the fact 'viewpoint'...", ENDL;

DescendantOf(x, z) := TC(containment(x, z));
AncestorOf(x, z) := TC(parent(x, z));

not_viewpoint1(wo, n) := seamCompuObject(wo, n) & !FA(j, main_joint_action(wo, j) ->
(compu_host(j, wo) & !EX(y, parent(j, y))));
IF (not_viewpoint1(wo, n) = FALSE(x)) {
 PRINT "fact {all wo: seamCompuObject | all j: seamJointAction | j =
wo.main_joint_action => (j.compu_host = wo and no j.parent)} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all wo : seamCompuObject | all j :
seamJointAction | some wo . main_joint_action && j = wo . main_joint_action => j .
compu_host = wo && no j . parent}", ENDL;
 PRINT not_viewpoint1(wo, n);
}

not_viewpoint2(wo, n) := seamCompuObject(wo, n) & EX(k, main_joint_action(wo, k)) &
!EX(k, main_joint_action(wo, k) & FA(j, m, seamJointAction(j, m) &
!main_joint_action(wo, j) & compu_host(j, wo)-> DescendantOf(k, j)));
IF (not_viewpoint2(wo, n) = FALSE(x)) {
 PRINT "fact {all wo: seamCompuObject | all j : seamJointAction -
wo.main_joint_action | j.compu_host = wo => j in wo.main_joint_action.^containment} OK",
ENDL;
}
ELSE {

 92

 PRINT "Element(s) that violate(s) the fact {all wo: seamCompuObject | all j :
seamJointAction - wo.main_joint_action | j.compu_host = wo => j in
wo.main_joint_action.^containment}", ENDL;
 PRINT not_viewpoint2(wo, n);
}

not_viewpoint3(wo, n) := seamCompuObject(wo, n) & !FA(p, m, seamInfoObject(p, m) &
main_property(wo, p) -> (compu_host(p, wo) & !EX(y, parent(p, y))));
IF (not_viewpoint3(wo, n) = FALSE(x)) {
 PRINT "fact {seamCompuObject | all p: seamInfoObject | p = wo.main_property =>
(p.compu_host = wo and no p.parent)} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all wo: seamCompuObject | all p:
seamInfoObject | p = wo.main_property => (p.compu_host = wo and no p.parent)}", ENDL;
 PRINT not_viewpoint3(wo, n);
}

not_viewpoint4(wo, n) := seamCompuObject(wo, n) & EX(k, main_property(wo, k)) & !EX(k,
main_property(wo, k) & FA(p, m, seamInfoObject(p, m) & !main_property(wo, p) &
compu_host(p, wo)-> DescendantOf(k, p)));
IF (not_viewpoint4(wo, n) = FALSE(x)) {
 PRINT "fact {all wo: seamCompuObject | all io : seamInfoObject - wo.main_property
| io.compu_host = wo => io in wo.main_property.^containment} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all wo: seamCompuObject | all io :
seamInfoObject - wo.main_property | io.compu_host = wo => io in
wo.main_property.^containment}", ENDL;
 PRINT not_viewpoint4(wo, n);
}

not_viewpoint5(wo, n) := seamCompuObject(wo, n) & !FA(l, main_localized_action(wo, l) ->
(compu_host(l, wo) & !EX(y, parent(l, y))));
IF (not_viewpoint5(wo, n) = FALSE(x)) {
 PRINT "fact {all wo: seamCompuObject | all l: seamLocalizedAction | l =
wo.main_localized_action => (l.compu_host = wo and no l.parent)} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact all wo: seamCompuObject | all l:
seamLocalizedAction | l = wo.main_localized_action => (l.compu_host = wo and no
l.parent)}", ENDL;
 PRINT not_viewpoint5(wo, n);
}

not_viewpoint6(wo, n) := seamCompuObject(wo, n) & EX(k, main_localized_action(wo, k)) &
!EX(k, main_localized_action(wo, k) & FA(l, m, seamLocalizedAction(l, m) &
!main_localized_action(wo,l) & compu_host(l, wo)-> DescendantOf(k, l)));
IF (not_viewpoint6(wo, n) = FALSE(x)) {
 PRINT "fact {all wo: seamCompuObject | all l: seamLocalizedAction -
wo.main_localized_action | l.compu_host = wo => l in
wo.main_localized_action.^containment} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all wo: seamCompuObject | all l:
seamLocalizedAction - wo.main_localized_action | l.compu_host = wo => l in
wo.main_localized_action.^containment}", ENDL;
 PRINT not_viewpoint6(wo, n);
}

//Fact: fact acyclic
PRINT ENDL, "*****Evaluating the fact 'acyclic'...", ENDL;

compu_not_acyclic(e, n) := !(seamCompuObject(e, n) -> !DescendantOf(e, e) &
!AncestorOf(e, e));
IF (compu_not_acyclic(e, n) = FALSE(x)) {
 PRINT "fact {all e: seamCompuObject | e not in (e.^containment + e.^parent)} OK",
ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all e: seamCompuObject | e not in
(e.^containment + e.^parent)}", ENDL;
 PRINT compu_not_acyclic(e, n);
}

compu_not_containment(e, n) := !(seamCompuObject(e, n) -> FA(epc, (containment(e, epc) -
> parent(epc, e)) & (parent(e, epc) -> containment(epc, e))));

 93

IF (compu_not_containment(e, n) = FALSE(x)) {
 PRINT "fact {all e, epc: seamCompuObject | (epc = e.parent => e in
epc.containment) and (epc in e.containment => epc.parent = e)} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all e, epc: seamCompuObject | (epc =
e.parent => e in epc.containment) and (epc in e.containment => epc.parent = e)}", ENDL;
 PRINT compu_not_containment(e, n);
}

info_not_acyclic(e, n) := !(seamInfoObject(e, n) -> !DescendantOf(e, e) & !AncestorOf(e,
e) & FA(c, containment(e, c) -> EX(host, compu_host(c, host) & compu_host(e, host))));
IF(info_not_acyclic(e, n) = FALSE(x)) {
 PRINT "fact {all e: seamInfoObject | all c: e.containment | e not in
(e.^containment + e.^parent) and c.compu_host = e.compu_host} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all e: seamInfoObject | all c:
e.containment | e not in (e.^containment + e.^parent) and c.compu_host = e.compu_host}",
ENDL;
 PRINT info_not_acyclic(e, n);
}

info_not_containment(e, n) := !(seamInfoObject(e, n) -> FA(epc, (containment(e, epc) ->
parent(epc, e)) & (parent(e, epc) -> containment(epc, e))));
IF (info_not_containment(e, n) = FALSE(x)) {
 PRINT "fact {all e, epc: seamInfoObject | (epc = e.parent => e in
epc.containment) and (epc in e.containment => epc.parent = e)} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all e, epc: seamInfoObject | (epc =
e.parent => e in epc.containment) and (epc in e.containment => epc.parent = e)}", ENDL;
 PRINT info_not_containment(e, n);
}

joint_not_acyclic(e, n) := !(seamJointAction(e, n) -> !DescendantOf(e, e) &
!AncestorOf(e, e) & FA(c, containment(e, c) -> EX(host, compu_host(c, host) &
compu_host(e, host))));
IF(joint_not_acyclic(e, n) = FALSE(x)) {
 PRINT "fact {all e: seamJointAction | all c: e.containment | e not in
(e.^containment + e.^parent) and c.compu_host = e.compu_host} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all e: seamJointAction | all c:
e.containment | e not in (e.^containment + e.^parent) and c.compu_host = e.compu_host}",
ENDL;
 PRINT joint_not_acyclic(e, n);
}

joint_not_containment(e, n) := !(seamJointAction(e, n) -> FA(epc, (containment(e, epc) -
> parent(epc, e)) & (parent(e, epc) -> containment(epc, e))));
IF (joint_not_containment(e, n) = FALSE(x)){
 PRINT "fact {all e, epc: seamJointAction | (epc = e.parent => e in
epc.containment) and (epc in e.containment => epc.parent = e)} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all e, epc: seamJointAction | (epc =
e.parent => e in epc.containment) and (epc in e.containment => epc.parent = e)}", ENDL;
 PRINT joint_not_containment(e, n);
}

localized_not_acyclic(e, n) := !(seamLocalizedAction(e, n) -> !DescendantOf(e, e) &
!AncestorOf(e, e) & FA(c, containment(e, c) -> EX(host, compu_host(c, host) &
compu_host(e, host))));
IF(localized_not_acyclic(e, n) = FALSE(x)){
 PRINT "fact {all e: seamLocalizedAction | all c: e.containment | e not in
(e.^containment + e.^parent) and c.compu_host = e.compu_host} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all e: seamLocalizedAction | all c:
e.containment | e not in (e.^containment + e.^parent) and c.compu_host = e.compu_host}",
ENDL;
 PRINT localized_not_acyclic(e, n);
}

localized_not_containment(e, n) := !(seamLocalizedAction(e, n) -> FA(epc,
(containment(e, epc) -> parent(epc, e)) & (parent(e, epc) -> containment(epc, e))));

 94

IF (localized_not_containment(e, n) = FALSE(x)){
 PRINT "fact {all e, epc: seamLocalizedAction | (epc = e.parent => e in
epc.containment) and (epc in e.containment => epc.parent = e)} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all e, epc: seamLocalizedAction |
(epc = e.parent => e in epc.containment) and (epc in e.containment => epc.parent = e)}",
ENDL;
 PRINT localized_not_containment(e, n);
}

//Fact: fact relation
PRINT ENDL, "*****Evaluating the fact 'relation'...", ENDL;
crossing_ass(r) := ASSOCIATION(r) & !FA(src, dst, n, m, seamInfoObject(src, n) &
seamInfoObject(dst, m) & source(r, src) & destination(r, dst) -> EX(host,
compu_host(src, host) & compu_host(dst, host)));
IF(crossing_ass(e) != FALSE(x)) {
 PRINT "fact {all r: ASSOCIATION | all src, dst: seamInfoObject | (src = r.source and
dst = r.destination) => src.compu_host = dst.compu_host} is not satisfied", ENDL, "all
these objects violate the fact:", ENDL;
 PRINT crossing_ass(e);
}
ELSE { PRINT "fact {all r: ASSOCIATION | all src, dst: seamInfoObject | (src = r.source
and dst = r.destination) => src.compu_host = dst.compu_host} OK", ENDL; }

//Fact: fact unique
PRINT ENDL, "*****Evaluating the fact 'unique'...", ENDL;

col_not_unique(r) := COLLABORATION(r) & !FA(rx, COLLABORATION(rx) & r != rx -> EX(src1,
src2, source(r, src1) & source(rx, src2) & src1 != src2) | EX(dst1, dst2, destination(r,
dst1) & destination(rx, dst2) & dst1 != dst2));
IF (col_not_unique(e) = FALSE(x)) {
 PRINT "fact {all pl1, pl2 : COLLABORATION | pl1 != pl2 => (pl1.source !=
pl2.source or pl1.destination != pl2.destination)} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all pl1, pl2 : COLLABORATION | pl1 !=
pl2 => (pl1.source != pl2.source or pl1.destination != pl2.destination)}", ENDL;
 PRINT col_not_unique(e);
}

dep_not_unique(r) := DEPENDENCY(r) & !FA(rx, DEPENDENCY(rx) & r != rx -> EX(src1, src2,
source(r, src1) & source(rx, src2) & src1 != src2) | EX(dst1, dst2, destination(r, dst1)
& destination(rx, dst2) & dst1 != dst2));
IF (dep_not_unique(e) = FALSE(x)) {
 PRINT "fact {all pl1, pl2 : DEPENDENCY | pl1 != pl2 => (pl1.source != pl2.source
or pl1.destination != pl2.destination)} OK", ENDL;
}
ELSE {
 PRINT "Element(s) that violate(s) the fact {all pl1, pl2 : DEPENDENCY | pl1 !=
pl2 => (pl1.source != pl2.source or pl1.destination != pl2.destination)} is not
satisfied", ENDL;
 PRINT dep_not_unique(e);
}

PRINT ENDL, "===",
ENDL;
PRINT "=========================Verification Completed========================", ENDL;
PRINT "===", ENDL;

Figure 34. Complete RML code that verifies the instances of
enterprise models edited in the SeamCAD tool

Figure 35 is the screenshot of running CrocoPat having the RSF data of the

bookstore model and the translated RML code as inputs. We can see that all the RML
statements that were translated from the formalization code of the SeamCAD modeling
language are respected.

 95

Figure 35. Verification result yielded by Crocopat for

the model of the online bookstore edited in SeamCAD tool

Chapter 5: Applications and Feedback

Overview: This chapter presents applications and feedback on
SeamCAD. We applied SeamCAD in several projects, some of
which were in conjunction with industry. An enterprise model was
built using SeamCAD for the case-study of a master’s course given
by our group. This case-study is about a company that
manufactures, sells and maintains lightweight aircraft engines.
An application was made in a company that wanted to build an
enterprise model to manage its sale processes and its customer
relations in the market of watch-parts manufacturing. Another
project used SeamCAD in making an enterprise model for a new
departmen building on our university campus. This model was
useful for specifying how the building should be equipped and
what IT system should be installed in a new building of the
school. An additional project was set up to investigate the
possibility to further the model created in SeamCAD to be able to
simulate System Dynamics. The feedback on SeamCAD from 20
people, including practitioners and researchers in the fields
related to Enterprise Architecture and our master’ students are
also presented in this chapter.

t

s

 98

5.1. Applications

In the research group where this Ph.D. work was carried out, SeamCAD was
applied in several projects some of which were in conjunction with industry.

5.1.1. A case-study enterprise model in a master’s course on EA and
SOA

In our group, a course is given to master’s students to teach them how to build up a
company that manufactures and sells through a game case-study [36]. In this course,
students are asked to make an enterprise model for their imaginary company. They are
divided into groups of four to six. Each group represents a company called, for example
BE (Best Engines SA), which manufactures and sells diesel-powered engines for
lightweight aircrafts. The company can buy parts and design from suppliers and
manages its own inventory. The companies represented by students groups should
compete with one another to sell engines they manufacture to a company called, for
instance NewPlane SA, which itself sells aircrafts to Dawa (DAnce With the Angels) -
an air club who makes business on lightweight aircrafts (rental, training pilot…). In
addition, the companies run by the students also have common competitors: companies
that manufactures and sells gas-powered engines for lightweight aircrafts. These
companies in fact have more market share because traditionally lightweight aircrafts are
powered by gas. However, as diesel-powered engines are developed using modern-day
technologies, they are more economically operating and at the same time more difficult
to maintain.

In this problem-based course, the students are asked to improve the way their
companies maintain the engines they sold to the air club (via NewPlane SA). When an
air club member brings an aircraft that no longer functions correctly to the reception of
the air club, the local garage of the air club can make an initial diagnosis on the aircraft
engine. If the engine is broken, the BE company is contacted to solve the problem. It
needs a replacing part a trained technician (i.e. one who is certified for repairing diesel-
powered engines) to fix the problematic engine. Due to the inefficiency of the current
telephone- and paper-based communication between the local garage of Dawa, the
special garage that manages certified technicians and the BE company, the whole
reparation process for broken aircrafts is often unnecessarily delayed. The students need
to develop an IT system for their companies that can handle this communication in a
much more efficient way.

The enterprise model of the company BE can be built in a hierarchical way. In this
section, the enterprise model built using SeamCAD is presented. All model elements are
expressed with the building blocks of the SeamCAD modeling language and the entire
enterprise model of the BE company can efficiently be browsed and easily understood
thanks to the SeamCAD computer-aided tool. This enterprise model can serve as a
sample model for students. They can refer to it after they have created an enterprise
model of their own BE company.

Figure 36 shows a diagram that represents the first organizational level. A market of
lightweight aircraft has two segments: diesel-powered engine for light aircrafts and gas-
powered engine for light aircrafts. Both of them have the same interest which is to grow
their own market share.

 99

Figure 36. The 1st organizational level showing

a market of airplane engines that has two segments

Figure 37 shows another diagram that represents the second organizational level. In

the segment of diesel-powered engine for light aircrafts, there are two value networks:
value network of the BE company (BE Value Network) and value network of the air
club (Dawa Value Network). Note that this diagram shows the second functional level,
not the first one. The two value networks conduct sale of engines and recycle them at
the end of their lifecycle (distributed action sale and recycle). The BE value
network also takes part in managing engines that are in operation at Dawa Value
Network (distributed action manageAtDawa). The overall collaboration between the two
value networks deal with the entire lifecycle of diesel-powered engines and is expressed
a distributed action called engineLifecycle. A typical order of business processes at
BE Value Network is: to manufacture engines, to get involved in managing engines
that are in operation at Dawa Value Network and to recycle dead engines. A typical
order of business processes at Dawa Value network is: to install engines, to manage
engines that are in operation and to recycle dead engines.

Figure 37. The 2nd organizational level and the 2nd functional level

showing the two value networks of the BE and Dawa.

 100

The diagram shown in Figure 38 also represents the same organizational level of the
BE enterprise model as Figure 37 but a more detailed functional level. In fact, the
localized actions ManageAtDawa of the two value networks are detailed in this diagram.
Both the BE value network and Dawa Value network takes part in the repair
distributed action. Dawa Value network operate, maintain engines in their aircrafts but
BE value network does not. A set of all possible transitions between the three
localized actions Operate, Maintain and Repair implies that Dawa Value network
can them in any order.

Figure 38. The 2nd organizational level and the 3rd functional level
showing the two value networks of the BE and Dawa doing repair.

In Figure 39, the distributed action repair is detailed. Accordingly, the two

localized actions Repair and the properties related to these localized actions are also
detailed. The distributed action repair is broken down into 5 component actions that
specifically do: receiving a problematic aircraft from a member of the air club,
examining the potentially-broken engine of the received aircraft, ordering parts that
necessary to repair the broken engine, calling for a certified technician who is able to
replace broken parts in the engine, mounting the repaired engine to the aircraft and
returning it to the air club member.

For BE Value Network, the component localized actions of the localized action
Repair are: begin the reparation, get diagnosis result (from Dawa), deliver parts

 101

needed, send a certified technician (to Dawa) and end the reparation. These localized
actions are listed in the order they happen.

For Dawa Value Network, the component localized actions of the localized action
Repair are: reception of an aircraft that needs to be repaired from member, diagnose the
engine of the aircraft received, analyze the diagnosis results, order the replacing parts
that are necessary to fix the broken engine, call a certified technician (from BE value
network) who can do part replacement, parts are replaced and the aircraft is returned to
the member. These localized actions are listed in the order they happen.

As we can see in Figure 39, information is exchanged between the two value
networks during the reparation process. In the stateless property RepairTxn that
represents the occurrence of the localized action Repair of both the BE Value Network
and the Dawa Value Network, there are stateful properties that represent information
related to the reparation process. Most of them have stereotype <<in>> or <<out>>,
which indicate that they are either input or output to the RepairTxn where they are
defined. First, in the stateless property RepairTxn of Dawa Value Network, Airplane
KO indicates that the engine of the aircraft received from the member is problematic. On
the side of BE Value Network, the stateful property reparation request is an input
property that is traceable from Airplane KO. On the side of Dawa Value Network,
diagnosis result is an output property. The corresponding input property on the side
of BE Value Network is diagnosis report. There are also two output properties,
technician and spare part, that represent the technician and the replacing parts sent
to Dawa. On the side of the Dawa Value Network, two corresponding input properties
are expert and replacing part. Finally, an output property Airplane OK is placed on
the side of Dawa Value Network and its corresponding input property on the side of BE
Value Network is approval.

Some transitions between component actions of the localized action Repair of the
two value networks are associated with conditions that imply when input or output
properties are ready so to fire the transitions. If an input property is specified for a
transition condition, the transition is fired upon the reception of the property. If an
output property is specified for a transition condition, the transition is fired when the
property is sent. For instance, once the property approval is received in the RepairTxn
of BE Value Network, the transition from the localized action Send technician to the
localized action End repairing is fired. When the property diagnosis result is sent
from the RepairTxn of Dawa Value Network, the transition from the localized action
Diagnose to the localized action Analyze is fired.

 102

Figure 39. The 2nd organizational level and the 4rh functional level
showing the two value networks of the BE and Dawa doing repair.

In Figure 40, the BE Value Network is seen as composite. This value network has

an IT system that manages the reparation data (e.g. delivery time of the replacing parts,
schedule for a certified technician to do reparation at Dawa), a delivery company called
DeliveryCo that is responsible for delivering the replacing parts, a garage called All
Can Do that manages certified technicians and an agent OFAC who can certify
technicians. They are all working objects that collaborate to implement the services
exposed by the BE Value Network as localized actions that are visible in Figure 39.
First of all, the IT system gets necessary information about the reparation (e.g. name of
the member whose aircraft needs repairing). Then it proposes the delivery time of
replacing parts based on their availability. DeliveryCo delivers the parts within the
proposed delivery time. All Can Do uses this IT system to appoint a certified
technician. This garage then sends the technician. The IT system finally gets some
notification informing that the reparation process has been done. It validates it and store
the information about the entire reparation process in its database.

 103

Figure 40. The 3rd organizational level and 2nd functional level

showing how the IT system, the garage and the delivering company
collaborate to implement the reparation.

The enterprise model created in this case-study has a total of 3 organizational levels.

In this enterprise model, the deepest functional level can be observed in the
representation of the segment of diesel-powered aircrafts (see Figure 39). After having
created the enterprise model in the SeamCAD tool, it is possible to browse it and open
all diagrams illustrated in this subsection. Using the tool, the student would understand
the notion of hierarchy and the building blocks of the SeanCAD modeling language
quickly. As the SeamCAD modeling language was based on the SEAM method [3] [4]
[5], the students would also learnt the modeling terms that are introduced in the later
stage of the course more efficiently.

It is possible to make BPMN diagrams out of this enterprise model although the
SeamCAD tool does not support this feature. For example, the diagram shown in Figure
39 can straightforwardly be mapped to a BMMN diagram by doing the following steps

1. BE Value Network and Dawa Value Network are mapped to pools
2. All the localized actions of BE Value Network become processes in the pool

that represents this value network
3. All the localized actions of Dawa Value Network become processes in the pool

that represents this value network
4. Each transition is mapped to a sequence flow
5. Each pair of input / output properties may be mapped to a data object.
6. Each line denoting a trace relationship is mapped to a message flow

 104

5.1.2. Enterprise model of an ERP-seeking company in the market of
watch parts manufacturing

A company that is active in the development of ERP (Enterprise Resource
Planning) solutions and the research of a method for representing the customers’ needs
in the market of watch manufacturing by using an ERP system.

A project was realized between this company and our research group to develop a
model to organize, to present the information and to do savoir-faire ERP, which is
systematically elaborated in the integration and deployment phase of an ERP system by
customer companies. In addition, this model should allow the company to analyze the
needs of current and future customers, with a goal to figure out the technological
evolution of the company.

This project led to a master work that was supervised by our research group [37].
The model developed in the project was built using the SEAM method [4]. The
SeamCAD tool is also used to build some part of this model that can be expressed by
the SeamCAD modeling language. Even though the whole paper-based model built in
this project cannot be expressed in SeamCAD, the following benefits are noticeable at
the company for the part that is built in SeamCAD

• Model elements are explicitly represented using the formally-defined building
blocks of the SeamCAD modeling language. Thanks to the rigorousness of the
SeamCAD modeling language, the created model is well-formed

• It is particularly easier to browse the model created in the SeamCAD tool rather
than turning the piece of papers in the paper-based version of the model to look
for the right diagram. For instance, the value networks can easily be toggled
between the whole and the composite. Diagrams can be scoped to show only the
value network of interest.

• The hierarchical approach is powerful for representing business strategies
Figure 41 a) shows the very first organizational level of the model. At this level,

there are two value networks on the market of manufacturing parts for watches: the
supplier and the adopter. The supplier value network proposes products and services
that would be consumed by the adopter value network.

Figure 41 b) shows the second organizational level of the model. At this level, the
adopter value network is seen as composite. It has the customer, the distributor, the
provider and the company that manages the ERP.

Figure 42 shows this company as composite. It has direct and indirect purchases,
logistics, manufacturing, sale and marketing, R&D, financial infrastructure,
infrastructure for making decision and COM which is the ERP all as working objects.
There are two distributed actions (sale_mfg of product and support of sale_mfg)
within the main distributed action of the company. The COM takes part in both. Note
that properties that represent the products, objectives, results… in these working objects
have the stereotype <<in>> or <<out>>. They are input and output properties that are
exchanged within the company.

 105

a)

b)
Figure 41. The supplier and the adopter value network in

the market of watch parts manufacturing

Figure 43 shows the data managed by the ERP, which manages various kinds of

data like items, sales, purchases, stocks, etc. These management activities are
represented as distributed actions. In Figure 44, one of these distributed actions is
scoped and zoomed in: manage the sales. This distributed action is broken down into
three component distributed actions (listed in the order they happen): handle the
command, handle the delivery and handle the bill. Again, the input and output
properties of the working objects that participate in these distributed actions are
stereotyped <<in>> and <<out>>, respectively.

 106

Figure 42. A third organizational level showing the ERP-seeking company

 107

Figure 43. A fourth organizational level showing the ERP system

 108

Figure 44. A fourth organizational level and a higher functional level

showing data exchanged and sequences of component actions for the
distributed action manage the sales

Although the enterprise model created in SeamCAD has the aforementioned

advantages, the following drawbacks were noticed at the company where this project
was carried out

• The value network, the company or the ERP system seen as whole were not very
interesting

• In SeamCAD, localized actions are drawn as rounded rectangles, distributed
actions as ellipses. The company did not really like this notation.

• Goal-belief modeling [38] is useful for describing the needs of customers but it
is not supported by SeamCAD

 109

5.1.3. Designing EA with the SEAM method and SeamCAD

A project was launched to apply the SEAM method and the SeamCAD computer-
aided tool in designing an enterprise model for a project of a new building in our
university. This project led to a master work that was supervised by our research group
[39]. The model built in this project was useful to specify how the building should be
equipped and what IT system should be installed in the building. The model was built
using in the very first version of SeamCAD has proved its usefulness of showing
different views that would be of interest of different partners in the project. The diagram
shown in Figure 45 depicts the big picture relating to how the school IAndC conducts
research and learning. The school is responsible for providing students, researchers with
quality research and learning facilities. The industry may get involved in some research.
The university management supervises this collaboration. This diagram represents the
very first organizational level of the enterprise model.

 Figure 45. The 1st organizational level shows the management of the university

and the school of which the new building was constructed.

Figure 46 a) depicts the internal structure of the school IAndC. In this school, the
business support system BSS collaborates with professors, researchers, teachers, students
and visitors. Figure 46 b) details the collaboration between BSS and them. Note that the
two views given by Figure 46 are at the second organizational level of the enterprise
model.

 110

a)

b)
Figure 46. The 2nd organizational level shows

the internal structure and business of the school IAndC.

Going deeper into the business support system BSS, Figure 47 diagrammatically
describes modern channels of the new building of the school IAndC and how they are
exploited. An IT application is developed to help different departments of the school
efficiently exploit these channels: accessing the web, accessing school events, reserving
a room, etc. The diagrams shown in Figure 47 represent the third organizational level of
the enterprise model.

 111

a)

b)
Figure 47. The 3rd organizational level shows modern channels equipped by BSS

and an IT application through which
people can efficiently exploit these channels

The lowest organizational levels are addressed in Figure 48. The diagram shown in

this figure is dedicated to the component structure of the application that helps people
access channels equipped in the new building of the school IAndC.

 112

Figure 48. 3rd organizational level shows equipments managed by BSS
and an IT application through which people can effectively exploit the

equipments

Throughout this master project, advantages, shortcomings and some research issues
of the SEAM method and the SeamCAD framework were discussed. Most notably, it
was evident that

• Making the hierarchy explicit was very good point in the project
• It was possible to represent multiple units of interest in the model
• It was possible to maintain the traceability between different views of the model

edited the SeamCAD tool
• The fact that system boundaries are always respected makes the enterprise

model in the SEAM modeling language rigorous but inflexible.
• Diagrams in SeamCAD tend to get huge, making it hard to further elaborate if

the model has a large number of objects and actions.
• It is not yet clear whether the model elements created in the SeamCAD are types

or instances.

5.1.4. Simulation of System Dynamics with SeamCAD

A semester project was carried out under the supervision of our research lab with a
goal to define an extension to the SeamCAD modeling language and to implement a
separate tool to be able to quantitatively analyze a business by simulating a specific
action or behavior during a predefined time period with SeamCAD [40]. This language
extension is based on System Dynamics – a methodology for studying and managing
complex feedback systems [41]. As its name indicates, this methodology proposes a
way to look at dynamic behavior of systems in terms of changing patterns over time.

The most important concept of System Dynamics is the use of feedback thinking
[41]. In System Dynamics (SD), the feedback has a loop structure. Let’s consider an
imaginary arms race between the U.S.S.R. and the U.S. [42] as illustrated in Figure 49.
Each nation builds its arms stockpile based on the threat imposed by the other, which is
directly determined by its arms stockpile. It is represented as a looped feedback. The +
sign implies that this feedback is positive. If the stockpile is represented as a
mathematical variable, its value grows exponentially over time as illustrated in the
graph to the right of Figure 49.

 113

Figure 49. An example of positive feedback in System Dynamics

A SD model consists of three types of entities, namely Stocks, Flows and

Information objects. In SeamCAD, model elements are classified by means of
stereotypes into the following categories

• Level: corresponds to a stock of material accumulation in SD. It is defined by an
initial value and a differential equation expressing its evolution in time.

• Rate: stands for a flow that feeds a level or depletes it. It can be defined by a
mathematical equation evaluated at each step in the simulation time.

• Parameter: counterpart of information in SD. Can be defined by a mathematical
equation. A parameter can influence a level only through a rate.

• Constant: counterpart of information in SD. It is defined by an initial value that
is unchanged throughout the course of the simulation.

To be able to capture represent these quantitative values in SeamCAD, notes
containing SD model are attached to model elements. A math-like sub language for
what is written in these notes is defined. This sub language includes mathematical
expressions, simulation options and model requisites.

The implementation of this project resulted in a plug-in application that can be
invoked from the SeamCAD tool to simulate the currently-edited modeling that follows
the SeamCAD-extended language. This plug-in takes the XML data generated by the
SeamCAD tool for model being edited and extracts the notes that contains data
necessary for simulation. It finally renders a graphical simulation over time based on
quantitative parameters and values described in the model edited in the SeamCAD tool.

USSR arms

Threat to U.S.

Need to build
U.S. arms

U.S. arms

Threat to USSR

Need to build
USSR arms

+

+
stockpile

+ +

+ time +

 114

Figure 50. Arm’s Rate model made in SeamCAD

using SeamCAD-extended language

Figure 50 gives a diagram of a model created in the SeamCAD-extended language

to describe the arms race example. This model exemplifies the typical goal seeking and
the exponential growth behavior of a SD model. The USSR and the U.S. are represented
by two working objects. The working object U.S. has localized action named
US_Weapons_Rate that represents the arms-building action of the U.S. The stockpile of
this nation is represented as a property named US_Weapons. There are also two other
properties (US_Constant and US_Weapons_Information) that represent the SD
constant and information. A similar representation is made for the U.S.S.R. Figure 51
shows an output of the simulation for this model using the plug-in application
implemented in this project. In this figure, the red line represents the weapon stock of
the U.S.S.R. over time and the blue line stands for that of the U.S.

The results of this project include an extension of the SeamCAD modeling language
and the implementation of a graph-drawing plug-in application that can simulate the SD
model created using the SeamCAD-extended language. These results were tested for the
arms race example. More work should be done to generalize these results to deal with
more sophisticated SD models.

 115

Figure 51. Simulation output of the Arm’s Rate model

using the simulation plug-in.

 116

5.1.5. Lessons learnt from building enterprise models in SeamCAD

After having worked with SeamCAD in making enterprise models, the people in the
companies and the master’s students (we call them the modelers) who got involved in
the projects presented in subsections 5.1.1, 5.1.2 and 5.1.3 expressed their opinions and
show some reactions. The following 4 points summarize what they learnt from building
their enterprise models in SeamCAD

• Although the modelers could get familiar with the modeling terms of SEAM [4]
before actually using SeamCAD, the modelers were able to understand the
notion of hierarchy and whole/composite efficiently by using the SeamCAD tool
to build their enterprise model.

• The modelers learnt how to browse their enterprise model with the SeamCAD
tool by interacting with an editing window that focuses on certain part of the
model they want to view.

• The model that was created using the SeamCAD tool can be considered as an
electronic version of the enterprise model as opposed to the hard version that
was built using pieces of paper and a pencil. The paper-based version of the
enterprise model was typically built using some pre-built template diagrams (e.g.
templates for the market level, the value network level, the company level and
the IT level). In the electronic version, the modelers could open more diagrams
than they did in the hard version. More concretely, diagrams of the enterprise
model can be generated in the SeamCAD tool by just choosing the context
working object and the functional level within this working object. Customizing
the diagrams created using pre-built templates in the hard version was
technically possible, but it required a lot of drawing burden on pieces of paper.

• The modelers were able to understand the notion of model well-formedness that
is defined in the SeamCAD modeling language. The SeamCAD tool prevents
them from adding model elements to their enterprise model in a way that
violates the well-formedness rules defined for the SeamCAD modeling language
(e.g. the tool does not allow them to create a property inside a distributed
action).

5.2. Feedback from Practitioners, Researchers and Students

To see how SeamCAD addresses the four modeling challenges (uniformness, multi-
entity, granularity and well-formnedness) that were identified in Chapter 1 and if it
brings some value to the industry and university courses, we should validate it. During
the last months of this Ph.D. work, practitioners or researchers in different domains
related to Enterprise Architecture and students who took our master’s course in
Enterprise Architecture were invited to participate in the validation of SeamCAD.

5.2.1. Protocol for getting users’ feedback

A questionnaire was prepared to get feedback for SeamCAD from
practitioners/researchers in EA-related fields. This feedback should be about how they
evaluate to which extent SeamCAD addresses the four modeling challenges that are
presented in Chapter 1. It was then extended to cover additional interesting issues like
top-down versus bottom-up modeling, the intuitiveness of notation and the right term to
address the SeamCAD tool as a modeling tool. To fill in this questionnaire, the

 117

practitioners obviously need to get acquainted to SeamCAD beforehand. Therefore, a
scenario was written to provide them with step-by-step instructions of how to practice
the SeamCAD tool. The scenario and the questionnaire were tested within our research
group to estimate the time needed for each participant to complete the validation and to
check if they had anything unclear.

It was very hard to get the practitioners/researchers that were willing to participate in
the validation all at the same time due to the difference of their availability. We decided
to work with each participant individually. In case no face-to-face conversation could be
established, the participant can follow the scenario and then fill in the questionnaire
himself while getting assistance either on the phone or an online chat.

For the students who were willing to take part in the validation, we defined another
protocol. After finishing their exams at the end of the semester, they could have time to
work with us for several hours or even a whole day. It was thus possible to get them
altogether or by a group of three to five at the same time. Instead of following a pre-
defined scenario, the students should be able to do more extensive practice by building
an enterprise model in the SeamCAD tool. The questionnaire used for obtaining
feedback from the practitioners should be slightly modified to reflect what the students
would do.

5.2.2. Ratings

A total of 11 practitioners/researchers participated in this validation. They followed
a 2-phase tutorial with some assistance (with minimal influence on their viewpoints) of
the person responsible for the tool. In the first phase, each practitioner tried to view an
existing model of the online bookstore model to get acquainted to basic functionalities
of SeamCAD tool and the fundamental modeling concepts SeamCAD modeling
language. She/he then proceeded in the second phase to extend one more organizational
level and two functional levels of the model of the bookstore. The tutorial is fully
presented in the Appendix B. After having practiced the tool, each practitioner was
asked to answer a questionnaire to rate how SeamCAD meets the four modeling
challenges and to give their suggestions. Each practitioner/researcher completed the
tutorial and the questionnaire in about 30-45 minutes.

A total of 9 students took part in the validation of SeamCAD. They had just finished
a master’s course on EA and Service Oriented Architecture given by our lab. In this
course, students were asked to make an enterprise model using Service-Oriented
Architecture for imaginary company – a company that manufacture and sell light-
weight aircraft diesel-powered engines. They were divided into groups of less than six.
Each group represented a company and built an EA model for their company in paper.
Students who participated in the validation of SeamCAD were asked to rebuild the
model they made in paper using the SeamCAD tool. They then answered a
questionnaire to evaluate how SeamCAD meets the four modeling challenges and also
to give their feedback as if SeamCAD was used as a teaching tool in the course. It took
approximately 7 hours for these students to complete the validation.

20 participants gave their answers and feedback. The two questionnaires used in this
validation (one for practitioners, one for students) have 7 questions in common. Table
14 gives the distribution of their answers for these questions.

 118

Table 14. Distribution of answers given by practitioners and students

who practiced SeamCAD
Answer distribution of 20 participants

Question Excellent
(Yes)

Good Bad Very bad
(No)

Do you think that the top-down approach of SeamCAD has
some value in your practice?

20/20 -- -- 0/20

How do you rate the way SeamCAD manages
organizational levels?

7/20 13/20 0/20 0/20

How do you rate the way SeamCAD manages functional
levels?

4/20 15/20 1/20 0/20

How do you rate the way SeamCAD handles multiple
system representation?

10/20 8/20 2/20 0/20

How do you rate the feature of SeamCAD through which
diagrams can be opened as partial views of a common
model?

13/20

7/20

0/20

0/20

How do you rate the way diagrams can be customized by
hiding / showing specific elements in SeamCAD?

9/20 7/20 4/20 0/20

How do you rate the intuitiveness of the notation scheme
used in SeamCAD?

4/20 14/20 2/20 0/20

As we can see in Table 14, all 20 participants, be practitioners, researchers or

students, were satisfied with the way SeamCAD manages the organizational hierarchy
(more than half of them rated this feature excellent). They also agree that the top-down
approach brings value in their work. However, their opinions vary over the way
SeamCAD manages the functional hierarchy. The majority of them rate it as good
whilst the minority of them considered it as excellent. In particular, one of them rated
this feature as bad. For the capability to represent multiple business entities or IT
systems in a single enterprise model, half of the participants chose the excellent rating.
Two of them chose the bad score whiles the others rated this feature as good.

All participants like the way SeamCAD manages a coherent model and generates a
diagram as partial views of the model (more than 50% ratings are excellent). However,
they were not really convinced by the feature that allows them to customize their
diagrams by hiding/showing specific working object or distributed action (bad ratings
are one fifth of the answers). Most of the participants found that the SeamCAD notation
was intuitive, but two of them did not think so.

The distribution of answers given presented in Table 14 indicates that SeamCAD
manages the organizational hierarchy in a better way than it does for functional
hierarchy. The users appreciated the coherence of enterprise models edited in the
SeamCAD tool more than the possibility to customize diagrams rendered in the tool by
hiding (and showing) model elements. The notation schema is fairly good but is still not
intuitive to some users. More work should be done to improve the functional level
modeling, the diagram customization and the notation scheme.

5.2.3. Suggestions from the practitioners

Some features of SeamCAD were appreciated by the practitioners. The feedback of
practitioners the following features were most liked

• The ability to open multiple windows at the same time that show different part
of the enterprise model. These windows are kept in synch by the tool.

 119

• The explicit organizational hierarchy of the enterprise model is visible in every
window of the tool

• An overview of the whole enterprise model is visible in every window of the
tool

• The context working object in a diagram makes the context view explicit
especially when modeling an IT system

• The way the entire enterprise model is browsed by changing the organizational
levels and/or the context working object shown in the diagram of an editing
window of the tool

• The clear separation between the whole and the composite of a model element
in the tool and the ability of toggling it between the whole and the composite in
a diagram with ease

• The possibility for abstracting a property, a distributed action or a localized
action and showing it in details at a higher functional level when needed.

However, the practitioners also left their suggestions in the questionnaire. In
SeamCAD, a distributed action and all working objects that participate in it are
supposed to be at the same organizational level. It was suggested to represent the
collaboration between working objects at different organizational levels.

In the SeamCAD tool, for the sake of simplicity, all kinds of relations are
represented by the same pictogram in the toolbar. The tool determines the specific
relation kind (e.g. transition, association, participation) as soon as the user commits the
creation of the relation based on the two model element that it connects. One
practitioner got confused by this feature. The tool would be closer to the UML
community if all kinds of relation are explicitly visible in the toolbar.

The tool needs some advanced features for navigating in the model. If the modeler
frequently changes the context working object, the organizational level or the functional
level, she should be allowed to go back and forth between these levels just like the way
people surf the internet on their browser. In addition, as more and more model elements
are created in the model, a search function that allows the modeler to easily grab the
working object she is most interested in becomes apparently necessary.

Some suggestions address the semantics of action. In SeamCAD, it is possible to
enter textual pre-condition and post-condition for a specific distributed action or a
localized action. It was suggested that this textual description should be bound to
properties which are changed by the action described.

The way SeamCAD imposes the name of a role played by a working object was
sometimes confusing to some practitioners. It was suggested to develop a better naming
convention for the role name rather than taking the name of the corresponding localized
action.

For user-interface issues, it was suggested to visually represent hidden working
objects or distributed actions under a special symbol. Then the hidden elements can
quickly be shown by clicking on this symbol. Another suggestion encourages the use of
pop-up widgets to provide the modeler with more information on model elements of her
interest.

At the end of the questionnaire used for getting feedback of the practitioners, there
was a question about how the practitioners could classify the tool SeamCAD. Possible
terms were: Computer-Aided Enterprise Modeling tool, Computer-Aided Requirement
Engineering tool, Computer-Aided Design tool or a new term. All participants picked
the first answer agreeing that the SeamCAD tool could be regarded as a Computer-
Aided Enterprise Modeling tool.

 120

5.2.4. Suggestions from the master’s students

The students that participated in the validation were kindly to leaves their detailed
comments while practicing the tool as if it was the teaching tool in the master’s course
they had taken. In overall, most of them felt that the SeamCAD tool could be used as a
teaching tool as they found it was generally interesting to model their imaginary
company using a computer-aided tool after having made a paper-based model. The tool
allows them to browse their enterprise models in a more efficient way than they did on
pieces of paper. In addition, after using the tool, they understood the notion of hierarchy
in their enterprise model more clearly. However, they had some difficulty in using the
tool and they made some suggestions for improving it.

The following problems was noted during the validation
• It was difficult to correctly understand the level of granularity. It is not intuitive

to toggle a distributed action to be able to add component localized actions and
component properties in working objects that participate in it.

• Quite a lot of assistances were needed before the students could get familiar
with the tool

• The tool was sometimes buggy. In some cases, elements that were wrongly
created could not be easily corrected. They had to be deleted and re-created.

• It was quite hard to master how to create a line to represent a relation using
mouse-click

• Under the Java look and feel on Mac, the user-interface does fully function.
This problem could be down to the implementation of the Java virtual machine
on Mac.

• It was difficult to understand the how the properties and the localized actions
can properly be used. It is also difficult to imagine the input and output
parameter solely based on their stereotypes.

• The way the tool resizes enclosing pictograms by moving their nested
pictograms around was not intuitive.

• Icons representing different element kinds in the toolbar do not really look
different. The ellipse, the rounded rectangle and the regular rectangle somehow
look the same.

• Diagrams tend to get very wide. The automatic layout function did not
efficiently work.

Having experienced the aforementioned problems in practicing the SeamCAD tool,
the students made the following suggestions

• Enclosing pictograms should be manually resizable. It would be more
convenient to drag and drop pictograms.

• Notation used in SeamCAD and that in the course, especially for relations,
could be unified

• A complete user manual for SeamCAD would help students a lot
• Zooming diagrams is necessary to see the link between all diagrams opened in

the tool. If no more than one modeler can work concurrently on a model,
making paper-based diagrams could be the better choice.

• Relations should be created with ease like many graphical editors. Clipboard
operations for model elements are in needs.

 121

5.2.5. What was learnt from the feedback?

The feedback for SeamCAD left by 20 practitioners and students suggest that the
modeling language and the tool have some advantages as well as disadvantages. Most
notably, SeamCAD is generally good for representing the organizational hierarchy, the
context view of an enterprise model in a hierarchical way. Separating the whole and the
composite with the possibility to toggle any model element between these two views
can be considered as good points too. Managing the well-formedness of the enterprise
model and the browsing capability are also noticeable advantages, especially of the
SeamCAD tool. This tool might safely be used as a teaching tool in course on SEAM
and Enterprise Architecture.

Shortcomings of SeamCAD include the way the functional hierarchy is represented
in SeamCAD, the lack of advanced features for managing large enterprise models and in
customizing diagrams, the non-intuitive way of expressing information flow as the
exchange of input and output properties, the instability of the tool due to bugs. They
should be taken into account for improving SeamCAD.

Conclusion and Future Work

In Enterprise architecture (EA), the goal is to align the business resources and IT
resources in order to improve the enterprise competitiveness, for example, by gaining
more customers, reducing the operation costs and complexity or responding to changes
with agility. An enterprise model that represents the enterprise and its environment may
include various aspects such as the internal structure of enterprise and the services
provided by the enterprise, the business processes and data flow between business
entities, the IT components and their interaction. Given the fact that people often
simplify their perception of the reality by analyzing it hierarchically, we decided to
develop a hierarchy-oriented framework for modeling the organization and the services
of the enterprise. Developing such a framework has four challenges. First, a systematic
modeling approach should uniformly be applied to model all business entities and IT
systems. Second, multiple business entities and IT systems can be represented in detail,
for instance as a black-box and as a white-box. Third, the interaction between business
entities and IT systems, as well as their behavior, can be represented at different levels
of granularity. Four, the enterprise model should be coherent and the consistency
between different views of the same enterprise model should be maintained.

SeamCAD – the main contribution of this dissertation is such a modeling
framework. It is part of the method SEAM developed in our research group. SeamCAD
consists of a modeling language and a computer-aided tool, which together consolidate
the SEAM method by defining the hierarchy levels, modeling building blocks, the well-
formedness rules, the notation and by formalizing them in a declarative language Alloy
and realizing them in the computer-aided tool implemented in Java.

In the SeamCAD modeling language, two kinds of hierarchy are defined:
organizational hierarchy and functional hierarchy. The organizational hierarchy
describes the organization of the enterprise being modeled and of its environment. This
hierarchy is formed by a series of organizational levels. Basically, the business entities
and IT systems, or components of the enterprise being modeled, are organized into
organizational levels. The functional hierarchy is composed of a series of functional
levels each of which captures the service or the interaction at a different level of
granularity. To model the business entities and IT systems or components of the
enterprise, we define the building block working object. To model the interaction
between working objects, we define the building block distributed action. To represent
the externally-observable properties and services of a working object, we define the
building blocks property and localized action, respectively. These four building blocks
originate from the two basic modeling concepts of RM-ODP: object and action (the
working object and the property are two different kinds of ODP object whereas the
distributed action and the localized action are two different kinds of ODP action).

 124

In SeamCAD, any model element can be seen either as whole or as composite.
These two ways of viewing a modeling element are based on the atomicity and the
composite – two interpretation concepts of RM-ODP. A working object seen as whole is
characterized by its externally-observable properties and localized actions. A working
object seen as composite consists of component working objects and possibly the
distributed actions in which they participate. A property seen as whole exhibits
attributes like name and stereotype. A property seen as composite has component
properties in addition to its attributes. The component properties can be put in relation
by UML-like association or generalization. A distributed action seen as whole exhibits
attributes such as name and stereotype. A distributed action seen as composite has
component distributed actions in addition to its attributes. It is possible to specify the
order between component actions by means of a UML-like transition. Therefore, a
distributed action seen as composite can be regarded as a UML activity. Similarly, a
localized action seen as whole exhibits attributes such as name and stereotype. A
localized action seen as composite has component localized actions in addition to its
attributes. The order between this component localized actions can be described by
means of a UML-like transition, making a localized action seen as composite look like
a UML activity. There is also the relation participation that relates a working object to a
distributed action in which it participates.

The semantics of the enterprise model built in the SeamCAD modeling language is
defined not only in terms of model elements instantiated from the four aforementioned
building blocks but also by the relations between these elements. There are two kinds of
relations in SeamCAD: intrinsic relations and diagrammatically-presented relations. The
former includes the containment and the binding. The latter are aforementioned UML-
like relations. Containment is the relation between a model element and its component
elements. There are two forms of binding that correspond to two kinds of action in
SeamCAD. Goal binding is the relation from a distributed action to the properties and
the localized actions of all working objects that take part in it. Means binding is the
relation between a localized action and the distributed action that implements it. The
intrinsic relations may not diagrammatically be rendered in any diagram of the
enterprise model. They are necessary to maintain the coherence of the enterprise model
so that diagrams can be generated as partial views of the model.

The following UML-like relations are defined in SeamCAD: association (between
properties), generalization (between elements of the same kind), action transition
(between distributed actions or localized actions) and participation link (between a
working object and a distributed action). These UML-like relations can be presented
diagrammatically under lines with various drawing patterns.

The SeamCAD modeling language was not only informally defined in terms of
verbal description of building blocks and modeling terms but also rigorously defined by
means of a meta-model and its formalization. The meta-model consists of a UML class
diagram that express all building blocks and a total of 19 well-formedness rules that
govern the manner model elements instantiated from the building blocks are put
together in an enterprise model. The meta-model is formalized in Alloy – a declarative
modeling language based on first order logic and set theory.

The SeamCAD computer-aided tool was specifically developed for the SeamCAD
modeling language. The tool manages a coherent enterprise model and allows the
modeler to edit or view the model at any organizational level and functional level of her
interest. The entire model can be viewed and browsed by means of a tree-like
navigation panel. Diagrams can be generated for any organizational level and functional
level. The notation of SeamCAD mimics that of UML but with two main changes. First,

 125

a block arrow pictogram is introduced to express business entities as a working object.
Second, most pictograms can be nested to visually show component elements of the
model element being represented as composite.

The SeamCAD modeling language and tool were evaluated by practitioners and
students. A total of 11 practitioners were invited to test the SeamCAD tool for about 45
minutes. 9 master’s students in our university participated in a one-day session in which
they remade an enterprise model that they had previously made on paper during a
master’s course given at our university. All 20 participants, be practitioners and
students, were asked to fill in a questionnaire to rate the way SeamCAD addresses the
four modeling challenges and also to give their suggestions. Regarding the first
challenge, all 20 participants were satisfied with the way SeamCAD manages the
organizational hierarchy. However, their opinions vary over the way SeanCAD manages
the functional hierarchy and the capability to represent multiple systems in a single
enterprise model, which correspond to the second and the third challenge. For the fourth
challenge, all participants like the way SeamCAD manages a coherent model and
generates a diagram to show some partial representation of the model. The suggestions
from practitioners and students point out some limitations and open some directions for
improving the SeamCAD language and tool.

Several research directions are opened to further this Ph.D. work. The suggestions
given by practitioners and students who used SeamCAD should be taken into account
for improvements. For instance, the way the modeler browses her enterprise model can
be more sophisticated with a back-and-forth navigation mechanism. Another possible
improvement is to capture the information flow between working objects in a more
visual way. Yet another possibility is to extend SeamCAD to include goal-belief
modeling [38] or to merge the two modeling frameworks.

The semantics of the distributed action and the localized action in the SeamCAD
modeling language can be enriched to enable the portability of the enterprise model
edited in the SeamCAD tool. Most notably, we can define a grammar for the pre-
conditions and the post-conditions for action. The pre-conditions and the post-
conditions of a distributed action should be defined in terms of the properties (at the
same functional level) of the working object that participates in the action. The pre-
conditions and the post-conditions of a localized action should be defined in terms of
the properties (at the same functional level) of the same working object. Alternatively,
we can define a rule for naming a transition between two localized actions of the same
working object, e.g. we can put the names of the properties that are produced or
consumed by these actions on this transition to diagrammatically express their
semantics (as illustrated on the reparation process of aircraft engines presented in
Subsection 5.1.1). As such, the enterprise model created in SeamCAD can be exported
either to another diagrammatic language such as BPMN or to some code (a declarative
language such as Alloy as exemplified in more details in Appendix A or an execution
language such as BPEL, provided that BPEL is extended to include human activities
and services of non-IT entity [43]).

The link between the formalization of the SeamCAD modeling language and the
implementation code that implements its computer-aided tool should be established to
make the entire SeamCAD framework customizable. Apparently, the Java code that
manipulates the data structure managed by the tool is strongly influenced by the Alloy
code that formalizes the modeling language. Ideally, we can generate the imperative
Java code from the declarative Alloy code but this approach is very hard, if not
unrealistic, because it basically deals with one of the most difficult problems in software
engineering: the gap between specification and realization, which by nature lies at two

 126

very different levels of abstraction. Considering that DSM (Domain Specific Modeling)
can increase the abstraction level of the specification while keeping the realization
translatable from the specification by narrowing down the specification language into a
specific domain [44], it could be a good research direction to investigate how the
SeamCAD modeling language can be formalized using a certain DSM language instead
of Alloy so that the partial implementation code of SeamCAD tool can be mapped from
it. In this approach, the SeamCAD modeling language may not freely be customized but
the mapping from its formalization to the partial implementation code should be
feasible.

Appendix A: An Example of Specifying the Semantics
of Actions and Refinement Principles in SeamCAD

In this appendix, the semantics of actions and design principles in building
enterprise model will be illustrated through an example of an online bookstore – the
same example that is presented in Section 1.2 of Chapter 1. Different modeling
approaches will be used for specifying the semantics of actions and how the actions can
be refined. In each of the following subsections, diagrammatic representation and Alloy
code that describe actions are given for an approach. Using Alloy Analyzer15, the Alloy
code can be checked for consistency and can be executed. The possibility to produce
BPEL code out of this diagrammatic representation is also discussed.

First, the market, the bookstore value network and the customer are coded as Alloy
signatures in the following code fragment. They are named using a simple naming
convention: a postfix “_C” indicates that the working object is seen as composite while
a postfix “_W” implies that the working object is seen as whole. The Bookstore Value
Network seen as whole has the following properties: a book catalog, an inventory of
book and cash. Note that the inventory and the cash may change overtime. They are
declared as a mapping from a set of books and an integer number to the concept of time,
respectively. In contrast, the catalog is declared as a set of book specs. This property
does not change over time, at least during the collaboration of selling and buying book
between the Bookstore Value Network and the Customer. The Customer seen as whole
has a bookshelf and cash. In addition, she keeps in mind the ID number of the book she
wants to buy and possibly receives a message describing whether the order she placed
was successfully processed or not.

lone sig BookCoMarket_C {
 bookstore: one BookstoreValueNetwork_W,
 customer: one Customer_W
}

lone sig BookstoreValueNetwork_W {
 market: one BookCoMarket_C,
 catalog: set BookSpec ,
 inventory: Book set -> Time,
 cash: Int one -> Time
} {
 all t: Time | (int cash.t >= 0)
 market.bookstore = this
 all b: Book, t: Time | b in inventory.t => b.spec in catalog
}

lone sig Customer_W {
 market: one BookCoMarket_C,
 wantedPN: one PartNumber,
 bookshelf: Book set -> Time,
 message: Boolean lone -> Time,
 cash: Int one -> Time
} {
 all t: Time | (int [cash.t] >= 0)
 market.customer = this
}

sig BookSpec { pn: one PartNumber, price: one Int }

Attached to the signatures of the Bookstore Value Network and the Customer are

unnamed Alloy facts that capture the invariants. For example, the third line of the Alloy

15 Alloy Analyzer is a tool that can executes code written in the Alloy language http://alloy.mit.edu

http://alloy.mit.edu/

 128

fact that is attached to the signature declaring the Bookstore Value Network states that
for every book in the inventory, its spec must be in the catalog.

A.1. Declarative Modeling of Local Distributed Action – Net
Effect

The local distributed action can be specified as whole in terms of changes made to
properties of participating working objects. Figure 52 is the Alloy code that describes
the distributed action sale by means of an Alloy predicate: saleAction with the Alloy
keyword pred. The two working objects that participate in this action are coded as the
first two parameters of the predicate (aSeller and aBuyer). The last two parameters
represent two consecutive moments: before and after the occurrence of the distributed
action sale.

In the body of predicate saleAction, the statements are grouped into invariant, pre-
condition and post-condition. The invariant statements describe the logic that is
unchanged during the occurrence of the action sale: the moment post succeeds the
moment pre, the inventory of the Bookstore Value Network is unchanged before the
action sale and the book catalog has a book spec that matches the ID number of the
book that the Customer wants to buy.

The pre-condition statements say that the inventory contains a book of which spec
matches the ID number of the book that the Customer wants to buy before the
occurrence of action sale. In addition, the Customer must have more cash than the
price of the book she wants to buy. Note that the value of the inventory and the cash at a
specific moment can be referenced by a join operation in Alloy (a dot symbol followed
by a variable of signature Time).

pred saleAction[
 aSeller: one BookstoreValueNetwork_W, // working object
 aBuyer: one Customer_W, // working object
 pre: one Time, post: one Time] {

 // technical invariant
 post = ord/next [pre]
 #aSeller.catalog > 1
 all t: Time, b: Book | pre = ord/next [t] =>

(b in aSeller.inventory.t <=> b in aSeller.inventory.pre)
 aSeller.segment = aBuyer.segment

 // biz invariant
 one bs: BookSpec | bs.pn = aBuyer.wantedPN and bs in aSeller.catalog

 // pre-condition
 one bk : Book | bk.spec.pn = aBuyer.wantedPN and bk in aSeller.inventory.pre and

bk not in aBuyer.bookshelf.pre
 one bs: BookSpec | bs.pn = aBuyer.wantedPN and int aBuyer.cash.pre >= int bs.price

 // post-condition
 one bk : Book | bk.spec.pn = aBuyer.wantedPN and

aSeller.inventory.post = aSeller.inventory.pre - bk and
 aBuyer.bookshelf.post = aBuyer.bookshelf.pre + bk
 one bs: BookSpec | bs.pn = aBuyer.wantedPN and

int aSeller.cash.post = int aSeller.cash.pre + int bs.price
 one bs: BookSpec | bs.pn = aBuyer.wantedPN and

int aBuyer.cash.post = int aBuyer.cash.pre - int bs.price
}

Figure 52. Alloy code for the sale distributed action

The post-condition statements say that a book of which spec matches the ID number
of the book that the Customer wants to buy goes from the inventory of the Bookstore
Value Network to the bookshelf of the Customer. In addition, the cash of the Bookstore

 129

Value Network is increased by the price of this book while the cash of the Customer is
decreased by the same amount. Again, the value of the inventory, the bookshelf and the
cash at a specific moment can be referenced by a join operation in Alloy (a dot symbol
followed by a variable of signature Time).

In Figure 53, a) illustrates the state of Bookstore Value Network and Customer
before action Sale; b) states after action Sale. We can see in this visualization that
Book1 goes from the inventory to the bookshelf and a cash amount of 8 goes from the
Customer to the Bookstore Value Network.

a)

b)

Figure 53. Snapshots showing the two states of Bookstore Value Network and
Customer: before and after the action Sale

 130

A.2. Declarative Modeling of Localized Action

The local distributed action can alternatively be distributed into localized actions of

participating working objects. Each localized action is specified in terms of change
made to the properties of the same working object and some contextual information.
The distributed action is then specified as a binding of partial interactions of
participating objects. In this binding, localized actions are bound in a declarative way
(i.e. the order in which they are bound is not important).

The contextual information needed for the specification of a localized action can be
captured in two ways: as an environment of the working object regarding the localized
action being specified, or as invariant concepts that should be known by all working
objects that participate in the distributed action. These approaches are presented in the
following subsections.

A.2.1. One working object and its environment

Figure 54 gives Alloy code for the Sell localized action of the Bookstore Value
Network. In Alloy, it is encoded as a predicate having the following parameters:
aSeller (the bookstore), env (environment of the bookstore regarding the localized
action), pre and post represent the moments before and after the occurrence of the
localized action Sell. The environment abstracts away the Customer by representing
the spec of the book to order, incoming cash for the payment and the place where the
ordered book will leave its inventory.

The statements in the body of the predicate sellAction are grouped into invariant,
pre-condition and post-condition. The invariant statements describe the logic that is
unchanged during the occurrence of the action Sell: the moment post succeeds the
moment pre, the inventory of the Bookstore Value Network is unchanged before the
action sale and the book catalog contains the book spec coming from the environment.

pred sellAction[
 aSeller: one BookstoreValueNetwork_W,
 env: one SellEnvironment,
 pre: one Time, post: one Time] {

 // technical invariant
 post = ord/next [pre]
 #aSeller.catalog > 1
 all t: Time, b: Book | pre = ord/next [t] =>

(b in aSeller.inventory.t <=> b in aSeller.inventory.pre)

 // biz invariant
 env.spec in aSeller.catalog

 // pre-condition
 some bk: aSeller.inventory.pre | bk.spec = env.spec
 one env.in_cash.pre and int env.in_cash.pre = int env.spec.price
 no env.out_book.pre

 // post-condition
 some bk: aSeller.inventory.pre | bk.spec = env.spec and

aSeller.inventory.post = aSeller.inventory.pre - bk and
 env.out_book.post = bk
 int aSeller.cash.post = int aSeller.cash.pre + int env.spec.price
 no env.in_cash.post
}

Figure 54. Sell localized action of the Bookstore Value Network
with environment modeling

 131

The pre-condition statements say that the inventory contains a book of which spec
matches the one coming from the environment before the occurrence of action Sell. In
addition, the cash coming from the environment must be greater or equal the price of the
book ordered. Note that the value of the inventory and the cash at a specific moment can
be referenced by a join operation in Alloy (a dot symbol followed by a variable of
signature Time).

The post-condition statements say that a book of which spec matches the one from
the environment goes from the inventory of the Bookstore Value Network to the
environment. In addition, the cash of the Bookstore Value Network is increased by the
price of this book while the cash of the environment is decreased by the same amount.
Again, the value of the inventory, the book in the environment and the cash at a specific
moment can be referenced by a join operation in Alloy (a dot symbol followed by a
variable of signature Time).

Now the two localized actions Sell and Buy are logically combined to get the
semantics of the distributed action sale a declarative way as shown in Figure 55.
Basically, the three actions are supposed to occur simultaneously (they have the same
pre and post moment). They are combined using the Alloy keyword and. In addition,
we need to specify that the environment of localized actions Sell and that of localized
action Buy are aligned: they must point to the same book spec.

pred saleBinding[store: one BookstoreValueNetwork_W, customer: one Customer_W, pre: one
Time, post: one Time] {
 post = ord/next [pre]
 store.segment = customer.segment

 some s_env: SellEnvironment, b_env: BuyEnvironment | s_env.spec = b_env.spec and
 sellAction [store, s_env, pre, post] and
 buyAction [customer, b_env, pre, post]
}

Figure 55. Binding of Sell and Buy interaction with environment modeling

In Figure 56, a) illustrates the state of Bookstore Value Network and Customer

before the action Sale specified as a binding of Sell and Buy with environment
modeling, b) states after action Sale. We can see in this visualization that Book1 goes
from the inventory of the Bookstore Value Network to the bookshelf of the Customer
via the environment of the localized action Sell and a cash amount of 24 goes from the
Customer to the Bookstore Value Network.

 132

a)

b)
Figure 56. Snapshots showing the two states of BookstoreValueNetwork and

Customer with environment modeling: before and after the Sale action

A.2.2. Multiple working objects without environment

Figure 57 gives Alloy code for the Sell localized action of the Bookstore Value
Network without representing the environment. The Alloy predicate of this localized
action has the following parameters: aSeller (the bookstore), aBookSpec / aBook (the
specification and the book that are transferred between the bookstore and the customer
in the sale distributed action), pre and post represent the moments before and after
the localized action Sell. Note that in the predicate that encodes the Buy localized

 133

action of the customer, aBookSpec / aBook are also declared as parameters having the
same semantics.

The statements in the body of the predicate sellActionWithoutEnv are grouped
into invariant, pre-condition and post-condition. The invariant statements describe the
logic that is unchanged during the occurrence of the action Sell: the moment post
succeeds the moment pre, the inventory of the Bookstore Value Network is unchanged
before the action sale and the book catalog contains the book spec that is represented
by the parameter aBookSpec.

The pre-condition statements say that the inventory contains a book that is
represented by parameter aBook before the occurrence of action Sell. The post-
condition statements say that aBook is removed from the inventory of the Bookstore
Value Network. In addition, the cash of the Bookstore Value Network is increased by
the price of this book. Note that the value of the inventory and the cash at a specific
moment can be referenced by a join operation in Alloy (a dot symbol followed by a
variable of signature Time).

pred sellActionWithoutEnv[
 aSeller: one BookstoreValueNetwork_W,
 aBookSpec: one BookSpec,
 aBook: one Book,
 pre: one Time, post: one Time] {

 // invariant
 post = ord/next [pre]
 #aSeller.catalog > 1
 aBook.spec = aBookSpec
 aBookSpec in aSeller.catalog
 all t: Time, b: Book | pre = ord/next [t] =>

(b in aSeller.inventory.t <=> b in aSeller.inventory.pre)

 // pre-condition
 aBook in aSeller.inventory.pre

 // post-condition
 aSeller.inventory.post = aSeller.inventory.pre - aBook
 int aSeller.cash.post = int aSeller.cash.pre + int aBookSpec.price
}

Figure 57. The Sell localized action of the Bookstore Value Network
without environment modeling

Now the two localized actions Sell and Buy are combined to specify the distributed

action sale in a predicate named saleBindingWithoutEnv as shown in Figure 58. In
this predicate, the two variables that represent the book spec and the book are passed as
parameters to the two predicates sellActionWithoutEnv and buyActionWithoutEnv
together variables that stand for the moments before and after the occurrence of the
sale distributed action. In this binding, the two localized actions Sell and Buy are
supposed to occur simultaneously.

pred saleBindingWithoutEnv[store: one BookstoreValueNetwork_W, customer: one Customer_W,
pre: one Time, post: one Time] {
 post = ord/next [pre]
 store.segment = customer.segment

 some s: BookSpec, book: Book |
 sellActionWithoutEnv [store, s, book, pre, post] and
 buyActionWithoutEnv [customer, s, book, pre, post]
}

Figure 58. Binding of Sell and Buy without environment modeling

 134

In Figure 59, a) illustrates the state of Bookstore Value Network and Customer
before the action Sale specified as a binding of Sell and Buy without environment
modeling, b) states after action Sale. We can see that Book1 goes from the inventory of
the Bookstore Value Network to the bookshelf of the Customer while a cash amount of
1 (the selling price of Book1) goes from the Customer to the Bookstore Value Network.

a)

b)
Figure 59. Snapshots showing the two states of BookstoreValueNetwork and

Customer with 2 invariant concepts: before and after the Sale distributed action

 135

A.3. Declarative Modeling of non-Local Distributed Action – Net
Effect

The non-local distributed action can be specified as whole in terms of changes made
to properties of participating working objects. Unlike a local distributed action, which
does not exchange anything to the environment of the working object in which it is
mediated, a non-local distributed action does interact with the environment of the
mediating working object. Through this environment, the non-local distributed action
takes some input from and/or produces some output to the environment of the mediating
working object. These input/output parameters should be the same as those taken or
produced by the localize action implemented by the the non-local distributed action
being considered. Figure 60 gives Alloy code for the non-local distributed action
marketAndShipAction between the shipping company and the publishing company
that are part of the Bookstore Value Network. Note that the variable env represents the
environment of the BookstoreValueNetwork regarding its localized action sell that
which is implemented by the distributed action marketAndShipAction.

pred marketAndShipAction[
 aPublisher one PublisherCompany_W, :
 aShipper: one ShippingCompany_W,
 env: one SellEnvironment,
 pre: one Time, post: one Time] {

 // technical invariant
 post = ord/next [pre]
 #aPublisher.catalog > 1
 all t: Time, b: Book | pre = ord/next [t] =>

b in aPublisher.inventory.t <=> b in aPublisher.inventory.pre)
 aPublisher.valueNetwork = aShipper.valueNetwork
 all si: ShippingSpec | int env.spec.price > int si.shipping_cost

 // biz invariant
 env.spec in aPublisher.catalog

 // pre-condition
 some bk: aPublisher.inventory.pre | bk.spec = env.spec
 no env.out_book.pre
 one env.in_cash.pre

 // post-condition
 some bk: Book | bk.spec = env.spec and aPublisher.inventory.post =

aPublisher.inventory.pre - bk and env.out_book.post = bk
 one si: ShippingSpec | int aPublisher.cash.post = int aPublisher.cash.pre +

int env.spec.price - int si.shipping_cost and
 int aShipper.cash.post = int aShipper.cash.pre + int si.shipping_cost
 no env.in_cash.post
}

Figure 60. Alloy code of the non-local distributed action marketAndShip between
the publishing company and the shipping company

The statements in the body of the predicate marketAndShipAction are grouped into

invariant, pre-condition and post-condition. The invariant statements describe the logic
that is unchanged during the occurrence of the non-local distributed action
marketAndShipAction: the moment post succeeds the moment pre, the inventory of
the publishing company is unchanged before the action marketAndShipAction and the
shipping cost must be less than the selling price of the book ordered. Note that for the
Customer, the selling price always includes the shipping cost of the book ordered.

The pre-condition statements say that the inventory contains a book that is
represented by the book spec referenced by the environment. In addition, the
environment must not have any book before the action. The post-condition statements

 136

say that a book of which spec matches the book spec referenced by the environment is
moved from the inventory of the publishing company to the environment. In addition,
the cash of the publishing company is increased by the price of this book minus the
shipping cost and the cash of the shipping company is increased by the shipping cost.
The cash of the environment disappears. Note that the value of the inventory and the
cash at a specific moment can be referenced by a join operation in Alloy (a dot symbol
followed by a variable of signature Time).

Executing predicate marketAndShipAction will yield an instance model that is
illustrated by Figure 61 a) and Figure 61 b). We can see that Book1 goes from the
inventory of the publishing company to the environment. The selling price of Book1 is
28. The shipping cost for Book1 is 4. The cash of the publishing company is increased
by an amount of 24 and the cash of the shipping company is increased by an amount of
4. Note that, in Figure 61 a), the cash of the environment is 24 but it disappears in
Figure 61 b).

a)

b)
Figure 61. Snapshots showing the two states of the publishing company and the

shipping company: before and after the marketAndShipAction
specified as net effect

 137

A.4. Declarative Modeling of non-Local Localized Action

The non-local distributed action can alternatively be distributed into localized

actions of participating working objects. Each localized action is specified in terms of
changes made to the properties of the same working object, the environment of the
working object in which it is mediated and some contextual information. The non-local
distributed action is then specified as a binding of localized actions of participating
objects. Note that localized actions are bound in an unordered way to specify the non-
local distributed action.

The contextual information needed for specifying localized actions can be captured
in two ways: as environment of the working object regarding the localized action being
specified, or as invariant concepts that should be known by all working objects that
participate in the distributed action. These approaches are presented in the following
subsections.

A.4.1. One working object and its environment

Figure 62 gives Alloy code that encodes the localized action Market of the
publishing company. Note that there are two variables that represent the environment:
sellEnv for the environment of the parent working object of the publishing company
(the bookstore) regarding the partial interaction sell; and marketEnv for the
environment of the publishing company with respect to the localized action being
represented.

pred marketAction[
 aPublisher: one PublisherCompany_W,
 sellEnv: one SellEnvironment,
 marketEnv: one MarketEnvironment,
 aShipperInfo: one ShippingSpec,
 pre: one Time, post: one Time] {

 // invariant
 post = ord/next [pre]
 #aPublisher.catalog > 1
 all t: Time, b: Book | pre = ord/next [t] =>

(b in aPublisher.inventory.t <=> b in aPublisher.inventory.pre)

 // biz invariant
 sellEnv.spec in aPublisher.catalog
 marketEnv.book.spec = sellEnv.spec

 // pre-condition
 one sellEnv.in_cash.pre
 marketEnv.book in aPublisher.inventory.pre

 // post-condition
 aPublisher.inventory.post = aPublisher.inventory.pre - marketEnv.book
 int aPublisher.cash.post = int aPublisher.cash.pre + int sellEnv.spec.price –

int aShipperInfo.shipping_cost
 no sellEnv.in_cash.post
}

Figure 62. Alloy code that specifies the localized action Market
of the publisher company

A.4.2. Set of working objects with environment

The localized actions of the publishing company and the shipping company can be

declaratively combined as shown in Figure 63. Note that the variable env that represents

 138

the environment of the bookstore is passed to the two predicates that encode the two
localized actions marketAction and shipAction. In addition, there are two
environments that are specific to these two ations are also declared: m_env and s_env.
Note that the two predicates take the same parameters that represent the two moments:
before and after their occurrence.

pred marketAndShipBinding[
 aPublisher: one PublisherCompany_W, aShipper: one ShippingCompany_W,
 env: one SellEnvironment,
 pre: one Time, post: one Time] {

 post = ord/next [pre]
 aPublisher.valueNetwork = aShipper.valueNetwork

 some book: Book, si: ShippingSpec, m_env: MarketEnvironment, s_env: ShipEnvironment |

marketAction [aPublisher, env, m_env, si, pre, post] and
shipAction [aShipper, env, s_env, si, pre, post]

}

Figure 63. Alloy code of the binding of localized actions performed by the
publishing company and the shipping company.

Figure 64 a) and Figure 64 b) are snapshots of the states of the publishing company

and the shipping company before and after the action MarketAndShip. We can see that
Book1 is moved from the inventory of the publishing company to the field out_book of
the environment. The cash of the publishing company is increased by an amount of 16,
which is equal to subtraction of the selling price of Book1 by the shipping cost. The
cash of the shipping company is increased by amount of 4 - the shipping cost.

 139

a)

b)
Figure 64. Snapshots showing the two states of PublisherCompany and

ShippingCompany: before and after the MarketAndShip action specified as a binding

A.5. Imperative Modeling of non-Local Distributed Action

A non-local distributed action can be seen as composite. In this way, it can be
considered as an activity combining a set of localized actions performed by participating
working objects. The order in this combination is important. In other words, the non-
local distributed action is imperatively specified in terms of localized actions performed
by participating working objects.

In the bookstore example, the localized action MarketAndShip can imperatively be
specified by combining the following localized actions

 140

- prepareBook: a book that corresponds to the given spec is taken from the
inventory of the publisher company
- deliverBook: the prepared book is delivered by the shipping company
- payBook: the publisher company gets paid
- payShpping: the shipping company is paid

A.5.1. One working object with its environment

Figure 65 gives Alloy code of a localized action called prepareBookAction
performed by the publisher company. The statements in the body of the predicate that
declares this action are grouped into invariant, pre-condition and post-condition. The
invariant statements describe the logic that is unchanged during the occurrence of the
non-local distributed action prepareBook: the moment post succeeds the moment pre
and the book catalog contains the book spec that is referenced in the environment.

The pre-condition statements say that the environment does not reference any book
and no book is loaded from the inventory yet. The post-condition statements say that a
book of which spec matches the book spec referenced by the environment is loaded
from the inventory of the publishing company. In addition, the environment still does
not reference any book (the book is loaded from the inventory and is ready for further
procedures before actually is sent to the environment). Note that the value of the
inventory and the reference of the environment at a specific moment can be referenced
by a join operation in Alloy (a dot symbol followed by a variable of signature Time).

pred prepareBookAction[
 aPublisher: one PublisherCompany_W,
 env: one SellEnvironment,
 loadedBook: Book lone -> Time,
 pre: one Time, post: one Time] {

 // invariant
 post = ord/next [pre]
 env.spec in aPublisher.catalog

 // pre-condition
 no env.out_book.pre
 no loadedBook.pre

 // post-condition
 one loadedBook.post
 no env.out_book.post
 loadedBook.post.spec = env.spec
 aPublisher.inventory.post = aPublisher.inventory.pre - loadedBook.post
}

Figure 65. Alloy predicate that encodes the action prepareBook

A.5.2. Multiple working objects

The full distributed action can actually be distributed into localized actions of
participating working objects. Each localized action is specified in terms of changes
made to the properties of the same working object and changes made to the
environment. The full distributed action is then specified as an activity of localize
actions performed by participating working objects. In this activity, the order between
localized actions is important. In Figure 66, the Alloy predicates that describe how the
localized actions prepareBook, deliverBook, payBook and payShipping are

 141

combined to “implement” the activity of the distributed action MarketAndShip. Note
that variables t1, t2 and t3 represent the intermediate moments during the occurrence
of the distributed action MarketAndShip. They define the moments that one of these
localized actions finishes and another localized action is about to occur.

The activity of the distributed action MarketAndShip can be interpreted as follows.
The prepareBookAction localized action loads a book (that corresponds to the book
spec given by the environment) from the inventory of the publishing company. The
deliverBookAction localized action puts the loaded book to the environment. The
payBookAction localized action pays the publishing company and the
payShippingAction localized action pays the shipping company.

pred marketAndShipActivity[
 aPublisher: one PublisherCompany_W,
 aShipper: one ShippingCompany_W,
 env: one Environment,
 pre: one Time, post: one Time] {

 some t1, t2, t3: Time | some loadedBook: Book lone -> Time | some si: ShippingSpec |

t1 = ord/next [pre] and t2 = ord/next [t1] and t3 = ord/next [t2] and post =
ord/next [t3] and
 int env.spec.price > int si.shipping_cost and
 prepareBookAction[aPublisher, env, loadedBook, pre, t1] and
 deliverBookAction[aShipper, env, loadedBook, t1, t2] and
 payBookAction[aPublisher, env, si, t2, t3] and
 yShippingAction[aShipper, env, si, t3, post] and pa
 no env.in_cash.post
}

Figure 66. Ordered combination of localized actions performed by
PublisherCompany and ShippingCompany that makes up MarketAndShip up.

Figure 67 a), Figure 64 b), Figure 64 c), Figure 64 d) and Figure 64 e) are snapshots

of the states of the publishing company and the shipping company before action
MarketAndShip, after action prepareBook, after action deliverBook, after action
payBook and after action MarketAndShip.

a)

 142

b)

c)

d)

 143

e)
Figure 67. Snapshots showing the 5 states of BookstoreValueNetwork and
Customer with environment concepts: initial, book prepared, book delivered,

book payment and shipment payment.

It is possible to map the way that a full distributed action is distributed into localized
actions of participating working objects to BPEL16. Each localized action can be
mapped to a service provided by the working object in which it is defined. This
mapping is feasible if BPEL is extended to include human activities and services of
non-IT entity [43]. If the working object is an IT system, its localized actions should be
regarded as web services. The full distributed action is then coded in BPEL using BPEL
constructs. For example, localized actions are called using BPEL invoke; the order
between these localized actions can be captured using the sequence or the if-then-else
construct of BPEL.

16 Business Process Execution Language http://www.bpelsource.com

http://www.bpelsource.com/

Appendix B: Tutorial and Questionnaire Used for
Obtaining Feedback on SeamCAD

This appendix includes material used for working with practitioners and students
who validated SeamCAD. Section B.1 and B.2 present the tutorial that provided the
practitioners with step-by-step scenarios for getting familiar with the SeamCAD
modeling language and the computer-aided tool. Section B.3 gives the slides that
provided students with instructions of how to validate SeamCAD. Secion B.4 and B.5
are the questionnaire used for getting feedback from practitioners and students,
respectively.

B.1. Tutorial: Viewing a pre-Built Model in SeamCAD
Navigate in an existing model of a bookstore that goes online. Diagrams are opened to
shows different organizational levels and functional levels.

1. Download the jar file SeamCAD.jar from seamcad.epfl.ch to your working
directory.

2. Type java –jar SeamCAD.jar to launch SeamCAD. You will get the login
window of the tool.

3. In the login window, make sure that the checkbox “As Local Guest” is checked,
then hit the button “Login”.

4. In the main window, select menu “Model” > “Open” or an equivalent button of
the toolbar.

5. Open the existing model BookstoreOnline. Looking at the overview of the
model in the tree-view at the top-left corner of the main window to count the
number of the organizational levels.

6. Open an editing window to show a certain organizational level (right click on

the top object BookCoMarket in the tree-view and select menu “New…”)

http://www.seamcad.epflc.h/

 146

7. Explore two different functional levels in the first organizational level

o Double-click on the action sale to get to the second functional level.
Component actions of sale are now visible. Accordingly, properties and
localized actions of the two value networks are shown in details.

Double-click
this pictogram

o Double-click on the action sale again to get back to the first functional

level.
8. Make sure that Bookstore Value Network is selected in the diagram and click

a button in the toolbar to jump to the second organizational level. In this
organizational level, three companies BookCo, ShipCo and PubCo should be
visible.

Click this button

 147

9. Double-click on the pictogram of BookCo to go deeper to the third organizational
level. The following diagram should be obtained

10. Right-click on the pictogram of BookCo and select “as Context” get focused in

BookCo and its internal structure. Explore two different functional levels in this
organizational level and experience the show/hide functionality

o Double-click on the action market to get to the second functional level.
Double-click on BookCatalog to reveal its component properties.

o Select the WarehouseDep and click on the button “Hide” of the toolbar to

make this object invisible in the diagram. Right-click on the pictogram
PurchasingDep and select menu “Hide behavior”, you will get the
following diagram

 148

B.2. Tutorial: Adding more Model Elements…
You have learnt how to navigate in an existing model. The internal structure of BookCo
has been defined in the model, but ShipCo and PubCo are still empty. Now, additional
model elements can be created to define the internal structure of a company, say
ShipCo.

11. Switch to the main window, right-click on the tree node ShipCo and select menu
“as Context…”, you get a new editing window where only ShipCo is visible in
its diagram.

12. Insert departments (using block arrow or subsystem pictogram) or people (using
the stickman pictogram) that constitute the ShipCo in the diagram.

13. Insert an action using ellipse pictogram inside the pictogram of ShipCo and
name it ship. Double-click on this action to view it as composite.

14. Insert two more actions within action ship, namely handle and deliver.
15. Create participation links by connecting departments and people to newly-

created actions
16. Move around the automatically-created transactions and localized actions to

your preference
17. Insert start symbol and stop symbol in localized actions that are already viewed

as composite
18. Make transition sequences between localized actions

B.3. Slides: Building Enterprise Model in SeamCAD

A total of 9 master’s students in our university participated in a one-day validation
session of SeamCAD. They all took a master’s course titled “Enterprise and Service
Oriented Architecture” given by our group in the university. In this course, the whole
class was divided into small groups each of whom built an imaginary company to
manufacture and sell diesel-powered aircraft engines. Each group developed an

 149

enterprise model for their company on pieces if paper following the SEAM method.
Their enterprise models cover several organizational levels: value network, company
and IT application.

In SeamCAD validation, participating students first got familiar to the SeamCAD
modeling language and tool by creating a model that represent the organizational
structure of our university. Then they were asked to rebuild their paper-based enterprise
model in the SeamCAD tool. Next, they reviewed their model by browsing it opening
different diagrams that show different organizational levels and functional levels of the
model. Finally, they fill in a questionnaire to give their feedback. On the average, it took
7 hours for each student to complete the validation. Figure 68 lists the main slides that
were used for working with these students: Figure 68 a) – slides that gave some opening
remarks, Figure 68 b) – slides that introduced SeamCAD, Figure 68 c) – slides that
guided the students in building and reviewing their enterprise model in SeamCAD.

Figure 68 a). Opening remarks for working with master’s students

to validate SeamCAD

 150

Figure 68 b). Introduction of SeamCAD to students

 151

Figure 68 c). Instructions on how to build and review
an enterprise model that was previously made on paper in SeamCAD

 152

B.4. Questionnaire – Obtaining Feedback from Practitioners
and Researchers

Name:

Company: Date:

SeamCAD Validation
QUESTIONNAIRE

Introduction

1. Do you use personally or do you have people in your organization developing
hierarchical or enterprise model? Please detail (who is using modeling, to do
what, which tool is used, etc…).

2. In your organization, do you model enterprise systems across organizational

level?
organizational levels describe the structure of business entities, for example value network composed of companies,

 companies composed of people and IT system, IT system composed of applications.

a. If yes, what organizational levels do you consider?

b. If no, why? Would you believe that organizational levels bring added

value?

3. In your organization, is functional level used?

functional levels describe the behavior of business entities at different level of granularity, for example a “sale” action can be broken down into an
activity
composed of “get order”, “pay” and “deliver”; “get order” can itself be broken down into “show catalog” and “get book id”.

a. If yes, what functional levels do you have?

b. If no, why? Would you believe that functional levels bring added value?

4. In your organization, do you analyze and design the structure of multiple
“organizations” at the same time?

for example, analyzing how two companies are organized internally to implement a business process between them.

a. If yes, please detail (in which context do you do it and how?)

b. If no, would it be useful to have such feature?

 153

5. Which approach do you follow in building your enterprise models in your

practice?

a. Top-down b. Bottom-up c. None d.
Both

6. What notation do you use in your practice?
could be your own notation or some well-known notation such as BPMN, UML, informal business notation…

Organizational level

7. How do you rate the way SeamCAD manages organizational levels?

how the model and diagrams can be browsed by going back and forth between, for example, value network, company level and IT level

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

8. Do you think that the top-down approach of SeamCAD has some value in your

practice? Please explain in details

a. Yes b. No

Explanation:

Functional level

9. How do you rate the way SeamCAD manages functional levels?
the level of granularity of behavior in a diagram can be changed easily, for example, from “sale” action to
three smaller actions “get order”, “pay” and “deliver”

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

Multi-system

10. How do you rate the way SeamCAD handles multiple system representation?

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

 154

Model coherence and Diagrams

11. How do you rate the feature of SeamCAD through which diagrams can be
opened as partial views of a common model?

A diagram in SeamCAD can be opened by choosing a specific object as the context object.
The context object has the outermost pictogram in the diagram.

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

12. How do you rate the way diagrams can be customized by hiding / showing

specific systems and actions in SeamCAD?

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

Notation

13. How do you rate the intuitiveness of the notation scheme used in SeamCAD?

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

General issues

14. What features of SeamCAD do you like most?

15. What features of SeamCAD do you consider as unnecessary?

 155

16. How do you rate the user-friendliness of SeamCAD

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

17. How would you classify SeamCAD?

a. Computer-Aided Enterprise Modeling tool
b. Computer-Aided Requirement Engineering tool
c. Computer-Aided Design tool
d. I propose the term ……………………………………………….………….…….

 156

B.5. Questionnaire – Obtaining Feedback from Students

Name:

Section: Date:

SeamCAD Validation
QUESTIONNAIRE

Organizational level

1. How do you rate the way SeamCAD manages organizational levels?

how the model and diagrams can be browsed by going back and forth between, for example, value network, company level and IT level

a. Excellent
b. Good
c. Bad
d. very bad

Any suggestion?

2. Do you think that the top-down approach of SeamCAD has some value in your
practice? Please explain in details

a. Yes b. No

Explanation:

Functional level

3. How do you rate the way SeamCAD manages functional levels?

the level of granularity of behavior in a diagram can be changed easily, for example, from “sale” action to
three smaller actions “get order”, “pay” and “deliver”

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

 157

Multi-system

4. How do you rate the way SeamCAD handles multiple system representation?

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

Model coherence and Diagrams

5. How do you rate the feature of SeamCAD through which diagrams can be opened as

partial views of a common model?
A diagram in SeamCAD can be opened by choosing a specific object as the context object.
The context object has the outermost pictogram in the diagram.

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

6. How do you rate the way diagrams can be customized by hiding / showing specific
systems and actions in SeamCAD?

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

Notation

7. How do you rate the intuitiveness of the notation scheme used in SeamCAD?

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

 158

Business processes and data flow

8. How do you rate the way business processes are described in SeamCAD?

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

9. How do you rate the way data flow is captured in SeamCAD?

a. excellent
b. good
c. bad
d. very bad

Any suggestion?

Pedagogical issues

10. What is the difficulty you have in building your models with SeamCAD?

11. In what aspects SeamCAD should be improved to be used as a teaching tool in

ESOA course?

12. Your other comments and/or feelings

Appendix C: Modeling Tools in the Fields Related to
Enterprise Architecture

Today, there exist quite a large number of modeling tools and generic modeling

frameworks. The modeling tools can be roughly categorized into two main groups:
software modeling and enterprise modeling. The former aims at providing UML
diagrams and some functions to automate the development process (e.g. reverse
engineering, code generation, report generation…). The latter provides the modeler with
some extra diagrams (may not be UML-compatible) for modeling business processes,
organizational units, etc... There are also generic modeling frameworks that allow
modelers to quickly define a domain-specific modeling tool.

Rational Software17, Visual UML18, UML Studio19, UML Suite20, Poseidon21,
Objecteering UML Modeler22, Microsoft Visio23 with UML template etc… can be
considered as software modeling tools. They support a wide range of UML diagrams
that are generally organized into folders or views. These folders and views are typically
originated from UML taxonomy on diagrams such as static structure, use-case,
implementation etc. This taxonomy is unfortunately not suitable for the representation
of the hierarchy of organizational and functional levels. To model a hierarchical system
with these tools, the modeler builds several diagrams with the assumption that each of
them corresponds to an organizational level. As a consequence, the modeler sees neither
the hierarchy of the organizational level nor the traceability between diagrams. In short,
we find that the modeler cannot effectively navigate her hierarchical models with these
tools.

Enterprise Architect24, System Architect, Mega25, Arc Styler, etc… can be
considered as enterprise modeling tools. They either provide extra modeling diagrams
(beyond UML) or allow the modeler to customize UML diagrams. For example, with
Enterprise Architect it is possible to draw any UML element in a specific diagram. The
modeler can use UML collaborations, UML actors and UML classes to represent
business systems and people collaborating together. However, these tools are still
diagram-based. The same comments about model navigation which we made about
software modeling tools also apply to enterprise modeling tools.

OpCat [14], the tool for OPM, is more suitable for modeling hierarchical systems
because it supports zoom-in/zoom-out operations. In addition, OpCat is a model-based
tool. Its diagrams can be created on-demand when the user zooms-in to a process or an
object. However, since OpCat does not natively address hierarchical systems, its
navigation panel is not used for browsing the hierarchy. It lists diagrams instead.

17 IBM Rational Software, http://www-306.ibm.com/software/rational/
18 Visual UML, http://www.visualobject.com/
19 UML Studio, http://www.pragsoft.com/
20 UML Suite, http://www.telelogic.com/
21 Poseidon, http://www.gentleware.com/
22 Objecteering UML Modeler, http://www.objecteering.com/
23 Microsoft, Microsoft Visio, http://www.microsoft.com
24 Enterprise Architect, http://www.sparxsystems.com.au
25 Mega, http://www.mega.com/

http://www-306.ibm.com/software/rational/
http://www.visualobject.com/
http://www.pragsoft.com/
http://www.telelogic.com/
http://www.gentleware.com/
http://www.objecteering.com/
http://www.microsoft.com/
http://www.sparxsystems.com.au/
http://www.mega.com/

 160

MetaEdit+26 is considered as a generic modeling tool. The basic rationale behind
MetaEdit+ is, at the meta-level, most of modeling tools essentially defines different
kinds of objects having some properties and relationships between them. Its main
advantage is the ability to quickly define a tool for a given modeling language.
Nevertheless, in the aspect as a generalized diagram-based modeling tools, MetaEdit+
also shares the shortcomings with software modeling tools regarding hierarchical
systems analyzed above.

GEF27 allows developers to create a graphical editor for an existing application
model. This framework can be used on top of EMF, another framework for data storage,
to build a particular modeling tool for hierarchical systems. The main drawback is that
the tool built in this way can only be executed within Eclipse and apparently requires
quite heavy programming burden. Additionally, the tool graphical pictogram must
depend on 2D engineering of GEF, which does not natively support nested notation.

GME is a configurable tool suite that facilitates domain-specific modeling [45]. In
GME meta-model, the concept Model can contain other Models, allowing the modeler
to establish containment hierarchy in her project. We notice that the tree-view
navigation and the way of generating modeling diagrams in SeamCAD are similar to
those in GME. The main difference lies in the fact that our tool specifically addresses
hierarchical systems in EA by having two model containment hierarchies (functional
and organizational) whereas GME was motivated from control systems and integrated
circuits (notation is not nested, lack of collaboration modeling).

26 MetaCase, MetaEdit+, http://www.metacase.com
27 Eclipse Modeling Framework, http://www.eclipse.org/emf

http://www.metacase.com/
http://www.eclipse.org/emf

Appendix D: Design of SeamCAD Tool

This appendix presents the design of the SeamCAD Tool. The tool has client-server
architecture. The server side is responsible for model storage and retrieval. The client
side offers the modeler with interactive user-interface to edit and to browse her model
enterprise. The model is marshaled in Extendible Markup Language (XML)28 data
which is exchanged between the server and the client following the Hypertext Transfer
Protocol29.

Both the server side and the client side were implemented in Java. Figure 69 is a
UML component diagram that illustrates how the server side and the client side of the
SeamCAD tool communicate with each other. The server side consists of Java servlets30
that access a MySQL31 database through Java Database Connectivity32. They are
deployed in a Tomcat33 web server. When the modeler opens an existing model, a Java
servlet is invoked to load all model elements that belong to this model from the
database. These elements are marshaled into an XML document that is immediately sent
to the client side. When the modeler saves the model she is editing, the client side
marshals the model elements that were modified into an XML document that is
immediately sent to the server side. Both the server and the client rely on the same
parser to convert the XML document they receive into Java objects that represent the
model elements. They ways that model elements are marshaled at the server side and
the client side are identical.

Java Virtual Machine
webserver

SeamCAD client

SeamCAD servlets

JDBC

-XML

*

-XML

*

Model elements are marshaled
into XML documents.
They are sent over
HTTP channels

Figure 69. The Java packages of the implementation of the client side

It is obvious that the implementation of the client side is more immense than that of

the sever side because the client deals with model creation, modification, deletion and
especially the user-interface. The metrics of the Java code that is presented in Section
4.4 of Chapter 4 is actually about the implementation of the client side. The design of
the client follows the Model Controller View (MVC) approach [30]. Figure 70 is
another UML diagram that illustrates the main packages of the implementation of the
client side and the dependency between them. The packages dcm contains classes that
describe the building blocks of the SeamCAD modeling language. This package plays
the role of the Model in the MVC approach. The package view provides classes that can
render model elements. The package action provides the classes necessary to create

28 W3C - Extendible Markup Language, http://www.w3.org/XML/
29 W3C - Protocols, http://www.w3.org/Protocols/
30 Sun - Java Servlet Technology, http://java.sun.com/products/servlet/
31 My SQL – open source database, http://www.mysql.com/
32 Sun - Java Database Connectivity, http://java.sun.com/javase/technologies/database/
33 Apache Tomcat, http://tomcat.apache.org/

http://www.w3.org/XML/
http://www.w3.org/Protocols/
http://java.sun.com/products/servlet/
http://www.mysql.com/
http://java.sun.com/javase/technologies/database/
http://tomcat.apache.org/

 162

user commands that are then executed upon a user invocation. The package gui
provides classes for implementing all the Swing34 windows and dialogs and their
accessories. This package, together with the package view, plays the role of the View in
the MVC approach. The package seamcad contains Java classes that control the
lifecycle of the Swing windows and implement a façade to the whole data structure of
the SeamCAD tool. This package, together with the package action, plays the role of
the Controller in the MVC approach. Note that there are also sub packages of which
names have dot characters according to the package hierarchy.

Figure 70. The Java packages of the implementation of the client side

The entire Java code of the client side is documented using JavaDoc and is

pub

35

lished on the website of the SeamCAD tool36.

34 Sun - Java Swing, http://java.sun.com/docs/books/tutorial/uiswing/
35 Sun - JavaDoc http://java.sun.com/j2se/javadoc/
36 SeamCAD Documentation, http://lamspeople.epfl.ch/lsle/SEAMtool/doc/

http://java.sun.com/docs/books/tutorial/uiswing/
http://java.sun.com/j2se/javadoc/
http://lamspeople.epfl.ch/lsle/SEAMtool/doc/

Bibliographic References

[1] Schekkerman, J., How to Survive in the Jungle of Enterprise Architecture Framework: Creating or
Choosing an Enterprise Architecture Framework: Trafford, 2004, isbn 141201607-X

[2] Checkland, P. and Scholes, J., Soft System Methodology in Action: Chichester UK: Wiley, 1990, isbn
0-471-92768-6

[3] Wegmann., A, Regev, Gil, DelaCruz, Diego, J., Lê, L.-S., Rychkova, and I. Business-IT Alignment
with SEAM for Enterprise Architecture. In Proc. 11th EDOC Conference - The Enterprise Computing
Conference, pp 111-121, IEEE Computer Society, Annapolis, USA, 2007.

[4] Wegmann, A. On the Systemic Enterprise Architecture Methodology (SEAM). In Proc. 5th
International Conference on Enterprise Information Systems pp 483-49, Angers, France, 2003.

[5] Wegmann, A., Balabko, P., Lê, L. S., Regev, G., and Rychkova, I. A Method and Tool for Business-
IT Alignment in Enterprise Architecture. In Proc. 17th Conference on Advanced Information Systems
Engineering Forum, pp 113-118, FEUP Edições, Porto, Portugal, 2005.

[6] Hevner, S., March, Park, J., and Ram, S., "Design Science Research in Information Systems,"
Management Information Systems Quarterly, vol. 28, pp. 75-105, 2004.

[7] Miller, J. G., Living Systems: University of Colorado Press, 1995, isbn 0070420157

[8] OMG, "ISO/IEC 10746-1, 2, 3, 4 | ITU-T Recommendation, X.901, X.902, X.903, X.904, Reference
Model of Open Distributed Processing," 1995-1996.

[9] D.Jackson, "Alloy: A lightweight object modelling notation," ACM Transactions on Software
Engineering and Methodology, vol. 11, pp. 256-290, 2002.

[10] Glinz, M., Berner, S., and Joos, S., "Object-oriented modeling with ADORA," Information Systems -
ELSEVIER, pp. 425-444, 2002.

[11] D'souza, D. F. and Wills, A. C., Object, Components and Frameworks with UML, The Catalysis
Approach: Addison-Wesley, 1999, isbn 0-201-31012-0

[12] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D., Paech, B.,
Wüst, J., and Zettel, J., Component-based Product Line Engineering with UML: Addison-Wesley
Professional, 2002, isbn 0 201 73791 4

[13] Dori, D., Object-Process Methodology, A Holistic Systems Paradigm: Springer Verlag, 2002, isbn
3540654712

[14] Dori, D., Reinhartz-Beger, I., and Sturm, A. OPCAT - A Bimodal CASE Tool for Object-Process
Based System Development. In Proc. 5th ICEIS, pp Angers, France, 2003.

[15] Lankhorst, M., Modelling, Communication and Analysis: Springer, 2005, isbn 978-3-540-24371-7

[16] Dietz, J., Enterprise Ontology: Theory and Methodology: Springer, 2006, isbn 3-540-29169-5

[17] Zachman, J. A., "A Framework for Information System Architecture," IBM System Journal, vol. 26,
pp. 276-292, 1987.

[18] Xia, Y. and Glinz, M. Rigorous EBNF-based Definition for a Graphic Modeling Language. In Proc.
10th Asia-Pacific Software Engineering Conference, pp 186-196, IEEE Computer Society Press,
Chiangmai, Thailand, 2003.

[19] Atkinson, C., Paech, B., Reinhold, J., and Sander, T. Developing and applying component-based
model-driven architectures in KobrA. In Proc. 5th International EDOC Conference, pp 212-223, IEEE,
Seattle, USA, 2001.

[20] Putnam, J. R., Architecting with RM-ODP: Prentice-Hall, 2000, isbn 0-13-019116-7

[21] Lê, L. S. and Wegmann, A. Definition of an Object-Oriented Modeling Language for Enterprise
Architecture. In Proc. 38th Hawaii International Conference on System Sciences, pp 222a-222a, IEEE,
Hawaii, USA, 2005.

[22] Wegmann, A., Lê, L. S., Regev, G., and Wood, B., "Enterprise Modeling Using the Foundation
Concepts of the RM-ODP ISO/ITU Standard," Information Systems and e-Business Management (ISeB)
Special Issue on Enterprise Architecture, vol. 5, pp. 397-413, 2007.

[23] Lê, L. S. and Wegmann, A. An RM-ODP Based Ontology and a CAD Tool for Modeling
Hierarchical Systems in Enterprise Architecture. In Proc. Workshop on ODP for Enterprise Computing,
in conjunction with 9th EDOC, pp 7-15, IEEE, Enschede, The Netherlands, 2005.

[24] Bernardeschi, C., Dustzadeh, J., Fantechi, A., Najm, E., Nimour, A., and Olsen, F. Transformation
and Consistent Semantics for ODP Viewpoints. In Proc. FMOODS'97, pp Canterbery, UK, 1997.

[25] Lê, L. S. and Wegmann, A., "Meta-model for Object-Oriented Hierarchical Systems," School of
Computer and Communication Sciences, EPFL, Lausanne May 2004

[26] Warmer, J. and Kleppe, A., The Object Constraint Language: Precise Modeling With Uml Addison-
Wesley Professional, 1998, isbn 0201379406

[27] Audi, R., The Cambridge Dictionary of Philosophy: Cambridge University Press, 1999, isbn

[28] Lê, L. S. and Wegmann, A. SeamCAD: Object-Oriented Modeling Tool for Hierarchical Systems in
Enterprise Architecture. In Proc. 39th Hawaii International Conference on System Sciences, pp 179c-
179c, IEEE, Hawaii, USA, 2006.

[29] Lê, L. S. and Wegmann, A., "SeamCAD 1.x: User's Guide," School of Computer and
Communication Sciences, EPFL, Lausanne November 2004

[30] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Addison-Wesley, 1995, isbn
0-201-63361-2

[31] Kneitz, E.-M., Automatic Layout for a Systemic CAD Tool, Master thesis, in School of Computer and
Communication Sciences, EPFL, 2006

[32] Eades, P., Lai, W., Misue, K., and Sugiyama, K., "Layout Adjustment and the Mental Map," Journal
of Visual Languages and Computing, vol. 6, pp. 183-210, 1995.

[33] Wegmann, A., Lê, L.-S., L.Hussami, and Beyer, D. A Tool for Verified Design using Alloy for
Specification and CrocoPat for Verification. In Proc. First Alloy Workshop, colocated with 14th ACM
SIGSOFT Symposium on Foundations of Software Engineering, pp 58, ACM, Portland, USA, 2006.

[34] Beyer, D. Relational Programming with CrocoPat. In Proc. 28th International Conference on
Software Engineering, pp 807-810, ACM, Shanghai, China, 2006.

[35] D.Beyer and Noack, A., "CrocoPat 2.1 Introduction and Reference Manual," Computer Science
Division (EECS), University of California, Berkeley

[36] Wegmann, A., Regev, G., delaCruz, J. D., Lê, L. S., and Rychkova, I., "Teaching Enterprise
Architecture in Practice," Journal Enterprise Architecture, vol. 3, pp. 15-24, 2007.

[37] Dan, D., ERP Handbook, Outil d'organisation pour l'intégration et le développement de la solution
ERP DOPG Prod.com répondant aux besoins actuels et futurs des clients de DOP Gestion SA, Master
thesis, in School of Computer and Communication Sciences, EPFL, 2008

[38] Regev, G. and Wegmann, A. Where do Goals Come From: the Underlying Principles of Goal-
Oriented Requirements Engineering. In Proc. 13th International Requirements Engineering Conference,
pp 353 - 362, IEEE, Paris, 2005.

[39] Langenberg, K., Designing Enterprise Architectures with the SEAM Method - In-Depth Study,
Application and Critical Analysis, Master thesis, in School of Computer and Communication Sciences,
EPFL, 2004

[40] Kornfilt, M., "SimSeam: Adding Dynamic Simulation To A Graphical, Uml-Like, Modeling CAD
Tool," School of Computer and Communication Sciences, EPFL, Lausanne, Semester project, June 2005

[41] Forrester, J. W., Industrial Dynamics. Cambridge: The M.I.T. Press, 1961, isbn 1883823366

[42] Sood, K., "Interdisciplinary Learnings from a Cross Study of SEAM and System Dynamics," School
of Computer and Communication Sciences, EPFL, Lausanne, Semester project, September 2004

[43] Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A., Riegen, C., Schmidt, P., and
Trickovic, I., "WS-BPEL Extension for People – BPEL4People," IBM and SAP, White paper, June 2005

[44] Kelly, S. and Tolvanen, J.-P., Domain-Specific Modeling: Enabling Full Code Generation: Wiley-
IEEE Computer Society Press, 2008, isbn 978-0-470-03666-2

[45] Karsai, G., Maroti, M., Ledeczi, A., Gray, J., and Sztipanovits, J., "Composition and cloning in
modeling and meta-modeling," IEEE Transactions on Control Systems Technology, vol. 12, pp. 263-278,
2004.

Curriculum Vitae

Mr. Lam-Son LÊ

First name: Lam-Son Last name: Lê
Nationality: Vietnam Gender: Male
Date of birth: 7th September 1975 Nationality: Vietnam
Place of birth: Phu Tho Province, Vietnam Marital status: Married

E
du

ca
tio

n

11/2003 – 11/2008 Doctoral program of I&C, EPFL, Switzerland
 Dr.Sc (Ph.D.) in Computer and Communication Sciences
10/2002 – 07/2003 Doctoral school of I&C, EPFL, Switzerland
 Graduate Certificate
1993 – 1998 HCMC University of Technology, Vietnam
 Engineer Diploma on Information Technology
1990 – 1993 Ly Tu Trong senior high school Can Tho City, Vietnam
 (specialized in Math)
1986 – 1990 Doan Thi Diem junior high school Can Tho City, Vietnam
 (specialized in Math)

La
ng

ua
ge

s
English: fluent in writing and speaking
French: able to handle daily communications
Vietnamese: native language

E
m

pl
oy

m
en

t

11/2003 – 12/2008 I&C School, EPFL Lausanne, Switzerland
 Worked as a research assistant at the Laboratory of Systemic Modeling
10/2001 – 07/2003 I&C School, EPFL Lausanne, Switzerland
 Did an internship at the Laboratory of Systemic Modeling
04/1998 – 06/2001 HCMC University of Technology, Vietnam
 Worked as an assistant lecturer / researcher at the Department of
Information Technology

A
w

ar
ds

In March 2005, awarded a second prize in the Vietnam's best scientific and
technological innovations (VIFOTEC) for the project “Management and
visualization of the geophysical data of Bach Ho oil field”
In May 2004, awarded a first prize in the Contest of Creativity in Science and
Technology of HoChiMinh City for the project “Management and visualization
of the geophysical data of Bach Ho oil field”
In July 2001, granted a 1-year scholarship by FCS (Federal Commission for
Scholarships for foreign students) to study in the EPFL, Switzerland. This
scholarship was then extended to cover the successive academic year.
During the period 1993-1998, had been granted university scholarships that
were exclusively given to top undergraduate students.
In May 1993, won an incentive prize in Vietnamese Annual Mathematical
National Contest for senior high school students. Had also been a candidate in
a team-selecting contest of Vietnam for participating in the International
Mathematical Olympiad 1993.

G
iv

en
 P

re
se

nt
at

io
ns

• “An Example of a Hierarchical System Model using SEAM and its
Formalization in Alloy” presented at 4th International Workshop on ODP for
Enterprise Computing, in conjunction with 11th EDOC, Annapolis, USA,
October 2007
• “From Business to IT with SEAM: J2EE Pet Store Example”, presented at
11th International EDOC Conference - The Enterprise Computing Conference,

Annapolis, USA, October 2007
• “Business-IT Alignment with SEAM for Enterprise Architecture”, presented
at 11th International EDOC Conference - The Enterprise Computing
Conference, Annapolis, USA, October 2007
• "SeamCAD: Object-Oriented Modeling Tool for Hierarchical Systems in
Enterprise Architecture", presented at 39th Hawaii International Conference
on System Sciences, Hawaii, USA, January 2006.
• “An RM-ODP based Ontology and a CAD Tool for Modeling Hierarchical
System in Enterprise Architecture”, presented at Work hop on ODP for s
Enterprise Computing, in conjunction with 9th EDOC, Enschede, The
Netherlands, September 2005
• “Solving Delaunay Triangulation Problem on Multiprocessing Environment”,
presented at RESCCE’ 2000, Ho Chi Minh City, Vietnam, June 2000

H
ob

bi
es

 Photography, soccer, hiking, sightseeing, traveling, swimming, skiing, scenic
drive, windsurfing…

Representative publications

• L. S. Lê and A. Wegmann

Definition of an Object-Oriented Modeling Language for Enterprise
Architecture
Proceedings of 38th Hawaii International Conference on System Sciences, p.
222a, Track 8, IEEE Computer Society, Hawaii, USA, January 2005.

• L. S. Lê and A. Wegmann
An RM-ODP Based Ontology and a CAD Tool for Modeling Hierarchical
Systems in Enterprise Architecture
2nd International Workshop on ODP for Enterprise Computing, in
conjunction with 9th EDOC, pp. 7-15, ISBN 84-689-3693-6, Enschede, The
Netherlands, September 2005.

• L. S. Lê and A. Wegmann
SeamCAD: Object-Oriented Modeling Tool for Hierarchical Systems in
Enterprise Architecture
Proceedings of 39th Hawaii International Conference on System Sciences, p.
179c, Track 8, IEEE Computer Society, Hawaii, USA, January 2006.

• A.Wegmann, L. S. Lê, L.Hussami and D. Beyer
A Tool for Verified Design using Alloy for Specification and CrocoPat for
Verification
First Alloy Workshop, ACM SIGSOFT Sofwa e Engineering Notes, Volume
31, Number 6, page 42, Portland, Oregon USA, November 2006.

r

• A.Wegmann, L. S. Lê, G. Regev and B. Wood
Enterprise Modeling Using the Foundation Concepts of the RM-ODP
ISO/ITU Standard
Information Systems and e-Business Management (ISeB), vol. 5, pp. 397-
413, ISSN 1617-9846, Springer Berlin / Heidelberg

• A. Wegmann, L. S. Lê, J. D. De La Cruz, I. Rychkova and G. Regev
An Example of a Hierarchical System Model using SEAM and its
Formalization in Alloy
4th International Workshop on ODP for Enterprise Computing, in
conjunction with 11th EDOC, pp. 21-29, Annapolis, USA, October 2007.

Publication list

Journal Articles (2)
• A.Wegmann, L. S. Lê, G. Regev and B. Wood

Enterprise Modeling Using the Foundation Concepts of the RM-ODP
ISO/ITU Standard
Information Systems and e-Business Management (ISeB), vol. 5, pp. 397-
413, ISSN 1617-9846, Springer Berlin / Heidelberg

• A.Wegmann, G. Regev, J. D. De La Cruz, L. S. Lê and I. Rychkova
Teaching Enterprise and Service-Oriented Architecture in Practice
Journal Enterprise Architecture, volume 3, number 4, pp. 15-24

Conference/Workshop Papers (11)
• A. Wegmann, L. S. Lê, J. D. De La Cruz, I. Rychkova and G. Regev

An Example of a Hierarchical System Model using SEAM and its
Formalization in Alloy
4th International Workshop on ODP for Enterprise Computing, in
conjunction with 11th EDOC, pp. 21-29, Annapolis, USA, October 2007.

• I. Rychkova, G. Regev, L. S. Lê and A.Wegmann
From Business to IT with SEAM: J2EE Pet Store Example
(short paper) 11th International EDOC Conference - The Enterprise
Computing Conference, pp. 495-502, IEEE Computer Society, Annapolis,
USA, October 2007.

• A.Wegmann, G. Regev, I. Rychkova, L. S. Lê, J. D. De La Cruz and P. Julia
Business-IT Alignment with SEAM for Enterprise Architecture
(regular paper) 11th International EDOC Conference - The Enterprise
Computing Conference, pp. 111-121, IEEE Computer Society, Annapolis,
USA, October 2007.

• A.Wegmann, G. Regev, J. D. De La Cruz, L. S. Lê and I. Rychkova
Teaching Enterprise Architecture in Practice
Trends in Enterprise Architecture Research Workshop, in conjunction with
15th ECIS, Via Nova Architectura, St. Gallen, Switzerland, June 2007.

• A.Wegmann, L. S. Lê, L.Hussami and D. Beyer
A Tool for Verified Design using Alloy for Specification and CrocoPat for
Verification
First Alloy Workshop, ACM SIGSOFT Sofwa e Engineering Notes, Volume
31, Number 6, page 42, Portland, Oregon USA, November 2006.

r

• J. D. De La Cruz, L. S. Lê and A. Wegmann
Validation of Visual Contracts for Services
4th Workshop on Modeling, Simulation, Verification and Validation of
Enterprise Information Systems, in conjunction with 8th ICEIS, pp. 147-
156, INSTICC Press, Paphos, Cyprus, May 2006.

• J. D. De La Cruz, L. S. Lê and A. Wegmann
VISUAL CONTRACTS - A way to reason about states and cardinalities in
IT system specifications
Proceedings of 8th International Conference on Enterprise Information
Systems, pp. 298-303, INSTICC Press, Paphos, Cyprus, May 2006.

• L. S. Lê and A. Wegmann
SeamCAD: Object-Oriented Modeling Tool for Hierarchical Systems in
Enterprise Architecture
Proceedings of 39th Hawaii International Conference on System Sciences, p.
179c, Track 8, IEEE Computer Society, Hawaii, USA, January 2006.

• L. S. Lê and A. Wegmann
An RM-ODP Based Ontology and a CAD Tool for Modeling Hierarchical
Systems in Enterprise Architecture
2nd International Workshop on ODP for Enterprise Computing, in
conjunction with 9th EDOC, pp. 7-15, ISBN 84-689-3693-6, Enschede, The
Netherlands, September 2005.

• A.Wegmann, P. Balabko, L. S. Lê, G. Regev and I. Rychkova
A Method and Tool for Business-IT Alignment in Enterprise Architecture
Proceedings of 17th Conference on Advanced Information Systems
Engineering Forum, pp. 113-118, FEUP Edições, ISBN 972-752-078-2,
Porto, Portugal, June 2005.

• L. S. Lê and A. Wegmann
Definition of an Object-Oriented Modeling Language for Enterprise
Architecture
Proceedings of 38th Hawaii International Conference on System Sciences, p.
222a, Track 8, IEEE Computer Society, Hawaii, USA, January 2005.

Technical Reports (2)
• L. S. Lê and A. Wegmann

SeamCAD 1.x: User's Guide
Technical report No. IC/2004/98, École Polytechnique Fédérale de
Lausanne (EPFL), November 2004.

• L. S. Lê and A. Wegmann
Meta-model for Object-Oriented Hierarchical Systems
Technical report No. IC/2004/47, École Polytechnique Fédérale de
Lausanne (EPFL), May 2004.

	Title
	Contents
	Preface
	Acknowledgements
	Chapter 1: Introduction
	1.1. Enterprise Architecture and Modeling
	1.2. An Example
	1.3. Motivation Problems
	1.4. Framework for Modeling Enterprise Architecture Hierarch
	Contribution: a Hierarchy-Oriented Modeling Language for EA
	Contribution: a Computer-Aided Modeling Tool for Modeling EA

	1.5. Research Methodology
	1.6. Research Scope
	1.7. Outlines

	Chapter 2: State of the Art
	2.1. Software and System Modeling
	2.2. Enterprise Modeling
	2.3. A Comprehensive Comparison of Adora, KobrA and OPM
	2.3.1. Adora
	2.3.2. KobrA
	2.3.3. OPM
	2.3.4. Comparison between AdorA, KobrA, OPM and SeamCAD

	Chapter 3: The SeamCAD Modeling Language
	3.1. Foundations
	SEAM Method
	Living Systems Theory
	Reference Model for Open Distributed Processing (RM-ODP)

	3.2. Informal Definition
	3.2.1. Building blocks of the SeamCAD modeling language
	Organizational Level in Terms of Working Objects as Whole /
	Functional Level in Terms of Distributed Actions, Localized
	Relation
	Relationship to RM-ODP

	3.2.2. Explanation of the enterpise model of the online book

	3.3. Formal Definition
	3.3.1. Meta-model
	3.3.2. Instantiation and well-formedness in the enterprise m

	3.4. Formalization
	3.4.1. Formalization in Alloy
	Formalization of Model Elements
	Formalization of Relations
	Formalization of Well-formedness Rules
	Complete Alloy Code

	3.4.2. Testing and executing the formalization code

	3.5. Notation
	3.6. Solution to Four Modeling Challenges by SeamCAD Modelin

	Chapter 4: SeamCAD Computer-Aided Tool
	4.1. The Role of a Computer-Aided Tool in Modeling EA
	4.2. Modeling EA with SeamCAD Tool
	4.2.1. Explicit hierarchy that represents the organization a
	4.2.2. Explicit functional level hierarchy
	4.2.3. A coherent model from which the diagrams are generate
	4.2.4. Notation which is systemic, discipline-specific, unde
	4.2.5. Overview of the model, the diagram and the element
	Overview of Model
	Overview of Diagram
	Overview of Model Element

	4.2.6. Solution to the four challenges by the SeamCAD tool

	4.3. Rendering and Layout
	4.3.1. Diagram rendering
	4.3.2. Automatic layout

	4.4. Implementation of SeamCAD Tool
	4.5. Data Verification
	From Alloy to RML
	Verification

	Chapter 5: Applications and Feedback
	5.1. Applications
	5.1.1. A case-study enterprise model in a master’s course on
	5.1.2. Enterprise model of an ERP-seeking company in the mar
	5.1.3. Designing EA with the SEAM method and SeamCAD
	5.1.4. Simulation of System Dynamics with SeamCAD
	5.1.5. Lessons learnt from building enterprise models in Sea

	5.2. Feedback from Practitioners, Researchers and Students
	5.2.1. Protocol for getting users’ feedback
	5.2.2. Ratings
	5.2.3. Suggestions from the practitioners
	5.2.4. Suggestions from the master’s students
	5.2.5. What was learnt from the feedback?

	Conclusion and Future Work
	Appendix A: An Example of Specifying the Semantics of Action
	A.1. Declarative Modeling of Local Distributed Action – Net
	A.2. Declarative Modeling of Localized Action
	A.2.1. One working object and its environment
	A.2.2. Multiple working objects without environment

	A.3. Declarative Modeling of non-Local Distributed Action –
	A.4. Declarative Modeling of non-Local Localized Action
	A.4.1. One working object and its environment
	A.4.2. Set of working objects with environment

	A.5. Imperative Modeling of non-Local Distributed Action
	A.5.1. One working object with its environment
	A.5.2. Multiple working objects

	Appendix B: Tutorial and Questionnaire Used for Obtaining Fe
	B.1. Tutorial: Viewing a pre-Built Model in SeamCAD
	B.2. Tutorial: Adding more Model Elements…
	B.3. Slides: Building Enterprise Model in SeamCAD
	B.4. Questionnaire – Obtaining Feedback from Practitioners a
	B.5. Questionnaire – Obtaining Feedback from Students

	Appendix C: Modeling Tools in the Fields Related to Enterpri
	Appendix D: Design of SeamCAD Tool
	Bibliographic References
	Curriculum Vitae
	Engineer Diploma on Information Technology

	Representative publications
	Publication list

