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1 Introduction

A spectrometer can be calibrated for an analyte of interest in the presence of interferents whose concentrations
do not even have to be known [10]. For dynamic processes such as chemical reactions, data from various batches
can be combined for calibration. This way, interferents andprevailing drifts are included in the calibration set.
The drifts are caused by instrumental, operational and process changes, such as the effect of temperature, pres-
sure and pH on the instrument, residue accumulation or agingof the instrument, changes in probe alignment,
operational offsets, and interactions between species [7,5]. As an alternative to combining batches, on-line or
at-line reference measurements might be added to the off-line database to update the calibration model [9, 6, 1].

The methods that include drift in the calibration set are referred to asimplicit correction models(ICM). In
contrast,explicit correction models(ECM), such as Dynamic Orthogonal Projection (DOP) [8, 4], model the
drift space based on reference measurements and make the calibration model orthogonal or invariant to that
space. In this study, the original DOP algorithm will be modified so as to improve the estimation of the drift
space.

Correct prediction of the analyte concentration from a new spectrum without drift is possible provided the
spectrum lies in the row space spanned by the calibration spectra (space-inclusion condition) [3]. An extended
space-inclusion condition, which new spectra possibly corrupted with drift should fulfill, will be proposed for
all drift-correction methods.

In addition to the drift component, which causes a bias in themeasurements, the measurements are also cor-
rupted by noise. A Monte-Carlo simulation study with additive Gaussian noise will illustrate and compare the
performance of the drift-correction methods in the presence of various drift types.

The basic principles of multivariate calibration for spectroscopic data are reviewed in Section 2. Section 3
extends the space-inclusion condition to the case of drifts. The results of a simulated case study are presented
in Section 4, and Section 5 concludes the paper. For simplicity of notation, the theoretical results developed in
Sections 2 and 3 are for the noise-free case, while the simulation study in Section 4 contains noise.

2 Preliminaries

2.1 Calibration model

Spectral absorbance matrix. Let x(m) denote the spectral (absorbance) vector of annr-channel instrument,
andy(m) the ns-dimensional concentration vector at the observation instant m, wherens is the number of



absorbing species. For spectral data dependinglinearly ony (e.g. when Beer’s law is valid), one can write:

xT (m) = yT (m)E (1)

whereE is the[ns x nr] pure-component spectra matrix. Fornc off-line calibration measurements, Eq. (1) can
be written in matrix form as:

X = YE (2)

with X being the[nc x nr] spectral (absorbance) matrix andY the [nc x ns] concentration matrix.

Calibration. Let nk be the number of absorbing species for which concentrationsare available for calibration
(calledspecies of interest), andnu the number of remaining absorbing species (calledinterferents). Y may be
separated into the[nc x nk] known partYk and the[nc x nu] unknown partYu:

Y = [Yk Yu] (3)

The inverse calibration model reads [10]:
Yk = XB (4)

whereB is a [nr x nk] regressor matrix that can be estimated using a variety of methods such as Principal
Component Regression (PCR), Partial Least Squares Regression (PLSR), and Continuum Regression (CR)
[10]. The difference between the various methods stems fromthe way the noise inX andYk is handled. In the
absence of noise, the estimate ofB is the same for each of these methods:

B̂ = (X)+Yk (5)

where+ stands for the Moore-Penrose inverse.

Prediction. Let rank (E) = ns andx(m) be a new spectrum obeying (1). The concentrations of thenk species
are predicted correctly fromx(m) using

ŷT
k (m) = xT (m)B̂ (6)

if x(m) satisfies the space-inclusion condition, i.e.x(m) ∈ Sr(X), whereSr(X) denotes the row space ofX.
This condition, which is necessary and sufficient in the absence of interferents, is only sufficient in the presence
of unknown interferents. (See [3] for a proof)

2.2 Update of calibration model using on-line reference measurements

Let us assume that, during on-line operation, the measured spectrumx(m) is given by:

xT (m) = yT
k (m)Ek + dT (m) (7)

whereEk contains the[nk x nr] pure-component spectra of thenk known species.d is anr-dimensional drift
component lying in a rank-r subspace withr << nr, i.e. the drift components of several observations can be
linearly dependent. The first term in Eq. (7) models the spectrum according to the known species, while the
second term corresponds to the spectrum of the interferentstogether with the drift caused by (i) baseline shift,
(ii) the differences in pH or interactions like hydrogen bonding that result in positional peak shifts and change
the shape of the peak (physico-chemical interactions), and(iii) the multiple path lengths of the light reaching
the exit slit of the instrument (stray light).

The drift component causes a bias in the prediction given by Eq. (6). Hence, the calibration model needs to
be corrected using on-line reference measurements. LetXτ containnτ reference measurements andYτ be the
corresponding analyte concentrations that are measured byreference analytics. Eq. (7) gives:

Xτ = YτEk + D (8)



whereXτ , Yτ andD are of size[nτ x nr], [nτ x nk], and[nτ x nr], respectively. With ICM, the data pair
{Xτ ,Yτ} collected during the run is periodically appended to the calibration database [1, 6], and the regressor

matrix B is re-estimated using the data pair
{

[

X

Xτ

]

,
[

Yk

Yτ

]}

and Eq. (5). With ECM,D is estimated from the

data pair{Xτ ,Yτ} asD̂ [4, 8]. The[nr x nr] orthogonal projection matrix̂N = (I − D̂+D̂) is computed,
and with each new on-line reference measurement, the regressor matrixB is re-estimated using the data pair
{XN̂,Yk} and Eq. (5).

In DOP, the estimation of̂D is based on a kernel approach[4, 8]. A modified kernel is used in this work, which
will be detailed in the full paper.

3 Extended space-inclusion condition in the presence of unknown drifts

3.1 Space-inclusion condition for ICM

Proposition 1 Consider the measured spectrumx(m) that is affected by the unknown drift componentd(m) as
given by Eq.(7). Let rank

([

Ek

D

])

= nk + r, d(m) ∈ Sr(D), and on-line reference measurements{Xτ ,Yτ}
be available. Then, the concentrations of thenk species can be predicted correctly fromx(m) using

ŷT
k (m) = xT (m)B̂∗ (9)

where

B̂∗ =

[

X

Xτ

]+ [

Yk

Yτ

]

(10)

if x(m) ∈ Sr

([

X

Xτ

])

.

(Proof in the full paper). Proposition 1 says that, assumingthat the drift component lies within the implicitly
included drift space but not in the row space of thenk pure-component spectra, prediction will not be impaired
for a new spectrum if it lies in the row space of the augmented calibration set.

3.2 Space-inclusion condition for ECM

Proposition 2 Consider the measured spectrumx(m) that is affected by the unknown drift componentd(m) as

given by Eq.(7). Letrank
([

Ek

D̂

])

= nk + r, d(m) ∈ Sr(D̂), and on-line reference measurements{Xτ ,Yτ}

be available. Then, the concentrations of thenk species can be predicted correctly fromx(m) using

ŷT
k (m) = xT (m)B̂∗ (11)

where
B̂∗ = (XN̂)+Yk (12)

if xT (m)N̂ ∈ Sr(XN̂).

(Proof in the full paper). Proposition 2 says that, assumingthat the drift component lies within the explicitly
estimated drift space but not in the row space of thenk pure-component spectra, prediction will not be impaired
for a new corrected spectrum if it lies in the row space of the corrected calibration set.

4 Simulated batch reactor

4.1 Data generation

Drift correction is illustrated via spectral measurementsfrom a simulated isothermal, constant-volume batch
reactor involvingns = 4 absorbing species and 2 independent reactions (example taken from [2]). ReactantP



is converted to the desired productS following a catalyzed two-step reaction:

2P
κ1−→ Q

κ2−→ R + 2S. (13)

The mole balances for the batch reactor read:

d yP

d t
= −2κ1 y2

P (14)

d yQ

d t
= κ1 y2

P − κ2 yQ yR. (15)

All four species are assumed to absorb and obey Eq. (1). The numerical values for the rate constants are
κ1 = 2.45 ℓ mol−1h−1 andκ2 = 21.33 ℓ mol−1 h−1. Only P , R andS are assumed to be known during
calibration (nk = 3), Q being an unknown interferent (nu = 1). Spectra atnr = 101 channels, measured for
nc = 49 mixture samples are used for calibration using principal component regression (PCR) andns latent
vectors. The on-line measurementsx(m) are constructed according to Eq. (7) from simulated concentrations,
pure-component spectra and drift models for (i) baseline shift, (ii) physico-chemical interactions, and (iii) stray
light. Zero-mean Gaussian noise with standard deviationσc andσp is added to the calibration and prediction
data, respectively. The value ofσc is chosen such that the noise level during calibration, defined asσc/σx,
whereσx is the standard deviation of the calibration spectral matrix averaged over all channels, is 10%. The
value ofσp is varied over a wide range to determine the drift correctionability of ICM and ECM in the presence
of different noise levels. Ten on-line reference measurements (nτ = 10) are collected at equal intervals during
the reaction, andr is chosen so as to capture at least 95% variation inD̂.

4.2 Results and discussion

ICM and ECM give exactly the same prediction when the calibration and prediction data and the on-line refer-
ence measurements are noise free (results not shown). In theabsence of noise, the space-inclusion conditions
can be checked by calculating the Q-statistics [10], which should be zero. Fig. 1 shows that, even after drift
correction by ECM and ICM, the Q-statistics are non-zero initially, and thus prediction during this stage is
inaccurate. However, after a sufficient number of on-line reference measurements, the Q-statistics goes to zero,
thereby leading to correct prediction.
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Figure 1: Q-statistics for the noise-free case without correction and with correction based on ECM and ICM
for analyteS and for baseline shift.

In the noisy case, a test statistics based on both the Q-statistics and theT 2-statistics is used [10] (results
not shown). In Fig. 2, the average standard error of prediction (SEP) of analyteS from 500 Monte-Carlo
simulations with differentσp/σc is shown for each of the three drifts. It can be seen that ICM and ECM perform
similarly in the presence of noise. Asσp/σc increases, the average SEP after drift correction approaches the
average SEP of the calibration model without correction. Similar results are obtained for speciesP andR.
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Figure 2: Average SEP without correction and with correction based on ECM and ICM for analyteS and for
three drift types: (i) baseline shift, (ii) physico-chemical interactions, and (iii) stray light.

5 Conclusions

If the measurement-based drift-correction methodologiessuch as ICM and ECM satisfy the space-inclusion
conditions, they are equivalent in the absence of noise. Thedifference between the various methods stems from
the way they handle noise. This study has shown that, for additive Gaussian noise, ICM and ECM exhibit
similar performance. As the prediction noise increases relative to the calibration noise, the correction method-
ologies are less able to extract drift information from on-line reference measurements, and the corresponding
SEPs approach the SEP of the calibration model without correction.
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