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1 Introduction

A spectrometer can be calibrated for an analyte of interetta presence of interferents whose concentrations
do not even have to be known [10]. For dynamic processes sutdteanical reactions, data from various batches
can be combined for calibration. This way, interferents pravailing drifts are included in the calibration set.
The drifts are caused by instrumental, operational andgschanges, such as the effect of temperature, pres-
sure and pH on the instrument, residue accumulation or agfitige instrument, changes in probe alignment,
operational offsets, and interactions between specigs].[As an alternative to combining batches, on-line or
at-line reference measurements might be added to theneffititabase to update the calibration model [9, 6, 1].

The methods that include drift in the calibration set aremeid to agmplicit correction modelgICM). In
contrast,explicit correction model¢ECM), such as Dynamic Orthogonal Projection (DOP) [8, 4pdel the
drift space based on reference measurements and make itratcah model orthogonal or invariant to that
space. In this study, the original DOP algorithm will be nfmdi so as to improve the estimation of the drift
space.

Correct prediction of the analyte concentration from a npecgum without drift is possible provided the
spectrum lies in the row space spanned by the calibratiottrspepace-inclusion conditigri3]. An extended
space-inclusion condition, which new spectra possiblyugied with drift should fulfill, will be proposed for
all drift-correction methods.

In addition to the drift component, which causes a bias innleasurements, the measurements are also cor-
rupted by noise. A Monte-Carlo simulation study with additGaussian noise will illustrate and compare the
performance of the drift-correction methods in the presasfosarious drift types.

The basic principles of multivariate calibration for sgestopic data are reviewed in Section 2. Section 3
extends the space-inclusion condition to the case of diift® results of a simulated case study are presented
in Section 4, and Section 5 concludes the paper. For sirhpb€inotation, the theoretical results developed in
Sections 2 and 3 are for the noise-free case, while the siimmlstudy in Section 4 contains noise.

2 Preiminaries
2.1 Calibration model

Spectral absorbance matrix. Let x(m) denote the spectral (absorbance) vector ofigsghannel instrument,
andy(m) the ns-dimensional concentration vector at the observatioraimst:, wheren is the number of



absorbing species. For spectral data depeniitiegrly ony (e.g. when Beer’s law is valid), one can write:
x!(m) = y* (m)E (1)

whereE is the[n, X n,] pure-component spectra matrix. Foroff-line calibration measurements, Eq. (1) can
be written in matrix form as:
X=YE (2

with X being the[n. x n,| spectral (absorbance) matrix aidthe [n. X n,] concentration matrix.

Calibration. Letn, be the number of absorbing species for which concentraticeavailable for calibration
(calledspecies of interestandn, the number of remaining absorbing species (caleerferent. Y may be
separated into th. x n;] known partY and the[n. x n,] unknown partY,:

Y =[Y,Y,] 3)

The inverse calibration model reads [10]:
Y, =XB (4)

whereB is a[n, X ny| regressor matrix that can be estimated using a variety ofiedstsuch as Principal
Component Regression (PCR), Partial Least Squares Regrdf4d.SR), and Continuum Regression (CR)
[10]. The difference between the various methods stems fhemvay the noise iX andY/, is handled. In the
absence of noise, the estimatel®fs the same for each of these methods:

A

B = (X)"Y, (5)

where™ stands for the Moore-Penrose inverse.

Prediction. Letrank (E) = ng, andx(m) be a new spectrum obeying (1). The concentrations of trepecies
are predicted correctly from(m) using R
yi (m) = x"(m)B (6)

if x(m) satisfies the space-inclusion condition, kém) € S,(X), whereS,(X) denotes the row space .
This condition, which is necessary and sufficient in the abs@f interferents, is only sufficient in the presence
of unknown interferents. (See [3] for a proof)

2.2 Update of calibration model using on-line reference measurements

Let us assume that, during on-line operation, the measpettrsimx(m) is given by:
x"(m) = yi (m)Ex +d" (m) ()

whereE;, contains thégn x n,.] pure-component spectra of thg known speciesd is an,-dimensional drift
component lying in a rank-subspace withr << n,, i.e. the drift components of several observations can be
linearly dependent. The first term in Eq. (7) models the spettaccording to the known species, while the
second term corresponds to the spectrum of the interfetegéther with the drift caused by (i) baseline shift,
(ii) the differences in pH or interactions like hydrogen Hong that result in positional peak shifts and change
the shape of the peak (physico-chemical interactions),(éhthe multiple path lengths of the light reaching
the exit slit of the instrument (stray light).

The drift component causes a bias in the prediction givendpy(&). Hence, the calibration model needs to
be corrected using on-line reference measurementsXLebntainn reference measurements ayid be the
corresponding analyte concentrations that are measuresfdrgnce analytics. Eq. (7) gives:

X;,=Y;E.+D (8)



whereX,, Y, andD are of size[n, X n,], [n; X ng|, and[n, x n,], respectively. With ICM, the data pair
{X,, Y.} collected during the run is periodically appended to thécation database [1, 6], and the regressor

matrix B is re-estimated using the data p%lh’é] , [%]} and Eq. (5). With ECMD is estimated from the

data pair{X,,Y,} asD [4, 8]. The[n, x n,] orthogonal projection matriN = (I — DTD) is computed,
andAwith each new on-line reference measurement, the segramtrixB is re-estimated using the data pair
{XN, Y} and Eq. (5).

In DOP, the estimation db is based on a kernel approadh 8]. A modified kernel is used in this work, which
will be detailed in the full paper.

3 Extended space-inclusion condition in the presence of unknown drifts
3.1 Space-inclusion condition for |CM
Proposition 1 Consider the measured spectraefm) that is affected by the unknown drift componétit:) as

given by Eq(7). Letrank ([ ]) = ni + r, d(m) € S,(D), and on-line reference measureme(,, Y}
be available. Then, the concentrations of thespecies can be predicted correctly frotfim) using

i (m) = x" (m)B* (9)

. X 177Y
= ] |V @0

where

x(m) € S, ([£])

(Proof in the full paper). Proposition 1 says that, assuntiirag the drift component lies within the implicitly
included drift space but not in the row space of thgpure-component spectra, prediction will not be impaired
for a new spectrum if it lies in the row space of the augmengdith@ation set.

3.2 Space-inclusion condition for ECM

Proposition 2 Consider the measured spectraefn) that is affected by the unknown drift componétit:) as
given by Eq(7). Letrank <[%’€ ]) = ng 4 r,d(m) € S,(D), and on-line reference measuremefi,, Y}
be available. Then, the concentrations of thespecies can be predicted correctly frotfim) using

yi (m) =x"(m)B* (11)
where R A

B* = (XN)"Y (12)

if x”'(m)N € S,(XN).
(Proof in the full paper). Proposition 2 says that, assuntlirag the drift component lies within the explicitly
estimated drift space but not in the row space ofth@ure-component spectra, prediction will not be impaired
for a new corrected spectrum if it lies in the row space of theerted calibration set.
4 Simulated batch reactor

4.1 Datageneration

Drift correction is illustrated via spectral measuremdnsn a simulated isothermal, constant-volume batch
reactor involvingns = 4 absorbing species and 2 independent reactions (exaakge from [2]). ReactanP



is converted to the desired produtfollowing a catalyzed two-step reaction:

2P L Q 2 R+26. (13)
The mole balances for the batch reactor read:
dyp
i —2K1 y% (14)
dy.
d—tQ = K1Yp — K2YQ YR (15)

All four species are assumed to absorb and obey Eq. (1). Theemcal values for the rate constants are
k1 = 2.45¢ mol~'h~! andky = 21.33¢ mol~* h™!. Only P, R and S are assumed to be known during
calibration @ = 3), @ being an unknown interferent{ = 1). Spectra at,, = 101 channels, measured for
n. = 49 mixture samples are used for calibration using principahgonent regression (PCR) and latent
vectors. The on-line measuremestsn) are constructed according to Eq. (7) from simulated comagots,
pure-component spectra and drift models for (i) baselinife, $i) physico-chemical interactions, and (iii) stray
light. Zero-mean Gaussian noise with standard deviatioando,, is added to the calibration and prediction
data, respectively. The value of is chosen such that the noise level during calibration, ddfiasc. /o,
whereo, is the standard deviation of the calibration spectral matvieraged over all channels, is 10%. The
value ofo), is varied over a wide range to determine the drift correcéibitity of ICM and ECM in the presence
of different noise levels. Ten on-line reference measurgs@.. = 10) are collected at equal intervals during
the reaction, and is chosen so as to capture at least 95% variatid.in

4.2 Resultsand discussion

ICM and ECM give exactly the same prediction when the calibnsand prediction data and the on-line refer-
ence measurements are noise free (results not shown). &bffemce of noise, the space-inclusion conditions
can be checked by calculating the Q-statistics [10], whiubutd be zero. Fig. 1 shows that, even after drift
correction by ECM and ICM, the Q-statistics are non-zertidly, and thus prediction during this stage is
inaccurate. However, after a sufficient number of on-liference measurements, the Q-statistics goes to zero,
thereby leading to correct prediction.
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Figure 1. Q-statistics for the noise-free case withoutexiron and with correction based on ECM and ICM
for analyteS and for baseline shift.

In the noisy case, a test statistics based on both the Qtitatand thel?-statistics is used [10] (results
not shown). In Fig. 2, the average standard error of pregicSEP) of analytes’ from 500 Monte-Carlo
simulations with different,, /o. is shown for each of the three drifts. It can be seen that ICMEQM perform
similarly in the presence of noise. As/o. increases, the average SEP after drift correction appesaitte
average SEP of the calibration model without correctiomilar results are obtained for speciBsand R.



Baseline shift Physico—chemical interactions Stray light
T T T 0.06 T T T T T T

0.055 b 0.07 1
0.05 b 0.06f. 1

avg(SEP)
avg(SEP)
g

. 0.0 i
0.015 X Without correction |- X Without correction ]C X Without correction
O  After ECM O  After ECM O  After ECM

*  AfteriCM s AfteriCM *  AfteriCM

2 4 6 8 10 o 2 4 6 8 10 o 2 4 6 8 10
op/oe op/oe op/oe

Figure 2: Average SEP without correction and with correctbased on ECM and ICM for analyteand for
three drift types: (i) baseline shift, (ii) physico-chemliinteractions, and (iii) stray light.

5 Conclusions

If the measurement-based drift-correction methodologiesh as ICM and ECM satisfy the space-inclusion
conditions, they are equivalent in the absence of noise diffezence between the various methods stems from
the way they handle noise. This study has shown that, fortimedbaussian noise, ICM and ECM exhibit
similar performance. As the prediction noise increasestivel to the calibration noise, the correction method-
ologies are less able to extract drift information from oelreference measurements, and the corresponding
SEPs approach the SEP of the calibration model without ctiore
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