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I. INTRODUCTION

In electrostatic drift wave theory, the generation of large-
scale structures with additional symmetry, so-called zonal
flows and streamers, is a well-known and active field of
investigation.1 These structures are spontaneously generated
and sustained by small-scale drift-type fluctuations. Genera-
tion of such flows is commonly attributed to the effect of
Reynolds stress generated by small-scale fluctuations,2 using
the free energy stored in density and temperature gradients.2

The mechanism behind can be attributed to the well-known
inverse cascade guaranteed in two-dimensional �and quasi-
two-dimensional� fluids by the conservation of energy and
enstrophy.3 Moreover, studying the long-term dynamics has
shown that flow generation by drift turbulence results in a
modification of the drift wave spectra itself and finally in the
saturation of the growing flows. This nonlinear “feedback”
phenomenon is usually investigated in the frame of the so-
called “predator-prey” model by employing the quasilinear
closure �see, e.g., Refs. 4 and 5�.

On the other hand, transport and amplification properties
of large-scale magnetic fields are widely investigated, most
of all because of their importance in different physical phe-
nomena. One impressive effect of large, strong magnetic
fields is the release of high-energy bursts in solar flares.6

These bursts are believed to occur as a result of the recon-
nection of magnetic field lines, which one attempts to under-
stand through turbulent magnetic field diffusivity, relating
directly to the question of transport of large-scale magnetic
fields in a turbulent environment.7–10 Also, since the end of
the 1970s, experiments have shown that strong quasisteady
magnetic fields are created in laser-produced plasma.11 This
was an important result as it had often been assumed that the
absence of magnetic field effects, which greatly affect heat
transport, was a desirable feature of laser-produced
plasmas.12 These measurements showed clearly that strong
magnetic fields can be generated even in unmagnetized
plasmas.13 Closer investigations revealed that these magnetic

fields oscillate with a typical frequency in between the ion
and the electron plasma frequency, and are fed by density
and temperature gradients through the first-order baroclinic
vector.14

In order to study the generation of strong magnetic fields
within the mentioned frequency range, the nonlinear theory
of magnetic electron drift wave turbulence in an unmagne-
tized inhomogeneous plasma has been developed
recently.15,16 This theory is a two-field theory, describing the
magnetic field and temperature evolution, in contrast to the
theory of electrostatic drift wave turbulence. It could be
shown that structures very similar to large-scale flows in
electrostatic drift wave turbulence can be found, the so-
called zonal magnetic fields and magnetic streamers.17–22

Furthermore, two regimes of large-scale magnetic field gen-
eration have recently been investigated in Ref. 23 and
yielded a general criterion concerning the local form of the
wave spectrum in the case of the kinetic regime �where reso-
nance was assumed� and an explicit result for the hydrody-
namic regime, where a monochromatic wave spectrum al-
lowed the integration over all modes. Also, a sufficient
criterion for large-scale structure generation was found in the
form of Nyquist’s criterion in Ref. 24.

The present work investigates large-scale magnetic field
generation via modulational instability, which arises in the
presence of a small-scale pump wave and its sidebands. We
will find the conditions for such large-scale field generation,
which occurs via triad interactions, i.e., with k+k�+q�0,
and is an intrinsically nonlocal interaction in k space, since
�k���k��� �q�. Here k and k� denote the small-scale and q
the large-scale wave vectors. Thus, if one assumes the pres-
ence of a pump wave with a wave vector k, two sidebands
with wave vectors k±=k±q will interact with the original
pump wave and, as we will show, these interactions can lead
to a growth of large-scale fields. Note that the long-term
dynamics as well as the different saturation mechanisms of
growing large-scale magnetic fields are not considered in this
paper.

The rest of the paper is organized as follows: In Sec. II,
we will give a short reminder of the basic equations for mag-a�Electronic mail: martin.jucker@epfl.ch
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netic electron drift modes as derived in Ref. 15. In Sec. III,
the modulational instability arising from the interaction of a
pump wave with its sidebands will be developed. Finally, the
paper will be concluded in Sec. IV.

II. BASIC EQUATIONS

As already mentioned, we consider a nonuniform un-
magnetized plasma. The inhomogeneity of the plasma is due
to a density and a temperature gradient, which serve as an
energy source for the magnetic electron drift wave turbu-
lence investigated here.16 The studied drift modes are low-
frequency motions with a typical time scale in between the
inverse ion and electron plasma frequencies, and hence we
consider plasma consisting of an unpolarized electron fluid
and immobile ions, which play a passive role as a neutraliz-
ing background, and the dominant role in dynamics is played
by the electrons. Therefore, density perturbations can be ne-
glected, i.e., the electron density n equals its equilibrium
value n0.

For deriving our model equations, the momentum equa-
tion together with Maxwell’s equations and the energy equa-
tion are used,25 together with the standard assumptions of a
quasi-two-dimensional case in the x-y plane. Then, all quan-
tities are independent of z, along which the perturbed mag-
netic field is directed. The length scales of the fluctuations
are supposed to be much smaller than those of the equilib-
rium quantities. The temperature will be considered the sum
of an equilibrium and a perturbed part T0+T, and the per-
turbed magnetic field is denoted by B. As a last assumption,
we consider the equilibrium density and temperature gradi-
ents �n0 and �T0 along the x axis only. Taking the curl of the
momentum equation, one can show, with all the above as-
sumptions, that the basic system of equations describing both
linear and nonlinear properties of magnetic electron drift
modes becomes25

�

�t
�B − �2�2B� + �

�T

�y
=

e�4

m
�B,�2B� , �1a�

�T

�t
+ �

�B

�y
= −

e�2

m
�B,T� , �1b�

with �=�2�eT0 /m��2/3�n−�T� and �=�n /e. We also define
the inverse length scales of the density and the temperature
inhomogeneities, �n= �� ln n� and �T= �� ln T0�, and the skin
depth �=c /�p.

Note that the evolution equation for the magnetic field is
nonlinear in B. This is intrinsically due to the convective
derivative in the electron momentum equation. The order of
perturbation of the right-hand side �RHS� in �1b� shows that
the perturbed temperature should not be neglected.

Linearizing the evolution equations �1� for small pertur-
bations B ,T�exp�−i�t+ ikr�, the dispersion relation for
magnetic electron drift modes is obtained with the linear
wave eigenfrequency26,27

�k = ky	 ��

1 + k2�2 . �2�

From the definitions of � and �, one can easily see that there
is a purely growing solution for �T� �2/3��n and the growth
rate vanishes for modes with ky =0. However, linear theory
can only predict strong magnetic fields �exponential growth�
and is not capable of describing the wave-wave interactions
needed for the generation of large-scale magnetic fields. In
fact, we will consider �k to be real in this article, i.e.,
���0, such that we can concentrate on the nonlinear inter-
actions. The basic equations �1� and �2� constitute the basis
of our analysis of modulational instability of magnetic elec-
tron drift waves in what follows.

III. MODULATIONAL INSTABILITY

Since zonal fields and small-scale turbulence interact
via nonlocal triad interactions q+k+k��0, some sidebands
to the pump wave have to be involved in the interaction as
well, satisfying k�=k±q. The modelization of the four inter-

acting waves is done via Fourier expansion, i.e., �B̄ , T̄��r , t�
= �Bq ,Tq��t�ei�qr−	t� for the large-scale fields, and the small-
scale turbulence is modeled as the sum of the pump wave
and its two sidebands,


B̃

T̃
� = 
B0

T0
� + 
B+

T+
� + 
B−

T−
� , �3�

where �B0 ,T0��r , t�= �Bk ,Tk�ei�k·r−�kt�+c .c. is the pump
wave and �B± ,T±��r , t�= �Bk± ,Tk±�ei�k±·r−�k±t�+c .c. are the
upper/lower sidebands. The conditions defining the side-
bands are

�k± � �k ± 	 , �4a�

k ± � k ± q . �4b�

A. Zonal magnetic fields

1. General calculations

The model equations for the small-scale turbulence are
identical to the equations given by �1�. The ones describing
zonal fields can be found by averaging the latter over the
small/fast scales and using the fact that they are elongated
along the y axis, so that we obtain

�T�1 − �2�2�B̄ =
e�4

m
�B̃,�2B̃� , �5a�

�TT̄ = −
e�2

m
�B̃,T̃� , �5b�

where �T denotes the partial derivative with respect to
the slow time variable. The nonlinear terms on the RHS
of Eq. �1� for the small and �5� for the large scales are
determined using the resonance principle and the triad
interactions. For zonal fields, the left-hand side �LHS� of
�5� is proportional to exp�iqr�, so that there are four
possibilities for the RHS in order to be in resonance:
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exp �ik+r� 
exp �−ikr� , exp �−ikr�
exp �ik+r� , exp �−ik−r�

exp�ikr� and exp�ikr�
exp�−ik−r�, since these are the four
possibilities to decompose q: q=k+−k=−k+k+=−k−+k=k
−k−. Note that, e.g., k+−k and −k+k+ give different contri-
butions since the Laplacian is applied on the second expo-
nential only on the RHS of Eq. �5a�. With these consider-
ations, the equations for the zonal field Fourier amplitudes
follow directly from �5� and are given by

− i	Bq = Pkq
1

1 + q2�2 ��2�k2 − k+
2�Bk+Bk

*

+ �2�k−
2 − k2�Bk−

* Bk� , �6a�

− i	Tq = Pkq�Tk+Bk
* − Bk+Tk

* + Bk−
* Tk − Tk−

* Bk� , �6b�

where we defined Pkq��2e /m�k
q� · ẑ and a star ��� de-
notes complex conjugate. From this equation, we see that for
determining the evolution of the zonal fields, one has to find
the expressions of the amplitudes of the sidebands Bk+, Tk+,
Bk−

* , and Tk−
* . These can be found from Eqs. �1� with the same

resonance arguments as before. However, in contrast to
large-scale fields, the spatial derivative with respect to the y
coordinate is nonzero, which makes it necessary to diagonal-
ize �i.e., uncouple� the equations for solving them. First, let
us find the expressions for Bk+ and Tk+. From resonance ar-
guments, one obtains

− �k+Bk+ +
�ky

1 + k+
2�2Tk+ = − iPkq

1

1 + k+
2�2


��2�q2 − k2�BqBk� , �7a�

�kyBk+ − �k+Tk+ = iPkq�BqTk − BkTq� . �7b�

For diagonalization of the LHS of the latter system of equa-
tions, the eigenvalues can be found reading

��+
± � − �k+ ± ky	 ��

1 + k+
2�2 . �8�

For Bk−
* and Tk−

* , one has to take into account the complex
conjugate. Otherwise, it is exactly the same procedure and
one can show that the corresponding equations are

− �k−Bk−
* +

�ky

1 + k−
2�2Tk+ = iPkq

1

1 + k−
2�2 ��2�k2 − q2�BqBk

*� ,

�9a�

�kyBk−
* − �k−Tk−

* = − iPkq�TqBk
* − BqTk

*� , �9b�

with the eigenvalues

��−
± � − �k− ± ky	 ��

1 + k−
2�2 . �10�

Together with the corresponding eigenvectors to the above
eigenvalues, we can diagonalize the systems of equations �7�
and �9� with the matrix of change of basis,

S = 
1/�± − 1/�±

1 1
� , �11�

where we defined the coefficient �±�	� /�	1+k±
2�2. These

matrices finally diagonalize the equations describing the evo-
lution of the pump wave’s sidebands in the following way:

��k±

+ B̄±
+ = �±NLB + NLT, �12a�

��k±

− B̄±
− = − �±NLB + NLT, �12b�

with B̄±
+=�±Bk±

�*�+Tk±

�*� and B̄±
−=−�±Bk±

�*�+Tk±

�*�. In �12�, we de-
fined NLB as the nonlinear term �i.e., the RHS� of �7a� in the
case of a “�,” the RHS of �9a� for the case of a “
,” and
analogously NLT the RHS of �7b� or �9b�, respectively. We
can now find explicit expressions for the sideband ampli-
tudes Bk+, Tk+, Bk−

* , and Tk−
* as functions of known quantities

describing the pump wave and the zonal magnetic field. In
order to do so, we use Eq. �12� and all the necessary defini-
tions described before, to get after some algebra

Bk+ =
i

2
Pkq
�2�k2 − q2�

1 + k+
2�2 
 1

��+
+ +

1

��+
−�BqBk

+
1

�+

 1

��+
+ −

1

��+
−��BqTk − TqBk�� , �13a�

Tk+ =
i

2
Pkq
�+

�2�k2 − q2�
1 + k+

2�2 
 1

��+
+ −

1

��+
−�BqBk

+ 
 1

��+
+ +

1

��+
−��BqTk − TqBk�� , �13b�

Bk−
* =

i

2
Pkq
�2�k2 − q2�

1 + k−
2�2 
 1

��−
+ +

1

��−
−�BqBk

*

+
1

�−

 1

��−
+ −

1

��−
−��BqTk

* − TqBk
*�� , �13c�

Tk−
* =

i

2
Pkq
�−

�2�k2 − q2�
1 + k−

2�2 
 1

��−
+ −

1

��−
−�BqBk

*

+ 
 1

��−
+ +

1

��−
−��BqTk

* − TqBk
*�� . �13d�

These equations together with the large-scale equations �6�
theoretically solve the problem and lead to the dispersion
relation of the zonal magnetic fields as a function of the
pump wave amplitude and the small-scale eigenvalues. They
build, however, a very complicated system and we did not
yet use the assumptions about the wave vector q being small
compared to k and the frequency 	 also being small with
respect to �k. For simplification of the problem, we go back
to the definition of the eigenvalues �8� and �10� and expand
them around q=0.
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2. Simplification

In the definitions of the eigenvalues, �8� and �10�, the
second term is very similar to the linear frequency �k given
in �2�. Let us denote this term by ��k±� and expand it around
q=0,

��k+� � ���k + q��q=0 + � ���k + q�
��k + q�

�
q=0

��k + q� − k�

+
1

2
� �2��k + q�

��k + q�2 �
q=0

��k + q� − k�2

= �k + qvg +
q2vg�

2
, �14a�

��k−� � ���k − q��q=0 + � ���k − q�
��k − q�

�
q=0

��k − q� − k�

+
1

2
� �2��k − q�

��k − q�2 �
q=0

��k − q� − k�2

= �k − qvg +
q2vg�

2
, �14b�

where the group velocity and its derivative are defined as
vg=��k /�kx and vg�=�2�k /�kx

2. The four eigenvalues have
now the explicit form

��+
+ = − 
	 − qvg −

q2vg�

2
� , �15a�

��−
+ = 	 − qvg +

q2vg�

2
, �15b�

��+
− = − 
	 + 2�k + qvg +

q2vg�

2
� , �15c�

��−
− = 	 − 2�k + qvg −

q2vg�

2
. �15d�

But q /k is not the only small parameter involved. The second
one is 	 /�, and thus it can now be seen that all terms pro-
portional to 1/��k±

+ are much larger than terms in 1/��k±

− .
We will therefore neglect the latter and note that in this case,
�12� gives us a relation between the magnetic field and the
temperature Fourier amplitudes Tk±

�*�=�±Bk±

�*�. The complete
set of equations after this simplification is given by Eqs. �6�
and

Bk+ =
i

2
Pkq
�2�k2 − q2�

1 + k+
2�2

1

��+
+BqBk

+
1

�+

1

��+
+ �BqTk − TqBk�� , �16a�

Bk−
* =

i

2
Pkq
�2�k2 − q2�

1 + k−
2�2

1

��−
+BqBk

*

+
1

�−

1

��−
+ �BqTk

* − TqBk
*�� , �16b�

Tk+ = �+Bk+, �16c�

Tk−
* = �−Bk−

* . �16d�

3. Dispersion relation

With �16� and �6�, we finally find the evolution equation
for the large-scale Fourier magnetic field amplitude in the
above-mentioned limits. We will furthermore assume
q��1 and that 1+k±

2�2�1+k2�2 �i.e., �±���. This yields
then

− i	Bq =
i

2
Pkq

2 
 1

1 + k2�2��2�k2 − k+
2��2�k2 − q2�



1

��+
+Bq�B0�2 + �2�k−

2 − k2��2�k2 − q2�



1

��−
+Bq�B0�2� +

1

�
��2�k2 − k+

2�
1

��+
+BqTkBk

*

− �2�k2 − k+
2�

1

��+
+Tq�B0�2 + �2�k−

2 − k2�



1

��−
+BqTk

*Bk − �2�k−
2 − k2�

1

��−
+Tq�B0�2�� .

�17�

Given the relation between the small-scale Fourier tempera-
ture and magnetic field amplitudes in �16�, we can replace
the temperature in the mixed terms �that is, in those terms
containing neither �B0�2 nor �T0�2� in the latter equation. As to
the equation for the temperature, �6b�, it vanishes when we
use the same relations. Note that this confirms the result
obtained previously in Refs. 16 and 15, where the model
equations �1� were directly applied to the limit for zonal
fields, neglecting the noise emitted into the flows by incoher-
ent coupling of the drift wave turbulence. With these last
points, the large-scale amplitude equations become

− 	Bq =
1

2
Pkq

2 

�2�k2 − q2�
1 + k2�2 + 1�
�2�k2 − k+

2�
��+

+

+
�2�k−

2 − k2�
��−

+ �Bq�B0�2 −
1

�

�2�k2 − k+

2�
��+

+

+
�2�k−

2 − k2�
��−

+ �Tq�B0�2� , �18a�

− 	Tq = 0. �18b�

Remember that the equation for the temperature contains the
nonlinear term due to interaction between the temperature
and the magnetic field, whereas in the equation for the mag-
netic field, the nonlinear term is due to self-interaction of the
magnetic field. Equations �18� tell us then that the coupling
between the temperature and the magnetic field is much
weaker than the self-interaction of the magnetic field. Fur-
thermore, the Poisson brackets of the form �· ,�2 · � in �1a� are
known to cascade energy toward the large scales, whereas
the brackets of the form �·,·� are responsible for the direct
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cascade into the small scales.28 We see then from �18� that
the direct cascade is much less important in our case than
the inverse cascade described in �18a�. This confirms, of
course, the generation of large-scale structures by small-scale
turbulence.

The common term in the brackets of �18a� has to be
calculated explicitly,

�2�k2 − k+
2�

��+
+ +

�2�k−
2 − k2�

��−
+

=
2kxq

3vg� + 2q2�	 − qvg�
�	 − qvg�2 − �q2vg�/2�2

�
2kxq

3vg�

�	 − qvg�2 − �q2vg�/2�2 , �19�

since 	−qvg�q2vg� /2�kxqvg�. The final form of �18a� is
then

	��	 − qvg�2 − �q2vg�/2�2�Bq

= − Pkq
2 
�2�k2 − q2�

1 + k2�2 + 1�kxq
3vg��

2�B0�2Bq. �20�

This equation will give us the dispersion relation we are
looking for. In order to find the expression for the frequency
	, let us discuss its form to be expected. First of all, we
expect a resonance between the large-scale flows and the
perturbation, and secondly, the neglecting of the second term
in �19� already anticipated a frequency of the form 	=qvg

+ i�. The imaginary part has, of course, to be added for in-
stability to be possible. Plugging this form of the frequency
into �20�, the imaginary part of the equation yields the first
three solutions, which are �=0 and �= ± iq2vg� /2. These so-
lutions are real corrections to the form of the frequency we
have chosen and confirm our assumption previously taken.
The real part of the equation, however, yields a complex
frequency with imaginary part,

� = ±	vg�

vg

�2 e

m
�k 
 q� · ẑ�2
�2�k2 − q2�

1 + k2�2 + 1��B0�2kxq
2�2 − �q2vg�/2�2. �21�

Calculating the group velocity, we can replace the term vg� /vgkx�
2 and obtain

� = ±	−
vg�

�k

�2 e

m
�k 
 q� · ẑ�2
�2�k2 − q2�

1 + k2�2 + 1��1 + k2�2�3/2�B0�2q2 − �q2vg�/2�2. �22�

In order to have modulational instability, the system must
satisfy

vg�

�k
� 0, �23�

which is merely the well-known Lighthill criterion. Explic-
itly, we can calculate vg� from the definition of �k in �2�,
which yields

vg =
��k

�kx
= − �k

kx�

�1 + k2�2�3/2 ,

�24�

⇒vg� =
�vg

�kx
= − �k�

21 − 2kx
2�2 + ky

2�2

�1 + k2�2�2 .

One can easily see that there is a stabilizing effect for
1−2kx

2�2+ky
2�2�0. The latter result is exactly the same as

was found for the case of a monochromatic wave spectrum in
Ref. 23. In fact, if we compare the increments directly with
the corresponding definitions of the coefficients used, we
find that in the limit k��1, the increment of the modula-
tional instability is four times as high as the one for the
hydrodynamic regime. Otherwise, the expressions are the
same if we neglect the second-order term within the incre-
ment for the modulational instability �22�. This is not surpris-
ing since the mechanism considered is the same, only that

the sidebands have been neglected in the case of a mono-
chromatic wave spectrum through an integration over a delta
function ��k−k0�.

B. Magnetic streamers

All the above results are valid for zonal magnetic fields.
In the case of magnetic streamers, however, the large-scale
equations are more complicated than for zonal fields, Eqs.
�5�, and have to be diagonalized as well as the small-scale
equations before. This is because the wave vector for mag-
netic streamers is along the y axis, q= �0,q ,0�, and therefore
the derivatives with respect to y in the basic model equations
�1� do not disappear. Specifically, the new large-scale equa-
tions take the form

− i	Bq + i
�q

1 + q2�2Tq = �4 e

m
�B̃,�2B̃� , �25a�

− i	Tq + i�qBq = − �2 e

m
�B̃,T̃� . �25b�

The rest of the derivation is using the same approach as the
case described in Sec. III A, and we thus give directly the
new dispersion relation �corresponding to Eq. �20�� of mag-
netic streamers

102313-5 On the modulational stability of magnetic structures… Phys. Plasmas 14, 102313 �2007�

Downloaded 30 Oct 2007 to 128.178.125.151. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



�	2 − q2���2

	q	��
��	 − qvg�2 − �q2vg�/2�2�2 − �
 �

	
−

K2

q	��
�


�	2 − q2�����	 − qvg�2 − �q2vg�/2�2� = 0, �26�

where we defined the coefficients �= Pkq
2 kq3vg��

2�B0�2,

K2=1+�2�k2−q2� / �1+k2�2�, and �=1/	1+k2�2. The first
four solutions are easily found to be

	1,2 = qvg ±
q2vg�

2
, �27�

	3,4 = ± q	�� , �28�

which are all real and represent thus stable solutions. Exclud-
ing those, the dispersion relation takes the form

�	2 − q�����	 − qvg�2 − �q2vg�/2�2�

	q	��
= �
 �

	
−

K2

q	��
� .

�29�

In the limit k��1, both � and K2 are unity and the latter
equation has the simpler form

�	 + q	�����	 − qvg�2 − �q2vg�/2�2� = − � . �30�

Here, the group velocity corresponds to the derivative of the
frequency with respect to ky, which is equal to

vg =
��k

�ky
= 	��

1 + kx
2�2

�1 + k2�2�3/2 ——→
k��1

	�� . �31�

This means that in the dispersion relation, q	��=qvg, and if
we assume 	=qvg+ i�, we get

�2qvg + i���− �2 − �q2vg�/2�2� = − � . �32�

The imaginary part of �32� has the solutions

�1 = 0 ⇒ 	 = qvg = q	�� , �33�

�2,3 = ± i
q2vg�

2
⇒ 	 = qvg ±

q2vg�

2
. �34�

These solutions have already been found before and �34�
represents a small real correction to the frequency. The real
part of the dispersion relation yields

� = ±	 vg�

2vg

�2 e

m
�k 
 q� · ẑ�2

kyq
2�2�B0�2 − �q2vg�/2�2.

�35�

But in the case of magnetic streamers, vg�=−	���1
+kx

2�2�3ky�
2 / �1+k2�2�5/2�0 and vg�0, so that the term un-

der the square root is always negative. In other words, in the
limit k��1, magnetic streamers are always stable for this
kind of instability.

In the opposite limit k��1, K2��, and �29� yields in
this case

	2 − q2��

	
��	2 − qvg� − �q2vg�/2�2� = − �K2, �36�

and the group velocity is larger than 	��. So, when we set
again 	=qvg+ i�, we can neglect q2�� with respect to 	2

and the latter equation can be written as

q2���qvg − i��
q2vg

2 − �2 ��2 + �q2vg�/2�2� = − �K2. �37�

The imaginary part yields exactly the same stable results as
in the above case, whereas �if we neglect �2 with respect to
q2vg

2 in the denominator� the real part yields

� = ±	− vg�
vg

��

�2 e

m
�k 
 q� · ẑ�2

kyq
2�2�B0�2 − �q2vg�/2�2.

�38�

Since vg�0 and vg��0, unstable solutions are possible for
magnetic streamers in the case k��1, verifying the Lighthill
criterion for modulational instability.

IV. CONCLUSIONS

In this paper, the properties of magnetic electron drift
mode turbulence is studied and a mechanism of generation of
large-scale fields is investigated. It is shown that in the pres-
ence of a small-scale pump wave with a wave vector k, an
upper and a lower sideband will interact with the pump wave
due to nonlocal triad interactions with k+k�+q�0, where
the wave vectors of the sidebands are k�=k±q, and the con-
dition �q�� �k� is satisfied. These interactions are elucidated,
an expression for the resulting increments of both zonal
fields and magnetic streamers is calculated, and a condition
similar to the Lighthill criterion for instability is found. It is
also noted that the resulting criterion is very similar to the
one previously found in Ref. 23 for the case of a monochro-
matic wave spectrum. However, because of its more general
nature, it shows that the monochromatic case underestimates
the increment by a factor of 4 and it also yields a higher-
order correction to this increment.
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