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The generation of large-scale magnetic fields in magnetic electron drift mode turbulence is
investigated. The mechanism of magnetic Reynolds stress is elucidated with the help of kinetic
theory, and a sufficient criterion in the form of Nyquist’s criterion for the generation of zonal
magnetic fields is developed. This criterion is then applied to a narrow wave packet, where an
amplitude threshold due to finite width of the wave spectrum in k space is found. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2646436�

I. INTRODUCTION

The mechanisms for generation of fluid motions with
additional symmetry, frequently referred to as flows, have
been studied extensively in recent years in electrostatic drift
mode turbulence.1 In a plasma allowing for inhomogeneities,
the gradient-specific modes known as drift-type modes are
able to propagate in the direction of translational symmetry,
i.e., perpendicularly to the gradient. These modes can then
spontaneously generate structures with higher symmetry, the
large-scale flows, in a way similar to the established Rey-
nolds stress in hydrodynamics.2 The process of generation of
such structures is energetically sustained through the well-
known inverse cascade guaranteed in two-dimensional �and
quasi-two-dimensional� fluids by the conservation of energy
and enstrophy.3,4

Among the flows, a limit of great interest is the so-called
zonal flows, defined here as symmetric structures with a fi-
nite scale in the direction of plasma inhomogeneity, signifi-
cantly larger than the scale of the underlying small-scale tur-
bulence, and elongated perpendicular to the gradients.4,5 This
elongation along one defined direction is attributed to the
additional symmetry of large-scale flows compared to the
small-scale fluctuations.

The generation of such flows in electrostatic drift mode
turbulence is of great importance in fusion research, where
zonal flows are believed to contribute to enhanced confine-
ment through their shearing effect on the underlying drift
waves.6 However, zonal flows are not a phenomenon limited
to plasma physics. Besides fusion devices, very similar phys-
ics is observed in relation with the Rossby waves in both the
atmosphere and oceans, where the Rossby waves excite
large-scale zonal flows such as the Jet Stream in the atmo-
sphere or the Gulf Stream in the Atlantic ocean.

On the other hand, the excitation of magnetic fields is a
current field of strong investigation in different areas. So is
the spontaneous generation of strong and large-scale mag-
netic fields of considerable importance in laser-produced
plasmas, which have been observed since the 1970s. The

corresponding turbulent fluctuations are drift-type modes ex-
cited in a nonuniform unmagnetized plasma, characterized
by a frequency range in between the electron and the ion
plasma frequencies. Moreover, phenomena occurring in such
time scales may even be more important as a source of the
secondary magnetic field structures and are often encoun-
tered in space physics,7,8 as well as in a number of plasma-
operated devices �e.g., switches, focusing devices,
Z-pinches, etc.�.9

It is interesting to combine the phenomena of large-scale
structures and strong magnetic fields and thus develop a non-
linear theory capable of describing the generation of such
large-scale magnetic fields by small-scale turbulence and
their mutual interaction. Such a self-consistent spectral two-
field �magnetic field and temperature10� model is similar to
that of electrostatic drift wave turbulence11 and has recently
been developed in Refs. 12 and 13. Note that this model does
not deal with flows in the original sense, since it is not the
flow of the particles, but rather magnetic structures that are
elongated along one direction and periodical with a long
wavelength along the other direction as well. Following this
similarity, we call the corresponding large-scale structures
“zonal magnetic fields” �ZF�, as it has been adopted in the
literature.1,7,9,14–17

With this nonlinear spectral model, we can focus in the
present paper on the detailed generation mechanism of large-
scale magnetic fields. Two regimes of large-scale magnetic
field generation have recently been investigated in Ref. 13
and yielded a general criterion concerning the local form of
the wave spectrum in the case of the kinetic regime �where
resonance was assumed� and an explicit result for the hydro-
dynamic regime, where a monochromatic wave spectrum al-
lowed the integration over all modes. In this paper, the goal
is to find an instability criterion using a wave kinetic equa-
tion similar to the case of kinetic wave theory, where we
have the so-called Nyquist criterion. Such a criterion will
yield a global statement on whether or not a given equilib-
rium spectrum can generate zonal magnetic fields. We will
follow a similar approach for electrostatic drift waves devel-
oped in Refs. 11 and 6. The rest of the paper is organized asa�Electronic mail: martin.jucker@epfl.ch
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follows: In Sec. II, we will give a short reminder of the basic
equations for magnetic electron drift modes as derived in
Ref. 12. In Sec. III, we will follow the derivation of the
well-known Nyquist criterion and apply the found general
criterion to a narrow wave packet, which can then be com-
pared to the monochromatic case. In Sec. IV, we will con-
clude the paper with a brief summary.

II. BASIC EQUATIONS

The motion of the considered modes is assumed to take
place in the plane perpendicular to the magnetic field and
hence a quasi-two-dimensional analysis is applied, where
only the perturbed magnetic field is directed along the third
dimension, here chosen to be the z axis. The considered
modes are placed in a nonuniform unmagnetized plasma
with density and temperature gradients along the x axis.
Magnetic electron drift modes are low-frequency waves with
a typical time scale in between the inverse electron and ion
plasma frequencies, and consequently the ions play the role
of a neutralizing background, whereas the electrons move
fast enough to equalize any density perturbation in a rela-
tively short time. Therefore, the electron density will be con-
sidered constant in time, n=n0. The temperature can be writ-
ten as the sum of an equilibrium value T0 and a perturbation
T; the perturbed magnetic field is denoted by B, having a
vanishing equilibrium part.

Starting from the momentum equation and the energy
equation, the model equations for magnetic electron drift
mode turbulence can be derived and read10

�

�t
�B − �2�2B� + �

�T

�y
=

e�4

m
�B,�2B� , �1a�

�T

�t
+ �

�B

�y
= −

e�2

m
�B,T� . �1b�

Here �=�2�eT0 /m�� 2
3�n−�T�, �=�n /e. Within the latter defi-

nitions, �n= �� ln n� and �T= �� ln T0� are the inverse length
scales of the density and the temperature inhomogeneities
and �=c /�pe is the electron skin depth. The curly brackets
on the right-hand side �RHS� denote the Poisson brackets
and are defined as �a ,b����a��b� · ẑ. The linear disper-
sion relation can be found from these equations and written
as

�k = ky	 ��

1 + k2�2 . �2�

Note that a purely growing solution is possible for �T

�2/3�n, which can explain the measured strong magnetic
fields in laser-produced plasma experiments.18–20 Of course,
due to this linear growth, the linear approximation breaks
down and nonlinear effects have to be included.

In the nonlinear regime, as has been shown in Refs. 21
and 12, large-scale fields can be generated by small-scale
turbulence via magnetic Reynolds stress and a self-consistent
theory has been derived describing both large-scale struc-
tures and small-scale turbulence using a wave kinetic equa-
tion for an appropriate action-like invariant, taking the form

�Nk� = ��k�2 = 4
�

�
�1 + k2�2��Bk�2. �3�

The corresponding wave kinetic equation has been shown to
be12

�Nk

�t
+

��k
NL

�k

�Nk

�r
−

��k
NL

�r

�Nk

�k
= 2	kNk − St�Nk� , �4�

where �k
NL is the Doppler-shifted linear frequency �k due to

the presence of large-scale magnetic fields. The terms on the
RHS account for wave damping due to linear and nonlinear
mechanisms, as well as local wave interactions, and guaran-
tee saturation in the absence of large-scale fields.

In the next section, we will elaborate a criterion in the
form of the well-known Nyquist criterion, which will give a
global condition to be fulfilled by the wave spectrum for
large-scale magnetic field generation.

III. NYQUIST’S CRITERION

We will use Fourier decomposition and scale separation
in order to express zonal magnetic fields on the one hand and
small-scale turbulence on the other hand. Explicitly, we write
the two parts of the total wave spectrum as �B ,T��t�
=
k�Bk ,Tk��t�eikr+ �Bq ,Tq��t�eiqr, where �q � � �k�. Then, ap-
plying the condition for zonal magnetic fields, q= �q ,0 ,0�,
the model equations �1� yield the evolution equations for the
large-scale magnetic field and temperature,12,21

�Bq

�t
=

e�2

m

q2�2

1 + q2�2 � �Bk�2kxkyd
2k , �5a�

�Tq

�t
= 0, �5b�

where the sum over the harmonics has been replaced by an
integral, and we neglected the noise emitted into the fields by
incoherent coupling of the magnetic electron drift modes. It
is a direct consequence from these equations that the mean
electron temperature associated with zonal magnetic fields
does not evolve with time. The square of the magnetic Fou-
rier amplitude in �5a� can be replaced by the wave spectrum
using its definition �3�. Furthermore, with the decomposition

of the wave spectrum Nk=Nk
0+ Ñk, the equilibrium distribu-

tion Nk
0 has to satisfy

� Nk
0

1 + k2�2kxkyd
2k = 0, �6�

which can easily be seen from �5a�. Further Fourier expan-
sion of the large-scale magnetic field in time, B�Bqexp�
−i
t�, yields from �5� and �3� the dispersion relation


 = Kq
2q2� d2k

ky
2�2

1 + k2�2kx
�N0

�kx

1


 − qvg
. �7�

For the group velocity vg, only the linear frequency is con-
sidered, since the nonlinear contribution gives rise to a Dop-
pler shift that is not of interest here. Thus, the group velocity
is
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vg =
��k

�kx
= − 	��

kxky�
2

�1 + k2�2�3/2 . �8�

Note that the group velocity is symmetric with respect to the
wave-vector components kx and ky. As a next step, we ex-
press the x component of the wave vector as a function of vg

and assume the group velocity in resonance with the phase
velocity of the zonal field perturbation, vg

 /q, so that �7�
can be written

1 +
Kq

2q

	��
� kyd

2k


 − qvg

�N0

�kx

	1 + k2�2 = 0. �9�

We want to change variables �kx ,ky�→ �V ,ky�, where V
is the group velocity V=V�k�. For the integration limits, the
extrema of vg have to be found. Deriving the group velocity
�8� yields that at the extrema, �vg

m � =	�� /27 and k2�2=2. So,
at the integration boundaries, k�
1. But for k��1, vg
0
most of the time. Therefore, we restrict ourselves to the limit
k��1 only. Furthermore, let us define the one-dimensional
wave spectrum K�V���V=cstN0kydky and the phase velocity
C�
 /q, so that the dispersion relation now reads

��C� � 1 −
Kq

2

	��
�

−V0

V0 K��V�dV

V − C
= 0, �10�

where V0�max �vg � =	�� /27. The latter equation has ex-
actly the form of the dispersion relation in wave kinetic
theory of plane waves.6 We will thus treat the integral in �10�
as a Landau integral in a complex plane. The distribution
K�V� is now given as a function of the perturbation group
velocity V, which is in resonance with the zonal field pertur-
bation phase velocity C.

In order to have an instability, we need by definition of C
an imaginary part of the phase velocity, C=Cr+ iCi, with
Ci�0, because in that case 
=
r+ i	 with 	=qCi�0. We
follow the standard derivation of the Nyquist criterion and
consider ��C� as a mapping from C to � space. Instabilities
occur for Ci�0. Hence, we consider the path � in C space
along the real axis at Ci=0+ and with an infinite radius in the
upper half of C space �Fig. 1�.

If at a point in int���, ��C�=0, there is an instability
since there is a solution of the dispersion relation with 	
�0. Let us note that within int���, � has no singularities,
since Ci�0 and V�R, so that V−C�0. Then, a zero in

int��� corresponds to circling a solution of the dispersion
relation counterclockwise. For the mapping ��C� this means
rotating around the origin counterclockwise �Fig. 2�, i.e., that
the number of zeros in int��� corresponds to the number of
rotations around �=0 in � space. Thus, we conclude that if
we have no rotations around the origin in � space, there is no
solution of the dispersion relation with positive increment
and therefore no instability, i.e., the system is stable. But for

a rotation around the origin, the path �̂����� must cross the
positive real axis from below, which corresponds to �i

changing sign from negative to positive at �r�0, and can be
expressed mathematically as �i=0 and �i��0 at �r�0 for a
possible instability. But treating the dispersion relation �10�
as a Landau integral, we know that at the real axis

��Cr� = 1 −
Kq

2

	��
P · V · �

−V0

V0 K��V�dV

V − Cr

−�i

Kq

2

	��
K��V��

V=C=Cr

. �11�

It can easily be seen from this that �i=0⇔K��Cr�=0 and
�i��0⇔K��Cr��0, i.e., a possible instability occurs at a
maximum of K�V�. So, if at every point on the positive real
axis in � space, the condition �i��0 is satisfied, there is no
instability since there is no rotation around the origin. In
terms of the distribution function K�V�, this means that if at

FIG. 1. The integration path � in complex phase velocity space.

FIG. 2. The number of zeros in int��� corresponds to the number of rota-
tions around the origin in � space. Note that �→1 for C→ ±�.
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every minimum of K�V�, � is positive, the distribution is
stable, or, more mathematically,

if ∀ Cr with K��Cr� = 0, K��Cr� � 0;

�12�
Kq

2

	��
�

−V0

V0 K��V�dV

V − Cr
� 1,

then the distribution is stable. But we are more interested in
an instability than a stability criterion. Remember the defini-
tion of K�V� as a function of the two-dimensional equilib-
rium distribution N0. Furthermore, as already mentioned, N0

must satisfy Eq. �6�. From the latter equation, we get the idea
to assume that N0 is symmetric in V and ky, i.e., N0�V ,ky�
=N0�V ,−ky�=N0�−V ,ky�. Then, K�V�=K�−V� and K��V�=
−K��−V�. It then follows from the expression �11� that

��Cr�=��−Cr�* and thus �̂�Cr�0�= �̂�Cr�0�*, i.e., if �̂
crosses the real axis at �r�0, which is necessary for rotation
around the origin, i.e., instability, it can recross at �r�0
�and thus no instability� only if K�V� has more than five
extrema �Fig. 3�. Therefore, we can formulate a sufficient
criterion for instability: If K�V�=K�−V� and K�V� has one or
three extrema and if

Kq
2

	��
�

−V0

V0 K��V�dV

V − Cr
� 1, �13�

for at least one extremum V=Cr, then the distribution is un-
stable. It is then obvious that the extremum has to be a mini-
mum �the integral has to be positive�, and the slopes around
the minimum have to be steep enough for the integral to be
greater than 1.

Another way of writing the same criterion is to use the
symmetry conditions for K�V� to get the following statement:
If the symmetric function K�V� has fewer than five extrema
in the interval �−V0 ,V0� and at least one point V=Cr where
K��Cr�=0, then

2Kq
2

	��
�

0

V0 VK��V�dV

V2 − Cr
2 � 1 �14�

guarantees instability. As an example, we will use this crite-
rion for a narrow wave packet, which is the simplest distri-
bution for the wave spectrum. Another reason for this ex-
ample is its similarity with the case of a monochromatic
distribution, which was investigated earlier in Ref. 13.

A. Narrow wave packet

For a narrow wave packet, the mean distribution func-
tion can be written

N0�k� =
N0

2
�k2 �e−��k − k0�2/�k2� + e−��k − k1�2/�k2�� . �15�

In order to satisfy the equilibrium condition �6�, we choose
k0x=−k1x and k0y =k1y. The condition for a narrow wave
packet is �k�k0. Then, we can expand V�k� around k=k0,

V�k� � V�k0� +� �V

�k
�

k0

· �k − k0� . �16�

Note that it is assumed that �k� �k0−k*�, where the deriva-
tive of V is zero at k=k*. If this is not the case, one has to
include the second-order term of the expansion. Let us de-
note Vk0

�V�k0� and Vx,y ��V /�kx,y. Then, we express kx as
a function of V and ky through �16�, put the distribution into
the definition of K�V�, and use the narrow wave-packet con-
dition as well as kx ,ky symmetry, such that the derivative
reads

K��V� � −
2Vx

�Vx
2 + Vy

2�3/2

N0k0y

	
�k3
e−��V − Vk0

�2/�Vx
2+Vy

2��k2�.

�17�

The minimum of the distribution is at V=Vk0
, so that Cr

=Vk0
in the instability criterion �14�. In order to calculate the

FIG. 3. Examples of distributions with five, three, or one extremum. A
distribution crossing the real axis at �r�0 but without instability is only

possible with five or more extrema. The solid lines denote �̂�Cr�0�, the

dotted lines �̂�Cr�0�= �̂�Cr�0�*.
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integral in Nyquist’s criterion, we neglect corrections of the
second order and remember that the calculations are only
valid in the limit k��1 together with the fact that k�=	2 at
V=V0, so that the upper limit of the integral can be treated
infinite. The resulting inequality is then

−
N0k0yKq

2

	���k2

Vx

Vx
2 + Vy

2 � 1. �18�

As a first result, we find a criterion similar to the Lighthill
criterion in the case of modulational instability, vg��0, for
instability. Explicit calculations yield finally

N0Kq
2

���k2� k0y

k0
�2

� 1. �19�

This result has the feature that the stability depends on the
relative strength of the components of the wave packet center
k0. If k0y is too small compared to k0, the distribution is
stable. This is the same statement as found in the monochro-
matic case.13 But in addition to this statement, we find out
here that due to finite width �k, there is a threshold for the
amplitude of the order of N0����k2 /Kq

2, which is propor-
tional to the squares of both the inverse characteristic inho-
mogeneity lengths and the width of the wave packet.

IV. CONCLUSIONS

In this paper, the properties of magnetic electron drift
wave turbulence are studied and a criterion for generation of
zonal magnetic fields by small-scale turbulence is investi-
gated. Based on similarities to wave kinetic theory, we have
shown that an instability criterion including the global prop-
erties of the wave spectrum similar to Nyquist’s criterion can
be found and calculated in its explicit form.
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