
1 
 

Augmenting the Zachman Enterprise Architecture Framework  
with a Systemic Conceptualization 

 
 

Alain Wegmann1, Anders Kotsalainen2, Lionel Matthey3, Gil Regev4, Alain Giannattasio5 
 

1, 3, 4 Ecole Polytechnique Fédérale de Lausanne (EPFL),  
School of Communication and Computer Science, CH-1015 Lausanne, Switzerland 

2 Royal Institute of Technology (KTH), Section for Industrial Information and Control Systems, 
Osquldas väg 12, SE-100 44 Stockholm, Sweden 

5 Cambridge Technology Partners, CH- 1214 Geneva, Switzerland 
{1alain.wegmann@epfl.ch, 2anderskotsalainen@gmail.com, 3lionel.matthey@gmail.com, 

4gil.regev@epfl.ch, 5a.giannattasio@ctp-consulting.com} 
 

 

Abstract 
 
The Zachman Framework offers a classification of the 
models created in an enterprise architecture project. 
These models form a holistic representation of the 
organization. Despite the prominent position of the 
Framework, there is little information publicly 
available to help designers create exact models that fit 
each other. In this paper, we propose a 
conceptualization based on General Systems Thinking. 
Our conceptualization provides concrete guidelines for 
creating the models required by the Framework. The 
proposed conceptualization establishes a better 
understanding of the models and of their relationships. 
This facilitates the creation and interpretation of the 
models. It also improves the traceability between them. 
We illustrate our approach with the results of a case 
study.  
 
1 Introduction 
 
One of the seminal works in holistic enterprise and 
application design is the Information System 
Architecture (ISA) – also called the Zachman 
Framework. Zachman developed his Framework in 
1987 [28]. This Framework is at the inception of the 
enterprise architecture discipline. Zachman was 
motivated to create his Framework by the prediction 
that technology would enable massive distribution of 
computing power and that doing so without some order 
would lead to chaos. Zachman’s proposal was to 
maintain order by imposing a set of logical constructs 

for “defining and controlling the interfaces and the 
integration of all the components of the system” [28].  

With ISA, Zachman wants to specify the 
documentation necessary to represent an organization 
and its IT. The goal is to provide a holistic view of the 
organization while segmenting this view into 
independent models. To structure the Framework, he 
uses the metaphor of an architect building a house. At 
the core of the Information System Architecture, there 
is the ISA matrix. This matrix contains 36 models 
organized in six rows and six columns. The rows 
describe the interests of stakeholders (e.g. planner, 
owner, designer, contractor and sub-contractor). The 
columns of the matrix contain responses to the basic 
questions: what, how, where, who, when and why. 
Each of these thirty-six models is related to the others. 
However, each one is also self-contained; this 
counterbalances the holistic aspect of the Framework. 

ISA is a classification scheme, a taxonomy for 
organization architecture models [18]. ISA provides a 
synoptic view of the models needed for enterprise 
architecture. ISA does not define in detail what the 
models should contain, it does not enforce the 
modeling language used for each model, and it does 
not propose a method for creating these models.  

In this paper, we address these issues by taking an 
epistemological approach in which we relate the ISA 
matrix’s rows and columns with a conceptualization of 
the universe of discourse shared by the organization’s 
stakeholders. We base our conceptualization on the 
General Systems Theory (GST) [27]; consequently, we 
represent the organization as a hierarchy of systems 
that span from business down to IT. With this 

Presented at the 12th IEEE International EDOC Conference (EDOC 2008), München, Germany, September 15-19, 2008 



2 
 

conceptualization, we can propose specific guidelines 
for creating the models of the first five rows and four 
columns of the ISA matrix. We can also make explicit 
relationships between the cells. We developed this 
conceptualization as a part of the SEAM enterprise 
architecture method [22].  

We illustrate the conceptualization and its 
application on ISA with a case study that we 
conducted, in an international firm, during a six-month 
project. In this case study, we redesigned an existing 
access control system, using SEAM as 
conceptualization and Zachman as representation.  

The paper organization is as follows. In Section 2, 
we explain ISA. In Section 3, we present the 
conceptualization we base our work on and give an 
overview of SEAM. In Section 4, we show how to 
apply a systemic conceptualization to Zachman 
Framework, and we illustrate our results with a case 
study. In Section 5, we review the related work. In 
Section 6, we conclude and present ideas for future 
work. 
 
2 The Zachman Framework 

 
Zachman initially describes the Information System 
Architecture (ISA) in [28]. Zachman and Sowa extend 
and formalize ISA in [19]. The term “architecture” in 
“Information System Architecture” shows the analogy 
between “the construction of a computer system and 
the construction of a house” [19]. The analogy 
between traditional building architecture and IT 
systems architecture is central to ISA. 

 Zachman describes the process for house building 
as follows. In response to a future owner’s initial and 
vague request to have a house built, the architect draws 
a planner view that roughly represents the main items 
that the house will include. This view serves as an 
initial agreement between the owner and the architect 
regarding what the owner wants. Next, the architect 
draws an owner’s view that represents what the 
architect proposes to build. She draws her plans in a 
way that is understandable to the owner. The architect 
then draws the designer’s view that constitutes the 
architect’s plans in a form understandable by the 
architect and generally not by the owner. The 
architect’s plans serve as the basis for negotiation with 
the general contractor who will build the building. The 
general contractor draws his or her own plans, the 
contractor’s view, for negotiating with sub-contractors. 
Each sub-contractor draws his or her own plans for 
their specific purpose. The sub-contractors have their 
own plans. They are part of the subcontractor’s view. 
The last view, enterprise view, is the building itself. 

These perspectives [28] are complemented with 
types of description [28], i.e. the kind of questions that 
can be asked about a given view. In [28], Zachman 
prescribes three types of description: data, function 
and network. These types of descriptions are answers 
to the questions, what, how and where. These two 
orthogonal dimensions form a six by three ISA matrix 
in which the rows represent the six perspectives and 
the columns represent the three types of description 
(gray area in Figure 1). In [19], Zachman and Sowa 
add three more types of descriptions: people, time and 
motivation. They correspond to the questions, who, 
when and why. The result is the complete six by six 
ISA matrix as illustrated in Figure 1. This paper 
proposes a conceptualization for the cells marked 
“SEAM” in Figure 1.  

  

w
ha

t

ho
w

w
he

re

w
ho

w
he

n

w
hy

D
at

a 
   

   
   

 
(c

ol
um

n1
)

Fu
nc

tio
n 

(c
ol

um
n 

2)

N
et

w
or

k 
(c

ol
um

n 
3)

Pe
op

le
   

   
  

(c
ol

um
n 

4)

Ti
m

e 
   

   
 

(c
ol

um
n 

5)

M
ot

iv
at

io
n 

(c
ol

um
n 

6)

Planner
(scope - row 1) SEAM SEAM SEAM SEAM
Owner
(business model - row 2) SEAM SEAM SEAM SEAM
Designer
(system model - row 3) SEAM SEAM SEAM SEAM
Builder
(technology model - row 4) SEAM SEAM SEAM SEAM
Sub-contractor
(detailed imp. - row 5) SEAM SEAM SEAM SEAM

(functioning enterprise - row 6)

 
Figure 1: ISA matrix [19], in gray original matrix 

as proposed in [28].  
 

Transposing the architecture metaphor to business and 
IT leads to the definition of the following perspectives:  

• planner row (scope) – the big picture of the 
organization and the scope of the project. 

• owner row (business model) – all aspects 
pertaining to the actual daily running of the 
business and how the IT systems will support 
it. 

• designer row (system model) – the designs 
of the IT systems that fulfill the business 
needs of the owner.  

• builder row (technology model) – the 
construction of the IT systems specified by 
the designer. 

• sub-contractor row (detailed 
implementations) – the construction of the 
IT systems’ components.  

• functioning enterprise row – the actual data, 
processes, departments, employees, IT 
systems, applications etc. that make up the 
organization.  



3 
 

The columns of the ISA matrix contain the types of 
descriptions. The list below describes the cells in each 
column:  

• cells in data column – the data or 
information relevant to the perspective (e.g. 
from the organization information in the 
planner row down to the database table in the 
sub-contractor row).  

• cells in process column – the processes 
relevant to the perspective (e.g. from the 
business processes down to the internal 
processing of the IT systems).  

• cells in network column – the networks 
relevant to the perspective (e.g. from the list 
of organizations down to nodes on the 
communication network).  

• cells in people column – the people relevant 
to the perspective (e.g. from the customers 
down to the employees).  

• cells in time column – time information 
relevant to the perspective.  

• cells in motivation column – the 
motivational aspects relevant to the 
perspective.  

Although ISA does not include a process, it does 
specify seven rules that designers should conform to 
when filling the cells [19]. 

1. "The columns have no order." If the columns 
were to have an order, it would imply that one 
dimension is more important than the other, 
when inherently they are all equally 
important.  

2. "Each column has a simple, basic model."  In 
the case of the data dimension, this is an 
entity-relation model; in the case of the 
function dimension, this is a process. The 
designer can choose different modeling 
techniques.  

3. "The basic model of each column must be 
unique." Without this uniqueness, the ISA 
would not be as rigorous. Uncertainty over 
what belongs to which cell would arise. 

4. "Each row represents a distinct, unique 
perspective." A distinct perspective is not a 
change in the level of details; it is instead the 
nature of what is represented that changes. 

5. “Each cell is unique." This rule is a 
consequence of the rules 2 and 3. It 
contributes to making the ISA a useful 
classification scheme. 

6. “The composite or integration of all cell 
models in one row constitutes a complete 
model from the perspective of that row." All 

cells in a row must be logically consistent 
with all the other cells in the same row. 

7. "The logic is recursive." The designer can 
apply the Framework within each row. This 
means that the designer can analyze each row 
from the planner’s, owner’s, builder’s, etc. 
sub-perspectives.  

 
In addition to the ISA matrix, Zachman defines 
additional matrices that we call intra-row matrices. 
They document the relations between different cells in 
a row (e.g. data-to-function, function-to-network, and 
data-to-network – all within a same row) [28]. These 
matrices are important for the design process. For 
example, if the designers want to check which 
functions are dependent on a specific data, they create 
the data to function matrix.  The dependencies between 
data and function are then visible. Zachman does not 
propose matrices to relate the cells between rows (e.g. 
owner row’s data cell–to- data cell in designer row – 
all within a same column). Not having such matrices is 
problematic to the designers, as they cannot check the 
relations between the different rows of the ISA matrix.  
 

 
Figure 2: Description of the design process. 

We can consider that an ISA-based development 
process has three broad phases (Figure 2). First, the 
designers analyze and represent the organization across 
the cells of the different rows and columns of the ISA 
matrix; they also define the intra-row matrices that 
relate the elements of the different cells within the 
rows of the ISA matrix. This model describes the as-is 
situation. Second, the designers analyze the existing 
situation and understand the problem to address. At 
this point, they design different possible solutions; 
each one described in a set of ISA and intra-row 



4 
 

matrices. The designers compare these solutions and 
select one. The corresponding ISA and intra-row 
matrices describe the situation to-be, i.e. what the 
designers need to implement. Last, the designers 
implement the changes to the organization and to the 
IT system according to what the matrices describe.  

 
3 Systemic Conceptualization 

 
Designers face the problem of not knowing what to 
represent in each cell. It is important to understand 
what concretely represents each perspective. As we 
have seen above, the fourth rule on how to structure 
the contents of the ISA matrix states that crossing a 
row means changing perspectives, not just adding 
details. Concretely, what is the relation between the 
contents of the data cell in the designer row and the 
contents of the data cell in the builder row? In this 
section, we propose a way to conceptualize the reality 
that can guide the designers when filling the cells of 
the ISA matrix. We propose an approach based on 
General Systems Thinking (GST) [27]. GST provides a 
set of principles that modelers can apply to most 
domains of inquiry. GST draws attention to entities 
and their relationships, thus helping us to address the 
problems of understanding how to fill the cells and 
how to relate them. Our process is epistemological, i.e. 
we attempt to identify the relationships between the 
contents of the cells and the reality as observed by the 
stakeholders. We therefore propose a conceptualization 
of the universe of discourse. This conceptualization 
serves as a mediating structure between the perceived 
reality and the ISA matrix.  

Our conceptualization is a part of the SEAM 
method. With SEAM, designers can analyze and 
design organizations and IT systems. GST [27] and 
RM-ODP [7] provides the foundations for SEAM. 
GST defines the principles necessary to understand 
how to model the reality. RM-ODP defines the 
modeling ontology [13, 14]. We have taught [25, 26] 
and have consulted [23] with SEAM since 2001. The 
theory underlying the conceptualization presented in 
this paper is in [17, 24].  

In this section, we first describe how we 
conceptualize systems (Section 3.1), then processes 
and data (Section 3.2). We end with a discussion on 
the relations between the conceptualization and the 
matrices defined in ISA (Section 3.3).  
 
3.1 Conceptualization of Systems 
 
As a starting point of our conceptualization, we take 
the notion of system in its most general sense [28]. A 
system usually refers to any kind of entity in our 

environment, for example, an organization, an 
employee, an IT system, or an application. In GST, the 
common definition of a system is “a set of elements 
standing in interrelations” [21]. From an 
epistemological perspective, we have to understand 
where the set of elements and their interrelations come 
from [16]. This leads us to add the concept of observer 
as the person who observes entities in a universe of 
discourse (a part of some reality) and conceptualizes 
these entities as being systems or elements of a system. 
All stakeholders are observers. The designers, who 
need to carry out the project, are also observers. Figure 
2 illustrates the relation, via the conceptualization, 
between the reality and the model.  

During the project, the designers can choose to 
view the systems as wholes (black boxes) or as 
composites (white boxes). When they view a system as 
a whole, they ignore the system’s components. They 
focus then on the services offered by the system to its 
environment. When the designers view a system as a 
composite, the components and their relationships are 
visible. They can then understand the responsibility of 
each component and thus can specify them. Through 
this mechanism, the designers define a hierarchy of 
systems and components. We call this hierarchy the 
organizational level hierarchy. Each hierarchical level 
has its own language.  

We illustrate these concepts with an example 
represented with the SEAM notation (Figure 3). The 
block arrows represent organizations, the stickmen 
represent people and the cubes represent the IT 
systems/applications. All are systems in the GST 
sense. In SEAM, we call working object the model 
element that represents what the designers 
conceptualize as a system. In this paper, the terms 
“system” and “working object” can be considered 
synonymous. Examples of working objects are 
Employee_Mgt, HR_Dept, Employee, and 
HR_IT_System. The designers can represent a 
working object as a whole or as a composite. For 
example, Employee_Mgt [w] is a working object 
as a whole. Employee_Mgt [c] is a working 
object as a composite. The dashed lines between the 
working objects in Figure 3 are whole/composite 
relationships.  Figure 3 also illustrates that the 
designers might define non-trivial organizational 
hierarchies. This is a direct consequence of the 
influence of the observer, in the GST sense. For 
example, it is possible to have multiple parents for a 
same child. In Figure 3 (b), the HR_Dept and the 
Security_Dept are working objects as wholes. The 
designers consider them as two separate departments. 
In Figure 3 (c), the designers represent an ad-hoc  
department, called HR_Dept_&_Security_Dept 



5 
 

[c]. This department is the combination of HR_Dept 
[c] and Security_Dept [c]. We explain this 
unusual structure by two principles applied in the 
company: each department is responsible of the service 
it delivers; however, the implementation of these 
services is common to both departments. This 
illustrates the subjectivity of the enterprise model. The 
model can vary depending on what the designers wish 
to illustrate.  

 
Company_C [c]

Employee_Mgt [w] 

Employee_Mgt [c] 

HR_Dept [w]

Security_Dept [w]

HR_Dept_&_Security_Dept [c]

HR_IT_System [w]

(a)

(b)

(c)

Employee

Security_IT_System [w]

Employee

Pl
an

ne
r r

ow
 

(r
ow

 1
)

O
w

ne
r r

ow
 

(r
ow

 2
)

D
es

ig
ne

r r
ow

 
(r

ow
 3

)

HR

Security
Officer

Employee

 
Figure 3: Organizational hierarchy (SEAM 

notation). The working object functionality is not 
represented.  

 
In SEAM, we also represent interfaces between a 
system and its environment. For example, the 
Employee who is part of Company_C [c] in 
Figure 3 (a) is in the environment of Employee_Mgt 
in Figure 3 (b). The dashed lines make explicit that the 
HR_Dept and the Security_Dept are the systems 
in charge of the interface to the employee.  
 
3.2 Conceptualization of Service Offered 

and of Service Implementation 
 
Once the systems are defined, the designers can 
specify their behavior. Figure 4 illustrates how the 

designers represent the system functionality in SEAM. 
Our inspiration for behavior specification came from 
[4].  

The functionality can be represented as the behavior 
of a system as a whole. For example, in Figure 4,  
HR_IT_System [w] executes HR_IT_Process_ 
Data. We call this kind of behavior a localized 
action. A localized action modifies the state of the 
working object as a whole that hosts the action. A 
localized action represents a service offered by a 
working object.  

The functionality can also be represented as the 
behavior within a working object as a composite. For 
example,   HR_Dept_&_Security_Dept[c] 
performs Manage_Data. We call this second kind 
of behavior a distributed action. A distributed action is 
hosted in a working object as a composite and it 
modifies the state of one or more component working 
objects as wholes that participate in the action. A 
distributed action represents a service implemented by 
a working object.  

 
 

 Figure 4: Working object functionality (SEAM 
notation). Only one organizational level is represented.   
 
All these actions modify the state of properties of the 
working objects as wholes. For the sake of simplicity, 
we do not represent the properties of the working 
objects as wholes in this paper. When a distributed 
action is specified, shared property represents the 
information exchanged between working objects in the 
context of the distributed action. For example, in 
Figure 4, Name and Address are shared properties. 
This means that they are information exchanged 
between the working objects.  

 
3.3 Mapping to the Zachman Framework 

 
In most projects, the conceptualization of what people 
perceive is implicit. To make it explicit, the designers 
need to agree on the organizational level hierarchy that 
best represents the project. The designers typically 
organize a workshop for this purpose. In this 
workshop, they define the hierarchy of systems. We 



6 
 

recommend starting the workshop by modeling the IT 
systems and then expanding from that point. Once the 
organizational levels are defined, it is possible to fill 
the network and the people columns. The artificial 
systems are listed in the network column. The humans 
are listed in the people column. Our conceptualization 
is also useful for defining what the modelers represent 
in the data and in the function columns of the ISA 
matrix. The data column describes the shared 
properties of the working objects s composite. The 
function column represents the distributed actions. 
Note that the ISA matrices do not represent the 
localized actions. We discuss in Section 4 how to 
represent the localized actions. Once the function, data, 
network and people columns are filled, we consider the 
ISA matrix complete.  

After having filled the cells of the ISA matrix, the 
designers fill the matrices that define the relations 
between the cells. First, they specify the intra-row 
matrices. They relate within a same row: data-to-
function, data-to-network/people, function-to-
network/people. Note that we group network and 
people as we consider all these entities as systems. 
Thanks to our conceptualization, the designers can 
relate similar cells between rows. We call these 
matrices inter-row matrices. Zachman did not define 
these matrices. They relate, within a same column, the 
data, the function, the network and the people cells in 
adjacent rows. Our case study, in Section 4, illustrates 
how to fill and how to use all these matrices.   

 
4 Application 

 
In this section, we illustrate our conceptualization with 
the description of an enterprise model done in a 
concrete project (Section 4.1). We show how this 
conceptualization helps fill the ISA matrix (Section 
4.2), the intra-row, and inter-row matrices (Section 
4.3). We end this section by giving an idea about how 
to design an IT system using these matrices (Section 
4.4).  

 
4.1 Conceptualizing the Enterprise 

 
The case study was conducted in a multinational firm 
we call Company_C. The company requires that the 
personnel, on-site, wear badges. Devices located at the 
doors scan the badges and control the access to the 
premises. To manage the badges and the employee 
related information, the company has two IT systems, 
one that manages the employee general information 
(e.g. address) and one that manages the access rights.  

 

Company_C [c]

Employee_Mgt [w] 

Employee 
_Info
(data, 
rights)

Employee_Mgt [c] 

HR_Dept [w]

Security_Dept [w]
Security_
Manage_

Rights
Employee 
_Rights

HR_
Manage_

Data

Employee 
_Data

HR_Dept_&_Security_Dept [c]

HR_IT_System [w]

HR_IT_Process_
Data

NameAddress

(a)

(b)

(c)

Employee

HR_IT_System_&_
Security_IT_System [C]

SMA [W]

Security
Officer

HR

EMA [W]

UDB [W]

PMD [W]

Name

(d)

Address

SMA_
CRUD_
Rights

UDB_Store_/
_Retrieve_

Rights

EMA_
CRUD_

Data

PMD_Store_/
_Retrieve

_Data

Process_
Data

Process_
Rights

HR_IT_Read_
Name

Security_IT_
Process_

Rights

Rights

Security_IT_System [w]

Employee

HR

Security
Officer

Manage_
Data

Manage_
Rights

PMD_
Retrieve_

Name

Employee

Manage_
Info

Mgt_Manage_
Employee_

Info

Rights

Read_
Name

Manage_
Employee_Info

To-be
<<removed>>

To-be
<<added>>

 
Figure 5: Description of the case (SEAM notation).  

 
The HR_IT_System manages the information about 
the employees. It is composed of the People Master 
Data (PMD) database that stores this data and of the 
Employee Management Application(EMA) that 
manages these data. The Security_IT_System 
manages the employee’s access rights. It is composed 
of the User Database (UDB) that stores which rights a 



7 
 

specific employee has and of the Security_ 
Management_Application (SMA) that manages this 
information.   

When an employee needs a badge, he or she asks 
the Security_Dept. The Security_Officer 
must retrieve the name of the employee from the 
HR_IT_System and feeds this data to the 
IT_Security_System that issues the badge. The 
designers need to remove the need to access the 
HR_IT_System. They use the Zachman Framework 
to analyze the existing situation and specify the 
solution to be developed.  

From the business standpoint, the company 
considers that there is an Employee_Mgt 
organization. This organization provides all the 
services to the employee. The HR_Dept and the 
Security_Dept are part of this organization.  
 
Before filling the ISA matrix, the designers need first 
to understand which systems they need to represent in 
the Framework. Then, they will be able to fill the 
matrix. To do so, they conceptualize the organization 
as a hierarchy of systems. Figure 5 illustrates this 
conceptualization.   

The designers begin by modeling the designer row 
(Figure 5 (c)). This row includes the IT systems to 
modify. The goal is to understand the functionalities 
that these IT systems provide. In our case, 
HR_IT_System participates in the Manage_Data 
business process. The Security_IT_System 
participates in the Manage_Rights business 
process. The designers can then analyze the 
construction of the IT systems. To do so, they model 
the builder row (Figure 5 (d)). The applications PMD, 
UDB, SMA and EMA collaborate to provide the 
functionality defined in the previous row. In this paper, 
we do not present the sub-contractor row. It would 
show the architecture of the application and of the 
database. Zachman & Sowa call this the component 
model [19]. 

The designers need also to analyze the business 
aspects. They do so by modeling the owner row. In this 
row, they represent the services provided by the 
HR_Dept and by the Security_Dept (Figure 5 (b)). 
If wanted, they can also model the planner row. In that 
row, they only represent that the organization 
Employee_Mgt needs to manage the Employee 
(Figure 5 (a)).  

The designers make the traceability between the 
rows explicit by using similar names: for example, 
Process_Data in HR_IT_System_&_ 
Security_IT_System (Figure 5 (d)) corresponds 

to HR_IT_Process_Data in HR_IT_System 
(Figure 5 (c)).  

Figure 5 makes also explicit the project’s goal. It 
shows, in Figure 5 (c), that the relation between 
Manage_Rights and HR_IT_System should be 
removed (i.e. the Security_Officer shall no 
longer use the HR_IT_System to issue a badge). 
This is possible if the designers involve the PMD 
application in Process_Rights. This requirement 
is represented in Figure 5 (d).  
 
4.2 Filling the ISA Matrix 

 
Once the conceptualization is completed, it is 
straightforward to fill the ISA matrix. Figure 6 
illustrates the ISA matrix for our case study. With our 
conceptualization, we address only the first five rows 
and four columns. Note, we present only four rows in 
the case study. The designers use the same technique 
to fill the cells of the fifth row.   

 
Figure 6: ISA matrix.  

 
The network and people columns of the ISA matrix are 
filled based on the conceptualization as described in 



8 
 

Figure 5. The network column enumerates the business 
organizations and IT systems visible in Figure 5. The 
people column enumerates the employee. The data 
column represents the shared properties and the 
function column represents the distributed actions. The 
elements listed in the matrix in Figure 6 correspond to 
the graphical elements in Figure 5. For example, the 
element of the function cell of the planner row in 
Figure 6, i.e. Manage_Info, corresponds to the 
distributed actions, with the same name in Figure 5 (a), 
All cells of the ISA matrix (Figure 6) can be related, in 
a similar manner, to the graphical representation of the 
conceptualization (Figure 5).  

 
4.3 Filling the Intra-Row and Inter-Row 

Matrices 
 
The conceptualization gives the relations between the 
elements in the ISA cells. The designers represent 
these relations in additional matrices, called intra-row 
matrices and inter-row matrices. 

Row 3 
Function

Name X

Rights

Manage
_Data(a)

(b)

Row 3 
Data

Address X

Row 3 
Network
/ People

Name X

Rights

HR_
IT_System

Address X

Row 3 
Data

X

HR

X

X

Security_
Officer

X

Security_
IT_System

X

X

(c)
Row 3 

Network
/ People

Manage_Data X

Manage_Rights X

Row 3 
Function

Manage
_Rights

X

X

HR_
IT_System

Security_
IT_System HR Security

_Officer

X

XX

To be  
Figure 7: Intra-row matrices of designer row. 

 
We illustrate the three intra-row matrices: First, the 
designers represent the relations between the function 
and the data cells (Figure 7 (a)). These relations are 
visible in the Figure 5 (c); they correspond to the 
relations between the distributed actions and the shared 
properties.  An “X” between a function and a data 
indicates that the function accesses or manipulates the 
data. To be more specific, it is possible to write one or 
more letters of the CRUD acronym. CRUD means 
Create, Read, Update and Delete: the different kinds of 
processing done on the data. 

Then, the designers represent the relations between the 
data cells and the network/people cells (Figure 7 (b)). 
These relations make explicit which working objects 
know which data. 
Last, the designers represent the relations between the 
function cells and the network/people cells (Figure 7 
(c)). These relations are visible in Figure 5 (c). They 
make explicit which working objects participate in 
which distributed action.  

In summary, the intra-row matrices, with the 
proposed conceptualization, make explicit the relations 
between the distributed actions (function cells),   the 
properties (data cells) and the working objects 
(network/people cells). Note that we merge the 
contents of the network and of the people systems as 
we consider all the entities referenced by these cells as 
systems.  

 
Figure 8: Inter-row matrices between owner and 

designer rows. 
 

Thanks to our conceptualization, it is also possible to 
define the relations between rows. These are the inter-
row matrices. Figure 8 shows examples of inter-row 
matrices. With them, the designers can relate cells of 
the same kind between consecutive rows: e.g., owner 
row’s data cell-to-data cell in designer row. The 
relations between adjacent cells require indirections. 



9 
 

We illustrate this with the function column. In fact, it 
is the localized actions of a system (seen as a whole in 
a given row) that correspond to the distributed actions 
of the same system (seen as a composite in the 
following row). Unfortunately, the localized actions 
are not visible in the ISA matrix. We need to overcome 
this limitation. We do this by replacing the localized 
action by the corresponding distributed action and the 
system name that participates in the distributed action. 
For example, it is the localized action 
HR_Manage_Data in HR Dept [w] (Figure 5 (b)) 
that corresponds to the distributed action 
Manage_Data in HR_Dept_&_Security_Dept 
[c] (Figure 5 (c)). As the localized action 
HR_Manage_Data is not represented in the ISA 
matrix, we refer to the localized action by stating that 
the system HR Dept [w] participates to the 
distributed action Manage_Employee_Info 
(Figure 5 (b)). This explains why the function-to-
function inter-row matrix (Figure 8 (b)) relates 
Manage_Employee_Info (HR Dept [w] ) and  
Manage_Data.   

The originality of the inter-row matrices is their 
capability to relate adjacent cells between consecutive 
rows. This makes explicit the traceability between the 
rows. This feature does not exist in the approach 
proposed by Zachman.  

 

Figure 9: Inter-row matrices between designer and 
builder rows. 

 
The designers can apply the techniques presented in 
this paper in all rows. Figure 7 represents the intra-row 
matrices of the designer row. Figure 10 represents the 
intra-row matrices of the builder row. The designers 
can describe the owner row and the planner row with 
the same technique. Figure 8 represents the inter-row 
matrices between the owner and the designer rows. 
Figure 9 represents those between the designer and the 
builder rows. The designers can relate the cells of the 
planner and the owner rows with the same technique.  
 

 
Figure 10: Intra-row matrices of builder row. 

 
4.4 Designing the New System 

 
Once the designers have filled the matrices, the 
designing of the new organization and of the new IT 
systems can begin. We will investigate the design 
techniques in our future work. However, we can 
already provide an idea on how the designers can 
proceed. In the design phase, the designers manipulate 
the matrices (as described in BSP [29]: method that 
inspired Zachman). In our example, the goal is to 
eliminate the need to access two IT systems for the 
Security_Officer when she issues a badge. The 
designers can realize this by automating the access to 
the HR_IT_System when issuing the badge. The 
proposed redesign is visible in the to-be annotations in 
Figure 7, 9 and 10.  

First, the designers make explicit that issuing a 
badge (action Manage_Rights) should not require 



10 
 

the participation of the HR_IT_System. This is 
visible in Figure 7.  The relation between the 
HR_IT_System and the distributed action 
Manage_Rights is eliminated.  

Then, using the inter-row matrix designer row’s 
function–to-function in builder row (Figure 9 (b)), the 
designers identify that the actions Read_Name and 
Process_Rights are related to Manage_Rights.  
The designers make explicit that the Read_Name 
distributed action (builder row) is not anymore 
necessary to support the Manage_Rights process 
(designer row). Figure 9 makes this explicit with the 
crossed X between the Read_Name and 
Manage_Rights functions.    

Last, the designers specify the need to automatically 
access to the PMD application when the 
Process_Rights distributed action executes. 
Figure 10 (c) makes this explicit with the additional X 
at the intersection between the Process_Rights 
function and the PMD application.  

 
5 Related Work 

 
Authors (such as [20]) propose processes for using the 
Zachman Framework. But, they do not propose a 
conceptualization. Only very few publications provide 
a conceptualization. [6] shows that different 
conceptualizations of a situation can co-exist: different 
units within a company produce different ISAs given 
that they have a different perception of the reality. 
They propose to add a Z-axis to ISA and to create an 
ISA matrix for each point of view. However, the 
authors do not provide concrete guidelines on how to 
accomplish the merging of the different matrices. [5] 
provides practical instructions for creating the models 
for some of the ISA cells. These instructions consist of 
mainly following the meta-models proposed for each 
column in [28], such as entity-relationship diagrams 
for the data column and process diagrams for the 
function column. [15] proposes a method for working 
with ISA matrices. This method specifies the order to 
fill the cells based on the dependencies between them. 
The method also introduces the concept of anchor 
cells; cells that are critical to complete before going on 
to the other cells in the row. Although this method 
gives an order in which to treat the cell, it does not 
specify the content of the cells.  

Other authors have developed new frameworks, 
inspired or not by Zachman: for example TOGAF [12], 
E2AF [8] and Urba-CIGREF [11]. These frameworks 
do not propose a conceptualization as the one 
described in this paper.  

We base our conceptualization on SEAM. Other 
methods exist to graphically model systems. Examples 
of these methods are Archimate [9], Demo [2], OPM 
[3], and SSM [1]. The originality of SEAM is the 
combination of GST and of RM-ODP. This 
combination provides both philosophical and formal 
foundations to the approach. None of the above 
methods have both aspects.  

 
6 Conclusions and Future Work 

 
Enterprise architecture, with its holistic view, can be 

one of the main enablers of the alignment between 
business and IT. The most prominent and holistic of 
EA framework, the Zachman Framework, provides a 
canvas for the models that the designers create when 
working on an enterprise model. Unfortunately, 
Zachman does not specify how to create these models. 
In this publication, we use an epistemological process 
to augment ISA with a conceptualization of the 
universe of discourse. We have shown how this 
conceptualization contributes to ISA by making 
explicit what should be in the ISA matrix, the intra-
row and inter-row matrices. We have illustrated this 
contribution with a case study that served as a running 
example. 

ISA and SEAM might appear to address the same 
problem. Our experience shows that they are 
complementary. SEAM is useful for understanding 
what to model and how to graphically represent a 
hierarchy of systems that span from business down to 
IT. SEAM, however, cannot represent large systems, 
as the diagrams would become too complex. Here ISA 
brings value, as it is possible to represent large systems 
with lists. Therefore, we can consider the Zachman 
Framework as a taxonomy useful to access a multitude 
of smaller SEAM models. This is consistent with the 
definition of ISA given by Sessions [18]. We will 
explore the SEAM / Zachman integration as our future 
work.  

 
7 References 
 
[1] Checkland, P. and Scholes, J., Soft System 
Methodology in Action, Wiley, 1990. 
[2] Dietz, J., “Basic notions regarding business 
processes and supporting information systems”, 
Proceedings of CAiSE 2004 workshops, Riga, Latvia, 
2004.  
[3] Dori D, Object Process Methodology, Springer 
Verlag, 2002.  
[4] D’Souza D. Wills. A. C., Objects, Components and 
Frameworks with UML: the Catalysis Approach, 
Addison Wesley, 1999.  



11 
 

[5] Finkelstein, C., Enterprise Architecture for 
Integration: Rapid Delivery Methods and 
Technologies, Artech House, 2006.  
[6] Garner, B.J., and Raban, R., “Context management 
in modeling information systems (IS)”, in Information 
& Software Technology 41(14): 957-961, 1999. 
[7] ISO/IEC 10746-1, 2, 3, 4 | ITU-T 
Recommendation, X.901, X.902, X.903, X.904, 
“Reference Model of Open Distributed Processing”, 
1995-1996. 
[8] Institute for Enterprise Architecture Developments, 
Extended Enterprise Architecture Framework, 
http://www.enterprise-architecture.info, accessed April 
2008.  
[9] Lankhorst M. et al., Enterprise Architecture at 
Work, Springer Verlag, 2005.   
[10] Lê, L.S. and Wegmann A., “SeamCAD: Object-
Oriented Modeling Tool for Hierarchical Systems in 
Enterprise Architecture”, Proceedings of the 39h IEEE 
Hawaii International Conference on System Sciences 
(HICSS), Hawai, 2006.  
[11] Longépé, C., Le projet d’urbanisation des S.I., 
Dunod, 2006.  
[12] The Open Group Architecture Framework 
(TOGAF), http://www.opengroup.org/togaf, accessed 
June 2008.  
[13] Naumenko, A., Triune Continuum Paradigm: a 
paradigm for General System Modeling and its 
applications for UML and RM-ODP, Ph.D thesis 
number 2581, Swiss Federal Institute of Technology - 
Lausanne. EPFL, June 2002. 
[14] Naumenko, A., and Wegmann. A. "Formalization 
of the RM-ODP foundations based on the Triune 
Continuum Paradigm", in Computer Standards & 
Interfaces, 29(1):39-53, Elsevier, 2007.  
[15] Pereira, C. M., Sousa P., “A Method to Define an 
Enterprise Architecture using the Zachman 
Framework”, Proceedings of the Symposium on 
Applied Computing, 2004.  
[16] Regev, G., and Wegmann, A., “Where do Goals 
Come From: the Underlying Principles of Goal-
Oriented Requirements Engineering”, Proceedings of 
the 13th IEEE International Requirements Engineering 
Conference (RE’05), Paris, France, 2005. 
[17] Rychkova, I., Regev, G., Wegmann, A., “High 
Level Design and Analysis of Business Processes. 
Advantages of declarative specifications.”, 
Proceedings of RCIS 2008, Marrakech, Morocco, 
2008.  

[18] Sessions, R., A Comparison of the Top Four 
Enterprise Architecture Methodologies, URL: 
http://www.objectwatch.com/whitepapers/4EACompar
ison.pdf, accessed November 2007. 
[19] Sowa, J. F., “Zachman, J.A., Extending and 
formalizing the framework for information systems 
architecture”, in IBM Systems Journal, 31(3):590-616, 
1992.  
[20] Spewak, H. S., Enterprise Architecture Planning 
Developing a Blueprint for Data, Applications and 
Technology, QED Publishing Group, 1992.  
[21] von Bertalanffy, L., General System Theory, 
George Braziller, 1968. 
[22] Wegmann, A., “On the Systemic Enterprise 
Architecture Methodology (SEAM)”, Proceedings of 
the International Conference on Enterprise Information 
Systems (ICEIS), Angers, France, 2003.  
[23] Wegmann, A., Regev, G. and Loison, B.. 
“Business and IT Alignment with SEAM”. 
Proceedings of the 1st International Workshop on 
Requirements Engineering for Business Need, and IT 
Alignment, Paris, 2005.  
[24] Wegmann, A., Lê, L. S., Regev, G., and Wood, 
B., "Enterprise Modeling Using the Foundation 
Concepts of the RM- ODP ISO/ITU Standard," in 
Information Systems and E-Business Management, 
5(4):397-413, 2007. 
[25] Wegmann A.; Regev G.; de la Cruz J. D., Lê L.S., 
and Rychkova I, “Teaching Enterprise and Service-
Oriented Architecture in Practice”, Proceedings of the 
Workshop on Trends in Enterprise Architecture 
Research (TEAR 2007), 2007. 
[26] Wegmann, A., Julia, P., Regev, R., Perroud, O., 
and Rychkova I., “Early Requirements and Business-
IT Alignment with SEAM for Business”, Proceedings 
of the 15th IEEE International Requirements 
Engineering Conference (RE’07) Dehli, India, October 
2007. 
[27] Weinberg, G. M., An Introduction to General 
Systems Thinking, Wiley & Sons. New York, 1975. 
[28] Zachman, J. A., “Framework for Information 
Systems Architecture”, in IBM Systems Journal, 
26(3):276-292, 1987.  
[29] Zachman, J.A., "The Zachman Framework and 
Observations on Methodologies," Business Rules 
Journal, 5(11), 2004, URL: 
http://www.BRCommunity.com/a2004/b206.html, 
accessed December 2007.  

 


