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Chapter 1

Introduction

Knowledge representation is the area of artificial intelligence (AI) concerned with how knowledge
is represented and manipulated. Expert Systems use Knowledge representation to facilitate the
transformation of knowledge into a knowledge base which can be used for reasoning - i.e. we can
process data with this knowledge base to infer conclusions. Today the expert systems are used in
many areas such as business, science, engineering. JBoss Rules, Drools is one of these systems.
Drools is a Rule Engine that uses the Rule Based approach to implement an Expert System [17].
Drools can be more correctly classified as a Production Rule System. The ‘brain’ of a Production
Rules System is an Inference Engine that is able to scale to a large number of rules and facts. The
Inference Engine matches facts and data, against Production Rules, also called Productions or just
Rules, to infer conclusions which result in actions.

The users can construct the rules by themselves. Normally the experts do that. However, in the
case that there is huge number of data available or the list of available data is constantly changing
it becomes almost impossible for human-beings to come up with rules that explain the system.
There are expert systems allow the system to learn rules. The system builds rules from data. Our
aim is to create a system which can learn the rules by analyzing the data. The system should be
capable of extracting the patterns from the data. We design the system to give hints about the
data to the users which use the Drools Rule Engine.

Decision trees are useful for classifying objects because of their hierarchical nature between the
parent and children nodes. A decision tree is both a knowledge representation scheme and a
method of reasoning about its knowledge. In this thesis we will construct the decision trees using
a learning algorithm. This hierarchical nature between the parent and children nodes of a decision
tree will construct the rules that we need for our expert system.

The difficulty of the problem comes from its nature. Huge amount of data is hard process. Even
if the number of data is not big it is very likely that the data is very complex, i.e, it has many
dimensions i.e. the number of attributes. The data from of which we are trying to extract the
information never covers the entire domain so it is not complete. The number of possible rules that
we get increases with the number and the complexity of data. Thus, our search space is gigantic
and we are trying to discover ‘good’ rules which are short, meaningful and human-readable. This
thesis makes the following contributions:

• We unite the classic machine learning approach Decision Trees with the Rule Based Expert
System

• We show that there might be many trees which have the same classification results but
different sizes. The Drools needs the decision trees to decrease the complexity of its rule
base. The decision trees constructed using the Decision Learning algorithm tries to optimize
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the size of the tree by pruning. Moreover, there is a heuristic function which the algorithm
adopts to select the best attribute at every split. The heuristic function and the pruning
process aim to eliminate repeating nodes during learning in order to create smaller trees. We
show that the smaller tree improves the performance of Drools since we transform it to a
smaller RETE Network.

• We show that it is possible to create structured rules for the RETE network using structured
data. Structured rules decrease the number of intra-element conditions, i.e., AlphaNodes,
while the number of inter-element conditions, i.e. JoinNodes, increases due the structured
nature.

Here we give an outline of what will be in each chapter of this thesis. The second chapter is
background on the problem and the basic terminology of the Drools. We explain how the rules
produced by a machine can be useful for the Drools.

The third chapter describes our GO1.0 Decision Tree Algorithm. It first defines the relational
machine learning terminology used for the algorithms. Then it gives the details on the different
modules.

The fourth chapter gives the implementation details of the GO1.0 Decision Tree Algorithm. We
give an overview of the system and describe each module. We explain the main functionality of
each modules and their interactions.

The fifth chapter focuses on the experimental results. First we explain each database we use. Sec-
ond we visualize the rules generated from the decision trees and the RETE network as a result of the
integration. We show the differences between the rules generated from structured and simple data
and give the classifications results. Then we present the comparisons between different approaches
that we explain in the third chapter. We analyze the results of the learners. We compare the clas-
sification results of different builders. We present the affect of the pruning algorithms on the results.

The sixth chapter describes related work.

The seventh and last chapter is conclusions an the possible future work.
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Chapter 2

Background

2.0.1 Machine Learning

As a broad subfield of artificial intelligence, machine learning is concerned with the design and
development of algorithms and techniques that allow computers to approximate functions given by
data sets. At a general level, there are two types of learning: inductive, and deductive. Inductive
machine learning methods extract rules and patterns out of massive data sets.

The major focus of machine learning research is to extract information from data automatically, by
computational and statistical methods. Hence, machine learning is closely related not only to data
mining and statistics, but also theoretical computer science. There are different type of learning
algorithms which are supervised, unsupervised and reinforcement.

2.0.2 Decision Trees and Decision Tree Learning

Decision trees were first generated manually to make optimal decisions. As a field of AI we use
the learning algorithms to generate the models from the data without the help of human or with
minimum help. The learning algorithms can also be used to generate decision trees and then they
are called ‘Decision Tree Learning’ algorithms. Using a learning algorithm necessitates a heuristic
in order to evaluate the available opportunities and to decide on the one closest to the optimum
solution. However, this never guarantees the optimal solution, the optimal model.

2.0.3 Drools: JBoss Rules

Rule Engine

As we pointed before, Drools is a Rule Engine that uses the Rule Based approach to implement an
Expert System [17]. A better classification for Drools is a Production Rule System. Production
Rules System has an Inference Engine that is able to scale to a large number of rules and facts. The
Inference Engine matches facts and data, against Production Rules, also called Productions or just
Rules, to infer conclusions which result in actions. Inference Engine matches the new or existing
facts against Production Rules, that process is called Pattern Matching. There are a number of
algorithms used for Pattern Matching by Inference Engines. Drools implements and extends the
RETE algorithm. The Drools Rete implementation is called ReteOO, signifying that Drools has
an enhanced and optimized implementation of the Rete algorithm for Object Oriented systems.
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Figure 2-1: Rule Definition: Production

Rule . It is composed of two parts, i.e. left-hand-side LHS is a set of productions which contains
the unordered sequence of the patterns (= conditions) and right-hand-side RHS (= actions) as
given in the Figure 2-1. It uses First Order Logic for knowledge representation.

The RETE Match Algorithm

Drools implements the RETE Algorithm [8]. The word RETE is latin for ‘net’ meaning network.
The RETE algorithm can be broken into 2 parts: rule compilation and runtime execution. The
compilation algorithm describes how the Rules in the Production Memory generate an efficient
discrimination network, i.e., RETE Network. A discrimination network is used to filter data.
The idea is to filter data as it propagates through the network. At the top of the network the nodes
would have many matches and as we go down the network, there would be fewer matches. At
the very bottom of the network are the terminal nodes. [8] describes 4 basic nodes: root, 1-input,
2-input and terminal.

The rules of a production rule system forms the Rule Base. The data operated on by the rules is
held in a global data base called Working Memory. The interpreter executes a production system
by performing the following operations.

1. Match. Evaluate the LHSs of the productions to determine which are satisfied given the
current contents of working memory.

2. Conflict resolution. Select one production with a satisfied LHS; if no productions have satisfied
LHSs, halt the interpreter.

3. Act. Perform the actions in the RHS of the selected production.

4. Goto 1.

[6] defines the RETE network basically consisting of two parts, i.e. Alpha and Beta networks.
AlphaNodes having 1 input define intra-elements conditions and form the Alpha network. BetaN-
odes having 2 inputs define inter-element conditions and form the Beta network (Figure 2-2). Rete
performs joins with BetaNodes to calculate cross products.

The Rete network starts with the root node called ReteNode, which all objects must enter. It
then splits a branch a node per object type; i.e. the first level of discrimination is object type
(Figure 2-3).

After the ObjectType discrimination node we have one or more Alpha discrimination nodes, each
alpha node applies a literal constraint (Figure 2-4).

Then finally BetaNode determines the possible cross product for a rule of Cat and Person in the
Figure 2-6.

14



Figure 2-2: Rete Network and Nodes

Figure 2-3: ObjectTypeNodes

Figure 2-4: AlphaNodes
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Figure 2-5: Rule example for a JoinNode

BetaNode is also called join node and it has a left and right memory. All inserted Cats who
need an owner and whose fur color is red are remembered by the left memory then as a Person
who needs a cat and whose hair color is red is inserted into the system it iterates over that left
memory joining with each Cat in turn and propagating to the terminal node. So the terminal node
will execute for each matching Cat and Person cross product. This is just like saying:

Program 1 A query of ‘Red-haired Person who needs a Blue-fured Cat without an owner at the
same location’
SELECT * from Person p, Cat c
WHERE p.location = c.location & p.needsCat == true &

p.hairColor == Person.RED & c.furColor == Cat.RED & c.needsOwner==true

The drl is given in the Figure 2-5 and the rete network in the Figure 2-6.

Any objects propagate through the network and pass all these constraints then reaches the terminal
node and the rule fires. Terminal nodes are used to indicate a single rule has matched all its
conditions - at this point we say the rule has a full match.

Node Sharing Drools also performs node sharing. Many rules repeat the same patterns, node
sharing allows the Rete algorithm to collapse those patterns so that they don’t have to be re-
evaluated for every single instance. Node sharing avoids duplicate value tests. As a result there is
less memory usage and the matching algorithm executes faster. For example, if you have two rules
all of which have hairColor == Person.RED there will only be one node and that one node would
be shared by both rules. That one shared node would then have two outputs to the rest of the
nodes that match each of the two rules. The two rules given in the Figure 2-7 share the first two
same patterns, but not the last.

The compiled Rete network shows the alpha node is shared as you can see in the Figure 2-8. Had
the last pattern been the same it would have also been shared. On the other hand, the beta nodes
are not shared like the alpha nodes as you can see in the Rete network (Figure 2-9) which is created
from the rules given in the Figure 2-10. Each beta node has its own TerminalNode.

However, when the orders of the conditions change Rete Network is not capable of node sharing
any more. Even if the two rules given in the Figure 2-11 share the two patterns, i.e. name==
‘Mark’ and hairColor == Person.RED, since the pattern of hairColor == Person.RED is not in
the same order in both rules there are two different nodes for these conditions and only the first
shared node has two outputs to the rest of the nodes that match each of the two rules as you can
see Rete network in the Figure 2-12.

As a result, there is no node sharing left if none of the same patterns are in the same order as given
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Figure 2-6: The Rete Network of the Example in the Figure 2-5

Figure 2-7: The DRL file of Node Sharing Example
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Figure 2-8: The Rete Network of Node Sharing, Figure 2-7

Figure 2-9: Example: Join Nodes are not shared
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Figure 2-10: The DRL File of Figure 2-9, Join Nodes are not shared

Figure 2-11: The DRL File for Not Node Sharing
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Figure 2-12: The Rete Network for Not Node Sharing Figure 2-11

in the Figure 2-13. Thus, none of the nodes are shared and there are three different node for all the
conditions even if the two are the same pattern as you can see Rete network in the Figure 2-14.
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Figure 2-13: The DRL File of Node Sharing: Worst case

Figure 2-14: The Rete Network of Node Sharing: Worst case Figure 2-13
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Chapter 3

The GO1.0 Decision Tree Algorithm

3.1 Relational Vocabulary

The terminology has been constructed based on the glossary of [21]. A data set consists of a schema
and a set of instances matching the schema. An instance is a single object of the world from which
a model will be learned. These instances are described by feature vectors and there exist relations
between instances or between parts of instances. A schema is a description of a data set’s attributes
and their properties. An attribute is a quantity describing a feature of an instance. Each attribute
has a domain defined by the attribute type, which denotes the values that can be taken by an
attribute. An attribute domain keeps the information of the attribute name and the list of possible
values that the attribute can be assigned to.

A feature is the specification of an attribute and its value. For example, color is an attribute. ‘Color
is blue’ is a feature of an instance. Many transformations to the attribute set leave the feature
set unchanged (for example, regrouping attribute values or transforming multi-valued attributes to
binary attributes).

The most common domain types are categorical and quantitative.

1. Categorical (discrete) domain commonly constructed by a set of nominal values. This has to
be a finite numbered set with values which are discrete. The type nominal denotes that there
is no ordering between the values, such as last names and colors. For example, an attribute
with the values low, medium, or high. We assume that the attributes have categorical do-
mains by default. But if the user specifies then we can process the domain as quantitative
(Section 4.3.1).

2. Quantitative (continuous) domain: Commonly, subset of real numbers, where there is a
measurable difference between the possible values. Integers are usually treated as continuous
in practical problems. This type of domain has to be discretized by defining a various number
of thresholds (intervals) for each possible class. Numerical attributes which are a set of real
numbers can have a categorical or quantitative domain. In the case of a continuous domain
it has to be discretize/categorized by defining a various number of thresholds (intervals) for
each possible class.

For example: age < 15 ⇒ child
15 ≤ age < 20 ⇒ teenage
20 ≤ age⇒ adult
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Literal attributes which are set of Strings can have a categorical or continuous domain. In
the case of a continuous domain it has to be categorized by defining a various number of sets
for each possible class.

For example: letter ∈
{
a, e, i, o, u

}
⇒ vowel

letter /∈
{
a, e, i, o, u

}
⇒ consonant

3. Complex domain implements a domain of an attribute that belongs to another object class.
We process the complex domains by calling their own classes and their parents. We process all
the complex domains by getting their attributes until every complex attributes is converted
to set of attributes with categorical or quantitative domains. The Structured schema takes
care of this conversion explained in the Section 4.1.1.

3.2 Multi-Relational Decision Tree Learning

3.2.1 The Target Instance, Its Attributes and the Target Attribute

The data structure in Multi-Relational Learning can consist of several object classes which describe
particular objects’ attributes. However, there is still one object class which is the focus of the clas-
sification. The user must choose the object type to analyze by selecting one of the object classes
as the target class. Each object with the chosen class will be transformed into a single instance
in the data set. After choosing the target class the user should assign an attribute on the class in
order to define the labels of the instances. As Quinlan points out one must predefine the target
attribute and its categories to which the algorithm will assign the instances for the C4.5 algorithm
[18]. This is called supervised learning.

This attribute which is called the target attribute can be a direct attribute of the target class, an
attribute of one of the target class attributes or can be constructed by the user as a function on
the target class (see Section 4.3.1)
First, given the object class of the target class, we construct a schema defining the structure of the
class. Then we process the objects belonging to that class in order to find most relevant and simple
patterns, which can explain or predict the label of a future object belonging to the same class. The
patterns contain attribute-value descriptions and the structural relation between the classes and
their complex domains. These patterns are also called multi-relational or structured patterns.

3.2.2 Training Decision Trees

ID3 Learning Algorithm

Quinlan designed the ID3 (Iterative Dichotomiser 3) algorithm to generate decision trees by pro-
cessing the learning data [22]. The algorithm intends to produce smaller decision trees. However,
it does not always produce the smallest tree since it uses a heuristic as a splitting criterion. The
splitting criterion heuristic is based on the information entropy.
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C4.5 Learning Algorithm

Quinlan presents the C4.5 Learning algorithm for decision trees in [18]. Compared to the ID3 the
C4.5 learning algorithm can tackle with harder domains that contain many number of possible
values. We describe the domains in the Section 3.1. C4.5 deals with the numeric (integer or
real) and continuous attributes using a discretization technic based on entropy. The discretization
algorithm of the continuous attributes is described in the Section 3.2.2.

We use the algorithm called Learner to train a decision tree as explained in the Algorithm 3.2.2.

Learner(X, t,d)
1 Input:

X : a set of N labeled instances, and their distribution on target
t : tree specification, i.e.,

attrs: list of attributes,
attrtarget : target attribute, and
C[attrtarget ]: list of target attribute categories

depth: depth of branch
2 Select winner from C[attrtarget ]

winner ← majority of votes of instances X on C[attrtarget ]
3 if vote(X) = winner, ∀X ∈ X
4 then return leafclassified (winner)
5 if attrs = ∅
6 then return leafnoAttributeLeft(winner)
7 Choose attrbest to split X using heuristic function
8 if ∃ criteria c ∈ list of Stopping Criterion : c = true
9 then return leafmajority(winner)

10 Create nodeNew and Split X by C[attrbest ]
Xc ← instances at category c

11 for c ∈ C[attrbest ]
do

12 Instantiate tree specification t′ excluding attribute attrbest
attrs← attrs− attrbest

13 if Xc *= ∅
14 then nodechild ← Learner(Xc, t′, depth +1)
15 Set nodechild as child of nodenew at c
16 else Create empty leafempty(winner)
17 Set leafwinner as child of nodenew at c
18 return nodenew

Figure 3-1: Algorithm: Learner

The learner chooses the best attribute which differentiates the target attribute categories the most.
When the learner chooses the best attribute attrbest it divides the instances into subgroups so as
to reflect the attribute categories of the chosen node at the line 7. Then it creates a separate tree
branch for each category of the chosen attribute. For each subgroup the learner calls herself if there
is no termination condition satisfied as in the line 7, and the lines 8 and 13. The learning algorithm
can terminate by returning a node classifying winner target category if

• all instances vote on same the category in the line 3,
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• there is no attribute left to classify in the line 5,

• there is no instance left to classify in the line 16,

• there exists a stopping criteria equal to true given the current statistics, i.e., depth d, the
result of heuristic, or number of instances matching the node in the line 8 and the line 13.

The Learner trains herself on the training data. Then the builder tests the result decision tree on
a test data set. If test data is not available, it can use a cross-validation on the training data.

Splitting Criteria

There are many heuristic functions as disparity/impurity measures i.e. information gain, gain ratio,
gini coefficient, or chi-squared test that we can use as a splitting criteria . During the learning we
use the heuristic function in the line 7 in the Algorithm 3.2.2. In the C4.5 algorithm Quinlan
adopts the information-theoretic approach which is the information gain (entropy). There is also
information gain ratio which is introduced as less biased since it is normalized by the attribute’s
self information . Breiman et al. initially tries an information-theoretic criterion, but chooses ‘Gini’
index.
However, Breiman et al. remarks that ‘. . . within a wide range of splitting criteria the properties of
the final tree selected are surprisingly insensitive to the choice of splitting rule. The criterion used
to prune or recombine upward is much more important.’ [4].

Continuous Attribute Discretization

There are mainly two approaches of discretizing the continuous attributes. One approach is us-
ing a global discretization algorithm, which results in a smaller decision tree. However, a global
discretization algorithm would ignore the relation of the continuous attribute with the other at-
tributes. The other approach is at any node of tree dicretizing the continuous attribute on the
current set of instances that means applying the global discretization algorithm during the training
of the decision tree.

The splitting criteria mentioned in the Section 3.2.2 can be utilized in discretization. These splitting
criteria are disparity/impurity measures, i.e., information gain, gain ratio, gini coefficient, or chi-
squared test. Quinlan points the weakness of C4.5 in domains with continuous attributes and as
a solution he presents the Minimum descriptive length, MDL, metrics [20]. We adopt the MDL
method with information gain presented in [7]. Here we describe a global discretization approach
using the MDL method:

1. Sort the instances on the attribute of interest

2. Look for potential cut-points. Cut points are points in the sorted list where the class labels
and the attributes values change.

3. Evaluate the effectiveness of the discretization. Calculate the performance of the discretization
instance using the disparity measure on each of the cut points, and choose the one with the
best performance.

4. Repeat recursively in both subsets (the ones less than and greater than the cut point value)
until

(a) either the subset is pure i.e. only contains instances of a single class,
(b) or some stopping criterion is reached (maximum number of branching is reached)
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3.2.3 Building Decision Trees

Given a set of N instances, each belonging to one of K classes, (x1, y1), . . . , (xN , yN ) where
xi ∈ X, yi ∈ Y such that Y = {1, 2, . . . ,K} there are different ways to populate the decision
trees. The simplest approach is building a single tree and testing it. The other two approaches are
bagging and boosting which builds multiple trees. Multiple Tree systems, forests, use a voting
system to decide the classification of an instance. We partition the set of N instances into learning
set L which consists of less instances and a testing set.

Decision Tree Forests: Bagging

We will form a decision tree, D(x, L), using our training procedure on this learning set — if the
input is x we predict y by D(x, L). This is called boostraping.If y is a class label, let the {D(x, L)}
vote to form DB(x). Breiman calls this procedure “bootstrap aggregating” and use the acronym
bagging [3].
Assuming we use the full data set consisting of N observations for training we explain the algorithm
used to construct a decision tree forest in the Algorithm 3.2.3. The {L(B)} form replicate data

Bagging(X,T)
Input:

X : a set of N labeled instances
attrs: list of attributes
T : number of trees to grow

1 for t ← 1 to T for each decision tree
do

2 Draw a random sample, Xt, of size N from the learning set, X, with replacement
Boostraping

3 Fit a classifier D(t)(X) to the random sample, Xt

D(t)(X)← LEARNER(Xt,attrs,0).

4 return C(X) = arg max
k

T∑

t=1

1{D(t)(X)=k} Aggregation by voting

Figure 3-2: Algorithm: Bagging

sets, each consisting of N instances, are drawn at random, but with replacement, from L. Each
(xi, yi) may appear repeated times or not at all in any particular {L(B)}. Some instances will be
selected more than once, and others will not be selected. On average, we expect to select about
2/3 of the instances by the sampling. The remaining 1/3 of the instances are called the “out of
bag (OOB)” instances. Deterministic learning algorithms tend to overfit. Bagging tries to avoid
this by randomizing the input of the learning algorithm.

Boosting Decision Trees

Boosting is a very successful technic for solving the binary classification problems. It was first
introduced by Freund and Schapire (1997) as the AdaBoost algorithm [9].

Given a set of N instances, each belonging to one of K classes, (x1, y1), . . . , (xN , yN ) where xi ∈
X, yi ∈ Y such that Y = {−1,+1} here is the AdaBoost algorithm:
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AdaBoost(X, T )
Input:

X : a set of N labeled instances
attrs: list of attributes
T : number of trees to grow

1 Initialize the weights
wi ← 1/|x|, i = 1, 2, . . . , |x|.

2 for t ← 1 to T
do

3 Fit a classifier D(t)(X) : X → {−1,+1} to the training data, x, using weights w.
4 Compute the error of the classifier

err(t) =
N∑

i=1

wi · 1{D(t)(xi) "=yi}/
N∑

i=1

wi

5 Compute
α(t) = log 1−err(t)

err(t)

6 Update the weights
wi ← wi · exp

(
α(t) · 1{D(t)(xi) "=yi}

)
, i = 1, 2, . . . , N .

7 Re-normalize the weights, w

8 return C(x) = arg max
k

T∑

t=1

α(t) · 1{D(t)(X)=k} ! The final hypothesis

Figure 3-3: Algorithm: AdaBoost

3.2.4 Re-Training Decision Trees

We need a machine that can continuously learn over time. Thus, the current set of rules can change
as a result of new objects fed to the working memory. Whenever more objects are fed to the working
memory the decision tree learning algorithm should continue from the last decision tree found. A
simple and dump way is training a decision tree from scratch by keeping whole instances in the
memory. The faster way of re-training decision trees is saving the trees with its matching instances
to the nodes. However, this cause memory issues when the number of instances increases. The
decision tree learning algorithm is constructive, by its nature it is not iterative. Thus, even if we
save the nodes with the list of matching instances whenever the split attribute changes we need to
construct that branch from scratch. That means whole tree can be reconstructed if the heuristic
chooses a different attribute at the root of the tree. As a result, if some branches of the tree change
the rules can completely change. This can remove some rules or add some rules.

3.3 Over-fitting and Right Sized Trees

In supervised machine learning the learning algorithm trains the decision tree using a set of in-
stances, i.e. exemplary situations for which the desired output is known. The set of instances
are called learning data set. Although the decision tree experiences only the instances in learning
data set it is expected to be able to predict the correct output for the future examples. Thus,
it should be able to generalize to situations not presented during training (based on its inductive
bias). However, it is very likely that the decision tree T is perfectly consistent with the learning
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Figure 3-4: The Overfitting

data set L and it will not be good enough to predict classes of unseen data (test data set) from the
same distribution unless some special care is given to the problem. A decision tree T over-fits the
learning data set if and only if ∃T ′ such that:

err(L, T ) < err(L, T ′)
err(L′, T ) > err(L′, T ′)

where L′ is the unseen data from the same distribution, i.e. test data set.

In machine learning, the problem is called over-fitting. Over-fitting is building a statistical model
that has too many parameters. As a result, the classifier over-fits the learning data set when it
adjusts to very specific features of the learning data set without generalization. In this process
of over-fitting, the performance on the training examples still increases while the performance on
unseen data becomes worse. Thus, the over-fitting should be avoided by some extra cautions
during the training process. We visualize the training and test errors during the training of a
classifier in the Figure 3-4. The classifier starts over-fitting the learning data set when the test
error starts increasing since the Learner continues training the classifier on the learning data set
and the training error decreases. Before the point where the test error is minimum the classifier
under-fits the learning data set since it is not complex enough.

Reasons for Over-fitting. There are many reasons for over-fitting. Especially in cases where
learning was performed too long or where training examples are rare the over-fitting is unavoidable.
Some other reasons can be

• Noisy data

• Incomplete data (not all cases are covered)

• Given attributes are not enough to predict the outcome
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• Not enough data for some part of the learning sample

3.3.1 Pruning Algorithms

The most common way of avoiding over-fitting in decision trees is pruning the decision tree. There
are two approaches for the pruning.

• Pre-pruning stops growing the tree during the learning, before it reaches the point where it
perfectly classifies the learning data set.

The generic decision tree learning algorithm learner continues splitting the nodes as long as
there is an attribute to split and/or the data is not classified perfectly. Adding to the general
terminal conditions a node will not be split with the pruning if

– The number of instances matching to the node is too small (Nt)
– The impurity of the split on the node (It) is low enough
– The best test is not statistically significant (according to some statistical test)

The main concern about the pre-pruning approach is that the optimum values of the param-
eters (Nt, It, significance level) are not only problem dependent but they can also differ for
the different branches of the same tree.

• Post-pruning allows the tree to over-fit and then prunes the tree later. This approach needs a
test test to be able to evaluate the generalization error. Unless there is test set available the
learning data set L is split into two sets: training set LT to build the tree and validation set
LV . After building a complete tree T0 from the training set LT a sequence of trees {T1, T2, . . .}
are computed by removing some subsets of nodes from the initial tree T0. In the sequence
each tree Ti is obtained by removing some subtree from the previous tree Ti−1. At the end
the best tree Ti∗ with the minimum validation error on LV is selected from the sequence.

A generic way of building the sequence of trees (iterating on the tree) is reduced error
pruning. Reduced error pruning removes the node that most decreases the validation error
at each step. The Classification and Regression trees algorithm introduces cost-complexity
pruning [4] which defines a cost-complexity criterion:

err(LT , T ) + α · Complexity(T )

and builds the sequence of trees that minimize this criterion for increasing α.

3.3.2 Pre-pruning: Stopping Criteria

When to stop the decision tree learning algorithm is a tricky issue. The decision tree constructed
using (almost perfectly classifying) all training set is overly fitting to the set and is less likely to
give good results on the future data.

One method that we design is to stop when the maximum decrease in the impurity measure
(heuristic) is smaller a threshold [14]. This method, also called ‘forward pruning’, has had mixed
results. As it is explained in the CART algorithm a threshold β > 0 is set and the node t is declared
terminal (leaf) if

max
s∈S

∆I(s, t) < β (3.1)

where s is a split from the set of all possible splits S.
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Another common method is adopting a maximum value for the depth of the tree in order to avoid
over classifying the instances. We call the method as maximum depth stopping criterion. Thus,
the depth of the tree at any branch can not exceed a number d. The authors of the decision tree
algorithm, CART (Breiman et al. [4]) arrives at an opposite conclusions with the other leading
decision tree algorithm, C4.5 (Quinlan [18]). Breiman et al. suggest ‘pruning instead of stopping’,
also called ‘backward pruning’. The maximum tree is grown having in mind some careful stopping
criterion (lightly pre-pruned) in order to avoid extreme and unnecessary iterations and pruned
upward. Breiman et al. constructs the maximum tree by continuing splitting until each terminal
node

either is pure such that all instances have the same class ,
or is small such that the number of instances is less than a pre-specified number,
or contains only identical attribute-vectors (in which case splitting is impossible).

Even if the tree is going to be pruned backward the splitting procedure can be stopped when the
tree is sufficiently large. The details will be given in the next Section 3.3.3.

Estimated Node Size

Instead of a pre-specified number we try an adaptive version of the method presented in the Equa-
tion 3.1. We estimate the branching factor b̄ by calculating the average of the branching factors
used so far and compute the expected number of matching instances to the node as

E[N(t)] =
N

b̄d

where N is the total number of instances used for training. Thus, each terminal node is either pure
or matches less than α(d) · E[N(t)] number of instances

N(t) ≤ α(d) · N

b̄d

where α(d) depends in the depth d of the node.

3.3.3 Backward Pruning: Minimal Cost-complexity Tree Pruning

The CART methodology involves two quite separate calculations. First the optimum value of the
cost penalty for the tree complexity α∗ is determined using a data set which is independent from the
data set used to train the tree. The second step is using this optimum value α∗ to select the final
best pruned tree. In the first step CART algorithm uses a pruning process in order to get the
‘right size’ of a tree and accurate estimates of the true probabilities of misclassification. We present
the first step of the algorithm in Figure 3.3.3. This pruning process which is the search for the
‘right-sized’ tree involves pruning or collapsing some of the branches of the largest tree (Tmax) from
the bottom up. During the pruning process the cost complexity parameter and an independent
data sample from the training data is used to measure the predictive accuracy of the pruned tree.
The pruning process produces a series of sequentially nested sub trees, each tree with two types
of misclassification costs, i.e. the evaluation cost generated from an independent sample and the
re-substitution cost generated from the learning sample, and the cost-complexity-parameter value.
The evaluation cost can be generated using cross-validation or a test sample both of which should
be independent from the learning sample [24].
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Minimal Cost-Complexity Pruning(X, k)
1 Input:

X : a set of N labeled instances
k : maximum number of trees

2 Tmax ← LEARNER(X,attrs,0)
3 T1 = T (αmin) where αmin = 0:

R(T1) = R(Tmax)
4 for i← 1 to k

do

5 for ∀t ∈ Ti gi(t) =

{
R(t)−R(Tt)

| eTt|−1
, if t /∈ T̃i

∞, else
6 Choose the weakest link t̄i :

t̄i = arg min
t∈Ti

gi(t)

gi(t̄i) = min
t∈Ti

gi(t)

and the set of weakest links {t̄i}
{t̄i} = {t̄′i: gi(t̄i) = gi(t̄′i)}

7 αi+1 ← gi(t̄i)
8 Ti+1 ← Ti − Tt̄i , ∀t̄i ∈ {t̄i}
9 return The Sequence of Pruned Trees and their Complexity parameters

T1 . T2 . . . . . Tk and {αi} : αi < αi+1, k ≥ 1, α1 = 0
T (αi) = Ti, for i ≥ 1, αi ≤ α < αi+1.

Figure 3-5: Algorithm: Minimal Cost-Complexity Pruning

Pruning to a Sequence of Trees

Breiman [4, 63] suggests growing a sufficiently large initial tree Tmax by specifying a number Nmin

and continues splitting until each terminal node is either pure or contains only identical instances
or matches less than Nmin number of instances

N(t) ≤ Nmin.

Instead of setting a constant number we adopt the heuristic described above 3.2 and compute the
expected number of matching instances to the node. Thus, the decision tree is grown until each
terminal node is either pure or matches less than α · E[N(t)] number of instances

N(t) ≤ α · N

b̄d

where α is 5% since we want to eliminate outliers and the number of matching instances should
not drop less than 5% of the expected number.

Starting from the maximum tree Tmax the pruning process produces a finite sequence of subtrees
T1, T2, . . . with progressively fewer terminal nodes. Considering the maximum tree Tmax there
is a great number of subtrees and many distinct ways of pruning up to the root node. Thus, a
‘selective’ pruning procedure is necessary i.e. a selection of a reasonable number of subtrees. Each
selected subtree which is the ‘best’ of its size range will be smaller in size than the previous one.
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To evaluate how good a subtree T is its misclassification cost R(T ) on the training set is used.
Although R(T ) lacks as an estimation of the population misclassification cost R∗(T ) it is the most
natural criterion to use in comparing different subtrees of the same size. Moreover, there is a
trade-off between accuracy and complexity of a decision tree starting from the most complex tree
with low or zero misclassification to the simplest tree (the trivial tree containing of one node) with
a very high misclassification [4]. Thus, the CART algorithm defines the cost-complexity measure
of a decision tree which is the linear combination of the misclassification error of the tree and its
complexity. For any subtree T having the same root as the maximum tree Tmax (T 0 Tmax) the
cost-complexity measure Rα(T ) is defined as

Rα(T ) = R(T ) + α|T̃ |

where the complexity of the subtree |T̃ | is the number of terminal nodes in T and the complexity
parameter α ≥ 0 is a real number. The complexity parameter α which is the complexity cost per
terminal node can also be understood as a cost penalty for the complexity of the decision tree.
If α = 0, then cost complexity attains its minimum for the largest possible tree. On the other
hand, as α increases and is sufficiently large (say, infinity), a tree with one terminal node (the root
node) will have the lowest cost complexity. As values of α decrease and approach zero, trees that
minimize cost complexity become larger. The ‘right-sized’ tree with ‘correct’ complexity should lie
between these two extremes. Breiman et al. discuss how to estimate α and offer a detailed account
of the pruning process [4].

For every value of α, there exists the smallest minimizing subtree T (α) defined by the conditions

Rα(T (α)) = min
T&Tmax

Rα(T )

If Rα(T ) = Rα(T (α)), then T (α) 0 T.

Although α increases as continuous values there are at most finite number of subtrees of Tmax. Due
to finiteness, even if T (α) is the minimizing tree for a given value of α it will continue to be the
minimizing until a ‘jump point’ α′ is reached as the values of α increases. Then a new tree T (α′)
becomes the minimizing until the next ‘jump point’ α′′.

Starting with α = 0 cost complexity attains its minimum for the largest possible tree. That is,
T1 = T (0) is the smallest subtree of Tmax satisfying

R(T1) = R(Tmax)

Thus, any terminal node of Tmax whose misclassification error adds up to the same value with their
immediate ancestor node t must be pruned off to get T1 from Tmax. Tmax is pruned until no more
pruning is possible. After obtaining T1 the weakest-link cutting process is applied at each iteration.
For any node t ∈ Ti

Rα(t) = R(t) + α

For the branch Tt containing the node t as the root node

Rα(Tt) = R(Tt) + α|T̃t|

The branch Tt has a smaller cost-complexity than the single node t if

Rα(Tt) < Rα(t)

At some critical value of α when the two cost-complexities become equal the single node t as a
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branch would be preferable to the branch Tt since it is smaller than Tt. The critical value of α can
be calculated when

Rα(Tt) ≤ Rα(t)

α ≤ R(t)−R(Tt)
|T̃t|− 1

Therefore, we define the function gi(t), t ∈ Ti by

gi(t) =

{
R(t)−R(Tt)

| eTt|−1
, if t /∈ T̃i

∞, else

where t̄i is the weakest link because it is the first node where its cost-complexity, Rα(t), becomes
equal to the cost-complexity, Rα(Tt), of its branch, Tt, as the parameter α naturally increases.
Thus, t̄i becomes preferable to Tt̄i the value of αi+1 at which the equality occurs.

αi+1 = gi(t̄i)
gi(t̄i) = min

t∈Ti

gi(t)

The next tree Ti+1 is created by pruning away the branch Tt̄i from the current tree Ti that is

Ti+1 = Ti − Tt̄i .

If at any iteration there is a multiplicity of weakest links such that

gi(t̄i) = gi(t̄′i)

where t̄i *= t̄′i then the next tree is created by pruning away any branch that the weakest list
constructs.

Ti+1 = Ti − Tt̄i − Tt̄′i

The pruning process continues like that until there is the root node t0 left which is the trivial tree
and we obtain a decreasing sequence of subtrees

Tmax . T1 . T2 . . . . . t0

In the meantime we obtain an increasing sequence of complexity parameters {αi} that is αi < αi+1,
k ≥ 1, where α1 = 0. For i ≥ 1, αi ≤ α < αi+1, T (α) = T (αi) = Ti.

Selecting the Best Pruned Subtree: An Estimation Problem

The best way to test the predictive accuracy of a tree is to take an independent test data set
with known class distributions and run it down the tree and determine the proportion of cases
misclassified. In some cases, such a data set is impossible due the available number of data.
Considering this difficulty, Breiman et al. [4] provide three procedures for estimating the accuracy
of tree-structured classifiers.

Re-substitution, Test Sample and Cross-validation. The training error, i.e. re-substitution
error, can be used to select the best tree. However, the training error is biased and it is not a good
way to evaluate the generalization error. To achieve an unbiased evaluation of the decision trees it
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requires a second test. The test set is used as a validation set to evaluate the generalization error.
In the case of missing a test set one part of the learning set needs to be dedicated as the validation
set this may cause a problem if the learning set is a small set. A solution for that problem is using
cross-validation Figure 3.3.3.

k-fold Cross-Validation(L,ϕ)
1 Input:

L : a set of N labeled instances
ϕ : Decision tree learning algorithm

2 L1, L2, . . . , Lk :
∑k

i=1 Li = L, |Li| = |L|
k ∀i

3 for i← 1 to k
do

4 Generate a tree ϕi with the training set L− Li

5 Evaluate the tree with the validation set Li

ki : the number of misclassified instances
6 Ri = err(ϕi, Li) = ki

|Li|
7 return k-fold cross-validation error estimate

err(ϕ, L) = 1
k

∑K
i=1 err(ϕi, Li)

Figure 3-6: Algorithm: k-fold Cross-Validation

Let L1, L2, . . . , Lk be the sub-samples which are randomly split the training set L into k subsets of an
equal number of observations. For each sub-sample a decision tree ϕi is generated with the training
set L−Li and evaluated with the validation set Li. Let ki be the number of misclassified instances
from the validation set. The error estimate Ri is determined by the proportion of misclassified
observations

err(ϕi, Li) =
ki

|Li|

As a result we obtain a series of test sample re-substitution estimates, err(ϕ1, L1), err(ϕ2, L2),..,
err(ϕK , LK). Thus, the k-fold cross-validation error estimate err(ϕ, L) defined by

err(ϕ, L) =
K∑

i=1

|Li|
|L| · err(ϕi, Li) =

1
k

K∑

i=1

err(ϕi, Li)

Cross-validation and cost-complexity pruning is combined to select the value of α. First, the trees
within the sequences are matched up, based on their number of terminal nodes, to produce an
estimate of the performance of the tree in classifying a new independent dataset, as a function of
the number of terminal nodes or complexity. The method is to estimate the expected error rates
of estimates obtained with ϕ for all values of α using cross-validation. The value α∗ is that value
of α which minimizes the mean cross-validation error estimate and this is the estimated true error
rate of ϕα∗ [14]. Once ϕα∗ has been determined, the tree that is finally suggested for use is that
which minimizes the cost-complexity using ϕα∗ for all the data. Cross-validation estimation allows
a data-based estimate of the tree complexity which results in the best performance with respect
to an independent dataset. Using this method, a minimum cost occurs when the tree is complex
enough to fit the information in the learning dataset, but not so complex that “noise” in the data
is fit.
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3.4 Evaluation of Decision Trees

Over-fitting is a very serious problem for a classifier. When the classifier is trained using a complex
predictor on too-few examples it ends up over-fitting the too-few examples and it is not good enough
to classify the future data any more. In order to avoid the over-fitting the trees should be evaluated
using a different data set than the training data set. The generic way is using an extra data set to
test the classifier. However, for moderate-sized samples, we use the cross-validation [14]. Basically
cross-validation consists of dividing the data into sub-samples. We use each sub-sample to test the
classifier constructed from the remaining sub-samples, and the estimated error rate is the average
error rate from these sub-samples. In this way the error rate is estimated efficiently and in an
unbiased way. Practically the use of cross-validation is the k-fold repetition of the learning cycle,
which requires much computational effort. We select 10 folds for the cross-validation. Decreasing
the number of folds will likely decrease the amount of time it takes for the decision tree to be
generated, and increasing the number of folds will likely increase the amount of time it takes.
Increasing the number of folds will create a larger dataset for the training data, which may increase
accuracy of the decision tree.

For example, we select the tree with the best classification results on the test set from the multiple
trees constructed by the Multiple-Decision Tree Builders, i.e., Bagging and Boosting. This decreases
the over-fitting but it results in worse classification results than the actual classifier.
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Chapter 4

Implementation of G01.0 in Drools

The diagram in the Figure 4-1 explains the overview picture of the system. The Drools Working-
Memory which is a StatefullSession is the main input of the Tree factory. Besides WorkingMemory,
there are the parameters as input to the algorithm in order to build the decision tree. The most
important parameter is the target object class. We construct a structured schema from the target
object class. The other important parameters are

• Splitting criterion heuristic function: Information gain, information gain ratio

• List of Stopping Criterion:

– node size estimation:

– maximum depth

– impurity improvement

• Tree Builder Types

– Single tree builder

– Forest builder: The user informs the number of trees to bagg.

– Ada Boost builder: The user informs the number of trees to boost.

• Error Estimation for Tree pruner

– Test Sample Estimation

– Cross validation

The output of the tree factory is a decision tree. Rule Printer adapts the decision tree to the
Drools’ Parser by generating the valid rules.

4.1 Decision Tree Factory

The diagram in the Figure 4-2 explains the Tree Factory component. First, we create the Memory
from the Drools’s Working Memory. Memory contains the Instances, which are list of instances
assignable from the target object class, and the Structured Schema, which defines the target class
object. We construct the Structured Schema by visiting the target class and its parent classes, and
their attributes and the attributes’ parent classes. Thus, we get all simple attributes related to the
target class.
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Figure 4-1: The Overview Diagram of the System

Figure 4-2: The Tree Factory
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4.1.1 Feeding Objects, Building Schema and Instance List

We create an instance from each object in the Working Memory and we add the instance to the
Memory. The objects coming from the Working Memory can contain attributes with Complex
domains which have different type of types than the classes we have seen. For each none existent
attribute type we create a new domain in the set of domains. Then we insert the instance into its
instance list as a new instance.

• Memory : the memory object used for the training and the testing decision trees

– session: Drools’ Working Memory
– targetClass: the Java class of the target Objects
– instances: Hash map of instances lists referenced by their class

DomainSet: Hash table of the attribute domains referenced by the names of all distinct
attributes defined by the valid class.

• Instance List : the instances which belongs to the same class constructs the instance lists

– schema: The specifications of the class
– instance factory: the factory which can create instances using the Drools’ Working

memory and the schema. It instantiates the attributes of any object from the session if
the class of that schema is assignable from the class of the object.

– validDomains: Hash table of the attribute domains referenced by the attribute names
that belong to the class.
Memory.insert(Object element): We create a new instance from the attributes of ele-
ment. We add each attribute of the object to instance with its domain specifications. If
the value of that attribute does not exist in the domain we add the value to the possible
values of the domain.

• Instance: Instance has its attributes

– fields: Hash table of the attribute domains referenced by the attribute names that belong
to the object which created the fact

– values: Hash table of the attribute values referenced by the attribute names that belong
to the object which created the fact

4.1.2 How to Build Decision Trees

The Tree Builder is the main responsible for populating decision trees. It trains as many decision
trees as necessary using Learner with the heuristic function and the stopping criterion. As a result
of training, we get a single tree in the case of Single Tree Builder or multiple trees in the case of Tree
Forests, AdaBoost, or AdaBoostK. If the user chooses to prune the decision tree(s) Tree Pruner
computes the optimum error estimation by pruning each decision tree to a sequence of decision
trees and then select the best decision tree using the optimal estimate. In any case we compute
the training and the testing error using the Tree Tester which depends on the tree builder type and
then we save the results of the testing as tree performance statistics. If Decision Tree pruner is
not used and multiple trees are constructed we merge the trees into one tree using the Tree Visitor
to evaluate the rule performances of the trees. However, the final tree loses classification accuracy
when it is a merge of multiple trees. As a result, the final decision tree is the output of the Tree
Factory.
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Figure 4-3: The Decision Tree Result of Restaurant Objects

4.2 From a Tree to Rules

We use a Tree Visitor to construct the rules from the decision tree. Tree Visitor uses Depth First
Search algorithm to visit all possible branches of the tree. It processes Declarations, Conditions,
and Actions of each rules to get the structured rule. The output rules depend on the learning
algorithm used to train the tree.

Decision Trees from ID3 Algorithm

We implemented the Quinlan’s ID3 Algorithm. We compared the results with two other ID3
implementations. One is the Java implementation of ID3 algorithms from Online Code Repository
[15] of the AIMA book [22]. The functions give the same results i.e. entropy function and it
computes the same trees.

For example: Using the 12 Restaurant objects with 12 discrete attributes (6 boolean, 3 literal and 1
numerical) and Boolean target attribute the ID3 implementation constructs the decision tree given
in the Figure 4-3. This decision tree contains the rules given in the Section 5.2.1. After visiting
this decision tree the Rule Printer prints the rules in the DRL file Figure 5-3.

Decision Trees from C4.5 Algorithm

We implemented almost all features introduced in C.45 Algorithm [18]. We compared the results
using Quinlan’s data, i.e. 15 Golf objects with 4 attributes (1 boolean, 1 literal and 2 numerical)
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Figure 4-4: The Decision Tree Result of Golf Objects

and Boolean target attribute. We describe the Golf objects in the Section 5.1.2. The C4.5 imple-
mentation constructs the decision tree Figure 4-4. This decision tree contains the rules given in
the Section 5.2.2. After visiting this decision tree the Rule Printer prints the rules in the DRL file
Figure 5-9.

4.3 Decision Tree Pruner Details

When Decision Tree Pruner uses the cross validation during the Decision Tree Forward Pruning it
builds an entire tree and prunes it to the sequence of trees k times, i.e. k-fold Cross Validation.
Thus, there are k sequences of trees produced. This procedure is very costly considering a huge
number of instances with many number of attributes. To speed up the procedure we store extra
information at each tree node; specifically, what the highest represented class is and what proportion
of instances at the node actually are that class. This helps the pruner to know what would happen
if it pruned that branch and replaced it with a leaf; the leaf would be labeled with the highest
represented class. Thus, we can easily recalculate the change in the training error, and the new
training error. This saves us from calculating the training error by dropping the all instances to
the tree every time we will choose the branch to prune. This optimization can be called Online
Testing. Moreover, it can be applied to the test set, too, which would improve the Decision Tree
Forward Pruning algorithm a lot.

4.3.1 Annotations: Interaction with the User

The algorithm has to assign one of the attributes as the target. The user annotates the field using
Field Annotations 4.3.1. For example:

@FieldAnnotation(readingSeq = 1, target = true, discrete = false)
private double y;

Moreover, the user can define her own labeling function. To achieve this she writes a getter function
in any object class related to the target object class. She annotates the getter function using the
Class Annotations 4.3.1. For example, here the getLabel() function given in the Program 2 in the
Section 5.1.6 is annotated in the Triangle class:

@ClassAnnotation(label_element = "getLabel")
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public class Triangle {
......

}

The attributes are assumed to be discrete by default. If the user specifies the opposite using the
Field annotations then the domain is treated as continuous. On the other hand, if the number
of possible values of the domain is more than a number then the domain is treated as continuous
in order to improve the learning algorithm. The whole specifications of the attribute domains are
read from the Annotations given at the fields of the object classes. Thus, we can validate the type
of the input with respect to the annotated field type. We can also validate the value of the field
given the possible set of values in the annotation.

• Field Annotations:

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.FIELD})
public @interface FieldAnnotation {

int readingSeq() default 0;
boolean ignore() default false;
boolean skip() default false;
boolean target() default false;
boolean discrete() default true;
String[] values() default {"x"};

}

• Class Annotations:

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE})
public @interface ClassAnnotation {

String label_element() default "";
}

4.3.2 Multi-Threaded ID3 Algorithm

The ID3 learning algorithm can be paralleled with two different approaches.

1. The simple approach is to assign a thread to each branch coming from the tree node. The
number of branched is the number of possible values of the chosen attribute at the tree node.

2. The other approach is to assign a thread to each possible attribute during the process of
choosing the attribute that will branch the tree node so the loop on the attributes can be
eliminated.

We tried the simple approach. It is a very easy and simple way of parallelizing. It is very easy to par-
allel the construction of the decision tree until the branches are merged due to the joins between
different object. Only caveat is that the ‘putNode(Object attributeValue, TreeNode newNode)’
function which assigns the children of the nodes should be protected.
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The second approach needs more attention because the threads must join after calculating the
entropy value of their attribute. Then the attribute with the greatest information gain will be
selected so the execution will continue with the chosen attribute.
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Chapter 5

Experimental Evaluation

5.1 Data

5.1.1 Restaurant

Restaurant objects first used in the AIMA book [22]. The ID3 implementation of the AIMA Online
Code Repository The ID3 implementation from Online Code Repository [15] of the AIMA book [22]
uses the 12 Restaurant objects with 11 discrete attributes (7 boolean, and 4 literal) and Boolean
target attribute, i.e., will wait. The Table 5.1 explains the detailed structure of the restaurant
objects. Since the Restaurant object structure does not have any continuous attribute the ID3
algorithm is enough to train the decision tree classifying the restaurant objects.

5.1.2 Golf

Golf objects first used in the Quinlan’s book [18]. The data set contains 15 Golf objects with 4
attributes (1 boolean, 1 literal and 2 numerical) and Boolean target attribute, i.e., decision. The
Table 5.2 explains the detailed structure of the golf objects. Since the Golf object structure has
continuous attributes the C4.5 algorithm is required to train the decision tree to generate rules as
to when to play, and when not to play, a game of golf.

5.1.3 Cars

Car Evaluation Database was derived from a simple hierarchical decision model originally developed
for the demonstration of DEX [2] [1]. The model evaluates cars according to the concept structure
given in the Figure 5-1 and the Table 5.3. The Car Evaluation Database contains examples with
the structural information removed, i.e., directly relates CAR to the six input attributes: buying,
maint, doors, persons, lug boot, safety. There are 1728 instances and 6 attributes. The instances
completely cover the attribute space and there are no missing attribute values. The Table 5.4 gives
the number of instances per class, i.e. Class Distribution.

5.1.4 Nursery

Nursery Database was derived from the same model within expert system shell for decision making
DEX [2] like Car Evaluation Database explained in the previous Section [1]. The model was
originally developed to rank applications for nursery schools. It was used during several years in
1980’s when there was excessive enrollment to these schools in Ljubljana, Slovenia, and the rejected
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Table 5.1: The Structure of the Restaurant Database

attribute values domain type
will wait Yes, No. boolean
alternate Yes, No. boolean
bar Yes, No. boolean
fri sat Yes, No. boolean
hungry Yes, No. boolean
patrons None, Some, Full discrete
price $, $$, $$$ discrete
raining Yes, No. boolean
reservation Yes, No. boolean
type French, Italian, Thai, Burger discrete
wait estimate ‘0-10’,‘10-30’,‘30-60’,‘>60’ discrete

Table 5.2: The Structure of the Golf Database

attribute values domain type information
decision Play, Don’t Play. binary target attribute
outlook sunny, overcast, rain discrete the weather conditions
temperature - continuous integer values between
humidity - continuous integer values between
windy true, false binary if wind exists

Table 5.3: The Concept Structure of the Car Evaluation Database

Structure Attribute Values Explanation
CAR* unacc, acc, good, v-good car acceptability
. PRICE overall price
. . buying v-high, high, med, low buying price
. . maint v-high, high, med, low price of the maintenance
. TECH technical characteristics
. . COMFORT comfort
. . . doors 2, 3, 4, 5-more number of doors
. . . persons 2, 4, more capacity, i.e. number of persons
. . . lug boot small, med, big the size of luggage boot
. . safety low, med, high estimated safety of the car
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Figure 5-1: The Concept Structure of the Car Object

Table 5.4: The Class Distribution of the Car Evaluation Database

class N N[%]

unacc 1210 (70.023 %)

acc 384 (22.222 %)

good 69 ( 3.993 %)

v-good 65 ( 3.762 %)
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Figure 5-2: The Concept Structure of the Nursery Object

applications frequently needed an objective explanation. The final decision depended on three
subproblems: occupation of parents and child’s nursery, family structure and financial standing,
and social and health picture of the family, i.e., directly relates NURSERY to the eight input
attributes: parents, has nurs, form, children, housing, finance, social, and health, respectively. The
hierarchical model ranks nursery-school applications according to the concept structure given in
the Figure 5-2 and the Table 5.5. Input attributes are printed in lowercase. Besides the target
concept (NURSERY) the model includes four intermediate concepts: EMPLOY, STRUCT FINAN,
STRUCTURE, SOC HEALTH.

The Nursery Database contains 12960 instances and 8 attributes. The instances completely cover
the attribute space and there are no missing attribute values. The Table 5.6 gives the number of
instances per class, i.e. Class Distribution.

5.1.5 Poker Hands

Poker hands database is used first by [5] [1]. Each record is an example of a hand consisting of
five playing cards drawn from a standard deck of 52. Each card is described using two attributes
(suit and rank), for a total of 10 predictive attributes given in the Table 5.7. There is one Class
attribute that describes the ‘Poker Hand’. The order of cards is important, which is why there are
480 possible Royal Flush hands as compared to 4 (one for each suit). There are 311875200 records
possible in the entire domain even if only 2598960 different poker hands exist. However, 1,025,010
records exists in the database i.e. 25010 records available for training, and 1,000,000 for testing.
Each record has 10 predictive attributes, 1 goal attribute. There are no missing attribute values.
The Table 5.8 gives the statistics of the entire domain, i.e., number of instances per class.
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Table 5.5: The Concept Structure of the Nursery Database

Structure Attribute Values Explanation
NURSERY* not recom, recommend, Evaluation of applications

very recom, priority, spec priord for nursery schools
. EMPLOY Employment of parents and

child’s nursery
. . parents usual, pretentious, great pret Parents’ occupation
. . has nurs proper, less proper, Child’s nursery

improper, critical, very crit
. STRUCT FINAN Family structure and

financial standings
. . STRUCTURE Family structure
. . . form complete, completed, incomplete, foster Form of the family
. . . children 1, 2, 3, more Number of children
. . housing convenient, less conv, critical Housing conditions
. . finance convenient, inconv Financial standing of the family
. SOC HEALTH Social and health

picture of the family
. . social non-prob, slightly prob, problematic Social conditions
. . health recommended, priority, not recom Health conditions

Table 5.6: The Class Distribution of the Nursery Database

class N N[%]

not recom 4320 (33.333 %)

recommend 2 (0.015 %)

very recom 328 ( 2.531 %)

priority 4266 (32.917 %)

spec prior 4044 (31.204 %)
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Table 5.7: The Structure of the Poker Hands Database

attribute values domain type information
CLASS (0-9) ordinal poker hand
S1 (1-4) Numerical Suit of card #1 representing

Numerical Hearts, Spades, Diamonds, Clubs
C1 (1-13) Numerical Rank of card #1 representing

Numerical (Ace, 2, 3, ... , Queen, King)
S2 (1-4) Numerical Suit of card #2 representing

Numerical Hearts, Spades, Diamonds, Clubs
C2 (1-13) Numerical Rank of card #2 representing

Numerical (Ace, 2, 3, ... , Queen, King)
S3 (1-4) Numerical Suit of card #3 representing

Numerical Hearts, Spades, Diamonds, Clubs
C3 (1-13) Numerical Rank of card #3 representing

Numerical (Ace, 2, 3, ... , Queen, King)
S4 (1-4) Numerical Suit of card #4 representing

Numerical Hearts, Spades, Diamonds, Clubs
C4 (1-13) Numerical Rank of card #4 representing

Numerical (Ace, 2, 3, ... , Queen, King)
S5 (1-4) Numerical Suit of card #5 representing

Numerical Hearts, Spades, Diamonds, Clubs
C5 (1-13) Numerical Rank of card #5 representing

Numerical (Ace, 2, 3, ... , Queen, King)

Table 5.8: The Class Distribution of the Poker Hands Database

class # of hands N N[%] information

0 Nothing in hand 1302540 156304800 (50.117739 %) not a recognized poker hand

1 One pair 1098240 131788800 (42.256903 %) one pair of equal ranks

2 Two pairs 123552 14826240 (4.753902 %) two pairs of equal ranks

3 Three of a kind 54912 6589440 (2.112845 %) three equal ranks

4 Straight 10200 1224000 (0.392464 %) five cards, sequentially

ranked with no gaps

5 Flush 5108 612960 (0.196540 %) five cards with the same suit

6 Full house 3744 449280 (0.144058 %) pair + different rank three of a kind

7 Four of a kind 624 74880 (0.024010 %) four equal ranks

8 Straight flush 36 4320 (0.001385 %) straight + flush

9 Royal flush 4 480 (0.000154 %) Ace, King, Queen, Jack, Ten + flush
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Table 5.9: The Structure of the Triangle Database

attribute values domain type information
label true, false binary target attribute
x [0, 10.0) continuous the length of an edge
y [0, 10.0) continuous the length of an edge
z [0, 10.0) continuous the length of an edge

Table 5.10: The Class Distribution of the Triangle Database

class N N[%]

true 5007 (50.07 %)

false 4993 (49.93 %)

5.1.6 Triangle

Triangle Database contains 10000 randomly generated triangle candidates. Triangles candidates
has 3 continuous attributes, i.e. the length of the edges, and a target attribute specifying if the
object is a valid triangle or not. The Table 5.2 explains the details of the attributes. The Table 5.10
gives the statistics of the entire domain, i.e., number of instances per class.

Triangles are labeled according to the triangle rule, i.e., the sum of every two sides of a triangle
must be greater than the third side. There is the getLabel() function given in the Program 2 that
returns the label of each triangle candidate object.

Program 2 The User-Defined Labeling Function: getLabel()
public boolean getLabel() {

return (z < x + y) && (x < z + y) && (y < x + z);
}

5.2 The Rules out of Decision Trees

5.2.1 Training with ID3 Algorithm: Restaurant Database

When we train the decision tree with the ID3 algorithm we can use only the discrete attributes
to split the instances at each node. Thus, the conditions of the rules can contain only equality
constraints, i.e., hungry == true. Using ID3 algorithm we construct the decision tree which gives
8 rules:

Rule #1 suggests that
if patrons == Full and hungry == true and type == Italian
then Willing to Wait is No

Rule #2 suggests that
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if patrons == Full and hungry == true and type == Burger
then Willing to Wait is Yes

Rule #3 suggests that
if patrons == Full and hungry == true and type == Thai and frisat == true
then Willing to Wait is Yes

Rule #4 suggests that
if patrons == Full and hungry == true and type == Thai and frisat == false
then Willing to Wait is No

Rule #5 suggests that
if patrons == Full and hungry == true and type == French
then Willing to Wait is Yes

Rule #6 suggests that
if patrons == Full and hungry == false
then Willing to Wait is No

Rule #7 suggests that
if patrons == None
then Willing to Wait is No

Rule #8 suggests that
if patrons == Some
then Willing to Wait is Yes

5.2.2 Training with C4.5 Algorithm: Golf Database

When we train the decision tree with the C4.5 algorithm we can use both type attributes, i.e.
discrete and continues, to split the instances at each node. Thus, the conditions of the rules can
contain only equality, i.e., outlook == rain or inequality, i.e., humidity > 77.5 constraints. Using
C4.5 algorithm we construct the decision tree which gives 5 rules:

Rule #1 suggests that
if outlook == overcast
then Play

Rule #2 suggests that
if outlook == rain and windy == false
then Play

Rule #3 suggests that
if outlook == sunny and humidity > 77.5
then DonotP lay

Rule #4 suggests that
if outlook == rain and windy == true
then DonotP lay
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Rule #5 suggests that
if outlook == sunny and humidity ≤ 77.5
then Play

5.3 Comparison of Decision Tree Learners

The Learner uses all available data for training the decision trees so only we present the training
errors. The Learners discretize the attributes with quantitative domains using a recursive dis-
cretization method applicable at any tree node and the discretization recursion stops at a constant
depth.

We measure the quality of the RETE Network by its number of nodes, i.e., ObjectTypeNodes,
AlphaNodes, JoinNodes, and TerminalNodes. We explain these different type of nodes in the
Section 2.0.3. These statistics of RETE Network classifying the different databases are in the
Table 5.12. The comparison of the classification results of each decision tree belonging to the
RETE Network is in the Table 5.11.

5.3.1 ID3 Decision Tree Learning Algorithm

5.3.2 Restaurants

The rules as a result of the decision tree are in the DRL file in the Figure 5-3. Drools constructs
the RETE Tree from the decision tree in the Figure 5-4.

Car

The decision tree produced the 188 rules; however, only the first three best rule whose classification
rank is significantly high (is bigger than 0.05) given in the DRL file in the Figure 5-5. Since there
are too many number of rules produced from the decision tree we select the first best three rule in
the Figure 5-6. The classification results are in the Table 5.11. We compare the number of nodes
of the RETE Tree in the Table 5.12.

Nursery

The decision tree produced the 839 structured rules; however, only the first best 8 rules whose
classification rank is significantly high (is bigger than 0.02) given in the DRL file in the Figure 5-7.
Since there are too many number of rules produced from the decision tree we select the first best
8 rules in the Figure 5-8. The classification results are in the Table 5.11. We compare the number
of nodes of the RETE Tree in the Table 5.12.

5.3.3 C4.5 Decision Tree Learning Algorithm

Golf

And the decision tree produces the rules in the DRL file in the Figure 5-9. The classification results
are compared in the Table 5.11. This drl file can be parsed by the Drools and we get the Rete tree
in the Figure 5-10.
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!package examples.learner;

!import examples.learner.Restaurant

!

!rule "#7 will_wait= true  classifying 3.0 num of facts with rank:0.2727272727272727" 

! ! when

! ! ! $restaurant_0 : Restaurant(patrons == "Some", $target_label : will_wait )

! ! then 

! ! ! System.out.println("[will_wait] Expected value (" + $target_label + "), " +

! ! ! "Classified as (true )");

!end

!rule "#1 will_wait= false  classifying 2.0 num of facts with rank:0.18181818181818182" 

! ! when

! ! ! $restaurant_0 : Restaurant(patrons == "None", $target_label : will_wait )

! ! then 

! ! ! System.out.println("[will_wait] Expected value (" + $target_label + "), "+

! ! ! "Classified as (false )");

!end

!rule "#4 will_wait= false  classifying 2.0 num of facts with rank:0.18181818181818182" 

! ! when

! ! ! $restaurant_0 : Restaurant(patrons == "Full", hungry == false, 

! ! ! ! ! ! ! ! ! !$target_label : will_wait )

! ! then 

! ! ! System.out.println("[will_wait] Expected value (" + $target_label + "), "+

! ! ! "Classified as (false )");

!end

!rule "#2 will_wait= false  classifying 1.0 num of facts with rank:0.09090909090909091" 

! ! when

! ! ! $restaurant_0 : Restaurant(patrons == "Full", hungry == true,type == "Italian", 

! ! ! $target_label : will_wait )

! ! then 

! ! ! System.out.println("[will_wait] Expected value (" + $target_label + "), "+

! ! ! "Classified as (false )");

!end

!rule "#3 will_wait= false  classifying 1.0 num of facts with rank:0.09090909090909091" 

! ! when

! ! ! $restaurant_0 : Restaurant(patrons == "Full", hungry == true, type == "Thai", 

! ! ! fri_sat == false, $target_label : will_wait )

! ! then 

! ! ! System.out.println("[will_wait] Expected value (" + $target_label + "), "+

! ! ! "Classified as (false )");

!end

!rule "#5 will_wait= true  classifying 1.0 num of facts with rank:0.09090909090909091" 

! ! when

! ! ! $restaurant_0 : Restaurant(patrons == "Full", hungry == true, type == "Thai", 

! ! ! fri_sat == true, $target_label : will_wait )

! ! then 

! ! ! System.out.println("[will_wait] Expected value (" + $target_label + "), "+

! ! ! "Classified as (true )");

!end

!rule "#6 will_wait= true  classifying 1.0 num of facts with rank:0.09090909090909091" 

! ! when

! ! ! $restaurant_0 : Restaurant(patrons == "Full", hungry == true,type == "Burger", 

! ! ! $target_label : will_wait )

! ! then 

! ! ! System.out.println("[will_wait] Expected value (" + $target_label + "), "+

! ! ! "Classified as (true )");

!end

!

Figure 5-3: The DRL file for Restaurant
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Figure 5-4: The RETE Network of Restaurant Object, Figure 5-3

!package examples.learner;

!

!import examples.learner.Car

!

!rule "#131 target= unacc  classifying 576.0 num of facts with rank:0.3333333333333333" 

! ! when

! ! ! $car_0 : Car(safety == "low", $target_label : target )

! ! then 

! ! ! System.out.println("[target] Expected value (" + $target_label + "), Classified 

as (unacc )");

!end

!

!rule "#59 target= unacc  classifying 192.0 num of facts with rank:0.1111111111111111" 

! ! when

! ! ! $car_0 : Car(safety == "med", persons == "2", $target_label : target )

! ! then 

! ! ! System.out.println("[target] Expected value (" + $target_label + "), Classified 

as (unacc )");

!end

!

!rule "#140 target= unacc  classifying 192.0 num of facts with rank:0.1111111111111111" 

! ! when

! ! ! $car_0 : Car(safety == "high", persons == "2", $target_label : target )

! ! then 

! ! ! System.out.println("[target] Expected value (" + $target_label + "), Classified 

as (unacc )");

!end

!

!

Figure 5-5: The DRL file for Simple Car Object
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Figure 5-6: The RETE Network of Car Object, Figure 5-5

Triangle

Triangle problem is hardest case for decision trees as we can see from the classification results of
the objects in the Table 5.11. Even if the decision tree contains only 7 rules presented with the
DRL file in the Figure 5-11 the training error, i.e. 20.22 %, is the biggest of all data sets. The
RETE Network belonging to the decision tree is in the Figure 5-12. As we can see from the best
rule classifying 3667 facts, i.e., 36.67 % of the facts since rank of the rule is 0.3667, the instances
do not homogeneously cover the domain and the rule suggests that if all sides are bigger than
2.5658 ± 0.3662 then the object is a valid triangle.

rule "#6 label= true classifying 3667.0 num of facts with rank:0.3667"
when

$triangle_0 : Triangle(x > 2.19965, z > 2.9319499999999996, y > 2.1881,
$target_label : label )

then
System.out.println("[label] Expected value (" + $target_label + "),"+

" Classified as (true )");
end

Poker Hands

The decision tree produces 9383 rules, only 9247 of which classify at least one instance. The
classification results are in the Table 5.11.
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!package examples.learner;

!

!rule "#838 classnursery = not_recom classifying 4320 num of facts with rank:0.33" 

! ! when

! ! ! Nursery(health == "not_recom", classnursery : classnursery)

! ! then 

! ! ! System.out.println("Decision on classnursery = "+classnursery +": (not_recom)");

!end

!rule "#709 classnursery = priority classifying 288 num of facts with rank:0.022" 

! ! when

! ! ! Nursery(health == "priority", has_nurs == "proper", parents == "pretentious", 

! ! ! ! ! !classnursery : classnursery)

! ! then 

! ! ! System.out.println("Decision on classnursery = "+classnursery +": (priority)");

!end

!rule "#710 classnursery = priority classifying 288 num of facts with rank:0.022" 

! ! when

! ! ! Nursery(health == "priority", has_nurs == "proper", parents == "usual", 

! ! ! ! ! !classnursery : classnursery)

! ! then 

! ! ! System.out.println("Decision on classnursery = "+classnursery +": (priority)");

!end

!rule "#749 classnursery = priority classifying 288 num of facts with rank:0.022" 

! ! when

! ! ! Nursery(health == "priority", has_nurs == "improper", parents == "usual", 

! ! ! ! ! !classnursery : classnursery)

! ! then 

! ! ! System.out.println("Decision on classnursery = "+classnursery +": (priority)");

!end

!rule "#778 classnursery = priority classifying 288 num of facts with rank:0.022" 

! ! when

! ! ! Nursery(health == "priority", has_nurs == "less_proper", parents == 

"pretentious", 

! ! ! ! ! !classnursery : classnursery)

! ! then 

! ! ! System.out.println("Decision on classnursery = "+classnursery +": (priority)");

!end

!rule "#779 classnursery = priority classifying 288 num of facts with rank:0.022" 

! ! when

! ! ! Nursery(health == "priority", has_nurs == "less_proper", parents == "usual", 

! ! ! ! ! !classnursery : classnursery)

! ! then 

! ! ! System.out.println("Decision on classnursery = "+classnursery +": (priority)");

!end

!

!

!

!//THE END: Total number of facts correctly classified= 12960 over 12960

!//with 839 number of rules over 839 total number of rules 

!

Figure 5-7: The DRL file for Simple Nursery Object

Table 5.11: The Classification Results of the Databases, Restaurant, Golf, Car, Nursery, Triangle,
and Poker hands

Database incorrect correct sum

. N N[%] N N[%] N N[%]

Restaurant 0 0.000 11 100.00 11 100.00

Golf 0 0.000 14 100.00 14 100.00

Car 0 0.000 1728 100.00 1728 100.00

Nursery 0 0.000 12960 100.00 12960 100.00

Triangle 2022 20.220 7978 79.780 10000 100.00

Poker Hands 2765 11.055 22245 88.937 25010 100.00
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Figure 5-8: The RETE Network of Simple Nursery Object, Figure 5-7

Table 5.12: The RETE Network Statistics of the Databases, Restaurant, Golf, Car, Nursery, Tri-
angle, and Poker hands

Database ObjectType Alpha Join Terminal

Restaurant 1 10 0 7

Golf 1 7 0 5

Car 1 278 0 188

Nursery 1 381 0 252

Triangle 1 12 0 7

Poker Hands 1 17577 0 9247
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!package examples.learner;

!import examples.learner.Golf

!

!rule "#0 decision= Play  classifying 4.0 num of facts with rank:0.2857142857142857" 

! ! when

! ! ! $golf_0 : Golf(outlook == "overcast", $target_label : decision )

! ! then 

! ! ! System.out.println("[decision] Expected value (" + $target_label + "),"+

! ! ! " Classified as (Play )");

!end

!rule "#3 decision= Play  classifying 3.0 num of facts with rank:0.21428571428571427" 

! ! when

! ! ! $golf_0 : Golf(outlook == "rain", windy == false, $target_label : decision )

! ! then 

! ! ! System.out.println("[decision] Expected value (" + $target_label + "),"+

! ! ! " Classified as (Play )");

!end

!rule "#4 decision= Don't Play  classifying 3.0 num of facts with rank:

0.21428571428571427" 

! ! when

! ! ! $golf_0 : Golf(outlook == "sunny", humidity > 77, $target_label : decision )

! ! then 

! ! ! System.out.println("[decision] Expected value (" + $target_label + "),"+

! ! ! " Classified as (Don't Play )");

!end

!rule "#1 decision= Play  classifying 2.0 num of facts with rank:0.14285714285714285" 

! ! when

! ! ! $golf_0 : Golf(outlook == "sunny", humidity <= 77, $target_label : decision )

! ! then 

! ! ! System.out.println("[decision] Expected value (" + $target_label + "),"+

! ! ! " Classified as (Play )");

!end

!rule "#2 decision= Don't Play  classifying 2.0 num of facts with rank:

0.14285714285714285" 

! ! when

! ! ! $golf_0 : Golf(outlook == "rain", windy == true, $target_label : decision )

! ! then 

! ! ! System.out.println("[decision] Expected value (" + $target_label + "),"+

! ! ! " Classified as (Don't Play )");

!end

!

!

Figure 5-9: The DRL file for Golf Object

Figure 5-10: The RETE Network of Golf Object, Figure 5-9
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!package examples.learner;

!

!import examples.learner.Triangle

!

!rule "#6 label= true  classifying 3667.0 num of facts with rank:0.3667" 

! ! when

! ! ! $triangle_0 : Triangle(x > 2.19965, z > 2.9319499999999996, y > 2.1881, $target_label : 

label )

! ! then 

! ! ! System.out.println("[label] Expected value (" + $target_label + "), Classified as (true )");

!end

!rule "#0 label= false  classifying 1570.0 num of facts with rank:0.157" 

! ! when

! ! ! $triangle_0 : Triangle(x <= 2.19965, z > 0.27415, y > 0.7625, $target_label : label )

! ! then 

! ! ! System.out.println("[label] Expected value (" + $target_label + "), Classified as (false )");

!end

!rule "#3 label= false  classifying 1280.0 num of facts with rank:0.128" 

! ! when

! ! ! $triangle_0 : Triangle(x > 2.19965, z <= 2.9319499999999996, y > 1.70265, $target_label : 

label )

! ! then 

! ! ! System.out.println("[label] Expected value (" + $target_label + "), Classified as (false )");

!end

!rule "#2 label= false  classifying 888.0 num of facts with rank:0.0888" 

! ! when

! ! ! $triangle_0 : Triangle(x > 2.19965, z > 2.9319499999999996, y <= 2.1881, $target_label : 

label )

! ! then 

! ! ! System.out.println("[label] Expected value (" + $target_label + "), Classified as (false )");

!end

!rule "#4 label= false  classifying 361.0 num of facts with rank:0.0361" 

! ! when

! ! ! $triangle_0 : Triangle(x > 2.19965, z <= 2.9319499999999996, y <= 1.70265, $target_label : 

label )

! ! then 

! ! ! System.out.println("[label] Expected value (" + $target_label + "), Classified as (false )");

!end

!rule "#1 label= false  classifying 146.0 num of facts with rank:0.0146" 

! ! when

! ! ! $triangle_0 : Triangle(x <= 2.19965, z > 0.27415, y <= 0.7625, $target_label : label )

! ! then 

! ! ! System.out.println("[label] Expected value (" + $target_label + "), Classified as (false )");

!end

!rule "#5 label= false  classifying 66.0 num of facts with rank:0.0066" 

! ! when

! ! ! $triangle_0 : Triangle(x <= 2.19965, z <= 0.27415, $target_label : label )

! ! then 

! ! ! System.out.println("[label] Expected value (" + $target_label + "), Classified as (false )");

!end

!

!//THE END: Total number of facts correctly classified= 7978 over 10000.0

!//with 7 number of rules over 7 total number of rules 

!
Figure 5-11: The DRL file for Triangle Object
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Figure 5-12: The RETE Network of Triangle Object, Figure 5-11

5.4 Comparison of RETE Network between Splitting Criteria Heuris-
tic Functions

Here we compare the two different heuristics functions by the misclassification errors and the RETE
Networks of the decision trees constructed using these heuristics. The heuristics functions are

• Entropy (Information Gain)

• Information Gain Ratio

Moreover, we used two other different Split criteria in order to see the affect of using a heuristic
function. Here are the criterion

• Min Entropy: Selecting the attribute that gives the worst entropy value.

• Random: Selecting the attribute randomly.

We train the first two trees by optimizing the heuristic functions, i.e., Information Gain and Infor-
mation Gain Ratio. On the other hand, we train the third tree by unoptimizing the Information
Gain heuristic function and the last tree by randomly selecting the split attribute. As a result the
learner of the first two decision trees always select the best attributes to split whereas the learner
of the other decision trees select not so good attributes.

Figure 5-14 and Figure 5-16 compare the RETE Network statistics of the decision trees trained
using these split criteria. The main classification objects are Poker (binary-class), Car and Nursery
in the Figure 5-14, Poker (binary-class) and Poker (multi-class) in the Figure 5-16. Figure 5-13
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Figure 5-13: Misclassification Results on Poker (Binary), Car and Nursery database

and Figure 5-15 present the misclassification errors of each decision tree classifying the given main
object. As we can see in the RETE statistic figures 5-14 and 5-16 all objects have been classified
with almost 0 training error except the Poker (multi-class) objects. This is due to high complexity
of the Poker (multi-class) objects. Gain Ratio heuristics results in slightly smaller test errors with
all object types. However, Entropy function constructs smaller decision trees (less number of Alpha
and Terminal nodes) with all object except the complicated case, i.e. the Poker (multi-class). the
Poker (multi-class) object behaves completely opposite to the other objects: a lot more complex
decision tree with less training error and more test error using Entropy heuristic function. Thus, we
observe that two decision trees having very close misclassification error on the training and the test
set can have different construction of the RETE Networks as in the case of Poker (binary-class),
Car and Nursery objects.

Furthermore, the trees constructed without optimization ends up more than twice of the trees
constructed using the optimization heuristic functions. MinEntropy and Random selection criteria
construct a lot bigger RETE Networks even if they have bigger errors. You can see the misclassi-
fication error statistics in the Table 5.4 and the RETE Network statistics in the Table 5.4.

5.5 Multi-Relational Data Results

We compare the RETE Network statistics and classification results of the decision trees belonging
to these the RETE Network between Structured and Unstructured Data. We use Car Evaluation
and Nursery database for this purpose since they have the structure information. The measure
for the tree quality is its number of nodes, i.e., ObjectTypeNodes, AlphaNodes, JoinNodes, and
TerminalNodes. We explain these different type of nodes in the Section 2.0.3. Figure 5-17 compares
RETE Network of simple Car object to its structured version and RETE Tree of simple Nursery
object to its structured version. The RETE Network statistics are in the Table 5.16. The com-
parison of the classification results is in the Table 5.15. As we can observe from the results the
misclassification errors are pretty same using the structured version objects but the RETE Network
statistics differ a lot. The RETE Network statistics show that the structured rules have smaller
number of AlphaNodes while the number of JoinNodes is increasing due the structured nature.

62



RETE Nodes

636
728

1178

946

283 321

554

663

513 478

2327

419

521

809

633

193 225

322

465

338 314

1189

3829
5859

0

500

1000

1500

2000

2500

3000

3500

4000

Entropy GainRatio MinEntropy Random Entropy GainRatio MinEntropy Random Entropy GainRatio MinEntropy Random

Poker Binary-Class Car NurseryHeuristics

N
u

m
b

e
r
 #

Alpha Terminal

Figure 5-14: RETE Nodes on Poker (Binary), Car and Nursery database
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Figure 5-15: Misclassification Results on Poker Database, Binary v.s. Multi Class
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Figure 5-16: RETE Nodes on Poker Database, Binary v.s. Multi Class

Training Testing

incorrect correct total incorrect correct total

Data Heuristic N N[%] N N[%] N N N[%] N N[%] N

. Entropy 18 0.071 25192 99.929 25210 32 0.666 4770 99.334 4802

Poker GainRatio 31 0.123 25179 99.877 25210 30 0.625 4772 99.375 4802

Binary MinEntropy 37 0.147 25173 99.853 25210 27 0.562 4775 99.438 4802

Class Random 22 0.087 25188 99.913 25210 30 0.625 4772 99.375 4802

. Entropy 2717 10.777 22493 89.223 25210 2662 55.435 2140 44.565 4802

Poker GainRatio 7229 28.675 17981 71.325 25210 2493 51.916 2309 48.084 4802

Multiple MinEntropy 5382 21.349 19828 78.651 25210 2600 54.144 2202 45.856 4802

Class Random 4108 16.295 21102 83.705 25210 2651 55.206 2151 44.794 4802

. Entropy 0 0 1451 100 1451 20 7.22 257 92.78 277

Car GainRatio 0 0 1451 100 1451 19 6.859 258 93.141 277

. MinEntropy 0 0 1451 100 1451 106 38.267 171 61.733 277

. Random 0 0 1451 100 1451 69 24.91 208 75.09 277

. Entropy 0 0 10886 100 10886 20 0.964 2054 99.036 2074

Nursery GainRatio 0 0 10886 100 10886 19 0.916 2055 99.084 2074

. MinEntropy 0 0 10886 100 10886 1178 56.798 896 43.202 2074

. Random 0 0 10886 100 10886 515 24.831 1559 75.169 2074

Table 5.13: The Comparison of Classification Results on Training and Test Set between Splitting
Criteria Heuristics
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Data Heuristic ObjectType Alpha Join Terminal

Entropy 1 636 0 419

Poker GainRatio 1 728 0 521

Binary MinEntropy 1 1178 0 809

Class Random 1 946 0 633

. Entropy 1 17856 0 9482

Poker GainRatio 1 9462 0 6242

Multiple MinEntropy 1 17536 0 10706

Class Random 1 19286 0 11534

. Entropy 1 283 0 193

Car GainRatio 1 321 0 225

. MinEntropy 1 554 0 322

. Random 1 663 0 465

Entropy 1 513 0 338

Nursery GainRatio 1 478 0 314

MinEntropy 1 2327 0 1189

Random 1 5859 0 3829

Table 5.14: The Comparison of the RETE Networks between Splitting Criteria Heuristics, Table 5.4

Figure 5-17: The Comparison of Rete Network Statistics between Structured and Simple Object
Types, Car and Nursery
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!package examples.learner.structured_car;

!

!import examples.learner.structured_car.Car

!import examples.learner.structured_car.Tech

!import examples.learner.structured_car.Comfort

!import examples.learner.structured_car.Price

!

!rule "#7 target= unacc  classifying 576.0 num of facts with rank:0.3333333333333333" 

! ! when

! ! ! $tech_char_1 : Tech(safety == "low" )

! ! ! $car_0 : Car(tech_char == $tech_char_1, $target_label : target )

! ! then 

! ! ! System.out.println("[target] Expected value (" + $target_label + "),"+" 

Classified as (unacc )");

!end

!

!rule "#24 target= unacc  classifying 192.0 num of facts with rank:0.1111111111111111" 

! ! when

! ! ! $comfort_2 : Comfort(persons == "2" )

! ! ! $tech_char_1 : Tech(safety == "high", comfort == $comfort_2 )

! ! ! $car_0 : Car(tech_char == $tech_char_1, $target_label : target )

! ! then 

! ! ! System.out.println("[target] Expected value (" + $target_label + "),"+

! ! ! " Classified as (unacc )");

!end

!

!rule "#45 target= unacc  classifying 192.0 num of facts with rank:0.1111111111111111" 

! ! when

! ! ! $comfort_2 : Comfort(persons == "2" )

! ! ! $tech_char_1 : Tech(safety == "med", comfort == $comfort_2 )

! ! ! $car_0 : Car(tech_char == $tech_char_1, $target_label : target )

! ! then 

! ! ! System.out.println("[target] Expected value (" + $target_label + "),"+" 

Classified as (unacc )");

!end

!

!

Figure 5-18: The DRL file for Structured Car Object

Car

The decision tree produces the 197 structured rules; however, the best three rules whose classifi-
cation rank is significantly high (is bigger than 0.05) given in the DRL file in the Figure 5-18.The
RETE Network constructed from these selected rules are given in the Figure 5-19.

Nursery

As in the case of its simple object version the decision tree produces the 252 rules from structured
Nursery object; however, the best 6 rules whose classification rank is significantly high (is bigger
than 0.022) given in the DRL file in the Figure 5-20. The RETE Network constructed from these
selected rules are given in the Figure 5-21

5.6 Decision Tree Post-Pruning Statistics

We present the results for the Decision Tree Pruner using Poker (binary-class) and the Nursery
data. We do the post-pruning experiments using TestSample estimation.

First we give the statistics of each pruned tree classifying Poker (binary-class) data in the Figure 5-
22. The first generated tree over-fits the data since the training error is zero and the test error
is the maximum. When we prune the tree the training error is increasing while the test error is
decreasing until it reaches the best point where the test error is minimum. The over-fitting is
decreasing until the best point. After the best point the tree starts to under-fit the data since the
tree is not complex enough, i.e., it is over-pruned.
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Figure 5-19: The RETE Network of the Structured Car Object, Figure 5-18

!package examples.learner.structured_nursery;

!

!rule "#105 classnursery= not_recom  classifying 4320.0 num of facts with rank:0.33" 

! ! when

! ! ! $soc_health_1 : SocHealth(health == "not_recom" )

! ! ! $nursery_0 : Nursery(soc_health == $soc_health_1, $target_label : classnursery )

! ! then 

! ! ! System.out.println("[classnursery] Expected value (" + $target_label + "),"

! ! ! ! ! ! ! !+" Classified as (not_recom )");

!end

!rule "#4 classnursery= priority  classifying 288.0 num of facts with rank:0.022" 

! ! when

! ! ! $employ_2 : Employ(has_nurs == "proper", parents == "pretentious" )

! ! ! $soc_health_1 : SocHealth(health == "priority" )

! ! ! $nursery_0 : Nursery(soc_health == $soc_health_1, employ == $employ_2, 

! ! ! ! ! ! ! ! !$target_label : classnursery )

! ! then 

! ! ! System.out.println("[classnursery] Expected value (" + $target_label + "),"

! ! ! ! ! ! ! !+" Classified as (priority )");

!end

!rule "#38 classnursery= priority  classifying 288.0 num of facts with rank:0.022" 

! ! when

! ! ! $employ_2 : Employ(has_nurs == "proper", parents == "usual" )

! ! ! $soc_health_1 : SocHealth(health == "priority" )

! ! ! $nursery_0 : Nursery(soc_health == $soc_health_1, employ == $employ_2, 

! ! ! ! ! ! ! ! !$target_label : classnursery )

! ! then 

! ! ! System.out.println("[classnursery] Expected value (" + $target_label + "),"

! ! ! ! ! ! ! !+"Classified as (priority )");

!end

!rule "#121 classnursery= priority  classifying 288.0 num of facts with rank:0.022" 

! ! when

! ! ! $employ_2 : Employ(has_nurs == "less_proper", parents == "pretentious" )

! ! ! $soc_health_1 : SocHealth(health == "priority" )

! ! ! $nursery_0 : Nursery(soc_health == $soc_health_1, employ == $employ_2, 

! ! ! ! ! ! ! ! !$target_label : classnursery )

! ! then 

! ! ! System.out.println("[classnursery] Expected value (" + $target_label + "),"

! ! ! ! ! ! ! ! !+"Classified as (priority )");

!end

!rule "#130 classnursery= priority  classifying 288.0 num of facts with rank:0.022" 

! ! when

! ! ! $employ_2 : Employ(has_nurs == "improper", parents == "usual" )

! ! ! $soc_health_1 : SocHealth(health == "priority" )

! ! ! $nursery_0 : Nursery(soc_health == $soc_health_1, employ == $employ_2, 

! ! ! ! ! ! ! ! !$target_label : classnursery )

! ! then 

! ! ! System.out.println("[classnursery] Expected value (" + $target_label + "),"

! ! ! +"Classified as (priority )");

!end

!rule "#210 classnursery= priority  classifying 288.0 num of facts with rank:0.022" 

! ! when

! ! ! $employ_2 : Employ(has_nurs == "less_proper", parents == "usual" )

! ! ! $soc_health_1 : SocHealth(health == "priority" )

! ! ! $nursery_0 : Nursery(soc_health == $soc_health_1, employ == $employ_2, 

! ! ! ! ! ! ! ! !$target_label : classnursery )

! ! then 

! ! ! System.out.println("[classnursery] Expected value (" + $target_label + "),"

! ! ! +"Classified as (priority )");

!end

!

Figure 5-20: The DRL file for Structured Car Object
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Figure 5-21: The RETE Network of the Structured Nursery Object, Figure 5-20

Table 5.15: The Comparison of Classification Results between Structured and Unstructured Data

Database incorrect correct sum

. N N[%] N N[%] N N[%]

Car 0 0.000 1728 100.00 1728 100.00

Structured Car 0 0.000 1728 100.00 1728 100.00

Nursery 0 0.000 12960 100.00 12960 100.00

Structured Nursery 0 0.000 10368 100.00 10368 100.00

Table 5.16: The Comparison of RETE Network Statistics between Structured and Unstructured
Data

Database ObjectType Alpha Join Terminal

Car 1 278 0 188

Structured Car 4 49 564 197

Nursery 1 381 0 252

Structured Nursery 5 48 703 252
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Figure 5-22: Minimal Cost-Complexity Pruning Statistics, Poker Database, Binary Classification
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As we can observe from the decrease in the RETE size graph in the Figure 5-22 the pruning
algorithm initially tends to prune off large branches with many terminal nodes. As the trees
get smaller it tends to cut off fewer at a time. In other words, the iterations create sub trees
with a decreasing complexity (a decreasing number of terminal nodes) and an increasing cost (re-
substitution relative cost).

However, we give the statistics of each pruned tree classifying Nursery data in the Figure 5-23.
The number of leaves and the complexity parameter changes as expected. The number of leaves
decreases and the complexity parameter increases as a result of pruning. However, the test error
which starts from almost zero increases every step. Thus, pruning does not always guarantee
decrease in the test error as you can see in the Figure 5-23.

5.7 Comparison of Decision Tree Builders

Here we compare the classification results on training and test set between different builders, i.e.,
Single, Boosting, and, Bagging. The total number of data is 30012, and we use 84 % to train and
the rest to test. We classify the Poker Hands objects. We use 10 trees for Boosting and Bagging.
Since the AdaBoost algorithm works only with binary target attributes Poker Hand instances are
labeled using an artificial target function. The target is to find if the poker hand is a good hand
such that it is at least a Flush, i.e., five cards with the same suit. There is the getLabel() that
returns the label of each poker instance.

public boolean getLabel() {
return poker_hand>=5;

}

We did the experiments first without any type of pruning, neither pre-pruning nor post-pruning.
Then we repeat the experiments with pre-pruning. We use two stopping criterion for pre-pruning.
The first criteria is to prune if the number of matching instances is less than half of the estimated
node size (Section 3.3.2). The other criteria is to prune if the depth of the branch is more than 70
% of the number of attributes. At last we do the experiments with post-pruning using TestSample
estimation. We present the comparison of classification results on training and test set between
builders in the Figure 5-25 and the numbers in the Table 5.17. The first group of data gives the
trees without any pruning applied. The second group is the trees when there are pre-pruned. The
data marked with a star (*) is the error of the classifier generated and the last on is the tree selected
from the builder when it builds multiple trees.

We give the comparison of RETE Network statistics in the Figure 5-24 and the number in the
Table 5.18. The statistics of how many times the decision trees are pruned using Estimated Node
Size, Impurity Decrease and Maximum Depth is in the Table 5.19. For the bagging and the boosting
the numbers are the sum of the multiple trees.

As we can see in the Figure 5-25 training errors are always smaller than the test error. This shows
that the trees are likely to be over-fitting.

The Pre-Pruning does not give so good results as expected. The training and test error rates are
high and the final Rete Networks are not that small compared to the builders without pruning.
The Post-Pruning has more balanced error rates, i.e. their training and testing errors are closer
to each other. Besides the classification errors, we can see the post-pruned trees have significantly
less number of nodes than the other ones in the Figure 5-24.

The Multiple-Tree Builders, i.e., AdaBoost and Bagging algorithm, result in smaller misclassifica-
tion errors even though the trees selected as a result of the Bagging or the Boosting in order to feed
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Figure 5-23: Minimal Cost-Complexity Pruning Statistics, Nursery Database, Multiple Classifica-
tion

71



RETE Nodes

0

100

200

300

400

500

600

700

Single Bagging AdaBoost Single Bagging AdaBoost Single Bagging AdaBoost

No Pruning Pre-Pruning Post-Pruning

Builders

N
u

m
b

e
r
 #

Alpha Terminal

Figure 5-24: The Comparison of RETE Network Statistics between Builders using Poker Hands
Database

to the RETE Network do not have classification errors as small as the classifier itself. Thus, the
merging causes an increase in the classification error compared to the classifier. AdaBoost statistics
are better than the any other builder since the test errors are lower than the Single Tree Builder.
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Figure 5-25: The Comparison of Misclassification Errors between Builders, using Pruned and Un-
pruned Trees

Table 5.17: The Comparison of Classification Results on Training and Test Set between Builders
using Poker Hands Database

Training Testing

Pruning Builder incorrect correct total incorrect correct total

Type Type N N[%] N N[%] N N N[%] N N[%] N

. Single 2 0.008 25208 99.992 25210 23 0.479 4779 99.521 4802

. Bagging* 23 0.091 25187 99.909 25210 9 0.187 4793 99.813 4802

No Bagging 46 0.182 25164 99.818 25210 17 0.354 4785 99.646 4802

Pruning AdaBoost* 0 0 25210 100 25210 11 0.229 4791 99.771 4802

. AdaBoost 33 0.131 25177 99.869 25210 20 0.416 4782 99.584 4802

. Single 14 0.056 25196 99.944 25210 25 0.521 4777 99.479 4802

. Bagging* 104 0.413 25106 99.587 25210 27 0.562 4775 99.438 4802

Pre- Bagging 76 0.301 25134 99.699 25210 17 0.354 4785 99.646 4802

Pruned AdaBoost* 28 0.111 25182 99.889 25210 12 0.25 4790 99.75 4802

. AdaBoost 59 0.234 25151 99.766 25210 13 0.271 4789 99.729 4802

. Single 56 0.233 23953 99.767 24009 17 0.283 5986 99.717 6003

Post- Bagging 41 0.171 23968 99.829 24009 14 0.233 5989 99.767 6003

Pruned AdaBoost 56 0.233 23953 99.767 24009 17 0.283 5986 99.717 6003
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Table 5.18: The Comparison of RETE Network Statistics between Builders using Poker Hands
Database

Pruning Builder ObjectType Alpha Join Terminal

. Single 1 563 0 352

No Bagging 1 347 0 230

Pruning AdaBoost 1 734 0 529

. Single 1 521 0 334

Pre- Bagging 1 296 0 205

Pruning AdaBoost 1 224 0 159

. Single 1 100 0 72

Post- Bagging 1 68 0 52

Pruning AdaBoost 1 153 0 109

Table 5.19: The Pre-Pruner Statistics using Poker Hands Database

Builder EstimatedNodeSize ImpurityDecrease MaximumDepth

Single 0 2 12

Bagging 19.5 0.2 3.5

AdaBoost 10.9 20.8 6.3
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Chapter 6

Related Work

Pemer et al. describes and compares many discretization methods which explores different types
of impurity measures [16]. Quinlan talks about the weakness of C4.5 in domains with continuous
attributes and as a solution he presents the Minimum descriptive length – MDL – metrics [20].
It is notable that the WEKA project [23] uses the Fayyad and Irani’s MDL method to discretize
the numerical domains. Fayyad and Irani used information gain approach while evaluating the
effectiveness of the discretization [7].

Knobbe gives the outlines of Multi-Relational Data Mining, a paradigm that is concerned with
structured data in relational form [12]. Knobbe explains structured features by two classes: ex-
istential features, which express the presence of specific substructures, and aggregate functions,
which express global properties of groups of parts. His algorithm is based on selection graphs can
be used to select individuals purely on the basis of existential features. The main advantage of these
graphs are one-to-one convertibility to the query languages so that it can be used on databases.
Leiva implemented a Multi-Relational Decision Tree Learning (MRDTL) Algorithm for induction
of decision trees from relational databases consisting of multiple tables and associations [13]. Leiva
uses the algorithms and the structures designed by Knobbe.

There are different approaches for boosting. Freund introduces the idea of boosting C4.5 algorithm
[10]. Hao generalizes the AdaBoost algorithm to Multi-class AdaBoost, AdaBoostK [11]. Zhu et
al. proposes a new algorithm SAMME that naturally extends the original AdaBoost algorithm to
the multi-class case without reducing it to multiple two-class problems [25]. Quinlan examines the
application of bagging and boosting to C4.5 algorithm in his paper [19].
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Chapter 7

Conclusions and Future Work

We showed that there can be many trees with same classification results but different sizes. The
decision tree constructed using the learning algorithm tries to minimize the size of the RETE Net-
work which is the most important criteria for Drools.

As we observed from the results the Multiple-Decision Tree Builders, i.e., Bagging and Boosting,
improves the misclassification results. However, whenever we merge the multiple trees into one in
order to provide the rules to the Drools the classifier looses accuracy. The power of the Multiple-
Decision Tree Builders come from their voting schema. All trees not just one vote to decide on the
classification results.

Using structured data we create structured rules for the RETE network. The number of AlphaN-
odes decreases in the structured rules whereas the number of JoinNodes increases due the structured
nature.

We next consider several possibilities for future work:

1. Concluding Instances as Unclassified : The current version of the learning algorithm always
classifies the instances to a category of the target attribute even if there is no attribute left in
order to continue. We select the category which gets the maximum number of votes from the
current set of instances as the target category. However, this causes many misclassification
error since even 30 % of the instances vote in one category and all the other categories could
get a number of votes more than 30 % of the total. One can say that the decision tree should
conclude these instances on that branch of the tree as unclassified instead of classifying and
causing a lot of misclassification error. Moreover, one can ask how the decision tree should
classify the instances if there are more that one target categories which have the number of
votes. An other situation that is similar to the ‘no attribute left’ situation is when the tree
stops branching because of the stopping criteria condition is met. The current version of the
tree learning algorithm selects the category which gets the majority of the votes. Whenever
all elements are not classified to the same value and the branching can not continue the
learning algorithm can decide for the node and the instances matching to it as unclassified if
the majority is not big enough, i.e., 80 %.

The Decision Tree Factory can ask for feedback for further classification from the user. For this
purpose we can build a feedback mechanism into the tree factory that would tell if something
did not get classified. Thus, this will decrease the misclassification error and increase the
quality of the rules.
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2. Unknown Attribute Values: The Object can be created with some of the attributes values
missing. The Decision Tree Builder should be capable of tackling these kinds of situation.
Even if there are instances with missing values the learner can continue using an estimation
to select the attribute to branch.

3. Unknown Target : It is possible that the target to classify the instances is unknown. In this
case we need to use unsupervised learning since the instances are not labeled by a supervisor.
There are at least two situation possible. Either the user does not know which of the attributes
is the target of the classification or she does not know how to categorize the instances and
how many classes of the facts exist so the target attribute is not even one of the objects’
attributes. On the other hand, the target does not have to be one of the attributes given.
We can use the C4.5 algorithm to select the best of the given attributes as the target attribute.
However, that is not very efficient because the idea is constructing a tree for each possible
target attribute that would result in N trees if there are N attributes and then selecting
the best tree with the maximum information. Moreover, we can use unsupervised learning
algorithms to cluster the objects and to create a new target attribute. There are many
clustering algorithms that we can use, i.e., k-means clustering

4. Re-training Decision Trees The Re-Training algorithm can be improved using an online ver-
sion which ignore some part of the past data or keeps a statistics on it instead of saving the
whole data.

5. Grouping Discrete Attributes. The literal attributes (Section 2) can have many possible values
should be divided into subgroups in order to increase the performance.

6. Multi-Relational Decision Trees. Current version of the algorithm can not tackle an attribute
which is collection of the other object or if the attribute is self-referencing, i.e., object is the
attribute of herself. We should improve the Multi-Relational characteristics of the algorithm
in the future.
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