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Abstract

Over the last centuries, hearing aids have evolved from crude and bulky horn-
shaped instruments to lightweight and almost invisible digital signal processing
devices. While most of the research has focused on the design of monaural ap-
paratus, the use of a wireless link has been recently advocated to enable data
transfer between hearing aids such as to obtain a binaural system. The avail-
ability of a wireless link offers brand new perspectives but also poses great tech-
nical challenges. It requires the design of novel signal processing schemes that
address the restricted communication bitrates, processing delays and power
consumption limitations imposed by wireless hearing aids.

The goal of this dissertation is to address these issues at both a theoretical
and a practical level. We start by taking a distributed source coding view on
the problem of binaural noise reduction. The proposed analysis allows deriv-
ing mean square optimal coding strategies, and to quantify the noise reduction
enabled by a wireless link as a function of the communication bitrate. The
problem of rate allocation between the hearing aids is also studied. In a more
general setting, these findings are used to design algorithms for distributed
estimation in sensor networks, under both a linear approximation and a com-
pression constraint. The potential of our approach in this context is illustrated
by means of a simple case study based on a first-order autoregressive model.
Two important practical aspects of binaural noise reduction are then inves-
tigated. The first issue pertains to multichannel filtering in the transformed
domain using a weighted overlap-add filter bank. We propose three subband
filtering strategies together with recursive algorithms for the computation of
the filter coefficients. Some numerical methods to reduce their computational
complexity are also discussed. The second problem concerns the estimation of
binaural characteristics using the wireless link. These characteristics are mod-
eled in two different ways. The first approach is based on binaural cues. A
source coding method to estimate these cues in a distributed fashion is pro-
posed. It takes advantage of the particularities of the recording setup to reduce
the transmission bitrate. The second approach involves a filter that is sparse
in the time domain. This sparsity allows for the design of a novel distributed
scheme based on annihilating filters. Finally, application of these methods to
the distributed coding of spatial audio is presented.

Keywords: binaural hearing aids, distributed source coding, wireless com-
munication link.



vi

Abstract




Résumé

Durant les dernieres décennies, les aides auditives ont évolué de manieére sig-
nificative, passant d’instruments en forme de cor, a la fois rudimentaires et
volumineux, a des appareils de traitement numérique du signal légers et quasi
invisibles. Alors que la majeure partie de la recherche s’est focalisée sur la
conception de dispositifs monauraux, I'utilisation d’un lien de communication
sans fil a récemment été préconisée afin de permettre la transmission de données
entre aides auditives et ainsi d’obtenir un systéme binaural. L’acces a la tech-
nologie sans fil offre de nouvelles perspectives mais pose également d’énormes
défis techniques. Elle nécessite le développement de nouvelles méthodes de
traitement du signal qui prennent en compte les limites imposées par les aides
auditives sans fil en termes de débits de communication, de délais de traitement
et de consommation énergétique.

L’objectif de cette theése est d’aborder ces problémes sous un angle théorique
et pratique. Nous considérons, en premier lieu, le probleme de la réduction de
bruit binaurale en adoptant un point de vue de codage source distribué. Notre
analyse permet d’obtenir des stratégies de codage optimales au sens des moin-
dres carrés, et de quantifier la réduction de bruit obtenue grace a un lien sans fil
en fonction du débit de communication. Le probleme de ’allocation du débit
entre les deux aides auditives est également étudié. Plus généralement, ces
résultats nous permettent de concevoir des algorithmes d’estimation distribués
pour des réseaux de capteurs, en considérant une contrainte de communica-
tion basée soit sur approximation linéaire, soit sur la compression. Dans ce
contexte, le potentiel de notre approche est mis en évidence par une étude
de cas simple basée sur un modele autorégressif du premier ordre. Deux as-
pects importants de la réduction de bruit binaurale sont ensuite considérés. Le
premier probléme est lié au filtrage multicanal dans le domaine transformé en
utilisant un banc de filtres de type addition-recouvrement pondéré. Nous pro-
posons trois stratégies de filtrage sous-bandes ainsi que des algorithmes récursifs
pour le calcul des coefficients de filtre. Quelques méthodes numériques perme-
ttant d’en réduire leur complexité sont également discutées. Le deuxieme sujet
d’investigation concerne 'estimation de caractéristiques binaurales a ’aide du
lien de communication sans fil. Ces caractéristiques sont modélisées de deux
manieres différentes. La premiere est basée sur l'utilisation de reperes bin-
auraux. Une technique de codage source pour estimer ces reperes de maniére
distribuée est proposée. Elle exploite les particularités du systeme d’acquisition
de maniere a réduire le débit de transmission. La seconde approche comprend
un filtre parcimonieux dans le domaine temporel. Cette parcimonie permet
la conception d’un nouvel algorithme distribué basé sur 1'utilisation de filtres

vii



viii Résumé

annihilant. Finalement, 'application de ces méthodes au codage distribué de
contenu audio spatial est présentée.

Mots clés: aides auditives binaurales, codage source distribué, lien de com-
munication sans fil.
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Chapter 1

Introduction

1.1 A Brief History of Hearing Aids

Hearing aids have a long history, starting from large, horn-shaped devices to
lightweight and almost invisible digital signal processing instruments. The
following is a brief account of this rich history. For a more in-depth coverage of
the subject, the interested reader is referred to |10, [L1, [120] and to the excellent
online resources [2€, [119].

More than three centuries ago, ear trumpets, such as elongated tubes with
funnel-shaped end (see Figure Iﬁ;i), were used to direct the sound into the ear
to provide basic passive sound amplification. These instruments were useful to
sailors to communicate over long distances. Eventually, they would help people
afflicted with hearing loss. Such devices were commented on in the work of
Francis Bacon published in 1627 [i], but versions of the ear trumpet have most
likely been used by humans for thousands of years. These instruments were
heavy, cumbersome and might have been more useful for self-defense than to
really improve hearing quality. While these ear trumpets would gradually taper
into thin tubes and possibly be made less conspicuous by means of ingenious
camouflages (see Figure ﬁ;, their functionality would essentially remain the
same.

It is only starting from the late 19th century that the development of mod-
ern hearing aid technology has been made possible thanks to two major techni-
cal breakthroughs: the electrical amplification system used in Alexander Gra-
ham Bell’s telephone invented in 1876 [9], and the invention of the “carbon-
transmitter” by Thomas Alva Edison in 1878 [41], which allows translating
sound into electric signals. The carbon-transmitter was the basis for the first
commercial hearing aid produced by the Dictograph Company in 1898. A year
later, the Akouphone Company manufactured what may be the first electrical
hearing device. It used a carbon microphone and a battery and was as large as
a desk radio.

At the turn of the 20th century, smaller body-worn electrical hearing aids
were produced. These early models basically worked as ear trumpets but pro-
vided a wider frequency range. In the meanwhile, a few hearing aids company
were established in Europe and in the United States. Oticon of Danemark, in
1904, and the Global Ear-Phone Company of Boston, in 1907, are two exam-
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Figure 1.1: Hearing aids through the 19th and 20th centuries. (a) Acoustic era:
hard rubber ear trumpet. (b) Carbon transmitter era: the Acousticon Model A.
(c) Vacuum tube era: the Vactuphone. (d) Transistor era: a behind-the-ear hearing
aid.

Source: http://www.hearingaidmuseum.com. Copyright: the Hugh Hetherington On-line
Hearing Aid Museum. Used by permission.

ples. This latter introduced the first volume control, for an electrical hearing
aid, in 1912. In 1920, Earl Charles Hansen invented the “Vactuphone” @]
(see Figure m), the first hearing aid that incorporated the use of vacuum
tubes. It was manufactured by the Western Electric Company and distributed
by the Global Ear-Phone Company in 1921. While amplification efficiency was
greatly improved, this hearing instrument was far too unwieldy to be carried
around easily. In this context, the miniaturization of batteries and vacuum
tubes played an important role in making these devices portable. In the mid
1930’s, the first wearable vacuum tube hearing aids were produced in England.
Similar models were then released in the United States, first using vacuum
tubes imported from Europe, then using U.S.-made vacuum tubes, for which
the Raytheon Company was the predominant supplier.

In 1947, the advent of the transistor, invented at the Bell Telephone Labora-
tories by William Shockley, John Bardeen and Walter Brattain ﬁ@] , marked
a clear departure from technologies based on vacuum tubes. In the early 1950’s,
transistors started to replace vacuum tubes in hearing aids. Their smaller size
and lower energy requirement allowed for a dramatic miniaturization in hearing
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(c) (d)

Figure 1.2: Deafness in disguise: concealed devices of the 19th century. (a) The
bouquet holder. (b) The floral Aurolese phone. (c) The ear trumpet disguised as
a water canteen. (d) The mourning ear trumpet.

Source: http://beckerexhibits.wustl.edu/did. Copyright: Bernard Becker Medical
Library. Used by permission.

devices and permitted novel styles of hearing aids to be developed, such as the
behind-the-ear model still used today (see Figure M) In 1952, Sonotone re-
leased the first hybrid hearing aids that included both transistors and vacuum
tubes. One year later, the first all-transistor hearing aid was introduced by
Microtone. Within months, vacuum tube hearing aids became obsolete. Tran-
sistors were further miniaturized which ultimately yielded the first integrated
circuit, developed in 1958 by Jack St. Clair Kilby of Texas Instruments é] By
the end of the 1960’s, hearing aids included integrated circuits and additional
features, such as directional microphones. Forerunners of today’s radio-based
assistive listening device (e.g., remote microphone) started to appear. Smaller
microphones and receivers along with the invention of the zinc-air battery, in
1977, propelled the development of in-the-ear hearing aids.

During the 1980’s, the hearing devices started to go digital. The first ex-
perimental form of digital hearing aid was made by Audiotone in 1983. The
same year, in-the-canal hearing aids were introduced. In 1987, digitally pro-
grammable devices hit the market. Some of them also featured a user-operated
remote control to program and adjust the instrument. In the early 1990’s,
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the use of microprocessors in hearing aids allowed to incorporate digital signal
processing algorithms, such as feedback suppression. In 1993, completely-in-
the-canal hearing deviced were introduced and the first fully digital hearing aid
was commercialized by Widex in 1996. One year later, Siemens released the
first dual microphone hearing instrument.

The last decade has witnessed the replacement of the analog technology
by its digital counterpart in almost all hearing aid fittings. Innovations in the
field of digital signal processing have permitted to significantly improve speech
intelligibility in adverse listening scenarios by means of dynamic compression
techniques, scene classification methods, feedback cancelation algorithms and
noise reduction schemes. The use of wireless technologies (e.g., FM, Bluetooth)
has allowed to connect hearing aids with remote assistive listening devices (e.g.,
lecturer’s microphone) or customary electronic devices (e.g., cell phones, tele-
visions) such as to provide audio signals subject to less interferences.

1.2 Challenges

Despite the significant progress achieved during the 19th and 20th centuries,
correcting hearing loss using hearing aids remains a challenging task. While the
present work is concerned about technological aspects, it is important to put
the engineering perspective into a broader context and to look at the associated
challenges.

From a sociological standpoint, first, major efforts have to be made to pro-
mote the availability and use of hearing aids by hearing impaired people. Ac-
cording to the United NationSs World Health Organization’s estimation for
2005 |150], approximatively 278 million people suffer from a moderate to pro-
found hearing loss in both ears. Among them, only 10% benefit from a hearing
device. This gap is even more apparent in developing countries, where fewer
than 1 in 40 people has a needed hearing aid. This is of significant concern as
hearing impairment is a serious disability that can impose a heavy social and
economic burden on individuals and families. Children with hearing impair-
ment often experience delayed development of speech, language and cognitive
skills, and adults have difficulties to obtain, perform and keep employment. As
a result, both children and adults may suffer from social stigmatization and
isolation. While hearing impairment may be significantly reduced by means
of appropriate preventive measures [38], availability of affordable, suitable and
properly fitted hearing aids must also be encouraged. Beyond the financial as-
pect, the stigma associated with the wearing of hearing instruments may pre-
clude the necessary commitment of customers to use their hearing aids. Making
hearing instruments fashionable will thus play a pivotal role in improving the
quality of lives for millions of people who have access to the technology, but
are ashamed to use it.

From a fitting perspective, then, the methodology must be improved. In
fact, hearing aids are not as easily adaptable by an audiologist as glasses are
by an optician. They need to be programmed according to the user’s hearing
characteristics, which are often difficult to measure with precision despite many
advanced fitting protocols [24, 21, 9€]. While fitting software and tools have
been developed in order to increase the patient satisfaction, the rates of hearing
instrument returns has not lowered significantly over the past few years [7€].



1.3. Motivations 5

Hearing devices are also more complicated to use, especially for the elderly. It is
interesting, but somewhat disappointing, to observe that, while engineers strive
to solve difficult problems in the most innovative way, their efforts are made
useless by a consumer that simply forgets to change the batteries of his or her
hearing device. Therefore, successful hearing aid fitting will only be guaranteed
through the establishment of a more collaborative process between the involved
parties, namely, the manufacturer, the audiologist and the consumer.

From a technical point of view, finally, the development of improved hear-
ing aids requires innovation in a number of engineering fields. Progress has
to be made in electronics to address low power requirements as well as the
limited space available for chip area. Typically, current hearing aids consume
less than 1mA, operate at 1V and use less than 10 mm? of silicon area. Com-
ponents that are more energy efficient must thus be devised. As power con-
sumption is probably the most limiting factor, longer lasting batteries have to
be developed, while keeping their size to a bare minimum [103]. In particular,
rechargeable batteries should be drastically improved in order to be viable for
hearing aid applications. The choice of the materials composing the hearing
device is also crucial. For example, ear molds in behind-the-ear hearing aids
should be flexible enough while ensuring robustness, excellent acoustic sealing
properties and bio-compatibility with patients that suffer from allergy or sensi-
tivity problems [105]. The hearing aid body should also be made of a material
that reduces the problem of acoustic feedback, which occurs when the ampli-
fied loudspeaker signal recycles into the microphones and provokes a strident
whistling that is particularly unpleasant. Digital signal processing, on which
the interest of this thesis is focused, is another important field of investiga-
tion [62]. For example, the problem of acoustic feedback mentioned previously
cannot be solved completely using appropriate ear molds. This is even more
true with open ear fittings, namely fittings that do not completely block the
ear canal. Acoustic feedback thus also needs to be addressed from an algorith-
mic standpoint [47, R(, 194, [129]. Making feedback cancelation algorithms work
under rapidly changing conditions is a challenging task which requires further
research efforts. More efficient algorithms must also be designed to improve
speech intelligibility in adverse listening scenarios. This can be achieved, for
example, using advanced multi-band compression strategies that allow adapt-
ing the output signal to the user’s dynamic range of hearing |81, [128]. Speech
understanding can also be improved by means of noise reduction schemes, pos-
sibly using multiple microphone inputs [34, 136, 42, (75, 89, 199, [138]. These
methods often require knowledge about the spatio-temporal characteristics of
the acoustic environment (e.g., localization of sources, detection of speech and
noise periods) and thus entail the use of reliable auditory scene analysis al-
gorithms [21/, 23]. All the aforementioned problems are particularly challeng-
ing considering the stringent processing delay requirements imposed by digital
hearing aids, typically around 15 ms with closed ear fittings [132] and 5 ms with
open ear fittings [133].

1.3 Motivations

During the past few decades, most of the research has focused on monaural
hearing aids. One historical reason is that, before the availability of behind-
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the-ear hearing aids, it was simply not convenient to wear two hearing devices.
As hearing instruments became less bulky, bilateral hearing aids gained in pop-
ularity, despite the fact that there was little objective evidence attesting to the
superiority of bilateral versus monaural amplification. In fact, this question
remains rather controversial [67, 186, [137]. A major issue is that, in a bilateral
fitting, the two hearing aids work independently of each other, each introduc-
ing its own processing delay, using its own compression method and having
independent noise reduction schemes [137]. In other words, there is a lack of
synchronization.

Recently, the use of a wireless link between the two devices has been advo-
cated to allow information sharing in order to form a binaural system [117]. The
availability of a wireless communication link offers brand new perspectives but
also poses great technical challenges. At the simplest level, it allows synchro-
nizing hearing aid controls (e.g., volume) and to transmit useful parameters as
a means to coordinate processing strategies at both hearing aids [44]. At a more
advanced level, increased data rates (of the order of tens of kilobits per second)
permit the exchange of coded audio signals. In terms of noise reduction, this
collaborative mechanism has the potential to offer substantial improvements
over monaural noise reduction schemes. In fact, limited by obvious design
considerations, each hearing aid is generally equipped with only two or three
closely separated microphones (typically 1 cm apart). This restriction will be
even more apparent in the future as miniaturization plays an important role in
the acceptance of such devices by hearing impaired people. To overcome this
limitation, a substantial body of research has focused on the development of
larger microphone arrays [82], possibly mounted on glasses [91]], or in the shape
of a necklace |81, 1146, [147]. However, these designs are cumbersome and, in
light of the stigma associated with the wearing of hearing aids, are unlikely to
be widely accepted. By contrast, a wireless link allows using the microphones
directly available at both hearing aids to form a microphone array with larger
spatial extent. Various binaural noise reduction schemes have been proposed
in the literature |31, 137, 18, [145]. Moreover, strategies that reduce the number
of transmitted signals have been investigated to address the bandwidth lim-
itation of the wireless link [37]. However, the rate-constrained nature of the
communication medium has, to the best of our knowledge, never been taken
into account in previous studies.

The driving motivation behind our work is to address such wireless trans-
mission constraints, at both a theoretical and a practical level. From a the-
oretical standpoint, we wish to study the fundamental trade-off between the
communication bitrate and the associated noise reduction gain. From a prac-
tical perspective, our goal is to design signal processing methods and coding
schemes that take into account the characteristics of the setup and the process-
ing limitations imposed by digital hearing aids.

1.4 Thesis Outline and Contributions

We first give a quick overview of the structure of the dissertation. Chapter 3
reviews some background material and states the problem of noise reduction
with binaural hearing aids. Chapters Hand d investigate the problem from
an information-theoretic standpoint. This theoretical analysis suggests that
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Chapter 7|
Binaural Noise Reduction as a
Source Coding Problem

Chapter ]
Distributed Estimation under
Communications Constraints

Chapter 7|
Gain-rate Optimality

Chapter 5 Chapter
Multichannel Filtering in the Distributed Source Coding of
Weighted Overlap-Add Domain Binaural Innovation
Chapter 7
Conclusions

Figure 1.3: Schematic overview of the thesis.

two main types of problems should be addressed from a practical viewpoint:
multichannel filtering and distributed source coding of binaural content. These
two subjects are investigated in Chapters H and , respectively. Chapter @
concludes the dissertation. A schematic overview of the thesis is depicted in
Figure L3

Let us now describe the content of the thesis in more detail. In Chapter E,
we identify the problem of noise reduction with binaural hearing aids as a dis-
tributed source coding task. More precisely, we show that it corresponds to a
remote source coding problem with side information at the decoder. A large
portion of the exposition is thus devoted to the review of fundamental results in
lossless and lossy source coding, in both a centralized and a distributed setup.
First, we recall the concept of information source. We then state Shannon’s
fundamental theorem of lossless data compressiorﬂ. Lossy source coding is re-
viewed and the concept of rate-distortion function is presented. A particular
emphasis is put on the remote source coding problem, in which the source of
interest is not directly observed at the encoder. Our attention then shifts to
distributed infrastructures, studied in the seminal work of Slepian and Wolf,
and Wyner and Ziv. We provide a review of both theoretical and practical
distributed source coding results in order to put our contribution into perspec-

IThroughout this discussion, the term compression is used as a synonym to source coding.
It should not be mistaken with hearing aid compression techniques, mentioned above, which
merely adjust frequency powers to match the user’s dynamic range of hearing.
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tive. Again, a distinction between direct and remote source coding is made.
We then formally state the problem of noise reduction with binaural hearing
aids. We describe the considered distortion criterions and comment on their
practical relevance. More specifically, we discuss the effect of the chosen er-
ror measures on important perceptual characteristics of binaural hearing. We
also argue about the feasibility of distributed source coding in the context of
binaural hearing aids. In particular, we comment on some strong assumptions
pertaining to the knowledge of signal statistics, as well as processing complexity
and coding delays.

The theoretical results needed to study the problem under consideration
are derived in Chapter B Actually, we investigate a more general setup of
distributed estimation under communication constraints. It involves a set of
terminals (or sensors) observing jointly Gaussian processes correlated with a
remote source of interest. These terminals provide a fusion center with a repre-
sentation of their observation. Based on the received data, the fusion center es-
timates the desired source with minimum mean squared error. We first address
the case of random vector processes. Two types of communication constraints
are considered: linear approximation and compression. In the former case, each
terminal provides the fusion center with a low-dimensional approximation of
its vector observation by means of a linear transform. In the latter scenario,
each sensor generates a bit stream that appears at a prescribed communica-
tion rate. In both cases, the goal is to find mean square optimal processing
strategies. While the associated optimization problems appear to be analyti-
cally intractable, we derive locally optimal solutions at one terminal assuming
all else is fixed. We demonstrate that, similarly to the centralized scenario, the
locally optimal compression architecture can be given a transform coding inter-
pretation using the corresponding locally optimal linear transform. Based on
these constructions, we propose iterative algorithms which are proved to con-
verge to local optimums that are either local minimums or saddle points of the
overall cost functions. The possible suboptimality of the proposed schemes is
exemplified with a simple correlation model. Similar optimality results are then
obtained for discrete-time random processes by letting the size of the input vec-
tors go to infinity. In particular, we derive the locally optimal trade-off between
the distortion and the fraction of retained coefficients (linear approximation),
and that between the distortion and the communication bitrate (compression).
The associated optimal processing architectures are also described. Finally,
we show through a simple case study, how our findings allow for the compu-
tation of analytical distortion formulas, in both the linear approximation and
compression frameworks. We consider a first-order autoregressive correlation
model and derive optimal trade-offs for various limiting scenarios of practical
interest.

The aim of Chapter H is to apply the obtained results to the study of
binaural hearing aids. We first rewrite the optimal rate-distortion trade-off
derived in Chapter H using a weighted mean squared error criterion. This al-
lows for the use of perceptually motivated weighting operators. As the optimal
processing strategy involves statistics which might be difficult to compute in
a practical setting, we also consider a suboptimal scheme where the encoder
neglects the presence of correlated side information at the decoder. These
two coding methods are respectively referred to as side information aware and
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side information unaware. For these strategies, we compute optimal trade-offs
between the bitrate sustainable by the wireless link and the resulting noise re-
duction gain. In order to derive analytical formulas, we consider a simplified,
vet insightful, acoustic scenario. We first address the problem from the per-
spective of one hearing device (monaural setup). We compute analytical gain-
rate functions and comment on the optimal allocation of the bitrate across the
frequency band. We then consider bi-directional communication between the
hearing instruments (binaural setup) and compute similar gain-rate trade-offs.
More importantly, we provide the exact characterization of the rate allocation
between the two hearing aids. Finally, we present simulation results obtained
from real measurements recorded in a reverberant room using a two-microphone
behind-the-ear hearing aid. These results are compared with the simple model
considered previously. In particular, it is shown that the loss associated with
side information unaware coding strategies vanishes in the presence of multiple
interfering point sources.

The processing architectures described in Chapter H involves a mean square
optimal multichannel filter. For complexity reasons, filtering is often performed
in the frequency domain. The goal of Chapter [ is to study the optimality of
multichannel filtering in the transformed domain using a weighted overlap-add
filter bank. This filter bank is particularly appealing from a computational
point of view and is thus often considered in practice. Similarly to Chapter E,
we address the problem from both a monaural and a binaural perspective.
We first describe the monaural filtering architecture and define the associated
frame-based optimality criterion. The corresponding optimization problem is
deemed intractable due to the strong interdependency introduced by the filter
bank between consecutive frames. We thus resort to three suboptimal strate-
gies, respectively referred to as non-weighted, weighted and iterative, for which
conclusive results can be found. We derive associated recursive algorithms for
the computation of the weights. Practical considerations are then discussed,
in particular related to the complexity of the proposed filtering methods. We
then turn our attention to the problem of binaural filtering. The corresponding
processing architecture is explained and binaural optimality is discussed, for
both the side information aware and the side information unaware strategies.
We also comment on important practical considerations associated with the use
of a wireless link in this context. Finally, some simulations results comparing
the proposed filtering schemes are presented.

The exchange of data over a wireless communication link allows the hearing
aids to estimate important binaural characteristics which can be subsequently
used, for example, in scene analysis algorithms. In Chapter E, these charac-
teristics are modeled in two different ways. The first approach involves auditory
cues. Our goal is to estimate these cues in a distributed fashion while keeping
the amount of transmitted data at a bare minimum. To this end, we propose a
distributed source coding scheme that benefits from the correlation induced by
the recording setup to achieve low bitrates, while keeping complexity and de-
lay at an affordable level. Under some assumptions, we prove its optimality by
comparing it to the case where the binaural signals could be processed jointly.
In the second strategy, binaural characteristics are modeled using a sparse fil-
tering operation. We propose a source coding method to estimate this filter in
a distributed manner. The proposed scheme builds upon the recent concept of
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compressive sampling and involves the use of annihilating filters. It has a rea-
sonable complexity and can be made robust to noise and model mismatch. The
details of the method are described and its reconstruction accuracy is assessed
in a simple scenario. Finally, we show how the above techniques can be applied
to the distributed coding of spatial audio. We propose two algorithms and
evaluate their accuracy through information listening experiments. We discuss
the strengths of our approach in this context together with its limitations.

Chapter [ concludes the dissertation and suggests further directions of
research.



Chapter 2

Binaural Noise Reduction as
a Source Coding Problem

2.1 Introduction

This chapter serves two purposes: reviewing the theory of distributed source
coding and identifying the problem of binaural noise reduction as a distributed
source coding task.

Section 2.9 first recalls the concept of information sources introduced by
Shannon in its landmark paper on communication theory [123]. We then pro-
vide an overview of the main results of centralized and distributed source coding
as they pertain to both fundamental performance bounds and practical algo-
rithms. In the centralized case, studied in Section Iﬁ, the source is measured at
a single encoder. By contrast, the distributed case, investigated in Section m,
involves multiple encoders each observing a part of the source. In these two
scenarios, we address both lossless and lossy source coding. In the former, the
goal is to retrieve the original source perfectly while, in the latter, reconstruc-
tion is achieved only to within some accuracy. In the lossy case, we further
make a distinction between direct and remote problems, depending whether
the source can be directly observed at the encoder(s) or only through noisy
measurements. In all the above scenarios, a particular emphasis is put on the
Gaussian case, for which analytical formulas can be derived. In Section m,
we describe the setup of binaural hearing aids. The binaural noise reduction
problem is then formally stated by identifying it as a distributed source coding
task. We then examine the underlying assumptions and discuss their validity
in a practical setting. In particular, we comment on the relevance of the chosen
distortion criterion as well as some assumptions that relate to coding delay and
processing complexity. Section bd provides some concluding remarks.

2.2 Information Sources
A source of information can be modeled as a random process, that is, a se-
quence of random variables taking values in a set S. The source is said to

be continuous-time if the parameter used to index this sequence can take any

11
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possible real value. If the parameter only takes discrete values, we speak about
a discrete-time source. Similarly, we distinguish between a discrete-amplitude
(or simply discrete) source and a continuous-amplitude (or simply continuous)
source depending whether the set S is countable or not. Finally, we speak
about a memoryless source if the random variables are independent and iden-
tically distributed (i.i.d.). Otherwise, the source is said to have memory. Note
that we use the same notation to denote deterministic and random quanti-
ties. Their nature should be clear from the context. Moreover, bandlimited
continuous-time sources can be equivalently represented by discrete-time se-
quences of uniformly spaced samples, by invoking the sampling theorem [102,
Sec. 3.2]. We will thus work exclusively in the discrete-time domain.

In the memoryless case, the source is completely described by the distri-
bution of one of its samples. We denote this random variable by s and its
distribution by ps (u). If the set S is countable, the entropy of the random
variable s is defined as [29, Sec. 2.1]

== ps (u)logy ps (u) -

ueS

The base of the logarithm can be chosen according to the desired unit. The
entropy is usually computed in nats (base e) or in bits (base 2). Throughout
this thesis, we will use bits as a measure of information. The entropy can be
interpreted as a measure of uncertainty of the random variable s. Similarly,
the joint entropy of two random variables s; and s taking values in the finite
sets 81 and Sa, respectively, is defined as [29, Sec. 2.2]

H(s1,8) == Y > Dayss (u1,u2)1085 ps, s, (U1, u2)

u1 €S1 U2 €S2

where ps, s, (11, u2) denotes the joint distribution. The conditional entropy of
the random variable s; given ss is defined as

H(sils) == D> Y Payjss (w1]uz)logy py, s, (ua]us)

u1 €S1 u2€S2

where p;, |5, (u1|uz) denotes the conditional distribution. The conditional en-
tropy is a measure of the uncertainty of s; provided that s, is available. There-
fore, it is natural to compute the reduction in uncertainty of the random vari-
able s; due to so. This quantity is referred to as mutual information and is
defined as |29, Sec. 2.3]

51,50 \ W1, U
1(51;82) = H(Sl)—H(51|82) = Z Z Psi,s2 (Ul,UQ) log, M

u1 €S1 u2E€S2 Psy (U1)p52 (u2)

Properties of the above quantities and variations thereof can be found in [29,
Chap. 2|. For continuous-amplitude memoryless sources, similar definitions
can be stated using the concept of differential entropy [29, Chap. 9].
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s[n] Enc Dec 8[n]

Figure 2.1: The centralized source coding problem.

2.3 Centralized Source Coding

2.3.1 Lossless Case

As depicted in Figure E], the lossless source coding problem for the source s[n]
consists of an encoder, which maps a vector of M consecutive samples to one
of a finite set of possible messages, and a decoder, that reconstructs the input
vector based on the chosen message. More specifically, the encoder maps the
input vector s € 8™, defined as

sM = [s[0],s[1],...,s[M —1]]",
to a description Tys € Tps by means of an encoding function
far: SM — Ty,

where Tyy = {1, 2,..., 2MR} and SM™ denotes the M-fold Cartesian product
of the set S. In the above notation, the superscript T denotes the transpose
operation. The message Ts can hence be described using R bits per sample.
Based on Ty, the decoder reconstructs the vector 8™ € SM , defined as

§M = [3[0],8[1],...,8]M —1]]",
by means of a decoding function
gar T — SM.
The reconstructed value follows as

M = gn (fur (™))

The design of a lossless source code thus amounts to choosing encoding and
decoding functions that allow for the perfect reconstruction of the source. More
precisely, a lossless source code with parameters (M, R, §) consists of an encod-
ing function fys : SM _, Ty and a decoding function g : Ty — SM guch
that

P(sM7égM (fM (SM))) <9, (2.1)

where 7y = {1, 2,000, ZMR}. It thus guarantees perfect reconstruction with a
probability larger than 1 — §. An important problem is the determination of
the achievable rates with lossless source codes. A rate R is said to be achievable
if the probability of error (Iﬂ) can be made arbitrarily small as M tends to
infinity. More formally, for any & > 0, there must exist an integer My such
that, for all M > My, we can build a lossless source code with parameters
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(M, Ry, 6) satisfying Rys < R+ 6. The central result of lossless source coding
is the characterization of the set of achievable rates and is given by the following
theorem.

Theorem 2.1. Given a discrete memoryless source s[n], the rate R is achiev-
able without loss if R > H (s). Conversely, R < H (s) is not achievable without
loss.

A rate R equal to the entropy (and not only arbitrarily close) may be
achieved in some special cases, but not always. Note that Theorem Bl stin
holds for sources with memory that are ergodic. In this case, the entropy rate
must be considered in lieu of the entropy |29, Sec. 4.2]. Theorem was
obtained by Shannon for memoryless sources and Markov sources [123]. A
proof of the general case can be found in [63].

The above definition of achievable rate does not impose any complexity or
delay constraints on the chosen coding method. A lossless source code that
approaches the lower bound given by Theorem b1 may thus be computation-
ally prohibitive. Moreover, it assumes that the encoder has access to the entire
source sequence and knows its distribution. Nevertheless, the above theorem
remains of great practical relevance as it allows benchmarking the compres-
sion efficiency of implementable methods. From a practical standpoint, a large
number of lossless source coding schemes have been proposed, including Huff-
man codes [72], Golomb codes [53], arithmetic codes [110] and Lempel-Ziv
codes [88, [144].

2.3.2 Lossy Case

In most scenarios of practical interest, the source is a real-valued physical
quantity (e.g., audio signals) and cannot be perfectly described by a finite
number of bits. Instead, the available bitrate is used to provide a description
of the source to within the minimum possible average distortion. The distortion
is measured using a distortion function

d:8x$—>[0,oo),

namely, a mapping which assigns a non-negative real number to each pair
formed by a sample and its reconstruction. The notation x stands for the
Cartesian product. The choice of a distortion function depends on the ap-
plication at hand, but should provide an acceptable trade-off between model
accuracy and mathematical tractability. Given a source s[n], a lossy source code
with parameters (M, R, D) is defined as an encoding function fa : SM — Ty
and a decoding function gps : Tpy — SM such that

%Agzg{d(s[m],é[mb} =D,

where 7y; = {1, 2,000, 2MR} and §[m] is the mth element of the reconstructed

vector
s = gm (fur (V) -

The notation £ {-} stands for the expectation operator. With the above defi-
nition, a rate R is said to be achievable with distortion D if the rate-distortion
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pair (R, D) can be approached arbitrarily closely using lossy source codes.
More formally, for all § > 0, there must exist an integer My, such that for all
M > My, we can design a lossy source code with parameters (M, Ry, D)
satisfying Ry < R+ 9 and Dy < D +§. The fundamental problem is the de-
termination of the set of achievable rates for a given distortion. For memoryless
sources, it is given by the following result.

Theorem 2.2. Given a memoryless source s[n| and a distortion measure d :
S x 8§ — [0,00), arate R is achievable with distortion D if R > R (D), where

R (D) I(s;8) .

= min
pss(Blu):€{d(s,8)} <D
Conversely, R < R (D) is not achievable with distortion D.

The function R (D) characterizes the optimal trade-off between rate and
distortion for a memoryless source and is referred to as the rate-distortion func-
tion. This trade-off can be equivalently expressed by a distortion-rate function
D (R). While the literature has mostly adopted the former formulation, the
latter is more relevant from a practical point of view, since a communication
system is constrained in terms of rate and not in terms of distortion. This
discussion is mostly concerned with the mean squared error (MSE) distortion,
that is, d(s,8) = |s — §|°. Unless otherwise stated, the rate-distortion func-
tions are expressed in terms of this criterion and are referred to as quadratic
rate-distortion functions.

From a practical perspective, the encoding of a scalar source can be split
into a quantizer followed by an entropy coder (e.g., Huffman). For complexity
reasons, quantization and entropy coding is usually performed on a sample-
by-sample basis. This incurs a loss compared to the rate-distortion function
obtained by assuming that all the source samples can be processed jointly. For
a discussion on optimality in this context, we refer to the exposition in [54].

The computation of the rate-distortion function using Theorem R4 involves
an optimization problem which can only be solved for specific distributions
and distortion measures. The most prominent example is that of a memoryless
Gaussian source and a MSE distortion. In this case, the rate-distortion function
evaluates as follows [29, Th. 13.3.2].

Theorem 2.3. The quadratic rate-distortion function of a memoryless Gaus-
sian source with mean zero and variance o2 is given by

1 o?
R(D) = max{§10g2 B’O} ,

where R (D) is expressed in bits per sample.

Figure b4 plots the rate-distortion function obtained for different values of
o. When the minimization task in Theorem P-d cannot be solved analytically,
numerical optimization methods, such as the Blahut-Arimoto algorithm [3, [13],
can be used.

Theorem 2.9 applies to memoryless sources. To compute optimal rate-
distortion trade-offs for sources with memory, one can use the vector extension
of the rate-distortion function of Theorem and consider the limit, as the
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Rate (bits/sample)

6 8 16 18
Distortion (MSE/sample)

Figure 2.2: Quadratic rate-distortion function of a memoryless Gaussian source
with mean zero and variance 0. The different curves correspond to o = 1,2, 3,4
(left to right).

size N of the vectors goes to infinity. For general sources, this task is difficult
and one must resort to bounds (see, e.g., [12, Th. 4.3.3]). For the Gaussian
scenario considered previously, however, conclusive results can be found. Let us
first compute the quadratic rate-distortion function for a memoryless Gaussian
vector source. It is given by the following theorem [29, Th. 13.3.3].

Theorem 2.4. The quadratic rate-distortion function of a memoryless source
of Gaussian vectors of size N with mean zero and covariance matrix R € RV*Y
is given by

N
Dy () =» min {6, A} ,
k=1

Y 1A
Ry () = ZmaX{O, 3 log, Fk} ,
k=1

with 6 € (0, maxy A;], where A, denote the eigenvalues of the matrix R. Ry (6)
is expressed in bits per vector and Dy (#) in MSE per vector.

The above rate-distortion function corresponds to that of N independent
Gaussian sources with variances A\, (k = 1,2,...,N). It can be checked that
an optimal architecture amounts to decorrelating the Gaussian vectors, and
to code each transformed component sequence independently. This process
is commonly referred to as transform coding [54]. The rate allocation across
components is obtained by means of a reverse “water-filling” strategy, as illus-
trated in Figure B3, In this case, the decorrelating transform is known as the
Karhunen-Loeéve transform (KLT) [79], or Hotelling transform [7(]. In other
words, the KLT diagonalizes the covariance matrix. Moreover, by only keeping
the K transform coefficients with largest variance, we obtain the optimal linear
estimate of the vector s in a subspace of dimension K [73, Sec. 6.1.2]. This
approximation method is usually referred to as principal component analysis
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Figure 2.3: lllustration of the reverse water-filling rate allocation strategy [29,
Fig. 13.7]. A vector of size N = 6 is considered. We encode the transformed
coefficients yj, whose variance )y is above the threshold 6 (k =1,2,...,6). The
other components are discarded. The total distortion corresponds to the shaded
area.

(PCA) [104]. The KLT is thus also the optimal transform in this linear ap-
proximation framework. In Chapter E, we show that a similar optimality result
holds in a distributed infrastructure. From a practical standpoint, the trans-
form coding approach is appealing in that it allows reducing a vector source
coding problem to N independent scalar source coding tasks. Variations on
this model have also been considered (see, e.g., [53]).

Based on the above result, the rate-distortion function for a source with
memory can be derived as

D(#)= lim <Dy (0), (2.2)
R() = Jim Ry (0), (2.3)

provided that the above limits exist. For a general source, the limits (@)
and ([23) are difficult to compute. However, for a (wide-sense) stationary
Gaussian source with mean zero and a power spectral density P (w), they can be
computed using the Toeplitz distribution theorem of Grenander and Szegé |61,
Sec. 5.2] (see also |5&, |h9]). The result is given in the form of the following
theorem [12, Th. 4.5.3].

Theorem 2.5. The quadratic rate-distortion function of a stationary Gaussian
source with mean zero and power spectral density P (w) is given by

1 2T
D(0) = o /. min {0, P (w)} dw,
27 P
R(0) = ey max {0,10g2 éw)} dw ,

with 6 € (0,esssup,, P (w)]. R(0) is expressed in bits per sample and D (6) in
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R
s[n] Enc Dec 8[n]
(a)
R
S [n] —~\\\—> .Z’[n] Enc Dec § [n]
(b)

Figure 2.4: Direct and remote source coding. (a) The source of interest s[n] is
directly observed at the encoder. (b) Only a noisy version z[n] of the source is
available at the encoder.

MSE per sample.

In the above theorem, esssup, P (w) denotes the essential supremum of
the function P (w). When a process is stationary, its covariance matrix is of
Toeplitz form and can be asymptotically diagonalized by a discrete Fourier
transform (DFT) matrix. By strict analogy to the vector case, the optimal
architecture thus amounts to taking a discrete-time Fourier transform of the
source and to allocating the bitrate across the frequency band by reverse water-
filling on the power spectral density.

Often, the source of interest s[n] is not directly observed at the sensing de-
vice. Instead, only a noisy version z[n] of the source can be measured. We will
refer to this noisy version as the observation. As an example, assume that we
record a concert using a microphone and that we are only interested to encode
the violin part. The other instruments are considered as noise and should not
be reconstructed. This problem is referred to as a remote, noisy or indirect
source coding problem and is illustrated in Figure m It was originally ad-
dressed by Dobrushin and Tsybakov [32]. More generally, Witsenhausen [14§]
elegantly demonstrated how certain classes of remote rate-distortion problems
can be reduced to direct ones, unifying earlier results by Sakrison [11&] and Wolf
and Ziv [149]. In our setting, the remote rate-distortion function can be readily
obtained from the direct one by considering a modified distortion measure. In
particular, under the above assumptions of Gaussianity and stationarity, we
can state the following theorem [12, Sec. 4.5.4].

Theorem 2.6. Consider a source and an observation that are jointly station-
ary Gaussian with mean-zero and power spectral density Ps (w) and P, (w),
respectively. The cross power spectral density is denoted by Ps, (w). The
quadratic remote rate-distortion function is given by

1 27 1 271‘
= 5 P o i P — Py )
27r/0 sz (W) dw + 27r/0 min {9, (w) ‘ (w)} dw

R(0) = — /027r max{0,10g2 P W) —9P5|x (“’)} dw |

T
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s2[n] —>{ Enc 2

Figure 2.5: The distributed source coding problem with two encoders.

with 6 € (0,esssup,, Ps (w) — Py, (w)]. R(0) is expressed in bits per sample
and D (0) in MSE per sample.

In the above theorem, P, (w) denotes the power spectral density of the

Wiener estimate of the source given the observation. It can be computed as
Pyja (@) = Py () = Pog () P () P, (@)

where the superscript * denotes the complex conjugate. The important fact
about the remote rate-distortion function derived in Theorem is that an
optimal encoding architecture amounts to first computing the Wiener estimate
of the source using the observation, and then encoding this estimate as if it were
the source of interest. As a consequence, the minimum achievable distortion
corresponds to the error incurred at the Wiener estimation stage.

2.4 Distributed Source Coding

2.4.1 Lossless Case

As illustrated in Figure m, the distributed source coding problem consists
of multiple encoders (or terminals), each observing a different source. In the
lossless scenario, the goal of the decoder is to reconstruct perfectly all the
sources. Since the sources are correlated, the distributed source coding problem
does not simply reduce to multiple independent centralized source coding tasks.
For simplicity of exposure, we will concentrate on a two-terminal setup. More
precisely, we consider two sources, s1[n] and s2[n], taking values in the sets
S1 and S, respectively. The two encoders respectively map the input vectors
sM € SM and s} € SM| defined as

sM = [s1[0], s1[1],....s1[M —1)]"  and s} = [s,]0], s2[1], ..., s2[M — 1]]7,

to descriptions T4 as € T1,a and 1o ar € T3,p7. This is achieved by means of
encoding functions

oM oM
fim S =Ty and fou:Sy — Tom,

where 71,y = {1,2,...,2M%1} and T = {1,2,...,2M%2}. The message of
the first encoder thus appears at a rate of R; bits per sample. The one of the
second encoder requires Ry bits per sample. Using 17 s and 15 57, the decoder
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reconstructs the vectors M ¢ S{W and 8! € Séw , defined as
1 =[510], 81 (1], .., 1[M —1]" and 85" = [5,[0], 85[1], ..., 8o[M — 1],
by means of a decoding function
gM:'TLMxTZM—>SlM><g§2M.
The reconstruction follows as

(éiwaéév[) =gmMm (fl,M (Siw) an,M (Séw)) .

The encoding and decoding functions should be chosen such that the original
sources can be perfectly reconstructed. More specifically, a two-terminal loss-
less source code with parameters (M, Ry, Ra,d) consists of encoding functions
fim e SM — Tiv and four - SM — To.amr as well as a decoding function
gv Tim X o — SlM X SQM such that

P((81",82") # v (fror (517)  founr (s27))) <9, (24)

where 77y = {1, 2,..., 2MR1} and 7y = {1, 2,..., 2MR2}. As in the central-
ized scenario, the fundamental problem is the determination of the achievable
rates Ry and Rs. A rate pair (Ry, R2) is said to be achievable if we can find a
sequence of two-terminal lossless source codes such that the error probability
(@) vanishes as M becomes large. More precisely, for any § > 0, we must find
an integer My such that, for all M > Mj, we can design a two-terminal lossless
source code with parameters (M, Ry ar, R ar, 0) satisfying Ry ar < Ry + 6 and
Ro mr < Ra+6. The complete characterization of the achievable rate region was
obtained by Slepian and Wolf in [126] and is given by the following theorem.

Theorem 2.7. Given discrete memoryless sources s1[n] and sg[n], the rate pair
(R1, R2) is achievable without loss if it satisfies

Ry > H(81|82) ,
Ry > H (s2|s1) and
Ri+ Ry > H(51752) .

Conversely, a rate pair (Ri, R2) satisfying Ry < H (s1]s2), Re < H (s2]s1) or
Ry 4+ R2 < H (s1,82) cannot be achieved.

A rate pair (R, R2) meeting the above lower bounds with equality may be
achievable, but not always. The rate region is depicted in Figure b.d. Note that
Theorem m can be extended to ergodic sources with memory by considering
entropy rates [28]. The Slepian-Wolf theorem proves that the minimum achiev-
able sum rate R; + Ry is the joint entropy, that is, the minimum achievable
rate when the sources can be processed centrally. In other words, there is no
rate loss in coding the two sources separately. An important special case of
the general two-terminal setup is obtained when one of the sources (say sz2[n])
is perfectly available at the decoder. The source s1[n] can then be encoded
at a rate of H (s1|s2) bits per source sample. This strategy can be applied
part of the time in turn at each terminal (time-sharing) to obtain any point on
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Figure 2.6: Achievable rate region for the two-terminal lossless source coding
problem.

the boundary of the achievable rate region. We now give a simple illustrative
example of distributed lossless source coding.

Example 2.1. Assume that s1[n] is a memoryless source taking values in the
set S1 = {0, 1, 2,3} with equal probabilities 1/4. The source sz[n] is a memo-
ryless source taking values in the same set (So = S1). The joint probabilities
Psy,s5 (U1, u2) and the conditional probabilities p,, s, (u1]uz) are given in the
following tables:

Psisa | O 1 2 3 P | 0 1 2 3
0025 0 025 0 0lo5 0 05 0
11 0 025 0 025 110 05 0 05
21025 0 025 0 2105 0 05 0
31 0 025 0 025 310 05 0 05

It is easily checked that H (s1) = H (s2) = 2 bits per sample. Independent
coding of the two sources thus requires 4 bits per sample. However, the Slepian-
Wolf theorem says that a sum rate of only H (s1,s2) = 3 bits per sample is
needed. How can this be achieved?

The gain of 1 bit per sample is obtained by realizing that the random
variables s; and ss are not independent. More precisely, they have the same
parity. For example, if the value of s, is 0, then the only possible values for
s1 are 0 and 2. Assume that each value of so[n] is encoded using its binary
representation (two bits). The required bitrate to encode sa[n] is 2 bits per
sample. Knowing the value of sa[n], the decoder also knows the parity of s1[n],
that is, its least significant bit. The first encoder thus only needs to provide
the decoder with the most significant bit of s1[n]. This coding scheme achieves
a sum rate of 3 bits per sample and is therefore optimal. [J

The key observation in the above example is that, while s; and sy can each
take four possible values, knowing the value of s5 reduces the uncertainty about
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s1 to only two possible values. The above coding method is a simple version of
a strategy known as binning, which can be applied to prove the achievability of
the rate region defined in Theorem 2.2 (see, e.g., [29, Sec. 14.4.1]). A couple of
important remarks are however at hand. First, knowledge of the joint statistics
is assumed. These statistics are easily computable in a centralized scenario
since the sources can be observed jointly. However, this task is significantly
more involved in a distributed setup. Depending on the application at hand,
this assumption may turn out to be unrealistic. The second remark pertains
to coding complexity. While no rate loss is incurred in the limit of large block
lengths, the coding delays and processing complexity of a distributed source
code approaching optimality may be much higher than those of a centralized
source code. This fact might preclude its use in a practical setting.

While the theoretical foundations of distributed lossless source coding have
been laid by the pioneering work of Slepian and Wolf in the early 1970’s [126],
practical coding schemes based on these principles have only been proposed
recently (see, e.g., [130]). A constructive practical framework for the source
coding problem with side information at the decoder has been proposed by
Pradhan and Ramchandran [L08]. The key idea is to consider the side infor-
mation to be a noisy version of the source as if the source had passed through
a noisy channel. The encoder then only needs to provide the decoder with
the minimum amount of information required to correct the errors introduced
by this fictitious channel. The use of different error correcting schemes have
been used in this context, such as Hamming codes [51], turbo codes 48] or
low-density parity-check codes [90].

2.4.2 Lossy Case

As in the centralized scenario, it is natural to study the lossy version of the dis-
tributed source coding problem. In this case, the reconstruction of the sources
s1[n] and s2[n] is achieved only to within some distortions D; and Do, respec-
tively. These distortions are computed using distortion measures

1:8] XSQ"[0,00) and dg:ngS'gH[O,oo).

Given the sources s1[n] and sa[n], a two-terminal lossy source code with param-
eters (M, Ry, Rz, D1, D5, d) consists of encoding functions fi as : SM — Tim
and fo ar: 82M — T3, as well as decoding functions g1, as @ 71, X T2, 00 — SlM
and go ar : T X Do — S‘éw such that

i Mz_:lg{Ch (51[m],§1[m])} < Dy and Mz: {d2 32 Q[m])} <Dy,
M

where 71y = {1,2,...,2MR1} and To pr = {1,2,...,2MR2}. The random
variables §1[m] and $3[m] correspond the mth element of the reconstructed
vectors

$V =g (Fum (s, fomr (s37)) and 83 = go ar (fiar (s, foonr (s37))

respectively. Again, a rate pair (Ry, R2) is said to be achievable with distortion
pair (D1, D2) the rate-distortion tuple (R, R2, D1, D2) can be approached ar-
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Figure 2.7: Source coding with side information at the decoder.

bitrarily closely using two-terminal lossy source codes. More formally, for all
6 > 0, there must exist an integer My, such that for all M > My, we can build
a two-terminal lossy source code with parameters (R1 ar, R2,a, D1y, D2 ar, )
such that RI,M <R +(S, RQ’M < Ry +(S, Dl,M < Di+6 and DgyM < Dy +6.

Unfortunately, the achievable rate region for the distributed lossy source
coding problem is unknown to date. The important special case of source cod-
ing with side information at the decoder was solved by Wyner and Ziv [151].
This scenario assumes that one of the sources is directly available at the de-
coder, as depicted in Figure bd A peculiarity of this setup is that, in the
jointly Gaussian case, the rate-distortion function would remain the same if
the encoder also had access to the side information (i.e., as in a conditional
rate-distortion problem [51]). For other statistics, however, there is a penalty
for the absence of the side information at the encoder [153]. Another important
special case is obtained by assuming that the observations are independently
corrupted versions of the source. This problem is often referred to as the CEO
problem [14] and its rate-distortion function was derived by Oohama in [101]].
Other conclusive results can be found for the case of high-resolution [154],
or for certain special distortion measures [10(] (not including MSE). For the
general multiterminal scenario, an achievable strategy was proposed by Berger
and Tung [13, [135] and Housewright and Omura [71]. Their approach combines
quantization of the sources at each encoder, as in the centralized lossy source
coding problem, and binning of the quantization indexes, as in the distributed
lossless case. The optimality of this strategy in a two-encoder setup is still un-
known. The only example for which it is known to be optimal is the quadratic
Gaussian case derived by Wagner et al. [143]. Their result is summarized in
the following theorem.

Theorem 2.8. Consider two memoryless sources s1[n] and s3[n] that are jointly
Gaussian with mean zero and covariance matrix

R — |: O'% p0'10'2:|

2
pPO102 o3

Define the set R (D1, D3) of rate pairs (R1, R2) satisfying

(1=F+ 220t
D1 Y ?

1
Ry > max { 3 log,

1 1— 2+ 2272R1 2
Ry > max{ilog2 ( pFee )02 ,0 and

Dy
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Figure 2.8: Two-terminal quadratic rate-distortion function of memoryless jointly
Gaussian sources. The variances are 07 = 05 = 1 and the correlation parameter is
p=0.5.

1 (1= ) 020} (D1, D)
R+ Ry > =1 0
1+ 2_max{2 Og2 2D1D2 9 )

where

4p2D1D2
0 ) i}
with MSE distortions D1, Dy > 0. Let Ry be the interior of the set R. A
rate pair (Ry, R2) is achievable with MSE distortion pair (Dy, D2) if it satisfies

(R1,R2) € Ro. Conversely, (R1,R2) ¢ Ry cannot be achieved with MSE
distortion pair (Dy, D2).

B(Dl,Dg)lJr\/lJr

The parameter p allows changing the correlation between the two sources.
When p = 0, the sources are uncorrelated and the rate-distortion function of
Theorem 2.3 applies to both sources. Conversely, when p — 1, the two sources
are essentially the same and the sum rate constraint is always satisfied. A con-
sequence of the result in [143] is that vector quantization of each source followed
by Slepian-Wolf encoding of the quantized indices is optimal. However, unlike
the lossless scenario, there is a rate loss compared to centralized encoding.
In the sequel, we will be mostly interested in minimizing the sum distortion
D = D; + D5 instead of each term separately. In this case, a distortion-rate
surface D (Rq, R2) can be obtained from Theorem B4 An example is depicted
in Figure 2.§.

In the case of memoryless jointly Gaussian vector sources, the above result
cannot be easily extended. In particular, it is not known whether a transform
coding approach, similar to the centralized case, could be optimal. Suboptimal
solutions have thus been investigated. In [5(], Gastpar et al. derived the mean
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Figure 2.9: Direct and remote distributed source coding with two encoders.

square optimal coding strategy at one terminal assuming all else is fixed. They
showed that this local perspective can be given a transform coding interpre-
tation. They proposed a suboptimal distributed architecture which consists of
applying this local optimization step in turn at each terminal. Several other
authors have looked at transform-based distributed architectures, from both
a linear approximation [99, 122, [155] and compression [107, [109] standpoint.
Some of the aforementioned references can be rather straightforwardly extended
to the case of stationary jointly Gaussian sources. In fact, as in Theorem m,
the Toeplitz distribution theorem can be invoked to derive optimality results
in this context.

Let us turn our attention to the remote version of the lossy distributed
source coding problem. In this case, the two encoders only observe noisy
versions z1[n] and z2[n] of the signals of interest, that is, si[n] and sa[n].
Without loss of generality, we can assume that z1[n] and z2[n] can be ob-
tained from a single source that we denote by s[n]. This setup corresponds
to a rate-constrained distributed estimation problem [74] and is depicted in
Figure m In the centralized case, we mentioned that the remote source
coding problem can be seen as a direct one with a modified distortion crite-
rion. Similarly, the distributed remote source coding problem can be stated
as a direct one using a modified distortion measure. As pointed out in [43], it
is simply a matter of adding an additional encoder with direct access to the
source s[n] and setting its rate to zero. The distortion is then computed in
terms of the signal observed at this new encoder and its reconstruction. One
contribution of this thesis [112, [111] is to extend the iterative approach de-
rived in [5(0] to this remote scenario, for both memoryless vector sources and
discrete-time sources with memory. In this case, the optimal solution at each
step corresponds to a remote source coding problem with side information at
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Figure 2.10: Remote source coding with side information at the decoder.

the decoder. 1t is illustrated in Figure B.1d and is also referred to as a re-
mote, noisy or indirect Wyner-Ziv problem. As argued in the next section, the
remote Wyner-Ziv rate-distortion function is the key element to study the bin-
aural noise reduction problem. Its characterization as a minimization problem
was obtained by Yamamoto and Itoh [152]. Our aim will be to evaluate it for
the case of jointly Gaussian sources that are either memoryless vector sources or
discrete-time sources with memory. Note that the remote Wyner-Ziv problem
has already been addressed by various other researchers in the scalar case (see,
e.g., [39, 40, 46]). The extension to vector sources was investigated in [109] in
the context of high-rate quantization. Recently, and in parallel to our work,
Schizas et al. [121,, 122] have considered some extensions of the results in [50]
to a remote scenario with non-ideal communication links (fading and noise).

2.5 Binaural Hearing Aids

2.5.1 Problem Statement

The binaural configuration is schematically depicted in Figure B1l A user
carries two hearing aids, both comprising a set of microphones, a processing
unit with wireless communication capabilities and a loudspeaker. Hearing aid
1 comprises L; microphones. The discrete-time signals recorded by these mi-
crophones can each be expressed as

ry[n] =27 [n] +27,[n] forl=0,1,...,L1 -1, (2.5)

where 7 ;[n] denotes the (desired) speech component and z7;[n] the (unde-
sired) noise component. Similarly, the signals recorded at the Ly microphones
of hearing aid 2 can be written as x2,[n] = x5 ;[n]+ay [n] for | = 0,1,..., La—1.
Typically, the speech components z1 ;[n] and x5 [n] correspond to the speech
sources of interest, as recorded by hearing aid 1 and 2, respectively (see Fig-
ure M) The distinction between desired and undesired signals is generally
achieved by means of a voice activity detection mechanism, which discriminates
whether the sources of interest are active or not. Note that each microphone
records a different version of the involved sources, owing to different propaga-
tion delays and different attenuations. For convenience, we will write the input
signals in vector form as

x¢[n] = [zeo[n], zealn], - .., :Et,Ll,l[n]]T fort=1,2,

where x:[n] = x7[n] + x7[n] with x7[n] and x}7'[n] defined similarly as x:[n].
The speech vector xj[n] and the noise vector x}'[n] are modeled as independent
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Figure 2.11: Binaural hearing aids with Ly = Lo = 2 microphones. (a) Typical
acoustic scene. The two sources in the front (black) are the (desired) speech
sources, whereas the two sources in the back (gray) are the (undesired) noise
sources. (b) Collaboration using a rate-constrained wireless link.



28 Chapter 2.

Figure 2.12: Binaural hearing aids with L; = Lo = 2 microphones.

stationary Gaussian vector sources with mean zero and power spectral density
matrices ®,: (w) and @, (w), respectively. The power spectral density ma-
trix of the vector source x;[n] hence follows as ®,, (w) = ®,: (W) + Pur (w).
Similarly, we can define the binaural input x[n] as

T T 117

x[n] = [x1 [n], % [n]]

It has mean zero and power spectral density matrix ®, (w). It can be decom-
posed as x[n] = x*[n] 4+ x"[n], where the binaural speech component x*[n] and
the binaural noise component x"[n] are defined similarly as x[n]. Their power
spectral density matrices are denoted by ®,s (w) and ®,» (w), respectively.

The goal of each hearing instrument is to recover the speech component of
its reference microphone (say microphone 0) with minimum (weighted) MSE
distortion. In other words, each hearing aid aims at estimating the contribu-
tion of the speech sources in the signal recorded by its reference microphone.
These components, referred to as the desired sources, thus correspond to z{ [n]
and z3 o[n]. For ease of notation, we will denote them by s;[n] and s3[n], re-
spectively. To make matters clearer, let us adopt the perspective of hearing
aid 1. Its goal is to estimate the signal sq[n] with minimum distortion based
on its own observations x1[n] and a compressed version of the signals xo[n]
recorded at the microphones of hearing aid 2. The key is to realize that this
setup corresponds to the remote source coding problem with side information
at the decoder described in Section 2.4, More specifically, we wish to encode
the vector observation x3[n| with rate Ry such as to minimize the distortion
between the remote source s1[n] and its reconstruction $;[n], taking into ac-
count the presence of the side information x;[n| at the decoder. Equivalently,
the problem can be viewed as a two-terminal remote source coding problem of
the source s1[n|, where the observation xj[n] of the first terminal is directly
available at the decoder. This procedure is illustrated for the two devices in
Figure B1d. The monaural gain achieved at hearing aid t is defined as
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D¢ (0)
Dy (Ry)

Gt (Rt) = for t = ]., 2, (26)

where Dy (R:) denotes the corresponding optimal distortion rate trade-off,
D, (0) being the distortion incurred when there is no help from the contralat-
eral device (R; = 0). Note that R; refers to the rate at which data is delivered
to hearing aid t. The quantity G (R;) actually corresponds to the signal-to-
distortion improvement enabled by the wireless link when it operates at rate
R;. The binaural gain can thus be obtained as

D(0)

( )va (2.7)

where D (R) refers to the optimal trade-off between the sum distortion D =
D1 + Dy and the total (bidirectional) transmission rate R = Ry + Ro. Our
main concern is the study of the above optimal gain-rate trade-offs, from both
a theoretical and a practical standpoint [113-H115]. Before we proceed, let us
look more carefully at the main assumptions of the considered model.

2.5.2 Validity of the Assumptions

In the binaural noise reduction problem stated above, there are a number of
implicit assumptions that we would like to discuss in more detail.

Setup

The first assumption pertains to the use of a wireless link between hearing
aids. The main postulate is that the transmission of audio signals is possible
despite the stringent power and delay constraints. State-of-the art wireless
hearing aids are able to exchange only low data rate content in the form of
synchronization parameters [44]. However, in view of the progress made in
the field of low power electronics and in the development of longer-lasting
batteries, we believe that the exchange of audio signals will be possible in the
near future. Moreover, binaural processing has a great potential in terms of
speech intelligibility improvement. Hence, it will be worth using resources for
the purpose of ear-to-ear communication.

Signal Model

The considered signal model assumes that the involved sources are stationary
and Gaussian. While stationarity cannot be guaranteed over long time peri-
ods, it is reasonable to assume that this property holds over small durations.
The Gaussian assumption is mostly motivated by its mathematical tractability.
Nevertheless, it has been successfully applied in a plethora of signal processing
fields, including audio. Regarding the noise component, it is assumed to be both
additive and uncorrelated with the speech component. The former assumption
is motivated by the laws of physics, more precisely, by the wave equation in free
space [91, Sec. 7.1]. In this case, the wave field induced by a point source is
obtained as the convolution of the source by a linear and space-time invariant
filter, whose impulse response is referred to as the Green’s function |97, Sec.
7.1]. The sound field induced by multiple sources can thus be computed as the
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sum of each individual contribution. The assumption of uncorrelated speech
and noise components is reasonable since, in the envisioned application, the
noise typically consists of interferers producing sound that is independent from
the desired source. This assumption would be clearly flawed in a dereverber-
ation context, for example, since reflections are strongly correlated with the
underlying clean signal.

Distortion Criterion

In the monaural setup, the choice of a minimum weighted MSE distortion is
partly motivated by the fact that the optimality of the MSE processor extends
to various other criterions with minor modifications [138, Sec. 6.2]. While
some of the characteristics of the human ear can be taken into account using
an appropriate weighting, it is important to point out that the weighted MSE
does not take into consideration other important factors related to speech intel-
ligibility in noise. More relevant speech intelligibility measures can be found in
the literature (see, e.g., |[60]), but are usually not amenable to closed-form opti-
mization. More generally, an accurate distortion measure seems rather elusive
owing to the complexity of human hearing. In this context, the MSE criterion
is appealing in that it captures the general features of speech in noise while
being simple enough to derive optimal processing strategies.

In terms of binaural noise reduction, a sum distortion appears to be the
most natural choice considering the inherent symmetry of the human hearing
system. Different weighting operators may be used at the left and right ear to
take into account unequal characteristics. However, the MSE distortion does
not fully capture the complexity of binaural hearing, a topic which is currently
matter of substantial research efforts (see, e.g., [65]). In particular, it preserves
the spatial characteristics of the speech source, but modifies those of the noise
component [33, [13€6]. The overall auditory image is thus modified by the noise
reduction scheme. This effect may be circumvented, for example, by adding a
small fraction of the original binaural signal to the output [85]. This obviously
increases the amount of noise but also introduces some of the original binaural
cues. The basic assumption is that better speech intelligibility can be achieved
due to an improved spatial rendering, even if more noise (in the mean square
sense) is present. The MSE criterion thus still provides a useful means to design
binaural noise reduction algorithms.

Delays, Processing Complexity and Statistical Knowledge

A large part of our exposition is devoted to the information-theoretic analysis
of the binaural hearing aid communication problem. As pointed out in Sec-
tions .4 and m, optimal rate-distortion trade-offs are derived without taking
into account coding delays or processing complexity constraints. In this con-
text, is the information-theoretic analysis really meaningful? We believe it is
indeed the case for two main reasons. First, it provides a limit to the best
achievable noise reduction under processing constraints. It thus allows us to
benchmark practical binaural noise reduction schemes that take into account
limited communication bitrates. Second, it provides useful insights about the
design of an optimal encoding architecture.

In this information-theoretic framework, the correlation statistics of the
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input signals are assumed to be known at both hearing aids. These latter
are functions of the audio sources as well as the characteristics of the recording
setup. The statistics of the signals measured at one device may be estimated by
means of a voice activity detection mechanism (see, e.g., [134]). However, the
quantities involving signals from both hearing aids cannot be easily computed.
An alternative would be to use a side channel for this purpose, but the success
of this task is rather unclear. With this limitation in mind, Chapteru considers
the best achievable trade-off obtained by a strategy which does not require the
computation of such statistics. While correlation between input signals may
be difficult to estimate, it is important to point out that the recording setup
might induce dependencies that are known a priori. They thus do not need to
be learned. We will explore this fact in more detail in Chapter M.

2.6 Summary

This chapter demonstrated how the binaural noise reduction problem can be
seen as a distributed source coding task. Towards this goal, we reviewed the
fundamental concepts of distributed source coding and presented binaural noise
reduction in light of these results.

We started by recalling the notion of information sources and described dif-
ferent types of sources. We reviewed important quantities used to quantify the
information content of a source, in particular entropy and mutual information.

We then looked at the centralized source coding problem and presented
the fundamental theorem of data compression, in both the lossless and lossy
scenario. In the lossy case, we introduced the notion of rate-distortion func-
tion. rate-distortion functions were computed under Gaussian assumptions for
different types of sources. In particular, we explained how a memoryless Gaus-
sian vector source can be optimally encoded by means of a transform coding
architecture. We then addressed the remote scenario, that is, when the source
of interest is observed at the encoder in a noisy fashion.

Our attention then shifted to the distributed infrastructure, which is consid-
erably more difficult to analyze. For simplicity of exposure, we concentrated on
a two-terminal scenario. We reviewed the Slepian-Wolf theorem which charac-
terizes the set of achievable rates with distributed lossless source coding. While
the lossy counterpart to this theorem is unknown to date, we described some
of the scenarios for which conclusive results are available in the literature. As
in centralized source coding, we then looked at the remote case and explained
what is the contribution of this thesis in this context.

The problem of binaural hearing aids was then formulated as a particular
type of distributed source coding problem, namely, a remote source coding
problem with side information at the decoder. Monaural and binaural gain-
rate functions were defined. They characterize the optimal trade-off between
the rate at which the wireless link operates and the noise reduction resulting
from this data exchange. Finally, we detailed the main assumptions made in
the considered model and discussed their validity in a practical setting. In
particular, we argued for the usefulness of an information-theoretic approach
to this problem.



32

Chapter 2.




Chapter 3

Distributed Estimation under
Communication Constraints

3.1 Introduction

As pointed out in the previous chapter, the binaural noise reduction task cor-
responds to a two-terminal remote source coding problem. The aim of the
present chapter is to study such a source coding problem for both memory-
less vector sources and discrete-time sources with memory. Unfortunately, the
latter appears to be intractable. We thus resort to suboptimal strategies for
which conclusive results can be found. More precisely, we extend the iterative
transform coding architecture presented in [5(] to a remote scenario. From
the perspective of the decoder, the problem can be viewed as a distributed
estimation task under communication constraint. Two types of constraints are
considered: linear approrimation and compression. In the former, the termi-
nals provide the decoder with a low-dimensional linear approximation of their
observed vector. In the latter, the data they observe is described using a bit
stream that appears at a prescribed bitrate. As in the centralized scenario, we
will see that these two viewpoints are related to each other through transform
coding.

In Section m, we formally state the problem of mean square optimal
distributed estimation, from both the linear approximation and compression
standpoints. As the general solution seems difficult to derive, locally optimal
strategies are investigated. We first consider memoryless vector sources, in
Section m, and then discrete-time sources with memory, in Section B4 In
both cases, we borrow the iterative approach in [50] which consists in opti-
mizing the description at one terminal assuming that the other is fixed. This
local optimization strategy is then used as the step of an iterative algorithm
whose optimality is discussed. Finally, we illustrate our findings with a sim-
ple correlation model in Section BA A summary of this chapter is given in
Section B.d.

33
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Figure 3.1: The distributed estimation problem under communication constraints.
(a) Linear approximation. (b) Compression.

3.2 Distributed Estimation

3.2.1 Linear Approximation

The linear approximation problem is depicted in Figure Im The two ter-
minals observe the random vectors x; € CM and xy € (DN2, respectively.
These vectors are correlated with a random vector s € C* of interest. For sim-
plicity, we assume that N1, No < P. The terminals provide the decoder with
low-dimensional linear approximations y; € C*' and y, € C¥2 computed as

yi =Kix; and y; =Kbsxs,

where K; € CK1*N1t and K, € CK2*N2 denote the matrices applied at the
first and second terminals, respectively. Equivalently, we can let N = Ny + Ny
and K = Ky + K5 and define the stacked vectors x € CV and y € CX as

T T}T

x = [x7, %} 1"

and y = [y{,y3

The vector observed at the decoder can then be expressed as
y = Kx,

with K € CE*¥ the block diagonal matrix given by

K — K, Ok, xN,
Ox,xN, K,

The decoder then computes the reconstruction § € C* as a function of y such
as to minimize the MSE distortion. The optimal reconstruction § is given by
the conditional expectation of s given y which, in the jointly Gaussian case,
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reduces to the linear operation [f& Th. 3.2.1]
$=R,R,'y = R, K" (KR,K") ' Kx.

In the above equation, the superscript © denotes the Hermitian (conjugate)
transpose. The corresponding MSE distortion follows as [78, Th. 3.2.1]

& {Hs - §|\2} = tr (RS - R..K" (KR,K")™ Kng) , (3.1)

where ||-|| stands for the Frobenius norm and tr (-) denotes the trace operator.

For fixed K7 and K, the linear approximation problem consists in finding
the block diagonal approximation matrix K that minimizes the MSE distor-
tion (E]) The solution seems difficult to derive since the approximation matrix
K is constrained to have a particular block diagonal structure that reflects the
distributed nature of the setup. In Section , we will investigate a subopti-
mal strategy for which conclusive results can be found.

3.2.2 Compression

In the compression problem, depicted in Figure m, we are interested in
reconstructing M i.i.d. consecutive samples of the remote vector source s[m].
We represent them in the form of a stacked vector, denoted by s™ € CMP | as

sM = [s7[0),s"[1],...,sT[M — 1] .

The two encoders respectively observe the input vectors x}/ € CMNi and
x3 € CMN2 defined as

XM = [xT[0], x7[1],...,xT[M —1]]" and x} = [xZ[0], xE[1],..., x5 [M —1]]" .

They provide the decoder with descriptions T4 as € 71,0 and To ps € T2, by
means of encoding functions

fiar : CMNY S Ty and for s CMY2 — Ty, (3.2)
where 77 pr = {1, 2,..., 2MR1} and To pr = {1, 2,..., 2MR2}. The descriptions
provided by the first and the second terminal thus appear at a rate of R; and

Ry bits per vector, respectively. The decoder reconstructs, as a function of the
descriptions T4,y and T3 a7, the sequence §M e ¢MP given by

M = [s7[0),87[1),..., 87 M —1]] ",
by means of a decoding function
g Tiov X T — CME (3.3)
The reconstructed sequence thus follows as

M = gur (f1.m (Xiw) s Ja (Xéw))
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and the average mean squared error is given by

5 1 M-—1
£ {||sM —sM|| } == ¢ {Hs[m] - é[m]HQ} . (3.4)
m=0

The compression problem consists in finding the encoding functions (@)
and the decoding function (Iﬂ) that minimize the distortion (@) for fixed
communications rates R, Ry, in the limit as M — oo. This optimization
problem is difficult and the optimal processing strategy is unknown to date.
In Section m, we will propose an iterative method that allows obtaining
suboptimal solutions.

3.3 Local Optimality for Memoryless Vector Sources

3.3.1 Linear Approximation

Let us assume that one of the two terminals (say terminal 2) provides a fixed
approximation ys of its local observation by means of a linear transform. Our
goal is to find the optimal matrix K; € CK1*N1 to apply at the first terminal.
To this end, let us define the local approzimation transform A, € CN1*N1t a5
A, =U{R R;}, (3.5)
where X1 is given by X; = x1 — Rxley_Qlyg and U; € CN*M g the unitary
matrix whose columns are the eigenvectors of Ry, — Rz, 4, that correspond
to the N; largest eigenvalues arranged in decreasing order. The operational
relevance of the local approximation transform stems from the following result.

Theorem 3.1. The optimal transform matrix K; € CK1*M ig given by the
first K7 rows of the local approximation transform A;. The resulting mean
squared distortion is given by

N1
Dy, (K1) =tr (Ryjarn) + D Mk, (3.6)
k=K;+1
where )\j denote the N; largest eigenvalues of Ry, — Ry, ,, arranged in
decreasing order.
Proof: See Appendix BAl |

Note that the local approximation transform A; is not unique if the eigenvalues
A, are not all distinct. Nevertheless, any local approximation transform allows
obtaining the distortion (.d).

The local approximation transform can be interpreted as follows. It is
designed such that, if X; were observable at the terminal (or equivalently the
side information ys2), the product A;x; would be tantamount to (i) compute
the mean square optimal estimation of s given X; and (ii) apply a KLT on
this estimate. Less formally, the encoder would send the part of s that can be
predicted by x; but not by ys. Since X; is not available in our scenario, A,
is directly applied to x;. Nevertheless, it is seen in the proof of Theorem B
that the availability of the side information vector y, at both the encoder
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Algorithm 3.1: Linear approximation (memoryless vector sources)

Input: A fixed tolerance € and initial matrices K(IO) and Kéo) of size K1 x N;
and Ky x N, respectively.

Output: Approximation matrices K; and K5 and resulting distortion D.
Procedure:

Set i = 1.
while true
fort=1,2 do
Compute KEZ) from Theorem B.1.
end for
Compute D from Theorem B,
if |[D® — DU=1| < ¢ then
return K; = K(li), K, = K(Qi) and D = D®,
end if
Set : =1+ 1.
end while

and decoder would result in the same approximation error. In particular, the
minimum distortion tr (Rs|x17y2) in (@) corresponds to the part of s that
can be estimated neither by x; nor by y2, while the sum corresponds to the
subspace approximation error.

Similarly to the iterative algorithms developed in [5(, [122, [155], the local
perspective offered by Theorem suggests an iterative approach to the quest
of an optimal distributed architecture. Namely, the two terminals select arbi-
trary initial transform matrices of size K7 x N7 and K X N, respectively. In
turn, each terminal then updates its transform following Theorem B Note
that Theorem B.1 is stated from the perspective of the first terminal. It should
be clear that an optimal transform for the second terminal is obtained by sim-
ply exchanging the role of the two terminals. This strategy allows us to replace
the original bi-dimensional block-component optimization problem by an iter-
ative one-dimensional block-component minimization task for which conclusive
results can be found. The method is summarized in Algorithm B Asin |50,
Th. 9], Algorithm B imposes no restriction on the matrix K; such that, at
each iteration, the overall distortion cannot increase. The algorithm is thus
guaranteed to converge. However, its outcome may not necessarily be a global
minimum of the cost function, but just a stationary point that is either a local
minimum or a saddle point. To illustrate this fact, we will now consider a
simple numerical example.

Example 3.1. Suppose that the source s is a Gaussian random vector with
mean zero and covariance matrix

L op
Rs: )
[p 1]

for some correlation parameter p € (0,1). The observed vectors x; and x5 are
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noisy version of the source, that is
X1 =s8+n; and Xp =s+ny,

where n; is a Gaussian random vector with mean zero and covariance matrix
R, = 0?1, for t = 1,2 with I, the identity matrix of size 2 x 2. The vectors
s, n; and ny are assumed to be independent. Both terminals are required
to provide a one-dimensional approximation of their observation. Since the
performance is invariant under scaling, the transforms applied at the terminals
may be parameterized as

K, = [cosﬁ sinzﬂ and Ky = [cosd) sind)} ,

for some scalar ¥ and ¥. We plot in Figurem the distortion surface obtained
for p = 0.5 and 0 = 1. A top view of a portion of the optimization surface is
depicted in Figure m We observe that the point (g, 1) corresponds to a
local minimum along both (optimization) directions ¥ and v, but only a saddle
point of the overall cost function. Algorithmm will thus stop if it reaches this
point, yielding a suboptimal solution in this case. Probabilistic methods, such
as simulated annealing [84], may be used to increase the probability of reaching
the global optimum. A thorough exposure of such techniques is however beyond
the scope of this work. [J

3.3.2 Compression

Let us now turn our attention to the compression problem. We assume that
the compressed data provided by the second terminal to the decoder is fixed
and that it can be modeled as a sequence of M i.i.d. random vectors. We
represented it using the stacked vector y3! € CMM2 defined as

ol = [y5[0),y3 (1), ...yd (M — 1],

where ya[m] € C™? are Gaussian random vectors with mean zero and covari-
ance matrix Ry,. Moreover, xa[m| are y2[m| are assumed to be jointly Gaus-
sian. The above assumptions are verified, for example, if the second terminal
optimally encodes its sequence disregarding the presence of the first terminal.
The first terminal wants to encode the sequence x}/ using Ry, bits per vector.
We denote by Dy, the minimum achievable MSE distortion in the limit of large
M. The optimal rate-distortion trade-off is given by the remote Wyner-Ziv
rate-distortion function which can be obtained by means of the minimization

task [152, Th. 2]
Dy, = min &{lls = € {slys, y2}°} . (3.7)
Y1€V1

where Y is the set of random vectors y; such that (s,y2) — x; — y1 and

I (x1;y1ly2) < Rn, - (3.8)

The notation x — y — z means that the vectors x, y and z form a Markov
chain, that is, x and z are independent conditionally on y. Under our Gaus-
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Figure 3.2: Distortion surface of Example B with p = 0.5 and o = 1. (a) Cost
function to be minimized. (b) Top-view of a portion of the optimization surface.
The point (Yo, %0) is a local minimum along both the optimization directions ¢
and ¢ (indicated by the horizontal and vertical lines) but only to a saddle point of
the overall cost function.
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sian assumptions, the solution to the above minimization problem evaluates as
follows.

Theorem 3.2. The quadratic remote Wyner-Ziv rate-distortion function for
memoryless jointly Gaussian vector sources is given in parametric form by

N,
D, (0) = tr (Ryja, ) + > min {0, \} (3.9)
k=1
M 1. A
Ry, (0) =) max {o, 5 log, 7’“} , (3.10)
k=1

with 6 € (0, maxy, A, where )\;, denote the N largest eigenvalues of Ry, —
Rz, y,- B, (0) is expressed in bits per vector and Dy, (¢) in MSE per vector.

Proof: See Appendix Bad |
It can be checked that an optimal encoding architecture consists in (i) apply-
ing the local approximation transform A; given by (@) to every vector of the
sequence x1[m] and (ii) encode separately the components of the transformed
sequence in a Wyner-Ziv optimal fashion. In other words, the local approxima-
tion transform allows reducing the remote rate-distortion problem for vector
sources to N separate direct scalar source compression tasks. It thus plays the
same role as the KLT in the centralized coding scenario. The rate allocation
among the components is achieved by means of a reverse water-filling strategy
(see Section E) As a consequence of this fact, the vector y; solution to the
optimization problem (Iﬂ) follows as

yi=Kixi +2z. (3.11)

The matrix K; € CK1*N1 contains the first K; rows of the local approximation
transform A, where K is the largest integer satisfying Ax, > 6. The additive
quantization noise vector z; € €1 is Gaussian, independent from x;, with
mean zero and covariance matrix

MO Aaf Ak, 0
M0 -0 g —0)

R, =diag (

The relation (EI), sometimes referred to as the optimum forward test chan-
nel [29, Sec. 13.3.2], reveals that the vector y; is jointly Gaussian with x;,
hence with x5. With appropriate initialization, the result of Theorem Bd can
thus be used iteratively to obtain Algorithm Bd A few important remarks are
however at hand. First, the update of the second terminal at iteration ¢ should
be such that condition (Iﬁ) remains valid for the first terminal at iteration
i+ 1. A sufficient condition is to check that

I(x1;y1) < Rii +1], (3.12)

that is, without conditioning on y2 as it is the case in (m) If Rq[i + 1] is not
large enough, no update occurs. The same remark applies to terminal 1. It
may hence happen that the rate targeted by the chosen rate schedule cannot be
attained. However, since the rate schedules R;[i] and R[] are nondecreasing
sequences, the solution at iteration i remains in the optimization space at
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Algorithm 3.2: Compression (memoryless vector sources)

Input: Non-decreasing rate schedules Ry[i] with R:[0] = 0 and Ry[i] < Ry, for
t=1,2andi=1,2,...,1.

Output: Forward test channels (K; and R, for t = 1,2) and resulting distor-
tion D.

Procedure:

Set K{” = 01y, and RY = Oy,; for t =1,2.
fori=1,2,...,1 do
fort=1,2 do
if condition (.19) is satisfied then
Compute Kgi) and RZ) from (EI)
end if
end for
Compute D from Theorem B4
end for

return K; = K,g]), R. = Rg) and D = DU for t =1, 2.

iteration ¢ + 1. This guarantees that the overall distortion cannot increase,
hence the local convergence of Algorithm % Also, while the initial assumption
of jointly Gaussian vectors allows us to apply Theorem B4 iteratively, it may
not be the optimal choice. Finally, the forward test channels provided by
the algorithm depend on the chosen rate schedules. In particular, if Ry[1] =
R; and Rs[1] = Ry (one iteration), only one terminal benefits from the data
transmitted by the other terminal, that is, using distributed source coding
principles. Rate schedules with multiple iterations promote more “balanced”
scenarios, as it will be seen in Section

3.4 Local Optimality for Discrete-Time Sources with
Memory

3.4.1 Linear Approximation

In Section E, we addressed the problem of distributed estimation of vector
sources in both the linear approximation and compression frameworks. We
now extend these results to the case of discrete-time sequences by letting the
size of the vectors go to infinity. To this end, we assume that the desired
vector s and observed vectors x; and x5 are of equal length N. In the limit of
large N, these vectors are described by discrete-time sequences s[n], z1[n] and
x2[n], respectively. To obtain conclusive results, we assume that these random
sequences are stationary jointly Gaussian processes with mean zero and power
spectral densities Ps (w), Py, (w) and P, (w), respectively.

Under these asymptotic considerations, let us again adopt a local perspec-
tive to the approximation problem. The first terminal observes the sequence
z1[n] and provides the decoder with a description of size K7 = |an N | with
aq € [0,1], that is, only a fraction «; of transformed coefficients is kept, where
|| denotes the floor operation. It is worth noting that both the size of the
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observed and transformed vectors go to infinity whereas the ratio remains con-
stant and is given byﬂ ay ~ K1 /N. The transformation is achieved by means of
a linear and time-invariant filter k;[n] with transfer function K; (w). By strict
analogy to the vector case, we wish to find the optimal filter k;[n] assuming
that the process provided by the second terminal is fixed and is given by

ya[n] = ka[n] x x2[n],

for some filter ko[n|. Here, * denotes the convolution operator. To this end, let
us define the power spectral density P (w) as

Pr(w) = Pyjy, (W) = Py

|z1,y2 -

We assume the set over which P; (w) is constant to be of measure zero. This
condition ensures the continuity of the limiting eigenvalue distribution p; (u)

given by [59, Cor. 4.1]
1
=— d
P (v) 2m /wGX w,

where X = {w € [0,27] : P1 (w) < u}. We also define the set 4; as
Ay ={wel0,2q]: P (w) >0}, (3.13)

where 6 satisfies p1 () = 1 — ay. The complementary set of A; in [0, 2] is
denoted by A§. Furthermore, we define the process z;[n] as

T1[n] = z1[n] — ha[n] x y2[n],

where the transfer function of hy[n] is given by Hy (w) = Pu,y, (w) P,' (w).
For simplicity, we assume that the involved power spectral densities are non-
zero almost everywhere. Under our asymptotic considerations, the minimum
achievable distortion is computed as

N—o0

Di (1) = lim %DN (K1) | (3.14)

if the limit exists. The distortion Dy (K7) follows from (@) The optimal filter
at the first terminal can be characterized by means of the linear approximation
filter a1[n] whose transfer function A4; (w) is given by

Aq (w) = Psz, (w) P{ll (w) .

Denoting by 14, (w) the indicator function on the set A;, the optimal strategy
can be described as follows.

Theorem 3.3. The transfer function K7 (w) of the optimal filter ki[n| that
retains only a fraction «y of transformed coefficients is obtained as

K1 (W) = A1 () 14, () . (3.15)

IThe notation a3 ~ K1/N means that limy_,o K1/N = .
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The resulting distortion Dy (1) follows as

1
D (a :—/ Py yo (W) dw
1) = o o e (W)
1
+ % Ps|y2 (w) — Ps\xl,yg (w) dw. (316)
weA$
Proof: See Appendix Bad ]

The optimal strategy hence amounts to filtering the process x1[n| by a1[n] and
to bandlimit the result such that the set of retained frequencies A; is of mea-
sure 2may. The choice of these frequencies is given by P; (w) which depends on
the process ya[n] provided by the second terminal. Actually, it is seen in the
proof of Theorem B3 that the term A; (w) is not needed for optimality as it
is assumed to be non-zero almost everywhere. We provide it here by analogy
to the finite dimensional case. Note also that, in a strictly analogous manner
to (@), the distortion given by (IE) is the sum of a first term that is not
influenced by the first terminal, and a second term that amounts to integrating
the frequency components of P; (w) that are below an admissible threshold 6.
The relationship between «; and 6 is given by the limiting eigenvalue distribu-
tion p1 (u). As a; ranges from 0 to 1, § scopes from the essential infimum to
the essential supremum of P; (w) as dictated by the relation

pr(0)=1—ar. (3.17)

This is illustrated in Figure m Analytical computations thus require find-
ing 0 satisfying (E) This is generally difficult. However, if P; (w) is symmet-
ric and monotonic in [0, 7], then a simple geometrical argument reveals that
the set A; in (B13) can be expressed as

Ay =1[0,maq) U (21 — Ty, 27 , (3.18)
if Py (w) is decreasing in [0, 7] (see Figure B3(h)), and
Ai=r(l-—a1),7(1+a)),

if Py (w) is increasing in [0,7]. Interestingly, under these restrictive assump-
tions, the knowledge of the limiting eigenvalue distribution is not required to
compute the distortion. This will greatly simplify the derivation presented in
Section B.A.

As in the vector case, Theorem B3 can be used to describe the optimal
step of the iterative procedure summarized in Algorithm Ba If the assump-
tions of the above theorem are satisfied at initialization, the consecutive steps
simply amount to chose the optimal filters K {i) (w) and KQ(i) (w) as described
by Theorem Bd In this case, the quest for optimality amounts to bandpass
filtering, in turn at each terminal, the observed spectrum with respect to what
is provided by the other terminal. The algorithm thus reduces to a “spectrum
shaping game” whose outcome provides the necessary filters. Similarly to Sec-
tion , it is important to point out that the particular initialization imposed
by Theorem | may lead Algorithm Bd+toa suboptimal solution. The design
of an optimal distributed dimensionality reduction architecture thus remains a
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Pl(w)

Figure 3.3: Integration as a function of the fraction of retained coefficients ;.
(a) Py (w) is arbitrary. (b) P1 (w) is symmetric around 7 and decreasing in [0, 7].
As a7 ranges from 0 to 1, 0 scopes from the essential infimum to the essential
supremum of P; (w) according to the relation p; (8) =1 — «;.

Algorithm 3.3: Linear approximation (discrete-time sources with memory)

Input: A fixed tolerance e, filters Kfo) (w) and KQ((D (w) such that the sets Ay
and A are of measure 2wy and 27as, respectively.

Output: Filters K; (w) and K> (w) and resulting distortion D.

Procedure:

Set . = 1.
while true
for t=1,2 do
Compute Kt(i) (w) from Theorem B.3.
end for
Compute D from Theorem B3
if |D® — D(=V| < ¢ then
return K; (w) = KY) (w), Ko (w) = KQ(Z) (w) and D = D,
end if
Set i =17+ 1.
end while
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challenging task.

3.4.2 Compression

Let us now turn to the compression problem. The first terminal observes the
sequence z1[n] and provides the decoder with a bit stream that appears at
a rate of Ry bits per sample. We assume that the description provided by
the second terminal is fixed and can be modeled as a discrete-time stationary
Gaussian process yo[n] with mean zero and power spectral density P,, (w). As
in the finite dimensional regime, we further assume that xs[n| and ys[n| are
jointly Gaussian. The optimal rate-distortion trade-off is computed as

. 1 ) 1
Dy (0) = ngnoo NDN () and Ry (0) = ngnoo NRN ) , (3.19)
if the limits exist. The terms Dy (A) and Ry (8) follow from (8.d) and B1d),
respectively. These limits can be directly computed from Theorem B.9 and the
Toeplitz distribution theorem [59, Th. 4.2] as follows.

Theorem 3.4. The quadratic remote Wyner-Ziv rate-distortion function for
jointly Gaussian discrete-time sources with memory is given in parametric form

by

1 2
D, (9) - % o PS|l‘17y2 (w) dw
1 2m
+ o min {0, Py, () = Pyjz, y (W)} dw, (3.20)
0
1 2 Ps - Ps x
Ry (0) = ), max{0,10g2 2 () 7 o1,y (w)} dw, (3.21)

with 6 € (0,esssup,, Py, (W) — Pyjz, 4, (w)]. R1(0) is expressed in bits per
sample and D; () in MSE per sample.

Proof: See Appendix BAA. |
In an analogous manner to Theorem m, the allocation of the rate is achieved by
means of a reverse water-filling strategy on the power spectral density P; (w) =
Py, (W) = Pyjz, y, (w). Moreover, the compressed sequence yi[n] provided by
the first terminal is given by

y1[n] = k1[n] *x z1[n] + z1[n] . (3.22)

The filter k;[n] is the optimal filter derived in Theorem B3 where the fraction of
retained coefficients «; is chosen according to (m) The additive quantization
noise z1[n] is a Gaussian random process, independent from 1 [n], with mean
zero and power spectral density

P, (w) - % La, (w) )

where the set A; is defined in (m) For completeness, the iterative procedure
obtained from Theorem B.4 is summarized in Algorithm B4 Note that the
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Algorithm 3.4: Compression (discrete-time sources with memory)

Input: Non-decreasing rate schedules Ry[i] with R:[0] = 0 and R:[i] < R; for
t=1,2andi=1,2,...,1I.

Output: Forward test channels (K; (w) and P, (w) for ¢t = 1,2) and resulting
distortion D.

Procedure:

Set Kt(o) (w) =0 and PZ(?) (w)=0fort=1,2.
fori=1,2,...,1 do
for t =1,2 do
if condition (.1d) is satisfied then
Compute Kt(i) (w) and Pz(f) () from B.23).
end if
end for
Compute D® from Theorem B4
end for

return K; (w) = Kt(l) (w), P, (w) = Pz(t[) (w) and D = DU for t = 1,2.

comments of Section B.3. regarding the choice of appropriate rate schedules
also apply here.

3.5 Case Study: First-order Autoregressive Process

We apply the results obtained previously to a first-order autoregressive process.
Owing to its simplicity, it allows for the derivation of distortion formulas for
different scenarios of interest, in both the linear approximation and compres-
sion framework. More importantly, it is observed that, in this example, the
asymptotic analysis provides an accurate estimation of the distortion incurred
with vectors of small dimension. We then relate these analytical results to the
general two-terminal achievable distortion surface obtained numerically using
the proposed iterative algorithms.

A first-order autoregressive process x[n] is a random process that satisfies
z[n] = paln —1] + z[n],

where z[n] is white Gaussian noise with mean zero and power spectral density
P, (w) =1—p?% and p € (0,1) is a correlation parameterl. We will consider
the case where the first terminal samples the odd coefficients of x[n] and the
second terminal observes the even ones, that is, s[n] = z[n], z1[n] = z[2n + 1]
and x2[n] = x[2n]. The sequences s[n|, z1[n] and x2[n| are stationary random
processes with mean zero and (cross) power spectral densities given by

1=
14 p%—2pcosw’

1—p?
1+ p*—2p2cosw

Py (w) Py (W) = Pr, (@) =

2The case p € (—1,0) follows immediately by considering |p]|.



3.5. Case Study: First-order Autoregressive Process a7

and ,
p(1=p*) (1+e7)
1+ p*—2p2cosw

Pryuy (W) =

This setup could be motivated, for example, by super-resolution imaging prob-
lems [139]. Two sub-sampled versions of the same image are acquired by cheap
sensing devices in order to build a higher resolution image. In this case, corre-
lation (hence stationarity) is considered across space. The analysis of the dis-
tortion in this scenario allows for the computation of the gain achieved when a
low-resolution image is used as perfect side information, that is, when one ter-
minal entirely conveys its observed signal to the decoder. It also gives a useful
characterization of the loss incurred due to the need of interpolating missing
samples, that is, when one terminal does not transmit anything.

3.5.1 Centralized Scenario

We first consider the centralized scenario where the two terminals are allowed
to process their observations jointly.

In the linear approximation framework, the observed process is s[n] and a
fraction « of transformed coefficients is kept. The resulting distortion, denoted
by D. (), can be expressed as follows.

Proposition 3.1. In the centralized scenario, the distortion due to linear ap-
proximation is given by

2 1
D, (a) =1— —arctan (# tan (%)) ,
m -p

where a € [0, 1] denotes the retained fraction of source/observed coefficients.

Proof: See Appendix BAd. |
We plot in Figure m the distortion obtained in Propositionm for different
values of the correlation parameter p. Figure m shows how D, («) is ap-
proximated for p = 0.6 and a block length N = 12. We observe that even for
small values of N, the proposed asymptotic analysis offers a very good approx-
imation of the distortion in the finite dimensional regime. We also compute in
Figure m the approximation error

N—-1
e[N] = % Kz_ IDen (K) = Do (K/N)J?

to quantify the quality of the estimate as a function of the size of the vec-
tors. The observed decay suggests that the results obtained by the asymptotic
analysis approximate accurately the distortion we would compute with a finite
number of measurements. This can be explained by the exponential decay of
the correlation function in this particular example.

In the compression framework, the observed sequence s[n] is represented
using a bit stream that appears at a rate of R bits per sample. The optimal
distortion-rate trade-off in this case, denoted by D. (R), can be characterized
as follows.



48

Chapter 3.

Distortion (MSE/sample)

Approximation error

Distortion (MSE/sample)

o
>
T

o
@
T

o
=
T

o
w
T

)
N
T

o
s
T

o

)

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9

12 T

100

Figure 3.4: Distortion in the centralized scenario due to linear approximation. (a)
D, (&) for p = 0,0.5,0.9 (top to bottom). (b) D, («) (solid) and its approximation
(dashed) for p = 0.6 and a block length N = 12. (c) Approximation error e[N] as
a function of the size of the source vector for p = 0.6.
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Proposition 3.2. In the centralized scenario, the distortion-rate function is
given by
D (R) = (1-p?) 272",

where R > R = log, (1 + p) bits per source/observation sample.

Proof: See Appendix BAd or 12, Ex. 4.5.2.2]. |
When R < R, the function must be left in parameterized form. We plot in
Figure BA the distortion-rate function for different values of the correlation
parameter p. Distortions for rates smaller than R are obtained numerically.

3.5.2 Perfect Side Information Scenario

Let us now consider the case where the first terminal needs to describe the
signal z1[n] and that the process xz3[n| acts as side information, that is, is
perfectly conveyed to the decoder.

In the linear approximation framework, the distortion, denoted by Dj («),
can be computed as follows.

Proposition 3.3. In the perfect side information scenario, the distortion due
to linear approximation is given by
1—p?

Ds(a):m(lfa),

where « € [0, 1] denotes the retained fraction of observed coefficients.

Proof: See Appendix BA |
We depict the distortion Ds () in Figure m It is seen in the proof of
Proposition B3 that the prediction error of the odd coefficients by the even
ones has uncorrelated components, that is, the error process is white. This
explains the linear decrease in distortion. When x5[n| is completely available
at the decoder, the distortion of s[n] is equivalent to that of z;i[n] up to a
scaling factor 1/2. The above distortion is thus half the reconstruction error
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of the process %n] with xo[n] as side information. Also, replacing p by p?
in Proposition allows computing the distortion in the absence of side in-
formation at the decoder. We compare these two scenarios in Figure
We clearly see the decrease in distortion achieved by providing the decoder
with some correlated side information. The exact value can be expressed using
Propositionsm and B.d with the aforementioned modifications. As p — 0, the
processes x1[n] and x2[n] become uncorrelated such that the side information
does not allow for any gain. When p — 1, the correlation among the compo-
nents of x1[n| allows us to perfectly recover the discarded coefficients without
the need for za[n]. Between these two extreme cases, however, a substantial
decrease in distortion is achieved by the use of noisy side information. This is
illustrated in Figure

In the compression framework, the optimal distortion-rate trade-off, de-
noted by Ds (R), is given by the following proposition.

Proposition 3.4. In the perfect side information scenario, the distortion-rate
function is given by
D, (R) = i 9—2R
’ 2(1+p%) " 7
where R > 0 bits per observation sample.

Proof: See Appendix Bad |
Figure B4 depicts the above distortion-rate function for different values of the
correlation parameter p.

3.5.3 Partial Observation Scenario

We treat now the case where the first terminal needs to represent x1[n] tak-
ing into account that the process xs2[n| is completely discarded by the second
terminal, that is, is not observable by the decoder.

In the linear approximation framework, the distortion, denoted by D, (),
is given by the following result.

Proposition 3.5. In the partial observation scenario, the distortion due to
linear approximation is given by

a(l—pQ) 2 14 p? ye’
Dp(a)zl—i—m—;arctan 1 than(7> ,

where « € [0, 1] denotes the retained fraction of observed coefficients.

Proof: See Appendix Bad ]
The distortion obtained in Proposition BA is depicted in Figure m We
also compare in Figure m the distortion obtained with and without hidden
part. We clearly see the increase in distortion incurred by having to reconstruct
the missing information at the decoder. Furthermore, increasing p allows us
to estimate the missing data with increasing accuracy, hence reducing the gap
between the two distortions as shown in Figure . The exact value can be
expressed from Propositionm and by replacing p by p? and normalizing by a
factor 2 the distortion obtained in Proposition %

In the compression framework, the distortion-rate function, denoted by
D, (R), can be evaluated as follows.
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Figure 3.6: Distortion in the perfect side information scenario due to linear ap-
proximation (re-normalized by a factor 1/2). (a) Distortion for p = 0,0.5,0.9 (top
to bottom). (b) Distortion with (solid) and without (dashed) side information for
p = 0.6. (c) Decrease in distortion due to side information as a function of p for
a=0.1.
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Figure 3.7: Distortion rate function in the perfect side information scenario for
p=0,0.5,0.9 (top to bottom).

Proposition 3.6. In the partial observation scenario, the distortion-rate func-
tion is given by

1 p? 1+4p2+p4+(1+p2)\/1+6p2+p42QR>

Do (B) =505 ) <1+ 2

where R > R =1 <1og2 (1 +4p? + p* + (14 p%) /1 +6p% + p4) - 1) bits per
observation sample.

Proof: See Appendix BA1d |
Note again that for rates smaller than R, the function must be left in parametric
form. Figure Bd depicts the above distortion-rate function for different values
of p. Distortions for rates smaller than R are computed numerically.

3.5.4 General Scenario

Let us now consider again the general two-terminal setup.

In the linear approximation framework, assume that terminal ¢ only keeps a
fraction ay of transformed coefficients. We can then conveniently represent the
entire distortion surface as a function of oy and s, both taking values in [0, 1].
This is shown in Figure B.1d for p = 0.4. The inside of the distortion surface is
obtained numerically using Algorithm B with a block length of size N = 20.
This is an achievable performance, but not necessarily an optimal one. The
borders can however be characterized analytically since they correspond to the
distortion obtained for the partial observation scenario (a; = 0 or ag = 0) and
the perfect side information scenario (ay = 1 or g = 1). They respectively
provide a lower bound and an upper bound to the minimum achievable distor-
tion at the point (a, a2). The distortion surface owes its symmetry to the fact
that P, (w) and P,, (w) are equal.

Similarly, Figure B depicts the distortion achieved in the compression
framework as a function of the rates R; and Ry available at the terminals. The
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Figure 3.8: Distortion due to linear approximation in the partial-observation sce-
nario. (a) D, («) for p = 0,0.5,0.9 (top to bottom). (b) Distortion with (dashed)
and without (solid) hidden part for p = 0.6. (c) Increase in distortion due to the
hidden part as a function of p for & = 0.1.
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Figure 3.10: Achievable distortion due to linear approximation in the general
scenario for p = 0.4. The inside of the distortion surface is obtained using Algo-

rithm B and a block length N = 20.
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Figure 3.11: Achievable distortion-rate function in the general scenario for p =
0.4. The inside of the distortion surface is obtained using Algorithm B3 and a
block length N = 20.

inside of the distortion surface is computed numerically using Algorithm B4
The achievable distortion for given rates R; and Ry is computed as the min-
imum obtained over 1000 randomly generated rate schedules of 10 iterations.
The borders correspond to the perfect side information scenario (R; — oo or
Ry — o) and the partial observation scenario (R; = 0 or Rz = 0). Again, it
is important to recall that global optimality is not guaranteed. The distortion
surface depicted in Figure @ is thus achievable but may not be optimal.

3.6 Summary

This chapter investigated the problem of distributed estimation under commu-
nication constraints. We addressed the problem from both a linear approxima-
tion and a compression point of view.

We started our analysis with memoryless vector sources. While the general
solution is deemed intractable, a suboptimal strategy was presented. The ap-
proach consists in optimizing the descriptions provided by the two terminals
in turn, instead of optimizing them jointly. The optimal solution at each step
was derived. In the linear approximation framework, the optimal solution was
referred to as the local approximation transform. Using this transform, the op-
timal strategy in the compression framework was shown to admit a transform
coding interpretation. More precisely, the terminal applies a local approxi-
mation transform to the observed vector signal and then encodes each scalar
transformed sequence separately. Based on this local optimization step, an
iterative algorithm was presented and its optimality properties were discussed.

We then addressed the distributed estimation of discrete-time sources with
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memory under additional stationarity requirements. To this end, we considered
the results obtained for the vector case in the limit of large block lengths.
Similar results were obtained in that regime. In particular, the optimal linear
approximation step was achieved by means of a local approximation filter.
Local optimality in the compression framework was obtained by filtering the
input sequence with the local approximation filter. The frequency components
of the filtered signal were then encoded separately. The corresponding iterative
algorithms were also presented.

Finally, our findings were illustrated with a simple first-order autoregressive
model. We derived distortion formulas for both the linear approximation and
compression frameworks. Achievable distortion surfaces for the two-terminal
scenario were obtained using the proposed iterative algorithms.
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3.A Proofs
3.A.1 Proof of Theorem 3.1

The proof makes use of the following two lemmas.

Lemma 3.1. Let x, y and z be zero-mean jointly Gaussian random vectors.
It holds that
E{xly,z} = E{xly} + & {x|z} ,

where z =z — £ {z]y}.

Proof: We can write

E{xly, z}
(@) 'R, Ryzi y
= [R,y, R..] R R, .
YR, R..] (R, ~R,.R-'RIL)" —R,'R,.R:'|[y
Ty Tz —1pHpP-1 -1
~R;'RIR; R; z
@ (R, Rr,.|[®v' "R RueRIRIR CRJR,LRI Ty
vy sl -R;'RER;! R;! z
=RyyR, 'y + (Re: — Ry R, 'Ry )R (2 - R[LR,'y)
=R.yR, 'y + Ro:R 'z

= E{xly} +E{xz} ,

where (a) follows from the expression of the conditional expectation in the
jointly Gaussian case [106, Sec. IV.B], (b) from the inversion formula of a par-
titioned matrix |69, Sec. 0.7.3] and (c) from that of a small rank adjustment [69,
Sec. 0.7.4]. |

Lemma 3.2. Let x, y and z be zero-mean jointly Gaussian random vectors.
It holds that
R, — Ra:|2 = Ra:|y - Ra:|y,z s

where z =z — £ {z]y}.
Proof: Using Lemma B we can write
E{xlz} = E{xly,z} — E{xly} = (x = E{xly}) - (x = E{xly,z}) . (3.23)

From the definition of the conditional expectation [124, Def. 10.1.2], £ {x|z}
is orthogonal to both y and x — &£ {x|z} (orthogonality principle), hence to
x — & {x|y,z}. It thus holds that

&{(x— & {xly}) (x — € {xly,2})" }
=& {(x—&{xly} - £ {xla}) (x - & {xly,z})""}
=& {(x— £ {xly,2}) (x — £ {xly, 21" } . (3.24)
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From ([B.23) and 3:24) it follows that

R, — Ry: = € {£ {xI2} € {x]2}"" } = Ruyy — Rayy -,

yielding the claimed equality. |

Let us now turn to the proof of Theorem Bl We first find the minimum
achievable distortion (converse) and then show that the proposed transform
achieves it (achievability).

Converse: The MSE can be expressed as

& {lls — & {slyr.y2}I*}
=& {Jls - & (slKix1,y2) | |

L& {lls — & {sber v} + £ {116 {sPxaya) — € {sKaxr. v} 7
D e {lls— & fshxi,ya P + & {I€ fslxi} - & fslkaza P}
e {lls - & {shxr, yad P} + £ L€ {slxi} — £ € fsla} [Kaxa } 1 |
D tr (Ryjo, 4,) + tr (Rer, RZIRI )

ST

—tr (RsilK{{ (K Rz, K)~ Klel) : (3.25)

a

=

where (a) follows from the orthogonality principle, (b) from Lemma E], (c)
from the successive conditioning property (or Tower property) of conditional
expectation [124, Sec. 10.1.2] and (d) from the definition of the Frobenius norm
and the fact that expectation and trace commute. Differentiating the above
expression with respect to Ky yields

)
g € (s — € (sKuxu, v} 1}
-0 tr (KiRI, Rop, KI' (KiRo, KT) )
- aK STy VST
= 2R, KI (KiR;, KJ)~ KlRileflK{{ (KiRs, KI) ™
— 2RH Ry, K (KiR,, KI) 7 (3.26)

where the last equality follows from trace derivative formulas (see, e.g., [66]).
The matrix KiRz, K{' is (Hermitian) positive definite and KiR Rz Ki' is
(Hermitian) nonnegative definite. They can be simultaneously diagonalized by
a non-singular matrix P; € CK1*51 a5 |4]

P{/K,R! R,; K{'P; =D, (3.27)
PPK R;, KI'P, =1, (3.28)
where D; € CK1*%1 ig a diagonal matrix with diagonal elements ji1, pa, . . . , fix,

arranged in decreasing order. Note that the matrix P; is not necessarily uni-
tary. A necessary condition for optimality is obtained by setting the partial

derivative (3.2d) to zero. Using 8.27) and (B.2d) in (B2d) reduces the problem
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to that of finding the matrix Q; € CN1*K1 that satisfies

R; 'R Rz, Qi = QiDy,
where Q; is defined as Q; = K!P;. The above equations are the eigen-
equations for the matrix R;Rﬁé Rsz,. The columns of Q; are thus K
eigenvectors and D; contains the corresponding eigenvalues. Denoting by
K c{1,2,..., N1} the set of K7 chosen indexes, the MSE evaluates as

tr (Rs|l‘17y2) + tr (RSflenggfl) - Z ke -
keK

The above expression is minimized by choosing the K largest eigenvalues, that
is, K = {1,2,...,K1}. The N; eigenvalues uy correspond to the Nj largest
eigenvalues of the matrix stlell RZ ., the P— Nj remaining ones being zero.
Moreover, from Lemma m,

R, R;'RZ

1 STq

=R; — R,z =Ry, — R

slT1,y2 -

The minimum distortion can thus be equivalently expressed as

N,
Dy, (K1) =tr (Rs|x17y2) + Z Ak
k=Ki+1

where A\; denote the N largest eigenvalues of the matrix R - R
arranged in decreasing order.

Achievability: The optimality of the proposed transform is readily assessed
by substituting it in (@) and verifying that it provides the minimum distor-
tion.

Finally note that, in the jointly Gaussian case, Lemma B allows us to
write € {s|K1x1,y2} = € {s|K1X1,y2} such that the availability of yo at the
encoder does not change the MSE. In this case, the optimal transform is still
the same but the transmitted coefficients are different since the transform can

be applied on X; instead of x;.

s|ya2 s|T1,y2

3.A.2 Proof of Theorem

The rate-distortion function has been derived in [152, Th. 2]. Our goal is to
evaluate it under our jointly Gaussian assumption. To this end, we proceed
similarly to |50, Th. 3]. We first establish that no better rate-distortion trade-
off can be hoped for (converse part) and then provide an encoding architecture
that achieves it (achievability part).

Converse: The rate-distortion function follows as [152, Th. 2]

Ry, = min I (xq;
N W (1;Y1|}’2);

where Y1 denotes the set of random vectors such that (s,y2) «— x1 «— y1
and

&{lls - € {slyr.y2H} < D,

It can be easily checked that a lower bound to the above minimization task is
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obtained as
Ry, = min I'(x13y1ly2) ,

Pyqlx1.y2 (Vilu1,va)

and & {Hs - y1|\2} < Dy, where now the minimization is over all conditional

distribution py, |x, .y, (V1|ui, v2). We have that
I'(x1;3y1ly2) = I (X1351]y2) = 1 (E{s[x1};¥1]y2)

where X1 = x1 — E{x1]y2} and y1 = y1 — € {s|]y2}. Moreover, the distortion
can be split as

e{ls—y1I*} @ e {lls - & fsperya} 7} + & {l1€ {shxiv2} =yl
D e {lls - & {slxr v} I} + & {ll€ {slxa} —3)1*} .

where (a) follows from the orthogonality principle and the fact that y; is a
function of x; and ys and (b) from the equality &€ {s|x1,y2} = £ {s|ly2} +
E {s|x1} in the jointly Gaussian case. A lower bound is thus obtained as

Ry, = min I(E{s[x1};¥y1ly2) , (3.29)

Pyylx1,ye (Viui,vz)

such that
e{llgtslxi} —31l*} < Dy, — € {lls = & {sixr,y2} P} -

Since & {s|x1} is independent of y2, the optimal y; does not depend on the
particular value of y3. The conditioning in (m)), can thus be omitted and
the problem reduces to a direct encoding of the source p; = £ {s|x1} whose
covariance matrix can be computed as

R,, = R, — Ry, = Ry, — Rejzrn - (3.30)

sly2

The lower bound thus directly follows from the corresponding rate-distortion
function (see, e.g., [29, Th. 13.3.3]) and yields the claimed formula.

Achievability: Let us consider the following encoding architecture. We first
apply to the vector x; the local approximation transform (Iﬁ) The obtained
vector is then optimally encoded provided that y- is available at the decoder.
Under our jointly Gaussian assumption, the corresponding rate-distortion func-
tion is that of the innovation process

R, R;'x1 — € {Ra, Ry 'x1|y2} = Ras, R; '%1

whose covariance matrix is given by M) The rate achieved by this scheme
hence follows from [29, Th. 13.3.3] and corresponds to R; (). Let us denote
by y1 the vector received at the decoder in this case. By the orthogonality
principle, the distortion achieved by this method can be decomposed as

& {lls = & {slyr. v}
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= &{lls = & {shxry2} P} + & {II€ {shxi, vt — € slynya} ) (331)

Moreover,

(a)
E{sly1,y2} = E{E{slx1,y2} [y1,¥2}

) _
= E{E{slya} [y1,y2} + E{E {s|x1} [y1,¥2}
(é) g{S|y2} +& {R851R511i1|y1ay2} >

where (a) follows from the successive conditioning property of conditional ex-
pectation and the fact that y; is a function of x1, (b) from the fact that
E{slx1,y2} = E{sly2} + £ {s|x1} in the jointly Gaussian case and from the
linearity of conditional expectation and (c) from the successive conditioning
property of conditional expectation and our jointly Gaussian assumption. The
second term in the distortion (IE]) can thus be written as

& {I1€ {slx1, y2} — € {slyr, vz} |
= 5 {HRsflR:gllxl - 5 {Rsi1R51121|y1ay2}H2}
= £ {|[ R Ri )31 — € {Ros R lyn v}

It corresponds to the distortion of the source p; and also follows from [29, Th.
13.3.3]. Using (E), the achieved distortion directly evaluates as Dy, (6),
demonstrating the optimality of the proposed encoding architecture.

3.A.3 Proof of Theorem

The proof consists of two parts. In the first part (converse), we prove that the
minimum achievable distortion is given by (h . In the second part (achiev-
ability), we show that the filtering strategy (Iﬁ) achieves this distortion. Be-
fore we proceed, let us define the function

o (z) = 1 ifz <0,
f o ifz>6.

p[0] p[1] o p[N —1]
~1 0 .. p[N—2
Ty (P) = p[. ] p[.] | pl | ] |
[-N+1] p[-N+2] - p[0]

where P (w) is the discrete-time Fourier transform of the generating sequence
p[n]. We assume that p[n] is absolutely summable such that P (w) exists, is
essentially continuous and bounded [5d, Sec. 4.1]. With these definitions in
mind, we can state the following lemma.

Lemma 3.3. Let Ty (P) be a sequence of Hermitian Toeplitz matrices where



62 Chapter 3.

P (w) is such that the limiting eigenvalue distribution p (u) is continuous. Then,
for any function g (z) continuous on [essinf,, P (w),esssup, P (w)],

1

N
) 1
Jm sy 00w o O = [ 0P (@) o

where Ay ,, denote the eigenvalues of Ty (P) and X = {w € [0,27] : P (w) < 6}.

Proof: Let us first prove the assertion for functions g (x) of the form g (z) = z*,

where k is some non-negative integer. We proceed by induction. For k = 0, we
know that the assertion holds true by |59, Th. 4.1], that is,

1 1
lim — ug (ANn) = —/ dw.
N —oo N r; 27T wEX

Assume it has been proved for £ — 1, we now prove it for k. We first note that
the left hand side of the assertion can be expressed as

1 N
N Z )‘];V,n Ug ()‘N,’ﬂ)

n=1
1 9
= 5 2 ANamin {0, A} = = YA (1= up ()
n=1 n=1
1 & 9 9
= 3 2 AN amin {0 v} = 5 D N 5 D AN e () -
n=1 n=1 n=1

Since min is a continuous function, we can apply the Toeplitz distribution
theorem [59, Th. 4.2] to the first and second summations and our induction
assumption to the third one to obtain

1 N
lim — > A, uo (Ann)

= — P* 1 (w)min {0, P (w)} dw
27 wel0,27]

0
L P (W) dw + = P*1(w) dw
27 Juwelo,2x] 27 Joex

1

2 WEX

P* (w) dw,

which yields the desired result. Since any polynomial in x can be expressed as
a linear combination of monomials % (k > 0), the above argumentation can be
straightforwardly extended to polynomials. Finally, the case of a continuous
function g (x) follows directly by invoking the Stone-Weierstrass theorem [59,
Th. 2.3]. |
Note that Lemmal3.d allows us to carry similar computations on functions with
a finite number of discontinuities by simply isolating the continuous pieces.
Extension to an infinite but countable number of discontinuities may be envi-
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sioned but special care has to be taken with the function g (z) so as to satisfy
Lebesgue’s theorem assumptions |22, Th. 12]. We can now turn to the proof
of the theorem.

Achievability: The optimal finite dimensional distortion Dy (K1) is com-
puted from Theorem B as

N—|a1N]
Dy (Kl) =tr (TN (Psll’lyyz)) + Z )\N’n’

where Ay ,, denote the eigenvalues of T n (P;) arranged in increasing order with
Py (w) = Py, (W) = Pyjg, y, (w). The first term of Dy (ay) directly follows from
the limit ) and the Toeplitz distribution theorem [59, Th. 4.2] as

. 1 1
m N (T (Pafrsa)) = 27 /u;€[0,27r] Pt e () do.

Now using Lemma m, we have that

Py ( = s\yQ w) - SIml Y2 (W)

(
(w) 5|m1(
:Psa’cl(w)Pi-l (w) P, (w) -

STy

The second term thus follows from the fact that

N*LDQNJ 1 N
A}gnoo N 7; AN = ngnoo N ; AN o (ANn)
1
= o7 weAs PS|y2 (w) - Pl‘l,y2 (W) dwv

where 6 is chosen such that the fraction of eigenvalues smaller than 6 is equal
to 1 — ay, that is, such that p; (§) = 1 — ;. The last equality follows from
Lemma B with g (z) = 2 and A; = {w € [0,27]: P, (w) > 6}.

Converse: The distortion can be expressed as

& {lstn) = s[nll1*} = & {lsfn] — € {s[nllya ], yaln) 1}

1
=— P, (W) dw
27 w€el0,27] iy
1 1
= 27T e, Ps\y17y2 (w) dw + % e As Ps|y17y2 (w) dw .

We now distinguish two cases:

1. When w € A;, K; (w) # 0 is non-zero almost everywhere since we as-
sumed that the involved power spectral densities are non-zero almost ev-
erywhere. Thus Py, (w) = Pz, (w) almost everywhere, where Z;[n] =
x1[n] = ha[n] * ya[n] with Hy (w) = Py,y, (w) Py, (w). Tt follows directly
from Lemma B4 that Py, ,, (w) = Py, (w) + Pyjy, (w) — Ps (w) almost

everywhere. We thus have Py, ., (w) = Pz, 4, (w) almost everywhere.
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2. When w € Af, K; (w) =0 and Py, 4, (w) = Pyjy, (w).

We can thus write

. 1 1
£ {||5[n] - s[n]HQ} =5 /EA Py (@) dw + o~ /EAc Py, (w) dw

™

1
= — P, w) dw
27 w€[0,27] 192 ( )

1
+ % PSIyz (w) — Ps\zl,yz (w) dw,
™ weAS

which proves the achievability, hence the theorem. The term Psz, (w) Py, (w)
in K (w) is not needed for optimality since it is assumed to be non-zero al-
most everywhere. This solution is however provided by analogy to the finite
dimensional case.

3.A.4 Proof of Theorem 3.4

By assumption, the covariance matrices Ry, and Ry, ,, are of Toeplitz form
with power spectral density Py, (w) and Py, ,, (w), respectively. It thus
follows directly from Theorem and the Toeplitz distribution theorem [59,
Th. 4.2] that the limits ([B19) evaluate as

Dy (0) = lim %DN (9)

N—o0

N
| 1 .
lim Ntr (TN (P5\117y2)) + N n§:1: min {9’ )\N,n}

1 2

Py ; Pyjzy s (W) dw

1 27 )
+ 2—/ r111r1{t9,Ps|y2 (w) — Pz, ys (w)} dw
™ Jo
and

R; (0) = lim %RN 9)

N —o0

1 & 1. A
. N,
i 2 max {o.grom 50}

P8|y2 (w) — Ps\xl,yz (w) } dw
9 )

1
747'('0

27
max {0, log,

where Ay, denote the eigenvalues of the matrix Ty (P (w)), where P; (w) =
Pyy, (W) = Pyjz, 4, (w). The distortion-rate function is parameterized with 6 €
(0, esssup,, P1 (w)].

3.A.5 Proof of Proposition 3.1]

The distortion in the centralized scenario can be computed using Theorem B3
assuming that s[n] = z1[n] and 2z3[n] = 0. We can readily check that P (w)
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is positive, symmetric and decreasing in [0,7]. The distortion can thus be
expressed using M) and known integration formulas |56, p. 181] as

1
D(a):% B P, (w) dw
weAY

1 2 2T —Ta 1
= P / dw
27 Jra 1+ p%2 —2pcosw

2 1
1 — —arctan (—+ i tan (E))
m 1—0p 2

and the proof follows.

3.A.6 Proof of Proposition

The centralized scenario amounts to considering z1[n] = s[n| and yz[n| = 0.
Let us define 0 as

_ 1— p? 1—
6 = min P; (w) = min p = P
w w 1+4p2—2pcosw 1+p

For 0 < 6 < 8, the distortion (8.d) satisfies D, (6) = 6 and the rate (B.1d)
evaluates as

1 [ P,
R.(0) = ), max {O,log2 S;w)} dw
1 2 _ p2
=— 1
4 Jo 8277 p? —2pcosw

1
dw — 3 log, 0

1 1
= 5 logy (1-p?) — 5 logy 0,

where the last equality follows from known integration formulas |56, p. 560].
Combining D, (f) and R. () yields the desired result. The rate R simply
follows as R = R (0). For § > 6 (or R < R), the rate-distortion function must
be left in parametric form since, in this case, no analytical solution of R, (6)
seems to exist.

3.A.7 Proof of Proposition

The distortion in the perfect side information scenario can be obtained by
setting yo = x5 in Theorem B Lets? = [xlT,XQT], we have that Rz, =

Rs|a:1,a:2 = 02N><2N and

R _ |:RC61|Q22 ON><N:| )
sl Onxn Onxn

Thus, the N largest eigenvalues of Ry, are those of R,,|5,, the N remaining
ones being zero. The matrix R, |;, can be computed as

R3:1|3:2 = Rfl - Rl’ll’zR;lRH

2 T1T2
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) 1_p2 1_p2
_ 2
_dlag(l—p,l 2 TE )

that is, the non-zero eigenvalues Ay, of Ry, are all given by (1 — p2) / (1 + p2)
except the maximum one which is equal to 1 — p?. Since the distortion is not
affected by the change of a finite number of eigenvalues, it can be computed
from ) as

| N=K
D;(a) = lim — Z AN.n
N—oco 2N 1
_ - (| K
1—p?
_ 1—
2(1+p2)( @)

where a ~ K/N.

3.A.8 Proof of Proposition 3.4

Let us consider the (cross) covariance matrices derived in the proof of Propo-
sition B.d and define

_ ) 1_p2 1_p2
0= min Py o, () =min 05 = =5

For 0 < 6 < 0, the limits (@) can be computed from Theorem Bd as

D, (0) = lim D, n (6)

N
= lim —me{@ AN}
=1

{ "1+ p? }

where Ay, denote the eigenvalues of the covariance matrix R, |z,. Similarly,

:_9,
2

R, () = lim R, (0)

N —o0

\
|
—
)
0
no
)

Combining D; (6) and R, (6) yields the desired result. Note that the considered
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range for 6 allows obtaining any rate R > 0.

3.A.9 Proof of Proposition

The distortion in the partial observation scenario is obtained by setting y» as
the all-zero vector in Theorem B.1. In this case, we have

Ra: T ONXN
Rs‘ml,?ﬂ = RS|931 = |:ON2><]\1/' ONXN:|

where s” = [XIT,XTf . Since Rz, = Ry, |a,, the distortion corresponding to

the first term in ) is equal to the distortion of the perfect side information
scenario with a = 0, that is,

)
DY (@) = . (0) = 57

The distortion corresponding to the second term can be obtained by noticing
that
R

Rijory, = Rs — Ry,

= R(ml,ﬁm) - R($11$2)|1‘1

R, B
— [RHI ]Rzll [Rz; Rayas] -

T1T2

slya

For conforming matrices, we have that det (AB +1I) = det (BA +I), where
det () denotes the determinant. Thus, for A # 0, we can write

det (RS|@/2 - RS|$17@/2 - )‘I2N)

R, _
= det <[RH1 ] R, [Re;, Ruya] — /\12N>

T1T2

_ R,,
= det <Rx11 R:, Raya) {R; ] — AIN)
r1X2

=det (Ry, + R, 'Ry, RE . — AIy) .

1 xr1T2

Hence, the N largest eigenvalues Ay, of Ry, — Ryjs, ., are those of Ry =
R., —l—R;llemt2 Rflw, the NV remaining ones being zero. The matrix R;, with

eigenvalues Ay, is easily seen to be asymptotically equivalent to the Toeplitz
matrix Ty (P1) with Py (w) defined as

Py (w) =Py, (w) + Patjl (w) Py o, (w) PCCI{CCQ (w)

(1—p?) (1+4p% + p* + 2p? cosw)
(1+p?) (L +p* —2p*cosw)

We can readily check that P; (w) is positive, symmetric and decreasing in [0, 7].
The distortion corresponding to the second term of the distortion in m) can
thus be evaluated using Lemma E, the integration range M) and integration
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formulas from [56, p. 181] as

1
® (o) = lim ——
P = i gk 3 hns
n=1
L Py (o) dw
= — 1 \W
4m weAS
B 1 2r—Ta (1_p2) (1+4p2+p4—|—2p2COSW)d
B P R g Ve
1—a)(1-p?) 2 14 p?
:17wf_arctan +P tan(ﬂ) )
2(1+p?) m 1—p? 2

where oo ~ K/N. The result follows by adding Dz(,l) (o) and D](f) ().

3.A.10 Proof of Proposition

Similarly to the proof of Proposition @, the first term in the distortion (@)
is equal to the distortion of the perfect side information scenario with R = 0,
that is,

DY) (R) = D, (0) = 7

The second term in the distortion as well as the rate (Eb can be computed
exactly when 0 < 6 < @ with 0 defined as

6 = min P; (w)
. (1= p?) (1+4p% + p* + 2p? cosw)
= min
wo (1+p%) (14 p* —2p? cosw)
_ 1=/
=157

where P; (w) is the power spectral density defined in the proof of Proposi-
tion BA. Using the Toeplitz distribution theorem [59, Th. 4.2], we can write

N
1
2 . .
Dz(> ) (9) = A}nn IN T;:lmm {0, \nn}

1 2

= ; min {6, P (w)} dw

1
=3 0,
where Ay, are the eigenvalues of the covariance matrix R;. Similarly, using
the integration range m) and integration formulas from [5€, p. 560], we
obtain

Ry ()



3.A. Proofs 69

1 & 1. A
. N,n
= Z&ﬂoﬁng_lmax{O,alogQ 7 L}

= — 27rmax 0 1log (17/)2) (1+4p2+p4+2p2cosw) dw
27 Jo "2 7% 91+ p2) (14 p* —2p2cosw)

1-p?) (L+4p% +pY)  (1-p%) V/1+6p2 +p*
110g2<( p?) (L +40° +p")  (1=07) +6p+p>_%10g29.

1

2 2(1+ p?%) 2

Combining D,()I) (9), D,(,2) () and R, (0) yields the desired result. The rate
R simply follows as R = R, (f). For § > 6 (or R < R), the distortion-
rate function must be left in parametric form since, in this case, no analytical
expression of D), () and R, (¢) seems to exist.
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Chapter 4

Gain-rate Optimality

4.1 Introduction

We now focus on the problem of binaural hearing aids stated in Section %
Our goal is to compute monaural and binaural gain-rate functions for a sim-
ple acoustic scenario. We then wish to compare these results with gain-rate
functions obtained using data measured in a realistic acoustic environment.
In Section m, we reformulate the quadratic remote Wyner-Ziv rate-distortion

function derived in Theorem B4 to take into account a weighted MSE criterion
and multiple input channels. As the optimal encoding architecture requires
knowledge of statistics that are difficult to compute in a practical setting, we
also investigate the optimality of an encoding strategy that does not take into
account the side information available at the decoder. In Section E, we then
consider a very simple acoustic model for which monaural gain-rate functions
can be derived explicitly. In Section m, we present a similar analysis for the
binaural scenario. Binaural gain-rate functions are derived and optimal rate
allocation strategies are obtained. In Section m, we explore various features
of the considered rate-constrained binaural noise reduction system by means
of gain-rate functions obtained numerically. For this purpose, we use audio
signals recorded using a behind-the-ear hearing aid in a reverberant acoustic
environment. The chapter is summarized in Section @

4.2 Coding Strategies

Optimal encoding strategies for the remote Wyner-Ziv problem will be referred
to as side information aware (SIA) since they require the knowledge of statistics
that involve the side information which is only available at the decoder. These
statistics may not be computable in practice due to the distributed nature of
the communication setup. Moreover, SIA schemes resort to coding techniques
(see, e.g., [108]), which often increase significantly the complexity of either the
transmitter or the receiver. In a context where low latency and reduced power
consumption are of prime interest at both ends of the communication medium,
it is worth quantifying the loss incurred by a suboptimal but simpler wireless
communication architecture. To this end, we consider the scenario where the
data is encoded in a rate-distortion optimal fashion for a decoder that does not

71
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R
s1[n] ~“ WA xa[n] == Enc 2 3 Dec 1 51[n]
x1[n]

(a)

Ry
52[n] MM\ Xo[n| == Enc 2 Dec 0 —>|Dec 1 —> 51[n]

X1 [n}
(b)

Figure 4.1: Block diagram of the two considered coding strategies. (a) SIA
coding. (b) SIU coding.

have access to the side information. This second class of encoding strategies will
be referred to as side information unaware (SIU) since the correlation between
the observed signal and the side information does not need to be known at the
encoder.

4.2.1 Side Information Aware Coding

Let us first reformulate the quadratic remote Wyner-Ziv rate-distortion func-
tion derived in Theorem B4 to take into account a weighted MSE criterion and
multiple microphone inputs. As depicted in Figure , the encoder now
observes the vector signal x3[n] corresponding to the remote source s1[n] and
outputs a bit stream that appears at a rate of Ry bits per sample. Recall that,
in the considered signal model (@), the desired source s1[n] corresponds to the
speech component of the reference microphone, that is, s1[n] = 2§ g[n]. Based
on the received data and the side information x;[n], the decoder computes a
reconstruction $;[n| with weighted MSE [12, Sec. 4.5.4]

1

Dy = —
! 21

2
|1 p ) do. (1.1)
where A (w) is the transfer function of the weighting filter a[n] and e;[n] is the
reconstruction error process defined as

e1[n] = s1[n] — §1[n].
The optimal rate-distortion trade-off follows directly from Theorem 3.4 by con-
sidering vector sequences and an additional weighting operator. For further
reference, we record the following theorem.

Theorem 4.1. The optimal rate-distortion trade-off with SIA coding is given
in parametric form by

2 2
R, (0) = ﬁ ; max {0,10g2 W} dw , (4.2)
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D) =5 [ A Pajors () do (4.3
+ %/0 Wmin{@, 1A (w)]? Py (w)} dw (4.4)

where Py (w) = Py |2, (W) = Ps,j2) 2, (W) and 0 € (0,esssup,, |A (W) Py (w)).
R; (0) is expressed in bits per sample and D; (f) in MSE per sample.

As mentioned in Section m, an optimal encoding architecture amounts to
first estimating the remote source s1[n] as if the innovation process Xa[n] were
available at the encoder (estimation stage), that is, by passing x2[n] through
the multichannel Wiener filter with transfer function ®;,z, (w) @3, (w). This
estimate is then optimally encoded taking into account the presence of the side
information at the decoder (coding stage).

4.2.2 Side Information Unaware Coding

We now consider the coding setup illustrated in Figure m The transmitter
encodes its observation x3[n| in a rate-distortion optimal fashion for a decoder
that does not have access to x1[n]. The decoded signal is then provided to
the decoder with side information in order to reconstruct the remote source
s1[n]. Furthermore, the encoder assumes that the process to be estimated at
the other end is sa[n] = x5 4[n], that is, the speech component of its own
reference microphone. It thus optimizes its coding strategy accordingly. The
use of the remote source sa[n] in place of s1[n] avoids the need, at the encoder,
for statistics involving the side information. In this scenario, the encoding
strategy reduces to that of a remote source coding problem with a weighted
MSE criterion [12, Sec. 4.5.4]. The optimal rate-distortion trade-off under
these conditions is given by the following theorem. The normalized frequency
w is omitted for conciseness.

Theorem 4.2. The optimal rate-distortion trade-off with SIU coding is given
in parametric form by

1 [ A’ P
R1(9):E/0 max{0,10g2| |9 l}dw,

1 (2" P, o180 |
Dy(0)=5 [ AP PSI—‘ T ot Py dw
T Jo | P, Py P

S22

1 27 ‘@813;2(1,;21(I,H ‘2

o - 2222 min {9, |A|2P1} dw
T Jo ‘(1)521‘2(1,;2 (I’g:cz‘
1 2

~5r | AP [@e — @rmax {0,141 P -0} |

. [@m — @, max{(), A]> Py — 9}} B

. [@Sm — &, max {0, A2 Py — 9}} ",
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where P, = P, — P;

2|w2)
—1H —1H
@ _ (1,811‘2@932 @5212@821‘2@12 (1,11:62
1= 2
|A[" P}
and 1eH 1eH
@ o ¢x1x2@1~2 @823;2@32;82@3)2 @1‘11‘2
2 — ’

|A” PP

with 6 € (0, esssup,, |A|*> P1]. Ry () is expressed in bits per sample and Dy (6)
in MSE per sample.

Proof: See Appendix LA |
It is important to emphasize that the function D; (R1) described in parametric
form by Theorem is not the result of a variational problem as stated for
example in [12, Sec. 2.3]. In particular, it is decreasing but is not necessarily
convex. Strictly speaking, we cannot refer to it as a rate-distortion function
but more as the optimal rate-distortion trade-off for a particular class of coding
strategies. For simplicity of exposure, we however adopt the same notation in
Theorems i1 and g,

With the SIU scheme, the encoder first computes a weighted MSE estimate
of the remote source s2[n| using xa[n] (estimation stage) and then encodes it
(coding stage). The method is suboptimal in the sense that (i) the remote
source does not correspond to the desired source at hearing aid 1 and (ii) the
redundancy between x;[n| and x2[n| is not taken into account at the coding
stage. It was shown in [37] that, under the considered signal model, the loss
incurred at the estimation stage is zero if x3[n] is of dimension one (no di-
mensionality reduction), or if the power spectral density matrix ®,s (w) of the
binaural speech component x*[n] is of rank one, and that the cross correlation
between x7[n] and x5 [n] is zero. Therefore, the difference between SIA and
SIU coding may not necessarily vanish at high rate. To resolve this asymptotic
mismatch, one may combine the estimation stage of the SIA scheme and the
coding stage of the SIU scheme. In this case, statistics involving the side in-
formation are required for the design of the appropriate multichannel Wiener
filter at the encoder. In a bidirectional communication setup, however, an al-
ternating optimization scheme devised by Doclo et al. [31] allows to alleviate
this problem. This will be discussed in more detail in Chapter B

4.3 Monaural Gain-rate Trade-offs

Let us apply the optimal rate-distortion trade-offs of Section [ to the problem
of binaural noise reduction. We adopt the perspective of hearing aid 1, as
depicted in Figure m, and compute the monaural gain-rate function (IE) for
the two coding strategies developed previously. To this end, we consider a
very simple scenario which, far from being realistic, allows us to derive explicit
formulas which have many of the features of the gain-rate functions computed
numerically in a realistic environment (see Section m) It hence provides
useful insights about the trade-offs inherent to the problem of rate-constrained
binaural noise reduction.
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z1,0[n] z1,1[n] T2 ,0[n] 22,1[n]
| [ |
| [ |
| [ |
| [ |
| [ |
| o Enc 2 |
| | |
| | |
| Rl [ |
[ Dec 1 (I [
| [ |
| % [ |
| [ |
| [ |
§1[n]

Figure 4.2: Monaural communication setup from the perspective of hearing aid 1
with L1 = Lo = 2 microphones.

Let us consider the simplified scenario which solely consists of a speech
source surrounded by ambient noise. We assume omnidirectional microphones,
neglect the head-shadow effect and work under the far-field assumption. The
distortion criterion is the MSE, that is, we set A (w) = 1in (E]) Furthermore,
the speech and noise sources have flat power spectral densities. The speech and
noise power spectral density matrices of the signals recorded at hearing aid 1
can thus be expressed as

P,: (w) = ang (w)H (w) and P, (W) = ozllLl ,

respectively. The quantities o2 and 072“ respectively correspond to the variances
of the speech and noise sources. The SNR is denoted by ;. The vector
H; (w) € C** contains the acoustic transfer functions from the speech source
to the microphones and, under our far-field assumption, is given by

H; (w) = [e*j“’AO, eI e*j“’ALlfl}T ,

where A; denotes the propagation delay from the source to the Ith microphone
(I1=0,1,...,Ly — 1). With these definitions, P;,|,, (w) can be computed as

Psl\zl (w) = Ps1 (w) - (1,81581 (w) (I,z_ll (w) @H (w)

S1T1
—1
=02 — ot HY (w) [02H; (w)H{ (w) + 02 I1,]  H; (w)
W o214+ HY (0)H, ()]

b _
© o214 Lyy) (4.5)

1

where (a) follows from the matrix inversion lemma |69, Sec. 0.7.4] and (b) from
the fact that Hi' (w) Hy (w) = Ly. Similarly, P, s, +, (w) can be computed as

Psl\:cl,:cz (w) = 052» (1+Lim + L272)71 ) (4.6)
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where 2 denotes the SNR at the microphones of hearing aid 2. Using the
power spectral densities (£3) and ([.d) in Theorem K1 yields

2L1Lomiye Lo~y
D\ (R,) = —Zs 12 1 202 9-2Ri) g >0, (4
1 (B 14+ Liy1 + Loy + 14+ Limn or f 20 (47)

The monaural gain-rate function with SIA coding follows by evaluating the
gain-rate function (ﬂ) using the distortion-rate function (ﬁ; We find

1+ L L L -t
G (Ry) = — - TLL 272 <1 + +221271 2231> for B > 0. (4.8)

The gain-rate function obtained with the SIU coding scheme can be obtained
similarly. Using Theorem m, we obtain

w 2 1+ L
D" (Ry) = = {1+ RLAL

-1
-1

= 1+ Loy, 272 ] for Ry > 0. (4.9

Lim Lim ( 27 ) ! (4.9)

The monaural gain-rate function with SIU coding follows by evaluating the
gain-rate function (@) using the optimal distortion-rate trade-off (@) We
find

L 1+ L -
G (Ry) = Hﬁ% JLZT (14 Loy 2 2R) ™" for Ry > 0. (4.10)
To get some insights about the gain provided by the wireless link as a func-
tion of the communication bitrate, let us consider the case where the hearing
aids are both equipped with L = 2 microphones with equal SNR ~. We com-
pare, in Figure m, the gain achieved by the two coding schemes for different
signal-to-noise ratios. At 20 dB (see Figure M), we observe that the SIU
coding strategy may lead to a significant loss, in terms of noise reduction capa-
bility, in comparison to the SIA scheme. However, as the input SNR decreases
(see Figures K.3(h) and K.3(c)), the spatial correlation between the recorded
signals decreases significantly and the gap between the SIA and SIU curves
vanishes for all rates. Using the gain-rate functions (@) and (E), a simple
optimization reveals that the maximum loss evaluates as

. Gi” (B) _ 2Ly+1)(Ly+1) (4.11)

BGY (R (D VITFT)T

and is attained at

arg max w = 110g2 (1 + Ly + 1) bits/sample . (4.12)
Ry Glu (Rl) 2

The maximum loss (mb is plotted as a function of the input SNR in Figure 4.
The result suggests that the use of STA coding strategies is uninteresting in very
noisy scenarios.

In Figure m, we plot the noise reduction gain provided by the wireless link
as a function of the communication bitrate and the input SNR. The following
remarks are at hand. At high rates, both gain-rate functions remain bounded
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Figure 4.3: Monaural gain-rate functions with SIA coding (solid) and SIU coding
(dashed) for different input signal-to-noise ratios. (a) 20 dB. (b) 10 dB. (c) 0 dB.
We observe that the gain achieved by taking into account the side information may
be significant at high SNR but vanishes in very noisy scenarios.
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Maximum loss (dB)

Figure 4.4: Maximum loss incurred by the SIU coding strategy over the SIA
scheme as a function of the input SNR. We observe that in a highly noisy environ-
ment, the gain provided by the SIA approach is rather negligible.

and correspond to the gain obtained when there is no rate constraint. At high
SNR, this gain approaches 101og;, (2) dB where the factor 2 relates to the fact
that the wireless link allows doubling the number of available microphones. We
also notice that, in this scenario, the results depend neither on the actual po-
sition of the source nor on the geometrical properties of the hearing aid setup.
This results from the far-field assumption and the fact that the noise is un-
correlated across microphones. While the function gain-rate function with STA
coding is strictly increasing in both R; and ~y, the gain-rate function with SIU
coding behaves slightly differently. It is strictly increasing in R; but, for any
communication bitrate, there exists a finite SNR which provides maximum gain
(see Figure M) This fact may be explained by the following observation.
As the SNR increases, the availability of signals recorded from both hearing
aids permits a better estimation of the desired source. However, the observed
signals also become more correlated. In the scenario where the side informa-
tion is neglected at the encoder, the communication resources are thus used to
transmit redundant information, hence preventing significant noise reduction.
The observed “optimum” follows from these two opposite behaviors.

4.4 Binaural Gain-rate Trade-offs

Let us now turn our attention to the binaural setup depicted in Figure ld A
natural question that arises in this context is that of the optimal rate allocation
between the two hearing instruments. More precisely, assume that you are
given a total bit budget of R bits per sample, how should this be allocated to
R; and Rs to minimize the sum distortion D = Dy 4+ D2, hence maximizing
the binaural gain G (R) given by (mﬁ To this end, observe that the setup
depicted in Figure corresponds to two separate source coding problems.
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Figure 4.5: Gain provided by the wireless communication link as a function of
the communication bitrate and the input SNR with (a) SIA coding and (b) SIU
coding. We observe that the gain-rate function in (a) is strictly increasing in both
the rate and SNR while, in case (b), there exists a finite input SNR which provides
maximum gain.
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Figure 4.6: Binaural communication setup with L1 = Lo = 2 microphones.

The optimal distortion-rate trade-off can thus be obtained as

D (R) = min D (Rl) + Dy (RQ) s
R1,R2 (413)
st. Ri+R;<R and Ry,Ry;>0.

We consider the simple scenario studied in Section [1.3 as a means to obtain a
closed-form solution to the above minimization task and to provide the optimal
policy for rate allocation between the two hearing aids. In the sequel, we
assume, without loss of generality, that v; > ~s.

Let us first consider the SIA coding scheme. In this case, the minimization
problem (E) can be restated as

@ (R — m;
D' (R) Igl’llg;f(RhRﬂ,

st. gk (R1,Re) <0 fork=1,2,3,

with f, gz : R? — R defined by

f (Ry, Ro) = D" (R1) + D§" (Ry)
g1(Ri,Re) =R+ R — R,

92 (R1,R2) = —R; and

g3 (R1, Ry) = —Ra,

where Di“) (R1) and Déa) (R,) are computed from ({2). Since the functions
f and g are convex and differentiable on IR2, the optimal solution (R;, Rz)
follows from the Karush-Kuhn-Tucker conditions [19, Sec. 5.5.3]. We obtain

(4.14)

R 1(R—R) if R>R®,
e otherwise,
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and
Ro=R— Ry, (4.15)

where the threshold rate is given by

_ _ 1 L L 1
R@ = g= Lo, Ln(Lim 1)

. 4.16
2 %% Lyys (Loya + 1) (4.16)

The binaural gain-rate function G(®) (R) follows by substituting the optimal
distortion-rate trade-off

D (R) =D\ (Ry) + D5” (Ry) ,
computed using @), (m) and (E) into the definition (m) We find

-1

2L 5 _
QP+__&LTw%> if R> R@,
G(a) (R) _ L171 +1 1
Livi+ Ly +1 Loy ~2(R-R) - .
Cr |1+ 2 th ,
1 [ Lo+ 1 T 1 otherwise

where the constant C7 is defined as

Lavys Livi+Laye +1

Cr=1+
! Ly +1 Loy +1

Let us now consider the SIU coding scheme. In this case, the minimiza-
tion problem (m) cannot be solved using the Karush-Kuhn-Tucker conditions
since the optimal distortion-rate trade-offs given by (@) are not necessarily
convex. However, they are strictly decreasing. The inequality R; + Ry < R is
thus active at the optimum, otherwise we can always increase R; or R and
lower the distortion. The optimization task (E) thus reduces to

D™ (R) = min D" (R1) + D5 (R~ R) ,
1
st. 0 S R1 S R.

A tedious but relatively straightforward functional analysis reveals that the
optimal solution (R1, R2) is given by

1 o1 1 — Cp2~ (BHE _
il _ _ = i > R(w)
Ry = 2 (R R) 2 lo 2 1— 022—(R—R if B> R ’ (417)
0 otherwise,
and
Ro=R— Ry, (4.18)

where R is given by (E), the constant Cs is defined as

- LiLavivye
2 - - . + . 4 b
Livyr + Laye +1
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and the threshold rate is expressed as

R™ = max< 0, R + log, Cat 14+,/1- &22_2}? . (419
2 (Cy +1)

The binaural gain-rate function G (R) follows by substituting the optimal
distortion-rate trade-off

D™ (R) = D" (Ry) + DY (Ry)

computed using (£d), @13) and @18) into the definition [.3). We find
2
272R _ i
C
1 27
(L Loyo)2 2 — 2/ —2f =
[( 171 + Lavy2) s s

[1 N Liyi + 1]
Loys 41
14 (L4 Lyiy1) (1 + Ly 2728)
(14 L1yt + Loye) (1 + C2 272E)

Cs (L1y1 + Laya + 2)

if R> R,

G™ (R) =

] -1 otherwise,

where the constant C3 is defined as

L1L2’Y1’72
(Limi + 1) (Lay2 + 1)

Cs =

In Figure m, we plot an example of binaural gain-rate function for
1 = 10 dB and 72 = 0 dB when both hearing aids are equipped with L = 2
microphones. The corresponding rate allocation is depicted in Figure
The rate allocation strategies derived above suggest that the hearing device
with smaller SNR does not transmit any data unless the total available bitrate
is larger than a given threshold. Below this rate, the noisiest device benefits
exclusively from the available bandwidth. At equal SNR, the threshold rate
of the STA coding scheme @) is equal to zero. In other words, the commu-
nication link is evenly shared between the two hearing aids for all rates. By
contrast, the threshold rate with SIU coding (@) reduces to

_ L2’y2
R™ = max {0,log, C2} = max {0, log, m} ,

such that it is greater than zero for large enough SNR. Below this threshold
rate, the communication bandwidth is fully allocated to one hearing aid. In
this case, it can be checked that the hearing device benefiting from the wireless
link can be chosen arbitrarily, as expected from the symmetry of the problem.
Figure [d depicts the percentage of the total bitrate benefiting to hearing aid
1 for different input signal-to-noise ratios. With SIU coding at equal SNR, we
observe a sharp transition between two policies, namely unidirectional commu-
nication and equal rate allocation. We also note that the SIU threshold rate is
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Figure 4.7: Binaural communication using SIA coding (solid) and SIU coding
(dashed). (a) Binaural gain-rate functions. (b) Percentage of the total bitrate
benefitting to hearing aid 1. Here, v = 10 dB and v, = 0 dB. We observe that,
for small enough rates, the noisiest device benefits exclusively from the wireless
link.

larger than that of the SIA coding scheme.

4.5 Simulation Results

We present numerical results obtained from acoustic data recorded in a realistic
environment. The recording setup is described along with the considered distor-
tion measure. Different noise configurations are then simulated as a means to
quantify the real benefit of STA coding over SIU coding in a practical scenario.
We also explore the gain provided by the increased spatial extent enabled by
the wireless link. Finally, we discuss optimal rate allocation strategies.

4.5.1 Setup

Two hearing aids, each equipped with 2 omnidirectional microphones at a dis-
tance of approximately 1 cm, have been mounted on a dummy head in a room
with reverberation time |97, Sec. 9.5] Tgo &~ 120 ms. The head-related trans-
fer functions (HRTF) for the 4 microphones have been measured every 15° in
the horizontal plane for a loudspeaker at a distance of 1 m. The angles are
measured clockwise and the zero angle corresponds to the front. The sam-
pling frequency is set to 20.48 kHz. The acoustic scene is synthesized using
the measured HRTFs. The speech component in (@) corresponds to a single
speech source at 0°, that is, it is obtained as the convolution of a speech sig-
nal with the corresponding head-related impulse response (HRIR). The noise
component consists of a stationary white Gaussian ambient noise along with
one or more interfering point sources of equal power at different azimuths. The
power spectral density of the speech component is estimated using 3 seconds
of a sentence of the HINT database [98]. The power spectral density of the
interferers are each computed using a 3 second segment of multi-talker bab-
ble noise available in the NOISEX-92 database [14(0]. The HINT database is
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Figure 4.8: Percentage of the total bitrate benefiting to hearing aid 1 with SIA
coding (solid) and SIU coding (dashed). The different sets of curves correspond
to (y1,72) € {(10,10), (20,10), (40,10), (60,10)} dB (left to right). We observe
that the threshold rate for SIU coding is larger than that for SIA coding.

commonly used for speech intelligibility studies and the NOISEX-92 database
contains excerpts from various realistic noisy environments. The power of the
involved sources is adjusted such as to meet a desired (broadband) SNR of 0
dB at the front microphone of hearing aid 1.

To assess the noise reduction improvement provided by collaborating hear-
ing aids, the transfer function A (w) used in the weighted MSE (1) expresses
the relative importance of the frequency w for speech intelligibility, as defined
in [1]. Note also that, unless otherwise stated, the results presented in this
section are computed from the perspective of hearing aid 1.

4.5.2 Coding Strategies

Figure ld depicts the monaural gain-rate functions for a single interfering
source at 90°. In this scenario, the estimation stage of the SIU encoder is
strictly suboptimal compared to that of the SIA encoder (more than one mi-
crophone and correlated noises between the hearing aids). The loss incurred by
the SIU scheme is thus significant, in particular in the high-rate regime. Note
that the use of the SIA estimation stage would remedy this asymptotic mis-
match. As the number of interfering sources increases, however, the correlation
between the signals recorded at the hearing aids decreases. Figure b1d plots
the maximum loss (EI) over all rates for different noise configurations. We
observe that the performance gap between the two coding strategies is reduced
significantly, corroborating the analytical results obtained for the simple acous-
tic model analyzed in Section [Ld. While SIA coding strategies may provide
large gains in simple acoustic environments, their use is rather questionable in
more noisy scenarios, for example, a discussion in a very crowded room.
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Figure 4.9: Monaural gain-rate functions with SIA coding (solid) and SIU coding
(dashed) in the presence of one interferer at 90°.

Maximum loss (dB)

Number of interferers

Figure 4.10: Maximum loss incurred by the SIU coding strategy over the SIA
scheme as a function of the number of interfering point sources. The first interferer
is positioned at 30° and the subsequent ones every 30° clockwise. The SNR is kept
fixed for all configurations. We observe that the loss associated with the use of
the SIU scheme is negligible in a very noisy environment.
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Figure 4.11: Comparison of the gains obtained for a monaural (dashed) and
binaural (solid) microphone configuration with one interferer at 15°. The coding
scheme is (a) SIA and (b) SIU. In the monaural case, we use two microphones
of the same hearing device; there is no rate constraint. In the binaural case, we
use the first microphone of each hearing aid. We observe that the use of binaural
signals provide large beamforming gains.

4.5.3 Spatial Extent

The use of a wireless link allows combining signals from microphones that to-
gether form an array with greater spatial extent, enabling better beamforming
resolution. To illustrate this fact, Figure 11 depicts the monaural gain-rate
functions obtained using the first microphone of each hearing device (binau-
ral configuration), typically 20 cm apart. We compare these gains with that
achieved using the two microphones directly embedded in hearing aid 1 (monau-
ral configuration). We observe that, for large enough communication rates, sig-
nificant gains can be achieved by exploiting the inter-aural distance. At very
low bitrates, however, the quality of the transmitted signal is not sufficient for
the binaural configuration to compete with the monaural one, since the latter
does not undergo any communication rate constraints. Note that, more gen-
erally, the beamforming capability of the system can be evaluated by means
of its directivity pattern; the system is optimized for a specific acoustic sce-
nario and the response to a monochromatic source is computed for all possible
propagating directions. In the considered rate-constrained setup, however, the
computation of such a directivity pattern would require to derive the distortion
achieved when the input statistics differ from those used to design the asso-
ciated encoding and decoding algorithms. Hence, the optimal rate-distortion
trade-offs derived in Section @ cannot be used for this purpose.

4.5.4 Rate Allocation

As already mentioned previously, the rate-constrained binaural noise reduction
problem raises two important questions related to the allocation of the available
communication resources. In a binaural setup, how should the total bitrate be
shared between the two hearing devices? How should then each hearing aid
allocate its own resources across the signal bandwidth?
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Figure 4.12: Rate allocation with one interferer at 90° using SIA coding (solid)
and SIU coding (dashed). (a) Percentage of the total bitrate benefiting to hearing
aid 1. Hearing aid 1 is subject to less disturbances and thus benefits of less
communication resources. (b) Power spectral densities used for the reverse water-
filling allocation strategy.

The first issue was addressed in Section B4 in a simple, yet insightful,
scenario. The intuition is that the hearing device that undergoes the strongest
disturbances benefits from the total available bitrate up to a certain threshold
above which the communication resources start being shared. Figure m
depicts the rate allocation in the case of an interfering point source at 90°.
Owing to the head-shadow effect, the right hearing aid experiences more noise
than the left device. This fact is even more apparent in acoustic environment
with low reverberation, such as the one considered here. As it can be observed,
the percentage of the total available bitrate benefiting to the left hearing aid
remains null up to the threshold rate R ~ 0.1 kb/s with SIA coding, and
R ~ 6 kb/s with SIU coding. The rate allocation strategy thus exhibits a
behavior similar to that of the scenario analyzed in Section for which the
optimal rule has been derived.

The second issue pertains to the allocation of the bitrate across the fre-
quency support of the transmitted signal, at one hearing device. The optimal
strategy directly follows from Theorems m and . which suggest to allocate
the available bitrate according to the reverse water-filling principle (see Sec-
tion m), that is, such that the frequency bands with higher energy are allocated
more bitrate. For illustration purpose, we plot in Figure mythe one-sided
power spectral densities used at hearing aid 1 for rate allocation with SIA and
SIU coding in the presence of a single interferer at 45°. In this example, the fre-
quency band with center frequency 700 Hz is significant for the rate allocation
with STA coding, while it has little importance in the SIU scheme.

4.6 Summary

The fundamental trade-off between communication bitrate and binaural noise
reduction was investigated. We considered two coding strategies: the first one
assumes that statistics involving the side information can be computed at the
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encoder. The second one does not take into account this side information. The
optimal rate-distortion trade-offs under these assumptions were derived for a
multi-microphone setting and a weighted MSE criterion.

We then applied these results to the computation of gain-rate functions.
We considered a very simple model which allowed us to derive explicit formu-
las and explore the main features of the considered rate-constrained binaural
noise reduction system. We first computed monaural gain-rate functions. The
main differences between the two coding methods were investigated. We then
derived optimal binaural gain-rate trade-offs. A particular emphasis was put on
the problem of rate allocation between the hearing aids. We showed that, as in-
tuition suggests, the hearing device experiencing more noise benefits from more
communication bandwidth. However, while the resources are evenly shared at
equal signal-to-noise ratios with STA coding, this is not necessarily true with
SIU coding. In fact, for low enough bitrates, only one device may benefit from
the wireless link.

We then explored various characteristics of the problem using experimental
data. In particular, we studied the increase of spatial resolution enabled by a
microphone array with greater spatial extent. More importantly, we showed
that the insights gained from the simple acoustic model are corroborated with
measurements done in a realistic acoustic environment.
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Figure 4.13: System describing the optimal reconstruction in the remote source
coding problem. The dashed rectangle indicates the optimum forward test channel.

4.A Proofs

4.A.1 Proof of Theorem

The optimal encoding strategy reduces to that of a remote source coding prob-
lem. The rate Rq (0) hence directly follows from the remote rate-distortion
function in [12, Sec. 4.5.4]. Moreover, the signal reconstructed at the decoder
DEC 0 (see Figureg), denoted by $3[n], can be described by the system
depicted in Figure . The observed process x2[n| is first passed through a
linear and time-invariant multichannel filter g;[n] with transfer function

Gy (w) =P, (w) o) (w) )

x2

to obtain a process whose power spectral density is given by

P (w) = PS21 (w) - Ps21|1‘2 (w) = (1)52112 (w) (I)z_; (w) (ﬁH (w) .

$21T2

We then add an independent Gaussian noise z1[n] with mean zero and power
spectral density

P,, (w) = max {0 6P () }
1 AW P W) =0 )

where 6 € (0, esssup,, |A (w)|* Py (w)]. Finally, the resulting spectrum is ban-
dlimited by the filter hq[n] with frequency response

A @)[° P (w) 9} |
A W) Py (w)

H; (w) = max {0,

The filter hi[n] is tantamount to an ideal bandlimiting filter with frequency
support

{w A W) P (w) > 9}

whose output, denoted by r[n], is passed through the Wiener filter imple-
menting the optimum MSE decoding rule §2[n] = & {s2[n]|r[n]}. Since xi[n]
is available at the decoder DEC 1, and that we are interested in s;1[n] and
not in sqo[n], the optimum MSE estimation rule may be replaced by §1[n] =
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E {s1[n]|r[n],x1[n]}. The resulting weighted MSE can thus be expressed as

1 27

— AW)*P
2 Jy | (w)| s1|ryz1 (W) dw

1 27
|A (W)|2 PS1\T (w) dw

1 27 9 "

-1

“a ), [A ()" sz, (W) Rz, (W) By g, (W) duw, (4.20)

where X1 [n] = x1[n]—& {x1[n]|[n]}. The first term in ([@.2d) corresponds to the

error made in a remote setup where no side information is available. The second

term is the gain provided by the availability of x;[n] for the reconstruction.

Evaluating the power spectral densities involved in ) immediately yields
the claimed distortion formula.



Chapter 5

Multichannel Filtering in the
Weighted Overlap-Add
Domain

5.1 Introduction

A key building block of the distributed coding architectures described in Chap-
ter Eyis a multichannel Wiener filter (MWF). Tt is applied at each hearing aid
to produce the loudspeaker output as well as to compute the signal transmit-
ted over the wireless link. For complexity reasons, filtering is often performed
using frequency-domain operations. The signals are analyzed with a filter bank
and linearly combined in the transformed domain. The time-domain output
is then synthesized. While modification occurs in the frequency domain, it
must be kept in mind that the MSE reconstruction error is evaluated using the
time-domain signals provided to the ears, that is, using a time-domain MSE
criterion.

We counsider a weighted overlap-add (WOLA) filter bank, which allows for
an efficient realization of a DFT filter bank, and investigate optimal filtering
strategies that account for the modifications introduced by the WOLA struc-
ture. In Section E, we first study monaural filtering, namely filtering that
occurs at each hearing device to produce the loudspeaker output. Three op-
timization schemes are proposed and their complexity is discussed. Recursive
algorithms to compute the filter weights are described. Section B3 then ad-
dresses binaural filtering, where the signals transmitted over the wireless link
must also be computed. We comment on practical implementation issues that
arise with this binaural configuration. Section 4 presents simulation results
to evaluate the performance of the considered optimization methods and Sec-
tion B4 summarizes the chapter.

5.2 Monaural Filtering

Let us first consider the multichannel filter that operates on the input signals in
order to produce the loudspeaker output. We describe the processing architec-

91



92 Chapter 5.
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Figure 5.1: Block diagram of the monaural WOLA filtering architecture. The
time and frame indexes are omitted for conciseness.

ture and define a frequency-domain optimality criterion. As the corresponding
optimization problem appears untractable, we derive three suboptimal solu-
tions along with the associated recursive algorithms. We finally discuss some
practical considerations related to delay and computational complexity.

5.2.1 Processing Architecture
Overview

Let us consider again the signal model ). We denote by 2[n] the discrete-
time signal at the Ith input channel. For ease of notation, the index of the
hearing aid is omitted. These inputs can be microphone recordings or signals
received from the wireless link. As this chapter specifically addresses the es-
timation part of the distributed source coding problem, we will assume the
communication bitrate to be high enough such as to neglect the quantization
noise added to the signals transmitted over the communication link. In this
case, we decompose the input signals into uncorrelated speech and noise com-
ponents as
xyn] = zf[n] + 2f'ln] forl=0,1,...,L—1.

Recall that our goal is to estimate the speech component of the reference mi-
crophone (microphone 0). It can be easily shown that, under a MSE criterion,
we can equivalently estimate the noise component of the reference signal and
subtract it from the original signal as

&5ln] = woln] — &5 In]. (5.1)

From an implementation point of view, this has the advantage to provide the
loudspeaker with the original (unprocessed) signal if the multichannel filtering
module fails, or is simply inactive. The algorithm proceeds as illustrated by the
block diagram in Figure E.1. Each input sequence x;[n] is first passed through
the analysis part of a WOLA filter bank with K channels to obtain the short-
time Fourier sequences Z; y[m] for k = 0,1,...,K — 1. The index m denotes
the frame index. These sequences are then put into a multichannel Wiener
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Figure 5.2: Block-by-block interpretation of the WOLA filter bank. (a) Analysis
part. (b) Synthesis part.

filter which computes an estimate ng[m] of the noise present in the reference
signal Z ;[m]. This estimate is passéd through the synthesis part of a WOLA
filter bank to obtain the signal Z{}[n]. The latter is finally subtracted from the
reference signal to produce the loudspeaker output (H)

To get some insights into the optimization problem at hand, let us assume
that the first N coefficients of zi}[n] are non-zero and denote by x2 € C¥ the

vector
xg = [z§[0], 2§ [1], 2 [N — 1]]" .

Let Z2 € CMK be the corresponding vector of transformed (or filter bank)
coeflicients

T
Zy = [Z&O[o],...,zg,(,l[o],...,ngo[M— ,..., 28 g 1M — 1]" .

The vectors x2 € CV and Zg € CKM are defined similarly. Under appropriate
conditions, the WOLA filter bank implements a tight frame expansion [93, Sec.

5.2] such that
n o2 n 7n 2
&{ kg - %31 }ce{HzOzO‘ } (5.2)

for some constant C' > 0. Provided that we have access to the entire input
sequence, mean square optimality in the time domain can thus be guaranteed
in the transformed domain using a standard Wiener approach. In practice,
however, coefficients are only observed on a frame-by-frame basis. In this case,
an equality of the form ) no longer holds since some of the coefficients
are not taken into account. Our goal is thus to provide mean square optimal
strategies at this frame level. To this end, we will express the sequence x{}[n]
using frequency domain operations, define a frame-based optimality criterion
and investigate various filtering architectures. Before we proceed let us first
describe in more detail the WOLA analysis and synthesis blocks as well as the
multichannel Wiener filter.

Weighted Overlap-Add Filter Bank

A WOLA filter bank is based on a block-by-block interpretation of a DFT filter
bank. As depicted in Figure m, it can be divided into two main parts: the
analysis part and the synthesis part. The analysis part maps a discrete-time
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input signal z[n] into a short-time Fourier transform representation Zj[m)].
The synthesis part reconstructs a discrete-time output signal #[n]| from input
sequences Z[m]. The filter bank is said to be perfect reconstruction if #[n] is
equal to x[n] when no processing occurs in the transformed domairﬂ, that is,
when Zp[m] = Zg[m] for all k € {0,1,..., K —1}. Let us now describe each
part in detail.

The analysis part consists of the following operations. First, the sample-
based input sequence z[n] is converted to a frame-based sequence by grouping
K consecutive samples with a K — S sample overlap, such that the frame
y[m] € CX can be written in vector form as

y[m] = [z[mS], z[mS +1],...,z[mS + K —1]]" .

The value S corresponds to the shift, in samples, from one frame to the next. In
the sequel, we assume that K is a multiple of S. Every frame is then multiplied
by an analysis window g[n] of size K with coefficients ¢[0], g[1],...,g[K — 1]
such that the windowed frame z[m] € C¥ can be expressed as

z[m] = Dyy[m],

where Dy € CHE>K denotes the diagonal matrix whose diagonal elements are
given by g¢[0],g[1]...,g[K —1]. A DFT is applied to the result yielding the
short-time Fourier representation

Zim] = [Zo[m], Z1[m), . .., Zg_1[m]]" = Fz[m],
where F € CE*EK denotes the DFT matrix.

The synthesis part can be described as follows. The input frame

. . . . T
Z[m] = ZO[m]a Zl[m]a ) ZKfl[m]
is first converted to time domain as
z2lm] = F~'Z[m],
and a synthesis window h[n] of size K with coefficients h[0], A[1],..., h[K — 1]
is applied to obtain
y[m] = Dpz[m]. (5.3)

For each index n, the value of the discrete-time output sequence Z[n] is obtained
by adding the contribution of K /S overlapping frames as (backward formula)
K/S—1

il = ) wysysees Y0/ —dl, (5-4)
q=0

IMore generally, the filter bank is said to be perfect reconstruction if the output is a
delayed version of the input. Our mathematical derivation assumes noncausal filters, such
that this delay can be set to zero.
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or equivalently (forward formula)

K/S—1

ln] = Z W s (ks 1)s—qs I [[0/S] = (K/S=1)+4q,  (5.5)
q=0

where u; € R¥ denotes the kth canonical vector, that is, with a one at position
k and zero elsewhere. If k is outside the range {0,1,..., K — 1}, uy simply
corresponds to the all-zero vector. The index |n/S]| — (K/S — 1) is that of the
first frame that contributes to the output at index n. The overlap-add formula
(@) reveals that, once the first frame has been computed, the next K/S —1
frames must also be available to output the value Z[n]. In a practical (causal)
implementation, the delay required to output the first value that contributes
to the reconstruction of z[n] is S — 1. The overall delay of the WOLA filter
bank when no processing occurs in the transformed domain is thus S — 1 +
(K/S—1)S =K — 1 samples.

It should be noted that, in the above WOLA implementation, the length of
the analysis and synthesis windows is at the maximum equal to the size K of the
DFT. A more general structure can be obtained by relaxing this constraint but
the computational complexity of the corresponding analysis/synthesis block is
larger. The interested reader is referred to [30, Sec. 7.2.5] for a more general
treatment of the WOLA filter bank and its implementation.

Multichannel Wiener Filtering

Let us now describe the multichannel filtering block in Figure B Let
Zi[m] = (Zio[m], Zialm],. .., Zixa[m]]”

denote the vector input sequence at the [th channel. The filtering operation
aims at providing an estimate

N “ N N T
Zim] = | Ziolm), Zgalml, . 2o [m]

of the noise present in the reference signal Zg[m]. To this end, the L input
channels are linearly combined as

L—1
=0

where W;[m] € CX corresponds to the frequency-domain coefficients of the
filter applied at channel [ and frame m, and Dz, [m] € CKX*X is the diagonal
matrix with diagonal elements Z; o[m], Z;1[m], ..., Z; k—1[m]. Observe that
the matrix multiplications in ) are equivalent to circular convolutions in
the time domain, that is,
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where ® denotes the circular convolution operator and w;[m] the time-domain
filter coeflicients. For convenience, we rewrite the sum in (ﬂ) with matrix

operations as .
Zi[m] = Bz[m]W[m], (5.7)

where Bz [m] € CK*EK and W[m] € CLK are defined as
BZ[m] = [DZO [m]a DZl [m]v ceey DZL—l [m” (58)

and
T

Wim] = [W¢ [m], Wi [m],...,W[_;[m]]",
respectively. It is important to emphasize that the above filtering architec-
ture implicitly assumes that the (frequency) components of the input sequence
Zi|m] are uncorrelated and can thus be processed separately. This assump-
tion is in general violated owing to the correlation introduced by the analysis
part of the WOLA filter bank. A more general structure can be obtained by
considering general matrices (as opposed to diagonal ones) in the linear com-
bination (ﬁ) The derivation of optimal filtering strategies and associated
recursive algorithms in this context follows along the same line as that of the
diagonal case and is thus omitted. Mean square optimal estimation using a
general transform matrix is discussed in Appendix A

Loudspeaker Output

The derivation of the WOLA filter bank and the multichannel filter allows us
to express the loudspeaker output signal as

Z5[n] = xo[n] — &5[n], (5.9)
where the noise estimate Zj[n] is given by

g [n]
@ K/ZS:O_ T ssies 0 1/S]—d
p
o K/Zsjo_l ?_ | s is1as Dn2l [In/S] —d]
p
- K/XS;)I U (n/s)stqs DhFZG [(n/S] — d]
p
<2 K/i:_lurTan/SJSJrqs D, F~'Bz[[n/S| — g W[[n/S] —dl,
=0

where (a) follows from the overlap-add formula (5.4), (b) from the windowing
operation in (), and (c) from the multichannel filtering formula (5.d). From
the properties of the DFT, it holds that

1
D,F ! = EF*CH, (5.10)
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where Cy € CK>*K denotes the circulant matrix whose first column is given
by H[0], H[1],..., H[K — 1], namely, the DFT coefficients of the synthesis win-
dow h[n]. Equation (5.10) simply means that windowing in the time domain
corresponds to filtering in the frequency domain. The noise estimate can thus
be expressed as

K/S—1
ig[n]z% S ul | sisias FICuB[ln/S] — Win/S| —ql. (5.11)

5.2.2 Frame-Based Optimality Criterion

We wish to define a frame-based optimality criterion for the optimization of
the filter coefficients. To this end, we first rewrite the overlap-add formula in
block-form. Let p = [(n —mS) /S| and consider the indexes n € {mS, mS +
1,...,mS+ S —1}. Using ), it holds that

zg(n]
| K/so

K Z uz—(mﬂ)—q)s F~'CyBz[m +p—qWlm+p—q|
q=0

(@ 1 K/S—1-p

a —

T K Wy (g5 ' CuBz[m — g W[m — g

q=—p

o 1 K/5-1

- K Z ug—mSJrqs F'CyBz[m — ¢W[m — ¢,
g=—K/S+1

where (a) follows from a change of variable and (b) from the definition of the
canonical vector uy and the fact that n € {mS,mS+1,..., mS+ S —1}. We
now define the matrix U € RX*X that contains ones on its first upper diagonal
and zero elsewhere. The matrix U simply upshifts a post-multiplied vector by
one element and replaces the last element by zero. The matrix power U?% hence
performs a gS-element upshift (¢ > 0). Similarly, the matrix U” downshifts
the vector by one element and U?%7T by ¢S elements (¢ > 0). For notational
convenience, we define the matrix U, € REXK a5

U forg>0and
U, = .
U' for g <0,

such that the block signal X} [m] can be expressed as

2 [m] = [#2[mS], #2[mS +1],...,28[mS + K —1]]"
1 K/S—1
=% Z Ul;llSF*lCHBZ[m —q|W[m —q].
g=—K/S+1

The index ¢ allows ranging over the frames that overlap with frame m, namely
the K/S — 1 previous and K/S — 1 subsequent ones. In each term of the sum,
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the matrix Ullq‘s only retains the coeflicients that contribute to the current
frame. Let us define the matrix V € CE*E ag

V,=FU,F '
It holds that Vllq'S = FUL,q'SF’1 such that the above reconstruction formula

can be rewritten as

K/S—1
xpm)=—F1 > VHSCyBz[m - qW[m - q].
q=—K/S+1

The noise estimate x{j[m| can be further decomposed into the contributions of
the noise and speech components of the input signals as

K/S—1
1
Kgiml = =P > VHSCyBfm— g Wim— g
qg=—K/S+1
) K/S—1
+ EF_l Z thlqlsCHBZs[m—q]W[m—q]7
g=—K/S+1

where the matrices Bzn[m] and Bz:[m| are defined similarly as in (@) This
allows us to write the loudspeaker output (@) in block-form as

x5[m] = xo[m] — X{[m]
= xg[m| + xg[m] — xg[m]
= xg[m| + e"[m] — e’[m], (5.12)
where we define
" m]
1 K/S—1
=xi[m] — EF_I Z V(‘Iq‘SCHBZn[qu]W[qu]
qg=—K/S+1
1 K/S—1
_ EF_I Z V(\Iq\SCH (Zglm — q] — Bzn[m — ¢JW[m — ¢q]) and
qg=—K/S+1
e’[m]
1 K/S—1
= ?F’l Z Vllq‘SCHBZs[m*Q]W[m*Q]-
qg=—K/S+1

The second equality in e€”[m] follows from the assumption that the WOLA
filter bank is perfect reconstruction, that is,

1 K/S—1
x0[m] = EF—1 > VliScyZim - q.
q=—K/S+1
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The sequence e™[m] represents the residual noise and the quantity e*[m] can be
interpreted as a linear speech distortion. They both affect the original speech
component x§[m] in an additive manner, as shown in the decomposition (5.13).
The ultimate goal of the multichannel Wiener filter is to limit both e™[m] and
e*[m]. The MSE distortion amounts to minimizing the sum of these two terms.
In the sequel, we use a slightly more general approach which consists to weight
these two terms unequally [34, 49]. More precisely, we define the time-domain
cost as a weighted sum of the mean squared residual noise and the mean squared
speech distortion, that is,

1
V@I
where the second equality follows from the assumption that the speech and
noise components are uncorrelated. The parameter p allows trading off noise
reduction and speech distortion [34,42]. If u = 1, the MSE criterion is obtained.
If 1 < 1 speech distortion is reduced at the expense of increased residual noise.
On the other hand, if 4 > 1, residual noise is decreased at the expense of
additional speech distortion. Informal listening experiments suggest that u
can be typically chosen around 2 without any perceptible speech artifacts. An
important observation is that the above criterion assumes that all the input
signals can be written as the sum of uncorrelated speech and noise components.
This is generally not the case with coarsely quantized signals (obtained from
the wireless link) since the added quantization noise typically depends on both
the signal and noise components. This assumption can however be used as an
approximation.

Since processing is done in the frequency domain, we will find it more
convenient to express the errors signals in the frequency domain as

E"[m]
=Fe"[m]
K/S-1
1
== . Vi¥Cu(Z{lm—q ~Bz:m—qgWlm—q). (513)
qg=—K/S+1
E*[m]
=Fe’[m)]
K/S-1
1
== > VESCyBgm - qW[m - q, (5.14)
qg=—K/S+1

and to minimize the frequency-domain cost function

) = € {E"H B ]} + . € {E*H m]E? ]}
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_¢ { (E”[m] + % Es[m])H (E”[m] + % Es[m]) }
zg{HE"[m]—i—\/LﬁEs[m] 2}. (5.15)

Since FF = K, we have that J;[m] = K J;[m] and the two optimization prob-
lems are equivalent. Unfortunately, finding the optimal weights that minimize
the cost function J¢[m] is a tedious task. This is mainly due to the inter-frame
dependency introduced by the synthesis part of the WOLA filter bank and
mathematically represented by the sum in the error signals (E) and (@)
We thus resort to suboptimal strategies for which conclusive results can be
found.

5.2.3 Suboptimal Strategies

We present three suboptimal solutions to the general optimization problem
formalized previously. The first one (and the simplest one), referred to as non-
weighted optimization, disregards the effect of the WOLA filter bank. The sec-
ond one takes into account the fact that the output frame is further multiplied
by a synthesis window. We refer to it as weighted optimization. Finally, the
third method is an attempt to take the complete synthesis part of the WOLA
filter bank into account by means of an iterative procedure. It is therefore
referred to as iterative optimization.

Non-Weighted Optimization

The non-weighted optimization scheme considers the error between the input
and output signals as observed at the input and output of the multichannel
Wiener filter. It is suboptimal in the sense that it disregards both the window-
ing and the overlap-add procedure of the WOLA filter bank. In this case, the

error signals (.13) and (5.14) reduce to
Nwm] = Zgm] — Bza[m]W[m], (5.16)
Exw[m] = Bz:[m]W[m], (5.17)

and the corresponding cost function M), denoted by J¢ nw[m], is given by
1 2
Jrnwim] =€ {Hzg[m] - (an [m] + \/_l_l By [m]) W (m] } .
The weights that minimize the above cost function are the well-known Wiener
coefficients given by (see Appendix m)

Wyw([m] = [5 {Bgn[m]BZn[m]}+%8{Bgs[m]st[m]}]_ L (5.18)

- E{B [m)Zg[m]}
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Weighted Optimization

The weighted optimization scheme takes into account the windowing opera-
tion applied in the synthesis part of the WOLA filter bank. Intuitively, the
synthesis window weights the output frame such that the residual error is less
harmful when the weights are close to zero. Taking this fact into account in
the optimization problem leads to better results. In this case, the error signals

(E1d) and (E14) reduce to
By [m] = = Cor (Z§m] — B [m]Wim)) (5.19)

Ej [m] = %CHBZS [m]Wm], (5.20)

and the corresponding cost function (E), denoted by Jy w[m], is given by
Spwtn) = € || Lzt - i (Bl + = Bfon)) Wi
- n | — s | m .
fwlm K H xH Bz N z
The optimal solution follows directly from the non-weighted case by simply

replacing Bzn[m], Bzs[m] and Zg[m] by (1/K)CugBzn[m], (1/K) CyByzs[m]
and (1/K) CyZj[m], respectively. We obtain

Wiy [m] {E{B m]|CHCyByn[m]} + — €{BH< |CHCrBz:[m ]}}_

- £{B%.[m|ClCxZj[m]}

Iterative Optimization

The overlap-add stage in the synthesis part of the WOLA filter bank intro-
duces a strong dependency between adjacent frames, such that the weights for
each frame cannot be optimized separately anymore but the weights for all
frames must be optimized jointly. Even if one has access to the entire frame
sequence in advance, the optimal solution remains untractable. Similarly to
the terminal-by-terminal perspective considered in Chapter H in the context
of distributed estimation, a possible suboptimal approach is to optimize the
weights on a frame-by-frame basis. In turn, we find the optimal solution at one
frame assuming all else is fixed. In this case, the error signals (m) and (Im)
can be expressed as

nlm] = Z2[m] — %CHBZW (] Wm], (5.21)
s 1
flm] = ECHBZ‘S [m]Wm], (5.22)

where we define

Zy[m] = Zg[m]
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K/S—1

1 1
% Z VL‘”SCH (an[mq]Jr—BZs[mq]) Wim —¢l.
qg=—K/S+1 \//7
q#0

The corresponding cost function (E), denoted by Jy r[m], is given by
7 1im] = £ 4 |720m] — L6 (Bnpm] + L By ) Wil

fIim| = 0 x| Bz N zs .

The solution to this optimization problem is the same as that of the weighted

case except that the desired signal (1/K)CgZg[m] must be replaced by the

residual estimation error Z{[m], that is, the part of Z{[m] that has not yet
been estimated using the adjacent frames. The optimal solution is thus

W;m] = {5 {BZ.[m]CECyBz[m]} + %5 {BY.[m]C{{CyBz:- [m]}] )

. K& {BY, m]CHZ;(m]}
(5.23)

The iterative method then amounts to passing through all the frames in a given
order (possibly multiple times) and to update the weights according to (Iﬁ)
Since at each step the previous solution lies in the current optimization space,
the cost function (IE) cannot increase and the iterative procedure is guaran-
teed to converge to a stationary point, which can be either a local minimum
or a saddle point. While global convergence cannot be guaranteed, it is clear
that the iterative method outperforms the two other schemes since its starting
point can be set as the solution of the weighted optimization problem.

In practice, this method is unfortunately not applicable since it relies on the
entire frame sequence. A possible alternative is to resort to a causal version of
the above algorithm where the previous K/S — 1 weights are known and the
next K/S — 1 ones are set to zero. In this case, the considered residual noise
can be expressed as

Zg[m]
K/S—1
= Zy[m] — % Z V‘|1‘1|SCH (an[m —ql+ #st[m — q]) Wim —¢],

(5.24)

and the optimal solution follows directly from (m) The current weights are
thus optimized to estimate most of the residual error using the current frame,
disregarding the fact that some of this error will be estimated using the next
K/S — 1 frames. Many other variations are of course possible. With this
causality constraint, however, the iterative approach cannot be guaranteed to
improve upon the weighted optimization.
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5.2.4 Recursive Algorithms

We derive recursive algorithms for computing the weights of each of the three
optimization methods described in Section E%a

Non-Weighted Optimization

The statistical quantities involved in the computation of the weights (IE) are
estimated using exponentially weighted time averages as

E{BZ.[mBzn[m]} ~ Qi [m]
= (1= 2 \""BL[i]B2[]

— AQRy [m — 1]+ (1 — N) BY. [m]Ba [m].

€ {BZ.[mBz:[m]} ~ Qxw[m]
=1 =X A"TBL[i|Bz-[i]
=0
= AQw[m — 1] + (1 = A) B, [m|Bz:[m]

and

& {BY.[mlZg m]} ~ anw m]
— (1- N Y A" BLLZ]
=0
= Aawwlm — 1] + (1 - X) B, [m]Z [m]

where QR;y[m] and Q% [m] are the estimated correlation matrices, and the
vector qnw [m] is the estimated cross correlation. The parameter A (0 < A < 1)
is an exponential forgetting factor. Along the lines of |36, Sec. 3.3], an update
equation for the weights can be found by enforcing M) at frames m and
m — 1 using the above estimates. We can write

WNw[m]
I 1. 171

= |QNwlm] + m Qywlml|  anw(m]
- 1 _—

= |QRwlm| + M Qivwlml|  [Maxw[m —1]+ (1 = \) BZ.[m]Z[m]]

- 1-1

1
= |Qywlm] + L Qiw[m]

~ {A [Q%W[m 1+ - Qi - 11] Wwlm — 1]

+ (1)) B, [m]ZS[m]}
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_ [waw - waw] i
'{[Q’fvw[m] (1 A) BZ.[m[B» m]

+

==

(@] = (1~ X) B [lBz )| Wi b 1
+ (1-2)) BY, [m]zg[m]} :
Rearranging the last equation yields the update formula

W [m] = Wxwlm — 1] + (1 - A) [wa[m]ﬁ%w[m]] -
. (5.25

.[Bgn[ By [ 1%B§s[mr§vw[m1]

where E% .- [m] and E$y;, [m] correspond respectively to the error signals (5.16)
and (ﬁ evaluated using the weights Wy [m — 1]. The parameter n is an

added step size parameter.

Weighted Optimization

As mentioned previously, the weighted optimization simply amounts to replac-
ing, in the non-weighted scheme, the quantities Bzx[m], Bzs[m] and Z{[m] by
(1/K)CyBgzn[m|, (1/K)CuBgz:[m] and (1/K) CyZi[m], respectively. The
correlation matrices are denoted by Qg [m] and Qf,[m] in this case. With
these modifications, the update equations for the weighted optimization scheme
directly follow from (B.2d) as

Wiy m] = Wy lm — 1]+ 5 (1— A) | Q@ lm] + %Q%v[m]]_

1
K

1 . (5.26)
[B; (mICHBfy ] - £ BY. [mwffﬁmm]]

where E" | and ES [m] correspond respectively to the error signals (m)
and (Iﬁﬁv evaluated using the weights Wy, [m — 1].

Iterative Optimization

The update equations for the iterative optimization scheme can be straightfor-
wardly obtained from that of the weighted scheme. As pointed out above, the
desired signal Z{[m] simply needs to be replaced by the residual estimation
error Z2[m) defined in (ﬁr) Denoting the covariance matrices by Q7[m] and
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fo | 8kHz 16 kHz 2048 kHz 44.1kHz 48 kHz

K =64 7.88 3.94 3.08 1.43 1.31
K =128 | 15.88 7.94 6.20 2.88 2.65
K =256 | 31.88 15.94 12.45 5.78 5.31
K =512 | 63.88 31.94 24.95 11.59 10.65

K =1024 | 127.88 63.94 49.95 23.20 21.31
K =2048 | 255.88 127.94 99.95 46.42 42.65

Table 5.1: Delay of the WOLA filter bank, in milliseconds, for different frame
lengths K and sampling frequencies fs.

Qj5[m] in this case, the update equations follow as

W] = Wifm — 1] 47 (1 A) | Q}lm] + - Qﬂm]]
a , (5.27)

& [BEImICHB ] ~ & B (nICH i)

where E” ] and E [m] correspond respectively to the error signals (EI)
and m evaluated using the weights Wy [m — 1].

5.2.5 Practical Considerations

Some of the recursive algorithms derived in Section m, while being theoret-
ically sound, are of little interest in practice owing to the stringent constraints
imposed by digital hearing aids in terms of computational complexity and pro-
cessing delay. We discuss these issues along with other practical implementation
details and select the architectures that are susceptible to be used in practice.

Analysis and Synthesis Windows

The WOLA filter bank gives us the freedom to choose the frame size K, the
frame shift S, an analysis window g[n] and a synthesis window h[n] according
to specific design criterions. A desirable (and natural) property is that of
perfect reconstruction which guarantees that unprocessed signals go through
the filter bank undistorted. Also, the frame size should be chosen small enough
to ensure affordable processing delays. Table B summarizes filter bank delays
for different frame sizes K and sampling frequencies f;. For our purpose,
K =128 and f; = 20.48 kHz such that the delay is 6.2 ms.

Regarding the analysis and synthesis windows, many choices are possible.
For example, g[n] can be a periodic Hanning window of size K/2 = 64 sam-
ples with K/4 = 32 leading and following zeros, and h[n] = 1 (no synthesis
window). The perfect reconstruction property is satisfied if S is set to 32 sam-
ples (50% window overlap). In this case, delays up to a maximum absolute
value of K/4 = 32 samples can be synthesized perfectly owing to the presence
of zero-padding. The absence of synthesis window, however, does not permit
the reduction of artifacts that may arise due to the large delays that occur in
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60
Time index

Figure 5.3: Analysis window (solid) and synthesis window (dashed) of the con-
sidered WOLA filter bank.

reverberant environments. Another alternative is to choose g[n] to be a peri-
odic Hanning window of size K = 128 (no zero-padding) and h[n] = (2/3) g[n].
These windows are depicted in Figurelp.d. Using S = 32 samples (75% window
overlap), the corresponding filter bank can be shown to be perfect reconstruc-
tion. This is the configuration chosen for the simulation results presented in
Section [£.4. For a more general discussion of the design of analysis and syn-
thesis windows, we refer to the exposition in [30, Sec. 7.3].

Computation of the Weights

Let us look more carefully at the computation of the weights in the recursive
algorithms described previously. For clarity, the notation adopted is that of the
non-weighted optimization scheme. Similar comments apply to the two other
optimization methods. The computation of the term Bz»[m] in (6.1d), which
is required to update the noise correlation matrix QR;y,[m] and the residual
noise error ER;y;,[m], is only possible during noise-only periods. The algorithm
thus requires a voice activity detector that indicates whether a frame contains
speech or not (see Section @) Moreover, the update of the weights must
be performed during noise-only periods. Since the term Bgzs[m] cannot be
computed, the regularization factor appearing in the weight update (@) will
be approximated, as in [36, Sec. 3.4], by

L BY. (B ] = % B, [m]B 7. [m] Wy [m — 1]
~ % QW fm — 1],

that is, the instantaneous correlation matrix B%, [m]Bz«[m] is approximated
by the average correlation matrix QR;y,[m]. We now define the input correla-
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tion matrix Qnw[m] € CEEXLK through the relation
Quwlm] = AQnwlm — 1] + (1 = \) BZ[m]Bz[m],

where Bz[m] = B:[m] + Bzn[m] is defined in (5.3). The matrix Qunw [m] is
updated during speech periods whereas the noise correlation matrix Q% y,[m] is
updated during noise-only periods. Using the assumption that speech and noise
are uncorrelated, the speech correlation matrix Q% [m] can then be computed
as QXwm] = Qnw[m|— Q% [m]. Note that the positive definitiveness of the
correlation matrix Q3 [m] should be ensured in order to avoid convergence
issues (see, e.g., [36, Sec. 4.1]).

Complexity

For complexity reasons, the recursive algorithms derived in Section 24 are
not all amenable to practical implementation. In particular, the LK x LK-
dimensional matrix inversion involved in the weight updates m%(m) is in
general prohibitive as it requires O (K 3L3) operations.

In the non-weighted scheme, the noise (resp. speech) correlation matrix
is computed as a weighted sum of terms of the form B%,[m|Bzn[m] (resp.
B, [m|Bz:[m]). It thus possesses a block structure with diagonal blocks that
one can capitalize on in order to reduce the matrix inversion cost. More pre-
cisely, the correlation matrix can be permuted into a block diagonal matrix
whose inversion only requires O (K L3) operations. Details of this complexity
reduction can be found in [36, Sec. 4.1].

In the weighted scheme, however, the computation of the noise (resp. speech)
correlation matrix involves terms are of the form B, [m]CECyBz:[m] (resp.
B, [m|CECyBz:[m]) such that the blocks in the resulting correlation matrix
are not diagonal anymore. In other words, the synthesis window h[n] (rep-
resented by the circulant matrix Cp) correlates the frequency components of
an input channel such that frequency bins should now be processed jointly.
The weighted optimization scheme (and therefore the iterative scheme) ap-
pears to be computationally prohibitive for practical implementation. In a
realistic acoustic environment, however, the noise reduction improvement pro-
vided by these two methods over the non-weighted case is rather negligible (see
Section [5.4).

In order to further reduce the computational cost of the matrix inversion
in the non-weighted case, three approximation methods can be considered.
They are referred to as block diagonal, diagonal and averaged diagonal ap-
proximations and differ in the way the block diagonal correlation matrix is
approximated.

(i) Block-diagonal: the block diagonal structure of the correlation matrix is
preserved, that is, no approximation.

(ii) Diagonal: only the diagonal components are preserved such that inter-
channel correlation is neglected in the update of the weights.

(iii) Averaged diagonal: the diagonal correlation sub-matrix of each input
channel is further averaged over all channels such that the power variation
across channel is neglected.
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For real-time applications, the block diagonal matrix inversion still remains
rather costly. A practical implementation should thus rely on the diagonal
or averaged diagonal approximations which provide significant computational
gains at the expense of slower convergence.

5.3 Binaural Filtering

Let us now consider the binaural configuration. It comprises multichannel
Wiener filters to produce the loudspeaker outputs as well as filters that com-
pute the signals transmitted over the wireless link. We describe this binaural
processing architecture and discuss its optimality. Some practical considera-
tions are then examined.

5.3.1 Processing Architecture
Overview

As illustrated in Figure m, the binaural estimation system consists of two
monaural entities connected by means of a wireless communication link. The
microphone signals processed at hearing aid 1 and 2 are respectively denoted
by x1,[n] and z2;[n] for I = 0,1,...,L — 1. The loudspeaker outputs &{ o[n]
and 3 o[n] are obtained as described in Section 4. In the binaural system,
however, each hearing aid must also compute the signals transmitted over the
wireless link. Let us look at these additional filtering operations.

Multichannel Wiener Filtering

The multichannel filters of hearing aid 1 and 2 respectively compute the noise
estimates Z7,[m] and Z3 o[m] by linearly combining their own microphone
signals and the signal received over the wireless link. The noise estimates

follow from (5.6) and (.4) as

27 y[m)] = Bz, [m]Ki[m] + D, [m]G1[m], (5.28)

)

23 5[m) = Bz, [m]Kz[m] + D, [m]Ga[m], (5.29)

where Rq[m] and Ray[m] denote the signals received over the wireless link by
hearing aid 1 and 2, respectively. The vectors K;[m] € C¥X| Ky[m] € CEX,
Gi[m] € CX and Gz[m] € CX are the frequency-domain coefficients of the
filters applied at frame m. Similarly, the signals transmitted over the wireless
link, denoted by T;[m] and T3[m], are obtained as

T1[m] = Bz, [m[Hi[m], (5.30)
Ts[m] = Bz, [m|Ha[m], (5.31)

where the vectors Hy[m] € C*X and Hy[m] € C*X are the frequency-domain
coefficients of the filters applied at frame m. In the absence of communication
disturbances, the signal transmitted by one hearing aid is received perfectly at
the contralateral device, that is, R1[m] = Tg[m] and Ra[m]| = T1[m].
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Figure 5.4: Block diagram of the binaural WOLA filtering architecture. The time

and frame indexes are omitted for conciseness.
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5.3.2 Binaural Optimality

It can be shown that Zﬁo[m] and Zgo[m], obtained from (5.28) and (5.2d), can
be equivalently expressed as

Zﬁo[m] = Bz[m]Wi[m], (5.32)
= Bz[m|Wy[m], (5.33)

Zg,o[m
where we define the matrix Bz[m] € CE*2LE a5
Bz[m] = [Bz,[m] Bz [m]],
and the vectors W1[m| € C?£X and Wy[m] € C2LK as

Kl[m]
(Ir © Dg, [m]) Hz[m]

KQ [m]

Wi[m] = (Ir ® Dg,[m]) Hi[m]] ’

and Wam| =

where ® denotes the Kronecker product.

With the SIU coding strategy (see Section M), the optimal filters Hy [m)
and Ho[m] do not depend on the statistics of signals available at the contralat-
eral device. The optimal filter coefficients can thus be computed using one of
the optimization methods described in Section E23 In the SIA coding scheme
(see Section M), the statistics involved in the computation of the optimal
filters Hy[m] and Hs[m]| rely on signals recorded at the contralateral device.
Since we only have access to a one-dimensional version of these signals, the
statistics cannot be readily computed. However, it was shown in [31] that,
under the assumption of a single speech source in each frequency (i.e., the di-
agonal blocks of the speech correlation matrix € {B%. [m|Bz:[m]} permuted in
block diagonal form have all rank one), a simple alternating optimization can
nevertheless converge to the optimal solution. The alternating scheme amounts
to setting

Hi[m] = Ki[m — 1], (5.34)
Hg[m] = Kg[m - 1] 5 (535)

and to finding the optimal weights G1[m] and Ko[m] using the available input
signals Z1[m] and Rj[m] = Ta[m] for which statistics can be computed. Sim-
ilarly, the optimal filter coefficients Ga[m] and Ka[m] are computed using the
available input signals Zs[m| and Ro[m| = T1[m]. If the assumption of a single
speech source is not verified, the algorithm does not converge to the optimal
solution but can still be used. Note that the optimality of this procedure is
guaranteed for the non-weighted criterion. Nevertheless, the weighted and iter-
ative optimization methods described in Section (2.3 can also be used in order
to reduce the error present in the final time-domain outputs. In the case of a
single speech source in each frequency, the optimal filters of both hearing aids
can be shown to be frequency-wise co-linear [37]. The key behind the above
algorithm is that this co-linearity can be enforced throughout the iterations,
based on a transmitted signal of dimension one. Optimality may be extended
to more general scenarios provided that the relationship between the binaural
filters is fixed and can be enforced through alternation.
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5.3.3 Practical Considerations

In Section m, we discussed a few practical issues related to the implemen-
tation of monaural filtering. The binaural scheme described above raises a
number of additional questions that we would like to address.

Wireless Link

The binaural algorithm described in Section (.39 assumes that one can trans-
mit frequency-domain signals. The main advantage is that the sequences com-
puted by the multichannel Wiener filter in the WOLA-transformed domain can
be directly sent over the wireless link. This allows keeping the delay at a bare
minimum since no further WOLA synthesis (at the transmitter) or WOLA
analysis (at the receiver) is required. However, owing to the WOLA filter bank
redundancy, the transmission rate is K/S times higher (a factor 4 in our case)
than the rate needed to code the equivalent time-domain signal. This may be
compensated by appropriate source coding at the transmitter at the expense
of higher latency.

In order to reduce the transmission bitrate, another alternative is to syn-
thesize the time-domain signal and thus avoid the redundancy introduced by
the WOLA filter bank. This strategy, however, doubles the processing delay
and is therefore not very practical.

The third option is to process the signal transmitted by the wireless link in
the time domain. More precisely, the microphones signals are combined using
a time-domain implementation of the multichannel Wiener filter. The output
signal is then transmitted to the other device and converted to the WOLA
domain. In this case, the receiver needs to compensate for both the transmis-
sion delay of the wireless link and that of the time-domain multichannel filter,
but no additional WOLA filter bank is required. Ideally, the time-domain fil-
ter coefficients should be chosen such that time-domain filtering followed by
WOLA analysis is equivalent to WOLA analysis followed by frequency-domain
filtering. While this is generally not possible (see Section Eé), a rough approx-
imation could consist of neglecting the effect of the WOLA analysis block and
computing the time-domain coefficients as the inverse DFT of the coefficients
applied every other K/S frames in the frequency-domain. Convergence of the
corresponding recursive algorithm should however be insured.

While the alternating optimization scheme of Section .39 is optimal in the
case of a single speech source, the above remarks suggest that its implementa-
tion in the WOLA framework may be difficult considering the sharp transmis-
sion bitrates and processing delay constraints. Another possibility, considered
in [37], consists of simply sending the signal recorded at the reference micro-
phone. While being suboptimal, this strategy has one major advantage which
makes it very appealing in practice: the signal is sent unprocessed. The trans-
mission can thus take place in the time domain and avoid the WOLA filter bank
redundancy. Furthermore, the signal can be used at the contralateral device
to extract true binaural information needed, for example, by a voice activity
detector.
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Voice Activity Detection

Voice activity detection is a challenging task, in particular in very noisy en-
vironments. Voice activity detectors can be based on various quantities, such
as energy [77], likelihood [127] or spectral entropy [97]. The availability of a
wireless communication link further allows using binaural signals. For exam-
ple, detection can be based on the direction of propagation, which may be
computed from the peak of the cross correlation between the reference signals.
Unfortunately, the binaural scheme presented above does not transmit refer-
ence signals but linear combinations of all the microphone inputs. In this case,
the cross correlation between the signals transmitted over the wireless link can
be expressed as

“ By, [m] € {BY, [m| Bz [m]} B, [m]

b

% Bu,m] [¢ {DY, mDz, ,lm)} © 1] B, (]

(—i) Dc[m] & {Dgl,g[m]DZzo[m]} )

£ {D¥1 [m]Dr, [m] }

where (a) and (c) follow from the transmitted signals (5.30) and (5.31), and the
fact that only additions and multiplications of diagonal matrices are involved.
The diagonal matrix D¢ [m] € CK*E is defined as

D¢[m] = <z_: Dgu[m]> (i DHM[m]> . (5.36)

The approximation in (b) assumes that the cross correlation between any pair
of microphones (one microphone of each hearing aid) is similar to that between
the reference microphones. This seems like a reasonable assumption consid-
ering that the microphones are very closely spaced on each hearing aid. The
cross correlation computed using the signals transmitted over the wireless link
thus corresponds to a filtered version of the desired cross correlation. The
DFT coefficients of this filter at frame m, denoted by C[m], are the diagonal
coefficients of the matrix (5.3d). The maximum (in time) of this filtered ver-
sion will not necessarily correspond to that of the original cross correlation.
Furthermore, using the signals computed by the noise reduction algorithm for
the purpose of voice activity detection may be hazardous since we end up in
a closed-loop system: voice activity detection is based on the outputs of the
noise reduction algorithm, and this latter relies on the voice activity detector
to compute the output signals. In this context, the strategy of sending the ref-
erence (unprocessed) microphone signal is again very appealing. In this case,
a cross correlation-based voice activity detector can be implemented without
any of the aforementioned limitations.

5.4 Simulation Results

The purpose of this simulation section is twofold. First, we compare the WOLA
implementations presented in Section 4 by means of a simple annihilating
experiment. Second, we compute the SNR improvement and the speech dis-
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tortion for different values of the parameter p using computationally efficient
algorithms.

The simulation setup is the same as that of Section A The exponential
forgetting factor A is specified through a time-averaging constant T defined as

1S

Th=———.
AN,

The parameter T trades off the accuracy of the statistical estimates and the
adaptability of the algorithm. The performance of the noise reduction scheme
can significantly degrade if this parameter is not chosen properly. In our exper-
iments, we set T = 0.8 s. The algorithms are evaluated with a frame size of
K = 128 samples and a shift of S = 32 samples (75% overlap). In all cases, the
step size n is set to 1. Regarding the iterative scheme, we consider a variation
of the causal procedure presented in Section E23 At each step, instead of
considering the current frame and its associated residual error, we consider the
last completed frame (i.e., with index m — K/S + 1) and propagate the corre-
sponding residual error. The algorithm is thus updated with the error present
in the final time-domain output frame.

5.4.1 Annihilating Power

In the considered WOLA framework, a delay cannot be synthesized perfectly
since the operations applied in the frequency-domain correspond to a circular
(as opposed to a linear) convolution in the time domain. The aliasing that
results from this operation is however significantly reduced by the windowing
performed in the synthesis part of the WOLA filter bank. Provided that the
delay is not too large, this aliasing does not result in any audible artifacts.

In order to assess the capability of the different algorithms to realize a pre-
scribed filtering operation, we perform the following experiment. We simulate,
in various acoustic environments, the signals recorded at the reference micro-
phones of both hearing aids for a noise source at different positions. The goal of
the noise reduction algorithm is to estimate the signal recorded at the reference
microphone of hearing aid 2 using the signal measured at hearing aid 1. If the
transfer function between the two reference microphones is perfectly estimated,
the difference between the original signal and its estimate is zero (infinite at-
tenuation). If this estimate is not perfect, this attenuation will be smaller. We
thus aim at evaluating the annihilating power of the different algorithms.

The parameters of the simulation are as follows. The source signal is a
stationary white Gaussian noise sequence with unit power spectral density. Its
duration is 10 seconds but the attenuation is computed over the last 5 seconds
to ensure that the adaptive algorithm has converged. We consider the following
acoustic environments.

(i) Far field: the microphone signals are simply delayed versions of the orig-
inal signal. The distance between the microphones is assumed to be 0.2
m and the speed of sound is set to 340 m/s.

(ii) Head shadow: the microphone signals are synthesized using HRTFs mea-
sured on a dummy head in free-field at a distance of 1.5 m.
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(iii) Reverberation: the microphones signals are synthesized using HRTFs
measured on a dummy head at a distance of 1 m in a room with re-
verberation time Tgo ~ 120 ms.

In Figure m, we plot the attenuation obtained for a noise source at different
azimuths. We compare the non-weighted, weighted and iterative optimization
methods. Note that the approximation method for the non-weighted scheme
(i.e., block diagonal, diagonal or averaged diagonal) only affects the conver-
gence speed and not the optimal solution. Since the attenuation is computed
after convergence, the result does not depend on the chosen approximation
method. Moreover, the parameter u has no influence on the result since no
speech source is present. A general remark is that, as the noise source moves
from 0° to 90°, the transfer function between the two microphones is more dif-
ficult to synthesize (more head shadow, longer delays). The attenuation hence
decreases. A similar comment applies as we go from the far-field environment
to an environment with reverberation. In the far-field case, the difference be-
tween the iterative and non-weighted methods can be significant. This example
is however very synthetic. In a more realistic environment, the gap between the
different curves vanishes. This suggests that the gain provided by the iterative
and weighted optimization methods is rather negligible in a realistic scenario,
and thus, are not worth the added computational complexity.

5.4.2 Signal-to-Noise Ratio Improvement and Speech Distor-
tion

We evaluate the SNR improvement and speech distortion obtained by the non-
weighted optimization scheme using different approximation strategies. Since
we chiefly aim at comparing these methods, we will concentrate on the (monau-
ral) noise reduction provided by a single hearing aid equipped with L = 2
microphones, and mounted on the left ear of a dummy head. The desired
speech source is at 0° and consists of sentences of the HINT database [94].
The noise consists of five non-stationary multi-talker babble noise sources at
75°, 120°, 180°, 240° and 285°. The microphone signals are synthesized as in
Section m The power of the speech source is adjusted such that the (broad-
band) SNR at the front microphone is 0 dB. A perfect voice activity detector
is used. The SNR improvement and the speech distortion are measured using
the intelligibility weighted measures defined in [3€, Sec. 6.1].

In Figure 5.6, we plot the speech distortion as a function of the SNR im-
provement obtained by the WOLA algorithms. The curves are obtained by
varying the value of the parameter u. For a given SNR improvement, the best
method is the one that provides the smallest speech distortion. We observe that
the diagonal and averaged diagonal approximations incur a large gap compared
to the block diagonal case where no approximation is done. They however al-
low to significantly reduce the computational complexity and thus are more
suitable in a practical setting.

5.5 Summary

This chapter focused on a key component of the binaural noise reduction
scheme, namely a multichannel Wiener filter. For complexity reasons, we
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Figure 5.5: Attenuation using the non-weighted (dash-dotted), weighted (dashed)
and iterative (solid) optimization methods. The acoustic environments are (a) far
field, (b) head shadow and (c) reverberation.
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Figure 5.6: Speech distortion as a function of the SNR improvement for the
non-weighted scheme with block diagonal (solid), diagonal (dashed) and averaged
diagonal (dash-dotted) approximations. The curves are obtained by varying the
parameter (.

looked at frequency-domain implementations of such filters. More precisely,
we studied the optimality of multichannel Wiener filtering in the WOLA do-
main.

We first looked at monaural filtering for which we defined a frame-based
frequency-domain criterion for the computation of the optimal filter weights.
This criterion is a generalization of the MSE distortion and allows to conve-
niently trade off noise reduction and speech distortion through a single param-
eter. Unfortunately, the optimal solution is difficult to derive because of the
strong inter-frame dependency introduced by the WOLA filter bank. We thus
resorted to suboptimal solutions for which conclusive results could be found.
We proposed three suboptimal schemes. The first one completely neglects the
effect of the filter bank. The second one takes into account the weighting op-
erator applied at synthesis. The third one captures some of the inter-frame
dependency by means of an iterative procedure. For these three optimization
methods, we derived recursive algorithms for the computation of the weights.
We discussed their applicability in a practical setting and proposed ways to
reduce their computational complexity.

We then looked at binaural filtering strategies for both the SIA and SIU
coding schemes. With SIU coding, we pointed out that the optimality results
derived in the monaural case are directly relevant for the binaural scenario.
With STA coding, however, these results cannot be readily applied since some
of the needed statistics are not available. Nevertheless, we described an al-
ternating optimization method that provides the optimal filter weights under
the assumption of a rank-one speech correlation matrix. We then discussed a
few practical issues pertaining to the use of a wireless link, in particular in the
context of voice activity detection.

Finally, we presented a few simulation results to compare the proposed
methods. In a rather synthetic scenario, we showed that significant gains could
be obtained by taking into account the WOLA filter bank. However, in a more
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realistic acoustic environment with reverberation, the advantage provided by
the proposed methods over a blind strategy is not worth the added computa-
tional complexity.
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Chapter 6

Distributed Source Coding of
Binaural Innovation

6.1 Introduction

The information-theoretic analysis presented in Chapter d suggests that the
correlation between signals recorded at the hearing aids allows reducing the
description cost of data transmitted between the two devices. We pointed
out that this correlation may be difficult to estimate in practice due to the dis-
tributed nature of the setup. With this limitation in mind, the natural question
is whether these theoretical concepts are still relevant from a practical point
of view. We show that it is indeed the case by designing practical distributed
source coding schemes that take advantage of the a priori correlation induced
by the recording setup in order to recover important binaural parameters. Gen-
erally speaking, these parameters allow quantifying the disparity between the
binaural signals and may be used in the design of distributed spatial audio cod-
ing schemes. We refer to this disparity as the binaural innovation and model it
in two different ways. The first model, studied in Section m, involves binaural
cues. We propose a source coding method that allows recovering these cues
in a distributed fashion. The second model, presented in Section &, assumes
that the binaural signals are related to each other through a sparse filtering
operation. We propose a distributed scheme which permits the recovery of the
unknown filter with only few frequency measurements. We also demonstrate
how this method can be made robust to model mismatch and evaluate its ro-
bustness with respect to additive noise. In Section @, we then show how the
estimated binaural innovation can be used to design distributed spatial audio
coding schemes. We summarize this chapter in Section A

6.2 Model Based on Auditory Cues
6.2.1 Model Description

Let us consider the binaural signals Z;[m] € CX and Zy[m] € CX. Throughout
this chapter, signals are expressed using the frame-based frequency-domain
representation obtained from the WOLA filter bank discussed in Chapter B.

119
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In particular, the kth component of the signal Z;[m] is denoted Z; ;[m] for
t=1,2and £k =0,1,..., K — 1. Note that, in the sequel, the frame index m
is omitted for conciseness. We define the inter channel level difference (ICLD)
at frequency k as the power ratio between Z; j, and Z5 j, that is,

{1z}
ICLD, = ———% fork=0,1,...,K — 1.

5{|22,k|2}

The inter channel time difference (ICTD) can be obtained by assuming that
the phase difference between Z; ;, and Zsj grows linearly with k. The ICTD
corresponds to the slope of this line, namely,

K
ICTDk:ﬂAS{ZLkZ;ﬁk} for k=0,1,...,K —1, (6.1)

where £ denotes the phase operator which typically returns a value in the
interval [—m, 7). ICLD and ICTD are referred to as binaural cues. It has been
shown in [7] that, from a perceptual point of view, the binaural innovation
between Z; and Zy can be well captured by a single pair of binaural cues
for a group of adjacent frequencies. At each frame m, the K frequencies are
grouped in frequency sub-bands according to a partition B; (I = 1,2,...,L),
that is, such that

B ={0,1,...,K -1} and BNBy=0 foralll=#1l.

=

=1

Typically, the number of sub-bands depends on the amount of assumed redun-
dancy between the binaural signals. If these signals are very redundant (little
innovation), only few binaural coeflicients are needed. On the contrary, if the
binaural signals have very little in common (large innovation), binaural cues
should be computed for almost all frequencies. The ICLD in the Ith sub-band
is computed as the ratio of the averaged power estimates, that is,

fori=1,2,...,L. (6.2)

The ICTD in the lth sub-band can be obtained by fitting a line through the
(unwrapped) phase differences computed in (E]) for all k € B;. The slope of
the fitted line corresponds to the ICTD. It can be easily checked that optimal
fitting in the mean square sense is achieved by setting

o _ K Zren he {71075, }
P on ZkeBl k2

It is important to emphasize that the phase differences should be unwrapped
prior to mean square fitting. Optimal unwrapping is computationally expensive
as it generally requires a combinatorial search over all possibilities. It can
however be addressed using greedy algorithms which typically unwrap the phase

forl=1,2,...,L, (6.3)
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Figure 6.1: Power estimates as a function of time and frequency.

differences sequentially. Note also that the statistical quantities involved in the
computation of ICLDs and ICTDs are estimated using exponentially weighted
time averages, as in Section

6.2.2 Distributed Source Coding of Binaural Cues

In the scenario where an encoder has access to both Z; and Z,, the ICLDs
and ICTDs can be easily computed from (m) and (E), and subsequently
quantized to meet a desired bitrate. In the distributed case, however, these
signals cannot be processed jointly. In fact, each hearing aid observes one of
the signals and transmits data over the wireless link to allow the contralateral
device to estimate the binaural cues. We must thus resort to a distributed
source coding scheme.

Inter Channel Level Differences

Let us first consider the case of ICLDs. Our strategy is as follows. The two
hearing aids each compute an estimate of the signal power, expressed in dB,
for every critical band B; as

1
Py = 10logy, <@ Y€ {|Zt,k|2}> fort=1,2and [ =1,2,...,L.

keB,

An example of power estimates as a function of time and frequency is given
in Figure 61 The 1CLD expressed in dB simply corresponds to the power
difference given by

AP, =P, — Py (6.4)

We now explain how hearing aid 2 can efficiently encode the power estimates
P, ; taking into account the specificities of the recording setup and the fact
that the powers P;; are available at the decoder. These power estimates will
be necessary for the computation of ICLDs at hearing aid 1. The key is to
observe that, while P;; and P»; may vary significantly as a function of the
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sub-band index [, the ICLDs given by (6.4) are bounded below (resp. above)
by the level difference caused by the head when a source is on the far right
(resp. the far left) of the user. We denote this lower and upper bounds by
Alei“ and AP**, respectively. This is an example of correlation known a
priori which allows us to reduce the transmission bitrate. Note that in the
centralized scenario, ICLDs can be quantized by a uniform scalar quantizer

with range '
NN (6.5)

It can be checked that this strategy is information-theoretic optimal if AP, is
uniformly distributed within the range (m) and that the number of quanti-
zation bins is a power of two. In our case, an equivalent bitrate saving can
be achieved using a modulo approach. The powers P;; and P»; are quantized
using a uniform scalar quantizer with range [P™®, P™aX] and stepsize s. The
range can be chosen arbitrarily but must be large enough to accommodate all
relevant powers. The resulting quantization indices 41 ; and iz ; satisfy

. . -min -max
11,0 — 12,1 € {All ye ey AR }

_ HMZMJ [Aimax”, (6.6)

where |-] and [-] denote the floor and ceil operations, respectively. Since 41 ;
is available at the decoder, hearing aid 2 only needs to transmit a number of
bits that allows hearing aid 1 to choose the correct index among the set of
candidates whose cardinality is given by

AP A 41 (6.7)

This can be achieved by sending the value of the indices ¢;; modulo the car-
dinality (m), that is, using only log, (A¢*® — A¢™™ + 1) bits. This strategy
thus permits a bitrate saving equal to that of the centralized scenario. More-
over, at low frequencies, the shadowing effect of the head is less important than
at high frequencies. The corresponding range is thus smaller and the number
of required bits can be reduced. Therefore, the proposed scheme takes full
benefit of the characteristics of the recording setup. From an implementation
point of view, a single scalar quantizer with stepsize s is used for all sub-bands.
The modulo strategy simply corresponds to an index reuse, as illustrated in
Figure Bd At the decoder, the index io; is first computed and among all
possible indices 41 ; satisfying relation (@), the one with the correct modulo is
selected. The reconstructed power estimates are denoted 132,1 and the ICLDs
can be computed at hearing aid 1 using these estimates. Note that the coding
scheme for hearing aid 1 is readily obtained by exchanging the roles of the two
devices.

It is important to point out that the distributed coding scheme described
above assumes that the ICLDs belong to the range given by (@) If this
condition is violated, then the wrong index will be reconstructed. This may
happen, for example, if the ICLD range is chosen too small. The choice of
suitable values for the range across sub-bands hence provides a way to trade
off the aggressiveness of the coding scheme with the reconstruction accuracy.
In particular, we may benefit from the interactive nature of the communication
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Figure 6.2: Illustration of the proposed modulo coding approach. The power P
is always quantized using a scalar quantizer with range [P™" P™3] and stepsize
s. Indices, however, are assigned modulo a value specific to each critical band [.
In this example, the index reuse for I = 1 (low frequencies) is more frequent than
for I = 10 (high frequencies).

link established between the two hearing aids to adapt the coding scheme dy-
namically. We might also envision a combined use of standard and distributed
coding methods where, from time to time, pilot symbols are transmitted to
check the validity of the assumed ICLD range.

Inter Channel Time Differences

Let us now turn our attention the case of ICTDs. The goal is to compute (@)
in a distributed fashion. Ideally, each hearing aid should transmit one value
per sub-band to allow the contralateral device to estimate the ICTDs. Un-
fortunately, the computation of (m) involves unwrapping operations which
are difficult to implement in a distributed fashion. It also relies on the cross
correlation between Z; j and Z; which cannot be computed in a distributed
setup.

As an alternative, a simple approach is to infer the ICTDs from the ICLDs
using an HRTF lookup table. More precisely, we assume that the acoustic
scene is composed of a single source in the horizontal plane. Using the HRTF
lookup table, we find the azimuth that this source should have in order to
induce an ICLD as close a possible to the estimate ICLD. The corresponding
pair of HRIRs then allows us to compute an ICTD using, for example, a time
delay estimation method based on cross correlation. This strategy has the
advantage to require no additional information to be transmitted. It is largely
based on the assumption that a single source is active in each time-frequency
atom. However, owing to its simplicity, it may not always provide satisfactory
results, for example, in acoustic environments with long reverberation times.
The accuracy of this method will be investigated in Section 6.4 in the context
of distributed spatial audio coding.
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6.3 Model Based on Sparsity Principles

6.3.1 Model Description

Another way to model binaural innovation is to consider that the signal Zs can
be obtained as a filtered version of Z;. It can thus be expressed as

Z-=HOZ, (68)

where ® denotes the element-wise product and H € C¥ is the DFT of the
(real-valued) binaural filter h € CX. We further assume that h has only a
few number of non-zero coefficients. In other words, we suppose that it admits
a sparse representation in the canonical basis {uy, us,...,ux} of R¥. It can
thus be decomposed as

L

h=> cuy,,
1=1

where n; € {1,2,..., K} denote the indices with non-zero coefficients ¢; € R.
The sparsity factor L, chosen between 1 and K, allows varying the amount of
assumed redundancy between the binaural signals. The DFT of h can thus be
expressed as

L
H = chUm , (69)
=1
where .
U,, =Fu,, = {1,e_j27ﬂ"l,...,e_j%r”l(K_l) .

It is important to emphasize that the binaural signals are not assumed to be
themselves sparse, but that they are related to each other through a sparse
transformation. The above model is motivated by the simple acoustic scenario
studied in Section lLd. In the presence of a single source in far field, and
neglecting reverberation and the head-shadow effect, the signal recorded at
hearing aid 2 is simply a delayed version of the one observed at hearing aid 1.
Hence, it can be well modeled using a filter with sparsity factor 1. With multiple
sources, as well as in the presence of reverberation and head shadowing, the
filter is no longer sparse. Despite this model mismatch, it is assumed that the
main binaural features can be still well captured with a binaural filter having
only few non-zero coefficients.

6.3.2 Distributed Source Coding of the Binaural Filter

We wish to retrieve the unknown binaural filter at hearing aid 1 from data
transmitted by hearing aid 2. Intuition suggests that, since this filter can be
described with fewer than K real coeflicients, the amount of transmitted data
can be reduced. In fact, the binaural filter can be perfectly described using
only 2L degrees of freedom, namely, L indices n; and L coefficients ¢;.

Our distributed source coding scheme is based on the concept of annihilat-
ing filter which is a well known tool in spectral analysis (see, e.g., [131, Sec.
4.4]). We proceed as follows. Hearing aid 2 transmits only the first L+ 1 (com-
plex) coefficients of Zsg, that is, Za, Z2,1,...,Z2,. Owing to the conjugate
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symmetry property, this corresponds to 2L + 1 real coefficients. We consider
that these coefficients are quantized finely enough such that quantization noise
can be neglected. Based on this data, the binaural filter can be perfectly re-
covered at hearing aid 1. To see how this can be achieved, observe that the
elements of the vector H in (@), denoted by Hy, Hy,...,Hk_1, are given by
the first K coefficients of the sequence

L
HE =" qemdFhne (6.10)
=1

that is, a linear combination of L complex exponentials. It can be easily checked
227

that each complex exponential U;[k] = e~ % *¥™ can be annihilated by the filter

with impulse response

Alk] = 6[k] — e I F ™Gk — 1],

that is,
Ailk) « Uk =0 forl=1,2,...,L.

The index n; can then be retrieved from the root of A;[k] given by u; = eI T,
By linearity of the convolution operator, the signal H[k] can thus be annihilated
using the filter with impulse response

Alk] = Aqlk] * Aalk] % ... x AL[K],

namely,

A[k] « H[K] = 0. (6.11)

The annihilating filter A[k] has L + 1 non-zero coefficients and is of order L
with roots uq,ua,...,ur. It can be arbitrarily scaled such that A[0] = 1. The

condition ) can be rewritten in matrix form as
H[0) H[-1] --- H[-L] 1 0
H[1] H[0] -+ H[-L+1]| | A]1] 0
: : .. : : ] (6'12)
H[L] H[L.— 1] - H[0] A[L] 0

Since H[—k| = H*[k], only the first L + 1 DFT coefficients of the binaural
filter are needed to solve the above system. These coefficients can be directly
obtained at hearing aid 1 from the values sent by hearing aid 2 as

_ Zak

HIk) for k=0,1,..., L.

1,k

Note that this method requires Z;j to be different than zero for all k£ =
0,1,..., L, but this happens with probability one. The system (m) is a clas-
sical Yule-Walker system which is guaranteed to have a unique solution if the
indices n; are all distinct and the coefficients ¢; are all non-zero. Note that, in
this case, the matrix in (E) is of rank L. Once the annihilating filter has been
found, its roots uy, ug, ..., ur, can be computed to retrieve the unknown indices
ni,Nna,...,nr. The unknown coefficients ¢y, co, ..., cy, are finally evaluated by
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means of the linear system of equations

HI0] 1 1 1] Ta

HI1] Uy uy - UL c
=1 . o _ Ol (6.13)

H[L —1] b=t wdt o Wk e

The above system involves a Vandermonde matrix which is invertible if the
indices n; are all distinct. Given the indices n; and coefficients ¢;, the binaural
filter can be reconstructed using M)

A couple of remarks are at hand. First, note that any set of 2L consecu-
tive coefficients of H[k] allows retrieving the annihilating filter using a system
of the form (m) However, this generally requires 4L real coefficients to be
transmitted by hearing aid 2. Due to the conjugate symmetry property, this
number can be reduced to 2L+ 1 if the first L+ 1 coefficients are considered (as
above). Second, the computational complexity of the aforementioned approach
depends strongly on the assumed sparsity factor. While matrix inversion and
polynomial root finding are computational intensive operations (O(L?)), com-
plexity remains affordable for small values of L. Moreover, these operations
may be approximated using numerical methods that are computationally less
demanding.

6.3.3 Robustness to Model Mismatch

The above model differs from reality in many respects. First of all, the sparsity
assumption is rarely satisfied in practice. Moreover, a filtering operation in the
time domain does not exactly correspond to the element-wise product (m) due
to the problem of circular convolution and the effect of the WOLA filter bank
(see Chapter E) Finally, the coefficients transmitted over the wireless link are
subject to quantization error. Measurements that do not follow the assumed
model can be considered as noisy. Robustness to model mismatch can thus be
achieved using a denoising algorithm. In this work, we resort to an iterative
scheme due to Cadzow [25].

Let us assume that hearing aid 1 has access to the frequency coefficients H [k]
for k =0,1,...,P where P > L. The number of real coefficients transmitted
by hearing aid 2 is now 2P + 1. If the values H[k] perfectly follow the assumed
model, it can be checked that the (P + 1) x (P + 1)-dimensional matrix

H[0] H[-1] -  H[-P]
H[1]  H[0] - H[-P+1]

: : . . (6.14)
Hm H@—u-n HJ[0]

has two key properties: (i) it has rank L and (ii) it is of Toeplitz form. In the
noisy case, however, the rank will be larger than L. The idea behind Cadzow’s
algorithm is to recover the original properties using an iterative approach. Rank
L is enforced by setting the P+1— L smallest eigenvalues to zero. The Toeplitz
form is obtained by averaging along the diagonals. Alternating between these
two operations ultimately leads to a matrix that exhibits the desired proper-
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Figure 6.3: Mean squared reconstruction error of the binaural filter without (solid)
and with (dashed) Cadzow's denoising procedure. The different sets of curves
corresponds to P = 2,5,12 (right to left). We observe that Cadzow's method
allows for significant gains, in particular in the low SNR regime.

ties [28]. The denoised DFT coefficients can then be used in (E) and (m) to
recover the unknown parameters. Note that, in the noisy case, the coefficients
of the annihilating filter can be obtained by minimizing the norm of the matrix
product (m) The solution is given by the right eigenvector corresponding to
the smallest singular value [142].

Variations on the above method can be considered [68]. For example, we
can take into account multiple consecutive frames for denoising. If the indices
n; do not vary rapidly as a function of the frame index, the annihilating filter
essentially remains the same across frames. The matrix @) can thus be
replaced by a matrix obtained by stacking the contribution of each frame. In
this case, the rank condition is enforced on the entire matrix but diagonal
averaging is performed on each submatrix separately. We thus capitalize on
both the intra and inter-frame redundancy to denoise the data.

To illustrate the accuracy of the aforementioned schemes, we present a sim-
ple numerical experiment. The vector Z;, chosen of size K = 128, is obtained
as the DFT of z; € CX. The elements of z; are i.i.d. Gaussian random vari-
ables with mean zero and unit variance. The vector Z, follows from @) using
a binaural filter with sparsity factor L = 1. The index ny of the non-zero coef-
ficient is chosen uniformly in {1,2,..., K}, and its value ¢; follows a Gaussian
distribution with mean zero and unit variance. Model mismatch is simulated
by adding independent white Gaussian noise to the binaural filter. The results
have been averaged over 20000 realizations. We plot in Figure .3 the mean
squared reconstruction error of the filter as a function of the SNR for different
values of P. Recall that P denotes the number of transmitted DFT coefficients.
Reconstruction with and without Cadzow’s iterative method is considered. We
observe that Cadzow’s scheme allows reducing the error compared to the case
where the properties of the matrix (m) are not taken into account. Distor-
tion is also reduced as P increases. In fact, a significant gain can be achieved
with just a few more measurements than the minimum required in the noise-
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Figure 6.4: Mean squared reconstruction error of the binaural filter with Cadzow's
denoising procedure using F' = 1,2,3 consecutive frames of size K = 128 (right
to left). The parameters are L =1 and P = 1.

less case. As P grows, the dimension of the null space of the matrix (@)
increases such that more noise can be zeroed out when its rank is forced be L.
Hence, the gain provided by Cadzow’s approach becomes larger as P increases.
It can be observed that, above a given SNR, the MSE decreases linearly. This
threshold corresponds to the minimum SNR required to perfectly recover nj.
The remaining distortion corresponds to the error made in estimating ¢; using
the linear system @)

In Figure m, we plot the MSE achieved by Cadzow’s method using consec-
utive frames. The index of the non-zero coefficient is kept fixed for all frames
but its value is chosen independently. We observe that taking into account
inter-frame dependency allows for a better reconstruction accuracy.

6.4 Application: Distributed Spatial Audio Coding

The distributed source coding schemes presented in Sections 6.9 and 6.3 can be
applied to the distributed coding of spatial audio content. The general scenario
consists of an array of microphones which record a spatio-temporal sound field
at different locations. The recorded signals are then transmitted to a fusion
center which aims at reconstructing the original multi-channel audio data in a
perceptually transparent manner [111]. This multi-terminal configuration has
been addressed in Chapter B However, for the sake of simplicity and to keep
up with the configuration adopted so far, we will concentrate on the scenario of
distributed source coding with side information at the decoder. The algorithms
proposed in the sequel can be readily extended to the general multi-terminal
setup in various ways [68].

The main assumption that we make is that the audio signal Zy[m] to be
encoded can be recovered in a perceptually transparent fashion using the signal
Z1[m] available at the decoder and the binaural innovation. Therefore, only
the data required to estimate this binaural innovation needs to be transmit-
ted. This can be achieved using either of the two schemes proposed above.
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Figure 6.5: Partitioning of the frequency band in critical sub-bands with a band-
width of B =2 ERB.

Note that this approach is motivated by spatial audio coding applications (see,
e.g., [44]) where the aim is to reconstruct signals in a perceptually lossless
manner. Therefore, the proposed schemes are not directly relevant for binaural
hearing aids where the goal is noise reduction.

6.4.1 Model Based on Auditory Cues

Let us look at the first model. It is based on the computation of binaural
cues estimated on a sub-band basis. The proposed distributed spatial audio
coding scheme uses theses cues to recover the unknown signal from the signal
available at the decoder [11€]. It is motivated by the parametric multichannel
audio coding method presented in [, |].

Psychoacoustic experiments suggest that spatial perception is most likely
based on a frequency sub-band representation with bandwidths proportional
to the critical bandwidth of the auditory system |16, Sec. 2.4]. Since this latter
can be approximated by the equivalent rectangular bandwidth (ERB) [52], we
use a constant bandwidth of B ERB to obtain a non-uniform partitioning of
the frequency band according to the relation

B(f) = 21.41og,, (0.00437f + 1) ,

where f is the frequency measured in Hertz. The partitioning obtained for B =
2 ERB is shown in Figure 6.4, Once the power estimates Py 1[m) of Zy[m)] have
been computed using the distributed coding scheme described in Section E,
we construct a first estimate of Zg[m] using Z; [m] and the estimated ICLDs in
each critical band. This is achieved as follows. First, the ICLDs are estimated
as

AP[m] = P [m] — Pyy[m] forl=1,2,...,L.

Suitable interpolation is then applied to obtain the ICLDs AP, [m] for all fre-
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quencies [8]. These ICLDs are then applied to the elements of Z;[m] as

APy [m]
20

Z} w[m] = Z1 j[m] 10~ for k=0,1,...,K — 1. (6.15)
Phase differences between the two signals are also synthesized. To this end, we
compute ICTDs using an HRTF lookup table, as explained in Section 24
The ICTD obtained for sub-band [ is denoted by A7j[m]. Similarly to the
ICLDs, ICTDs Af7y[m] are obtained for all frequencies by interpolation [&].
The ICTDs are then applied to the spectrum obtained in (@) as

27

Zo klm] = Zy j [me7 ®RATKIM, (6.16)

In order to have smoother variations over time and to take into account the
power of the signals for time-delay synthesis, improved ICTDs are computed
using the above spectrum. More precisely, we treat the signal (E) as the
true spectrum and compute an exponentially weighted time average of the
cross power spectral density between Z; ,[m] and Zs y[m] as

Qulm] = AQx[m — 1] + (1 — \) Z1 x[m]Z3 ,[m] . (6.17)

The improved ICTDs are obtained by substituting the estimate Qx[m] in (6.3).
Since ICTDs are most important at low frequencies [16, Sec. 2.4], we only
synthesize them up to a frequency chosen small enough such that the phase
wrapping problem can be neglected. Finally, the interpolated values of the
improved ICTDs are used to reconstruct the spectrum Zs [m] using (c1d).

To test the proposed scheme, we performed the following simulation. We
synthesized a binaural signal using binaural room impulse responses. We then
used one signal to recover the other one using the estimated binaural cues, and
assessed the reconstruction quality of the binaural output through informal
listening experiments. The parameters are chosen as follows. The sampling
rate is fs = 32 kHz and the frame size is K = 1024 samples. The analysis
window is a (zero-padded) Hann window of length 896 samples. There is no
synthesis window. The frame shift S is chosen to obtain a 50% window overlap,
ensuring the perfect reconstruction property. The partition bandwidth is set to
B = 2 ERB which corresponds to L = 21 critical bands spanning frequencies
up to 16 kHz. The HRTF lookup table is built from the CIPIC database [4].
It maps ICLDs to ICTDs for 72 uniformly spaced azimuths on the horizontal
plane (elevation zero). ICTD synthesis is applied up to 1 kHz. Finally, the
exponential forgetting factor A in (E) is specified through the time-averaging
constant

1S

B 1—=A fs '
We set T = 15 ms. Regarding the distributed coding scheme, the ICLDs are
assumed to take values in intervals of linearly increasing lengths as a function
of the critical band index I, from [—5,5] dB when [ = 1 to [—35,35] dB when
| = 21. The quantizer stepsize s is chosen such as to meet a desired bitrate of
R =8kb/s.

We performed various simulations with one and two sources. To synthesize
the binaural signals, HRTFs from the CIPIC database |d] were used along with
binaural room impulse responses with reverberation time Tgg =~ 120 ms and

T
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Tso =~ 600 ms. In the case of no reverberation, informal listening indicates
that the proposed algorithm renders the binaural signals with a similar spatial
image and only few artifacts. However, the spatial width of the synthesized
auditory scene tends to be slightly narrower than the original one, in particular
when multiple sources are present. This can be explained by the fact that
when two oppositely located sources are concurrently active in a time-frequency
atom, the corresponding ICLDs (hence ICTDs) tend to average each other out.
While the HRTF lookup table strategy seems satisfactory for simple acoustic
scenes, it is not sufficient when multiple sources are present in a reverberant
environment. In this case, the synthesized binaural signals are perceptually
quite different from the original ones, requiring the transmission of additional
phase information.

6.4.2 Model Based on Sparsity Principles

Let us now turn our attention to the second model. The goal is to compute
the binaural filter, as explained in Section E, and to recover the signal Zx[m)
from the side information Z1[m] using (6.d). Again, the quality of the binaural
reconstruction is assessed through informal listening.

We performed the same simulations as with the model using binaural cues.
In order to reduce artifacts due to block processing, the matrix (m) was
averaged over time using an exponentially weighted time average. The validity
of this operation is based on the assumption that the binaural filter does not
change too rapidly over time. The averaging constant is set to 7\ = 50 ms. The
following conclusions can be drawn. In the case of a single source synthesized
using HRTFs, the perceptual quality of the reconstruction is acceptable. We
used an oversampling factor of P/L = 20 (L = 1 and P = 20). This suggests
that Cadzow’s denoising method is able to properly handle the model mismatch
introduced by the filter bank and the fact that the binaural filter has more
than L = 1 non-zero coefficient. However, this requires the use of a quite
large oversampling ratio. If P is chosen too small, the spatial auditory scene is
distorted. An example of binaural filter impulse response along with its sparse
approximation is shown in Figure .d. When reverberation is present or when
multiple sources are concurrently active, the reconstruction quality degrades
quite significantly. This can be expected from the fact that, in this case, the
recorded signals deviate strongly from the assumed model. A possible solution
is to apply the proposed scheme on a sub-band basis. It was checked that this
approach leads to an improved reconstruction of the original auditory image.
However, the conjugate symmetry property can no longer be used to obtain
twice as many consecutive frequency coefficients. Moreover, the oversampling
ratio must be reduced to keep a constant total number of coefficients. This
typically leads to audible artifacts in the reconstruction.

6.5 Summary

One of the main purposes of establishing a wireless link between two hear-
ing aids is to gain knowledge about important binaural characteristics. In this
chapter, these characteristics have been termed binaural innovation. Two para-
metric models of binaural innovation have been proposed along with methods
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Figure 6.6: Sparse approximation of the binaural filter impulse response. (a)
Original version. (b) Sparse approximation using Cadzow's denoising algorithm.
The parameters are L = 1 and P = 20. We observe that the non-zero coefficient
is located at the position of the filter tap with largest magnitude.
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to estimate the unknown parameters in a distributed fashion.

The first model is based on binaural cues, namely, ICLDs and ICTDs. We
presented a scheme to estimate these cues using a distributed source coding
method. We showed how the proposed algorithm takes into account the speci-
ficities of the recording setup in order to reduce the transmission bitrate. More-
over, we proved its optimality by comparing it to the scenario where the input
signals can be observed jointly.

The second model is based on the assumption that the binaural signals are
related to each other through filtering with a filter having a sparse impulse
response. We demonstrated that this sparsity can be used in order to reduce
the amount of transmitted information. The reconstruction process involves
annihilating filters. We showed how our approach can be made robust to model
mismatch using variations on a denoising algorithm by Cadzow.

Finally, we applied the proposed schemes to the distributed coding of spatial
audio content. For simple acoustic scenes, we obtained reasonable reconstruc-
tion accuracy despite the apparent crudeness of our approximations. However,
in scenarios involving multiple sources with reverberation, further research ef-
forts are needed to obtain satisfactory results.
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Chapter 7

Conclusions

Binaural hearing aids have the potential to significantly improve speech intel-
ligibility in noise and to offer novel solutions to some existing problems. Since
the wiring of the two devices is not envisioned for esthetic reasons, inter-aural
connectivity must rely on a wireless communication link. The challenges asso-
ciated with the use of wireless technology are tremendous, most notably due
to restricted communication bitrates, processing delays and power consump-
tion limitations. This thesis addressed some of the issues related to binaural
processing, from both a theoretical and a practical point of view.

7.1 Thesis Summary

After a review of prior art on distributed source coding, the problem of inter-
est was formally stated. We pointed out that binaural noise reduction can be
viewed as a distributed estimation problem under communication constraints,
and some important assumptions made throughout the dissertation were dis-
cussed.

We first looked at a general sensor network scenario for which we derived
mean square locally optimal strategies for distributed estimation at a fusion
center. Both a linear approximation and a compression framework were con-
sidered. We proposed iterative algorithms which improve upon the marginal
scenario where each sensor describes its observations independently. The po-
tential of the proposed distributed scheme was illustrated with a simple, yet
insightful, correlation model.

Our analysis was then specialized to the setup of binaural hearing aids.
We defined the gain-rate function which corresponds to the maximum possible
beamforming gain enabled by the wireless link when it operates at a given bi-
trate. Monaural and binaural gain-rate trade-offs where derived for two coding
strategies. The first one assumes that the joint statistics of the recorded signals
can be used for the design of encoders and associated decoders. The second one
takes the view that such statistics are difficult to compute in a practical set-
ting and do not rely on their availability. For both strategies, optimal policies
for rate allocation between the hearing aids were obtained. We also explored
numerically various trade-offs inherent to the considered binaural system.

Two practical aspects of binaural noise reduction were then investigated.

135
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The first one considered the practical implementation of the multichannel fil-
ters involved in the coding strategies described above. Motivated by computa-
tional efficiency, we looked at filtering in the frequency domain using a weighted
overlap-add filter bank. We derived three suboptimal methods which take into
consideration the influence of the filter bank at different levels. Recursive al-
gorithms for the computation of the filter coefficients were presented and their
respective complexity was discussed. We showed through numerical simula-
tions that, in rather synthetic scenarios, large gains can be obtained using the
proposed methods. In more realistic acoustic environments, however, taking
into account the effect of the filter bank provides only little gains at the expense
of a significant increase in complexity. Binaural filtering strategies were then
studied. In particular, an alternating optimization method was described and
practical considerations related to the wireless link were examined.

The second practical aspect that we considered concerns the use of the
wireless link to compute important binaural characteristics. We proposed two
ways of modeling these characteristics. The first one involves binaural cues
computed on a time-frequency atom basis. A coding scheme to estimate these
cues in a distributed fashion was presented. Arguably, the most interesting
aspect of the proposed method is that it takes into account the particularities
of the recording setup to reduce the transmission bitrate. The second model is
based on the assumption that binaural characteristics can be well captured by
a filter that is sparse in the time domain. A scheme was proposed to estimate
this filter in a distributed fashion. In particular, it was shown how the sparsity
assumption allows decreasing the amount of information transmitted from one
hearing aid to the contralateral device. Model mismatch was also addressed by
means of a composite property mapping algorithm. Finally, application of the
two above methods to the distributed coding of spatial audio was presented.
Informal listening experiments made under various acoustic environments sug-
gest that the proposed schemes work well for simple cases, but that further
research efforts are needed to improve reconstruction quality in more realistic
scenarios.

7.2 Future Research

The availability of a wireless communication link offers novel perspectives for
the design and operation of hearing aid algorithms. This thesis discussed some
aspects of binaural processing by solely adopting a source coding perspective,
that is, we assumed that the information bits can be reliably transmitted from
one hearing aid to the other. Therefore, channel coding, which addresses the
problem of reliable communication, also deserves attention [18]. The design of
channel codes that work under the stringent constraints imposed by binaural
hearing aids would be an interesting topic of investigation. Note that, for the
remote Wyner-Ziv scenario considered in this work, a separation theorem can
be proved M9, Sec. 1.6.3]. Source and channel codes can thus be designed
separately without loss of optimality.

While most of our exposition focused on the problem of noise reduction,
tasks such as dynamic compression, acoustic feedback cancelation or scene
analysis may also benefit from binaural information. For example, one may
determine if feedback occurs at one hearing aid by comparing the character-
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istics of the signals with those recorded at the contralateral device. In other
words, it would be worth studying the binaural feedback problem, where the
two feedback paths are estimated jointly rather than separately. Of course, this
requires the use of the wireless link and thus entail efficient transmission pro-
tocols. Another example is voice activity detection, which is a key component
of any Wiener-based multichannel filtering strategy. Detecting the presence of
speech in background noise is a challenging task, especially at low SNRs where
noise reduction is most useful. In this context, the wireless link may be used
to synchronize the voice activity detectors of two hearing aids. For example, a
very simple approach would declare speech to occur if detected by at least one
hearing aid. This strategy takes advantage of the fact that the two ears may
experience different SNRs due to the head shadow effect.

We presented some preliminary results on the distributed coding of spatial
audio based either on the computation of binaural cues or on the use of annihi-
lating filters. Further research work are needed to improve the reconstruction
accuracy of the proposed schemes. For example, we could design distributed
schemes to estimate the true ICTDs, instead of merely relying on a lookup ta-
ble. For the scheme based on sparsity principles, the computational complexity
of Cadzow’s procedure could be reduced using low rank approximation meth-
ods (see, e.g., [141, Sec. 8.1]). Another problem of interest is the design of a
distributed approximation to Cadzow’s algorithm. This would allow denoising
the data prior to transmission, such that the oversampling factor needed to
overcome model mismatch does not impose any rate penalty.
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Appendix A

Weighted Mean Squared
Linear Estimation

We consider the problem of optimal linear estimation under a weighted MSE
criterion. In Appendix IE], the optimal transform matrix is derived in its
general form. We then derive the optimal solution subject to an additional
diagonal constraint in Appendix d

A.1 General Transform Matrix

Let x € CM and y € CV be jointly Gaussian random vectors with mean zero
and (cross) covariance matrices

szg{XXH}, Ry:c‘,’{yyH} and ny:é‘{xyH}.

We seek to find the optimal transform matrix W € CM*¥ gsolution to the
weighted MSE minimization problem

nvnvng{HAx_AwaQ}, (A1)

where A € CX*M is a constant weight matrix. Denoting by the superscript '
the pseudoinverse operation, the solution can be stated as follows.

Theorem A.1. The optimal transform matrix W solution to the optimization
problem (EI) is given by
W= (A7A)" (A"A)R,,R] .
Proof: We can write
(W) = {||ax— awy|}

(2 tr £ {(Ax — AWy) (Ax — AWY)H}

© tr (AR, AT) + tr (AWR, WA — 9Re {tr (AR,, WZAT)}) |
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where (a) follows from the definition of the Frobenius norm and the fact that
expectation and trace commute and (b) from the linearity of expectation. Let
us now decompose each variable in its real and imaginary parts as

R, = R:C,’r‘ + ]R:C,z ) Ry = Ry,r + ij,i ) Riy = ny,r + JRJ,yJ )
W =W, +jW, and A=A, +jA;,

such that f (W) can be written as
(W)
=tr ((A,« +7A;) (R;c,'r' + jRei (Ar + in)H))
o (A4 A (W 4 JW) Ry + 7Ry0) (W, + TW0) " (A, + jA)")
— 2Re {tr (A, +JA) Ruyr 4+ Ray0) (W + W) (A, + A0 )}
=g(W,, W;) .

Since R is Hermitian, it holds that its real part is symmetric and its imaginary
part is skew-symmetric, that is

R), =R,, and R}, =-R,;.
Using this fact, a straightforward computation reveals that

Of (W) @ 1 [dg(W,) 0g(Wi)] ®) g H
ow 2| ow, Jow, | A AVR TATAR.,

where (a) is the generalized complex derivative defined in [20] and (b) follows
from matrix trace derivative formulas (see, e.g., [66]). Since f (W) is convex,
a solution to the optimization problem follows by setting the above partial
derivative to zero, that is, by solving the system of equations

ATAWR, - A"AR,, = Oprun . (A.2)

If both matrices A7 A and R, are invertible, the solution is unique and directly

follows as
W = nyRy_ L

More generally, when A7 A and R, are of rank K; < M and K3 < NN, respec-
tively, we consider their eigenvalue decomposition

APA =U,D, U

D Ok, xM—K U{j[l
e U , 1 1 ; A3
U1 Uig] |:OM—K1><K1 On—ryxm—r, | [UTh )
and
R, = U2D2U§
D- Ok, xN-k ] [Uéﬂ}
o 7 2xN—Ks 1l A4
[Uz21 U] {ONKQXKQ On-KoxN—Kz] [Uss .
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where Dy € RE K1 and D, € RE2XK2 denote the diagonal matrices that
contain the (real) non-zero eigenvalues of A7 A and Ry, respectively. The
unitary matrices U; and Uy are partitioned accordingly. Using the decom-
positions (E) and (@), the optimality condition (Iﬁ) can be expressed in
block-form as

{D1,1U{{1WU2,1D2,1 Ok, xN—K }

On—K, xKs ONM_KixN-K, (A5)

H H
_ D1,1U171Ra:yU2,1 D1,1U1,1Ra:yU2,2
On—KixKs OM—KixN-K,

Moreover, we note that R;, Uz 2 is equal to the all-zero matrix. In fact, the
elements of the vector z = Ung have variance zero. Using Cauchy-Schwarz’s
inequality [22, Th. C.1.1], it thus holds that

0<|E{zmai}] < \/5 {|xm|2} £ {|zn|2} —0,

form=1,2,....M and n=1,2,..., N — Ks, such that

nyUQ,Q =& {XZH} = OM><N—K2 .
The equality (IE) hence reduces to
DU, WU; D1 = D11 U/, Ry, Us 1 . (A.6)

The above system has K; K> equations and M N unknowns. Since K1 < M
and Ko < N, it generally has an infinite number of solutions that we can write,
without loss of generality, as

W=W;+A, (A.7)
where
Wy = U U/ R, Uy D, LU, = (A7A)" (A7 A) R, R]

and A € CM*N_ Substituting (A7) into (Ad) reveals that the matrix A must

satisfyﬂ

UE1AU2,1 =Opxn-

In this case, it is easily checked that
2 2 2
[WII" = [[Wo|l” + |A[",

such that the solution with minimum Frobenius norm is obtained by letting
the matrix A be the all-zero matrix. This concludes the proof. |

Interestingly, when the matrix A A is invertible, the optimal solution re-
duces to W = nyRL which does not depend on the chosen weight matrix.

1This is the case, for example, if the columns of A are in the null space of AH A or if the
columns of AH are in the null space of Ry-.
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A.2 Diagonal Transform Matrix

Let us consider the minimization in (E]) with M equal to N and the additional
requirement that the optimal transform matrix W € CV*¥ be diagonal. We
thus look for the solution to the optimization problem

min €1{||Ax — AWy ,
win £ {] yIP} s
st. (W),; =0 fori#j.

It is given by the following theorem.
Theorem A.2. The optimal transform matrix W solution to the optimization
problem (@) is given by W = diag (w) where

w=¢{DYAYAD,} € {DF AT Ax} . (A.9)
Proof: It suffices to note that the minimization (IE) is equivalent to that of
finding the vector w € C solution to

min £ {HAX - ADyw||2} .

This optimization follows along the same line as that of Theorem [A1 and is

easily shown to yield the claimed result. |
We observe that here, in contrast to Theorem m, the optimal solution

always depends on the weight matrix A, even when A¥ A is non-singular.
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