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Potentials for two-dimensional Stokes equations are constructed and
studied in [2] in case of closed curves and continuous densities in potentials.
In the present paper, we consider the pressure potential specified at the
nonclosed arc. In doing so, the densities in the potential belongs to the
weighted Hölder space.

By an open arc we mean a simple smooth non-closed arc of finite length
without self-intersections [1]. In Cartesian coordinates x = (x1, x2) ∈ R2

in a plane we consider a simple smooth open arc Γ parametrized by the arc
length s: Γ = {x : x = x(s) = (x1(s), x2(s)), s ∈ [a, b]}. Therefore points
x ∈ Γ and values of the parameter s are in one-to-one correspondence. We
denote the tangent vector to Γ at the point x(s) by τs = (cos α(s), sin α(s)),
where cos α(s) = x′1(s), sin α(s) = x′2(s). Let ns = (sin α(s), − cos α(s)) be
a normal vector to Γ at x(s). The direction of ns is chosen such that it will
coincide with the direction of τs if ns is rotated counterclockwise through
an angle of π/2. The segment [a, b] will be denoted by Γ also.

Let the real-valued function µ(s) of class Cω
q [a, b], ω ∈ (0, 1], q ∈ [0, 1)

be specified on Γ. We say that µ(s) ∈ Cω
q [a, b] if µ0(s) ∈ C0,ω[a, b], where

µ0(s) = µ(s) |s− a|q |s− b|q, and C0,ω[a, b] is a Hölder class with the expo-
nent ω.

We consider Γ as a cut in a plane. The side of the cut Γ which is on
the left, when the parameter s increases will be denoted by Γ+ and the
opposite side we denote by Γ−. The goal of the present paper is to study
properties of a pressure potential for the Stokes equations [2]:

P [µ1, µ2](x) = Pc[µ1](x) + Ps[µ2](x),

where

Pc[µ1](x) =
1

2π

∫

Γ
µ1(σ)

cos(ψ(x, y(σ)))

|x− y(σ)| dσ,

Ps[µ2](x) =
1

2π

∫

Γ
µ2(σ)

sin(ψ(x, y(σ)))

|x− y(σ)| dσ,

cos ψ(x, y(σ)) =
x1 − y1(σ)

|x− y(σ)| , sin ψ(x, y(σ)) =
x2 − y2(σ)

|x− y(σ)| ,
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y(σ) = (y1(σ), y2(σ)) ∈ Γ, |x− y(σ)| =
√

(x1 − y1(σ))2 + (x2 − y2(σ))2.

Densities µ1(s), µ2(s) are assumed to be integrable. Let z = x1 + ix2,
t = t(σ) = (y1(σ) + iy2(σ)) ∈ Γ, then dt = t′(σ)dσ = eiα(σ)dσ,

z − t(σ) = |x − y(σ)|eiψ(x,y(σ)). Assuming that µ(s) is a real integrable
density, we consider the complex potential

PE[µ](x) = Pc[µ](x)− i Ps[µ](x) =

=
1

2π

∫

Γ
µ(σ)

e−iψ(x,y(σ))

|x− y(σ)|dσ =
1

2π

∫

Γ
µ(σ)

1

z − t(σ)
dσ =

=
1

2π

∫

Γ
µ(σ)e−iα(σ) 1

z − t(σ)
dt = − 1

2π

∫

Γ
µ̂(t)

1

t− z
dt,

where µ̂(t) = µ(σ)e−iα(σ). In PE[µ](x) we may take either µ ≡ µ1 or µ ≡ µ2.
Therefore, to study functions Pc[µ1](x), Ps[µ2](x), it is sufficient to study
a function PE[µ](x) and to take its real or imaginary part.

We say that the complex–valued function µ̂(t) belongs to the class
Cω

q (Γ) with ω ∈ (0, 1], q ∈ [0, 1), if µ̂0(t) ∈ C0,ω(Γ), where

µ̂0(t) = µ̂(t)|t − t(a)|q|t − t(b)|q, and C0,ω(Γ) is a Hölder class with the
exponent ω.
Theorem 1. Let Γ be an open arc of class C1,λ, λ ∈ (0, 1], and
t = t(σ) = (y1(σ) + iy2(σ)) ∈ Γ.
1) If µ(σ) ∈ Cω

q [a, b], ω ∈ (0, 1], q ∈ [0, 1), and if µ̂(t) = µ(σ)e−iα(σ), then

µ̂(t) ∈ Cβ
q (Γ), β = min{ω, λ}.

2) The function PE[µ](x) belongs to C0(R2 \ Γ \ X) ∩ C2(R2 \ Γ), where
X = x(a) ∪ x(b) is a set of endpoints of Γ.
3) The limiting values of the function PE[µ](x) on Γ± in interior points
are given by the formula

PE[µ](x)|x(s)∈Γ± = −i


±1

2
e−iα(s)µ(s) +

1

2πi

∫

Γ

µ̂(t)

t− t0
dt


 =

= −i


±1

2
e−iα(s)µ(s)− 1

2πi

∫

Γ

µ(s)e−iψ(x(s),y(σ))

|x(s)− y(σ)| dσ


 ,

where t0 = t0(s) = (x1(s) + ix2(s)) ∈ Γ and the integral is understood in a
sense of a principle value.
4) If the point x is placed in the neighbourhood of the endpoint x(d) (d = a
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or d = b) and x /∈ Γ, then the estimate holds

|PE[µ](x)| ≤ const

|x− x(d)|δ ,

where δ = q if q ∈ (0, 1) and δ is an arbitrary number from the interval
(0,1) if q = 0.

Remark. By C0(R2 \ Γ \ X) we denote a class of functions, which are
continuous outside Γ, are continuously extensible on the sides of Γ from
the left and right in interior points, but there limiting values on Γ from the
left and right can be different.
Theorem 2. Let Γ is an open arc of class C1,λ, λ ∈ (0, 1];

µ(σ) =
η(σ)

|σ − d|q , q ∈ (0, 1); η(σ) ∈ C0,ω[a, b], ω ∈ (0, 1];

d = a or d = b. Let

ν̂(t) = ν̂(t(σ)) =


t(σ)− t(d)

|σ − d|




q

η(σ)e−iα(σ).

Then ν̂(t) ∈ C0,β(Γ), where β = min{ω, λ} and for points z = x1 + ix2,
lying near D = t(d) outside Γ, the asymptotic formula holds

PE[µ](x) = ∓ e±qπi

2 sin(πq)

ν̂(D)

(z −D)q
+ Θ0(z),

the upper sign is taken if d = a, while the lower sign if d = b. The function
Θ0(z) is continuous as z → D if β > q. If 0 < β ≤ q < 1, then for z, lying
near D = t(d) outside Γ, the estimate holds

|Θ0(z)| ≤ const

|z −D|q1
,

where q1 is an arbitrary number, such that q1 ∈ (q−β, q). Moreover, Θ0(z)
is analytic in the neighbourhood of D cut along Γ. By (z −D)q we denote
the branch, which is analytic in the neighbourhood of D cut along Γ and
which takes the value (t−D)q on Γ+. In addition,

ν̂(D) = lim
σ→d

ν̂(t(σ)), where σ ∈ (a, b).

Theorems 1,2 can be proved by direct verification with the hepl of proper-
ties of singular integrals and Cauchy–type integrals from [1].
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