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1. Introduction. We consider the Cauchy problem for the Navier-Stokes system in Rn with n ≥ 2

ut −∆u+ (u · ∇)u = −∇p for (x, t) ∈ Rn × (0,∞),

∇ · u = 0,

u(x, 0) = u0(x).

(1)

Here x ∈ Rn denotes the space variable, t ≥ 0 is the elapsed time, u = u(x, t) = (u1(x, t), ..., un(x, t)) and
p = p(x, t) correspond to the unknown velocity vector and the scalar pressure, respectively. Moreover,
u0(x) = (u10(x), . . . , un0 (x)) is a given initial velocity. In system (1), all physical constants are normalized
to 1.

The purpose of this paper is to derive asymptotic profiles, as t → ∞, of solutions to system (1)
which decay in time rather slowly (cf. our standing assumptions (4)-(6), below). First, however, we recall
that there is a large literature discussing the asymptotic properties of weak and strong solutions to (1).
Indeed, J. Leray in his pioneer work [18] raised the question on the decay properties of weak solutions
which provoked several mathematicians to study the large time behavior of their L2-norm because it
correspond to the energy, cf. e.g. [22, 23, 24, 14, 3, 12] and reference therein. These results are often
completed by space-time estimates of solution to (1), cf. [1, 2, 4, 5, 6, 13, 19, 20] (both lists are by no
mean complete).

The present paper is motivated by the higher order asymptotic expansion of weak and strong solutions
to (1) obtained by Carpio [8] and improved by Fujigaki & Miyakawa [9] and Gallay & Wayne [10, 11]
under the condition (1 + |x|)u0 ∈ L1(Rn). Note that such an initial datum decays at infinity faster than
a general function from Lp(Rn) with p ≥ 1. We emphasize this fact because, on the other hand, for
initial conditions decaying at infinity as homogeneous functions of degree −1, the large time asymptotics
of corresponding solutions is described by self-similar solutions to the Navier-Stokes system, cf. [21, 7],
for more details.

The goal of this work is, roughly speaking, to show the correlation between the decay rate of the initial
datum as |x| → ∞ and the asymptotic expansion of the corresponding solution as t → ∞. We obtain
asymptotic profiles of solutions corresponding to initial conditions which are bounded (this condition is
imposed, however, for simplicity of the exposition) and which decay like a function |x|−α as |x| → ∞ for
some α ∈ (1, n). This behavior of initial conditions for large |x| will be expressed in this paper by the
assumption

u0 ∈ Ln/α,∞(Rn) ∩ L∞(Rn) for some α ∈ (1, n), (2)

where Lp,∞(Rn) is the weak Lp-space; see the definition below. We discover the critical order of decay,
as |x| → ∞, of the initial datum equal to 1 + n/2 in the following sense: for α > 1 + n/2, the Fujigaki-
Miyakawa-Gallay-Wayne expansion is still valid, however, a new asymptotic profile appears for α <
1 + n/2.

Note that our initial data are not integrable, in general. Moreover, they do not necessarily belong to
L2(Rn) for α < n/2. Here, one should note the imbedding

Ln/α,∞(Rn) ∩ L∞(Rn) ⊆ Lp(Rn) for every p > n/α and α ∈ (1, n), (3)

being the consequence of a standard interpolation argument.
We conclude this introduction by recalling that analogous asymptotic expansions of slowly decaying

solutions for the convection diffusion equation ut − uxx + (uq)x = 0 were obtained in [17]. On the other
hand, corresponding asymptotic expansions, as |x| → ∞, of solutions to (1) were recently obtained in [6].

Notation. The Lp-norm of a Lebesgue measurable, real-valued function v defined on Rn is denoted
by ‖v‖p and, in the case of a vector field v = (v1, ..., vn), we write ‖v‖p ≡ max{‖v1‖p, ..., ‖vn‖p}. In the
following, we also use the weak Lp space (also called the Marcinkiewicz space) denoted by Lp,∞(Rn) and

consisting of all measurable functions v satisfying ‖v‖p,∞ = supt>0 t|{x ∈ Rn : |v(x)| > t}|
1
p <∞, where

|E| is the Lebesgue measure of a measurable set E. The solution to the linear heat equation ut = ∆u
supplemented with the initial datum u0 is given by S(t)u0 ≡ E(t)∗u0, with the Gauss-Weierstrass kernel
E(x, t) = (4πt)−n/2 exp(−|x|2/4t). Moreover, we use the matrix valued function

V (x, t) =
(
Vjk(x, t)

)
j,k=1,...,n

with Vjk(x, t) = E(x, t)δjk +

∫ ∞
0

∂j∂kE(x, t+ τ) dτ,

because this is the kernel of the operator PS(t) with the Leray projection P onto solenoidal vector fields
(cf. [9, Section 2] for more details). It allows us to rewrite the initial value problem (1) as a well-known
integral equation for mild solutions, see (22) below.



2. Results and comments. We derive an asymptotic expansion as t→∞ of a global-in-time solution
u = u(x, t) to the initial value problem (1) which satisfies the following conditions. First of all, we assume
the existence of a constant α ∈ (1, n) such that

sup
t>0
‖u(t)‖n/α,∞ <∞. (4)

Moreover, we suppose that the following estimates hold true

‖u(t)‖p ≤ C(1 + t)−
n
2 (αn−

1
p ) (5)

and
‖∇u(t)‖p ≤ Ct−

1
2 (1 + t)−

n
2 (αn−

1
p ) (6)

for every p ∈ (n/α,∞], all t > 0, and C independent of t. For the completeness of the exposition, we recall
(in Theorem 9, below) a result on the existence of global-in-time solutions corresponding to sufficiently
small initial conditions and satisfying (4)- (6). Our assumptions (4)- (6), however, are not surprising
because they are valid for solutions to the linear heat equation S(t)u0 = E(t) ∗ u0 with an initial datum
from (2). Indeed, we have the well-known algebraic decay rates estimates

‖S(t)u0‖p ≤ ‖u0‖p for every p ∈ [1,∞] (7)

and

‖S(t)u0‖p ≤ Ct−
n
2 (αn−

1
p )‖u0‖n/α,∞, (8)

‖∇S(t)u0‖p ≤ Ct−
1
2−

n
2 (αn−

1
p )‖u0‖n/α,∞, (9)

for every p ∈ (n/α,∞], all t > 0, and C independent of t and of u0.
Below in Proposition 10, we show that, in fact, the solutions to the Navier-Stokes system (1) behaves

at the first approximation as S(t)u0. This property of solutions to (1) is known, however, we state it
(and prove) in the form which is the most suitable for our applications.

The main goal of this work is to derive the second order term of the asymptotic expansion of solutions
as t → ∞. We discover the critical exponent equal to α = 1 + n/2 and the asymptotic expansion of
solutions differs for α ∈ (1 + n/2), α = 1 + n/2, and α ∈ (1 + n/2, n). It is worth of noting that the
interval (1 + n/2, n) is nonempty for n ≥ 3, only.

We begin with α > 1 + n/2.

Theorem 1. Assume that 1 + n/2 < α < n. Let u be the solution to (1) satisfying (4)- (6). Then

lim
t→∞

t
n
2 (1− 1

p )+
1
2

∥∥u(t)− S(t)u0 +∇V (·, t)
∫ ∞
0

∫
Rn

(
u⊗ u

)
(y, τ) dydτ

∥∥
p

= 0 (10)

for any p ∈ [1,∞].

Note that∇V (x, t) = t−
n
2−

1
2 (∇V )(x/

√
t, 1), hence, ‖∇V (t)‖p = t−

n
2 (1− 1

p )−
1
2 ‖∇V (1)‖p. Relation (10)

says that the Lp-norm of u(t)− S(t)u0 +∇V (t)
∫∞
0

∫
Rn u⊗ u dydτ decays faster.

If α > 1 +n/2, the decay estimate (5) with p = 2 implies u⊗u ∈ L1(Rn× [0,∞)), hence, the integral∫∞
0

∫
Rn
(
u ⊗ u

)
(y, τ) dydτ in (10) is convergent. In this case, the asymptotic formula (10) agrees with

that obtained by Fujigaki and Miyakawa [9, Thm. 2.1.i] with the only difference that we do not develop
asymptotically the linear part S(t)u0. In fact, as we shall see below, the essential part of the proof of
Theorem 1 can be just copied from [9].

Remark 2. It follows from the proof of Theorem 1 and from [9, Thm. 2.1.i] that the expansion (10) holds
true for all solutions satisfying ‖u(t)‖22 ≤ C(1 + t)−b with some b > 1.

Next, we study the case α ∈ (1, 1 + n/2].

Theorem 3. Assume that 1 < α ≤ 1 + n/2. Let u be the solution to (1) satisfying (4)- (6). Then, for
every p ∈ [1,∞] satisfying p > n/(2α) we have

lim
t→∞

t
n
2 (αn−

1
p )+

α−1
2

∥∥∥∥u(t)− S(t)u0 +

∫ t

0

P∇S(t− τ) (ũ⊗ ũ) (τ) dτ

∥∥∥∥
p

= 0 (11)

for all t > 0, where, to shorten the notation, we write ũ(t) = S(t)u0.



Our proof of Theorem 3 provides an explicit decay rate of t
n
2 (αn−

1
p )+

α−1
2 ‖ . . . ‖p in (11), which we do

not state here for simplicity of the exposition.

Remark 4. Note that for α ∈ (1, 1 + n/2], the decay rates in expansions (10) and (11) satisfy

n

2

(
α

n
− 1

p

)
+
α− 1

2
≤ n

2

(
1− 1

p

)
+

1

2

with the equality for α = 1 + n/2.

Under an additional assumption on the initial datum, we can replace the second order term in the
asymptotic expansion (11) by a self-similar function and we obtain an asymptotic term in the critical
case α = 1 + n/2, as well.

Theorem 5. Let the assumptions of Theorem 3 hold true. Suppose that there exists a function U0 ∈
Ln/α,∞(Rn), homogeneous of degree −α and divergence free in the sense of distribution such that

lim
t→∞

‖S(t)(u0 − U0)‖n/α,∞ = 0. (12)

Denote by Uα(x, t) = (S(t)U0)(x) = t−
α
2 Uα(x/

√
t, 1), the self-similar solution to the heat equation. If

1 < α < 1 + n/2, we have

lim
t→∞

t
n
2 (αn−

1
p )+

α−1
2

∥∥∥∥u(t)− S(t)u0 +

∫ t

0

P∇S(t− τ) (Uα(τ)⊗ Uα(τ)) dτ

∥∥∥∥
p

= 0 (13)

and, in the critical case α = 1 + n/2, we obtain

lim
t→∞

t
n
2 (αn−

1
p )+

α−1
2

log(e+ t)

∥∥∥∥u(t)− S(t)u0 + (log(e+ t))∇V (t)

∫
Rn

(Uα ⊗ Uα)(y, 1) dy

∥∥∥∥
p

= 0 (14)

for any p ∈ [1,∞] such that p > n/(2α).

Remark 6. Using this self-similar form of the kernel ∇V and changing variables, we can easily show that

W (x, t) ≡
∫ t

0

P∇S(t− τ)
(
Uα(τ)⊗ Uα(τ)

)
dτ = t−α+

1
2W

(
x√
t
, 1

)
with the profile W (x, 1) defined as

W (x, 1) =

∫ 1

0

∫
Rn

(1− s)−
n+1
2 ∇V

(
x− y√
1− s

)(
Uα

(
y√
s
, 1

)
⊗ Uα

(
y√
s
, 1

))
s−α dyds.

This simple observation is important to understand the decay rate in relation (13). Indeed, computing
the Lp-norm we have

‖W (·, t)‖p = t−
n
2 (αn−

1
p )−

α−1
2 ‖W (·, 1)‖p.

Remark 7. The logarithmic factor log(e+ t) appears in the proof of (14) when one replaces ũ(t) = S(t)u0
by ũ(t) = S(t)U0 in the following term

∫ t
0
P∇S(t − τ) (ũ⊗ ũ) (τ) dτ of the asymptotic expansion of

solutions. Assuming an explicit decay rate in (12) this logarithmic correction will disappear.

Remark 8. The expansions (11) and (13) are no longer valid for α = 1. Indeed, it was proved by Planchon
[21] (and improved in [16, 7]) that if a sufficiently small initial condition u0 ∈ Ln,∞(Rn) satisfies (12)
with α = 1 and a function U0 ∈ Ln,∞(Rn), homogeneous of degree −1, then the large time asymptotics
of the corresponding solution is described by the self-similar solution of system (1) with U0 as the initial
datum.

3. Preliminary decay estimates. In our reasoning below, we need the following estimates of the heat
semigroup

‖P∇S(t)f‖p ≤ Ct−
1
2−

n
2 ( 1

r−
1
p )‖f‖r,∞ (15)



for every 1 < r < p ≤ ∞, see, e.g. [9, Section 2]. Recall also that the norm ‖f‖r,∞ in (15) can be replaced
by ‖f‖r due to the inequality ‖f‖r,∞ ≤ C‖f‖r. In this case, r = 1 and r = p are allowed, as well.

Here, we also recall the inequality in the limit case

‖S(t)f‖r,∞ ≤ C‖f‖r,∞ (16)

valid for each r ∈ (1,∞), and weak-type Hölder inequality

‖fg‖r,∞ ≤ C‖g‖p,∞‖f‖q,∞ (17)

for the exponents 1 < r, p, q <∞ satisfying 1/r = 1/p+ 1/q.
Our first preliminary result provides global-in-time small solutions to (1) which satisfy the decay

estimates (4)-(6). Due to the imbedding (3), the result contained in Theorem 9 below is not new and we
only sketch its proof.

Theorem 9. Assume that

u0 ∈ Ln/α,∞(Rn) ∩ L∞(Rn) with n ≥ 2 and 1 < α < n. (18)

Let the norm ‖u0‖ ≡ max{‖u0‖n/α,∞, ‖u0‖∞} be sufficiently small. There exists a unique solution u =
u(x, t) of system (1) satisfying

u ∈ Cw([0,∞);L
n
α ,∞(Rn) ∩ C(0,∞;Lp(Rn)) (19)

for any p ∈ (n/α,∞]. Moreover, the estimates (4)-(6) hold true for all t > 0 and C independent of t.

Proof. It was already observed that Ln/α,∞(Rn) ∩ L∞(Rn) ⊆ Ln(Rn). Hence, we can apply the Kato
result [15] for ‖u0‖n sufficiently small in order to obtain the global-in-time solution

u ∈ C([0,∞), Ln(Rn)) ∩ C((0,∞), Lp(Rn))

for every p ∈ (n,∞) together with the decay estimates

‖u(t)‖p ≤ C(1 + t)−
n
2 ( 1

n−
1
p ) ‖∇u(t)‖p ≤ Ct−

1
2 (1 + t)−

n
2 ( 1

n−
1
p )

for every p > n, all t > 0, and C independent of t. In order to obtain better decay properties of solutions
stated in (4)-(6), it suffices to repeat the Kato algorithm, say, in the space

Cw([0,∞);L
n
α ,∞(Rn) ∩ {u ∈ C(0,∞;Ln(Rn)) : sup

t>0
t
1
2 (α−1)‖u(t)‖n <∞}.

This argument, however, is well-known (see e.g. [15, Theorems 3 and 4]) and it was applied in several
different contexts, hence, we skip other details.

Next, we show that, under our standing assumptions (4)-(5), solutions to (1) behave at the first
approximation as solutions to the heat equation. This is a standard result, which we state it in detail,
because we use an optimal decay estimate of ‖u(t)− S(t)u0‖p.

Proposition 10. Let α ∈ (1, n) and p ∈ [1,∞] satisfy p > n/(2α). Suppose that u satisfies (4)-(6).
There exists a constant C independent of t such that

‖u(t)− S(t)u0‖p ≤


Ct−

n
2 (αn−

1
p )−

α−1
2 if 1 < α < 1 + n/2,

Ct−
n
2 (αn−

1
p )−

α−1
2 log(e+ t) if α = 1 + n/2,

Ct−
n
2 (1− 1

p )−
1
2 if 1 + n/2 < α < n

(20)

for all t ≥ 1. Moreover,

∥∥u(t)− S(t)u0
∥∥
n/α,∞ ≤


Ct−

α−1
2 if 1 < α < 1 + n/2

Ct−
α−1
2 log(e+ t) if α = 1 + n/2

Ct−
n
2 (1−αn )− 1

2 if 1 + n/2 < α < n

(21)

for all t ≥ 1.



Proof. We use the well-known integral representation of solutions to the Cauchy problem (1)

u(t) = S(t)u0 −
∫ t

0

P∇S(t− τ)(u⊗ u)(τ) dτ

= E(t) ∗ u0 −
∫ t

0

∇V (t− s) ∗ (u⊗ u)(τ) dτ,

(22)

where we decompose the second term on the right-hand side as follows

u(x, t)− S(t)u0 = −

(∫ t/2

0

+

∫ t

t/2

)
P∇S(t− τ)

(
u⊗ u

)
(τ) dτ

= I1(t) + I2(t).

(23)

First, we estimate the term I2(t) applying inequality (15) (with r = p) and (5) (with p replaced by
2p) as follows

‖I2(t)‖p ≤ C
∫ t

t/2

(t− τ)−
1
2 ‖u(τ)‖22p dτ

≤ C
∫ t

t/2

(t− τ)−
1
2 (1 + τ)−n(

α
n−

1
2p ) dτ ≤ Ct−

n
2 (αn−

1
p )−

α−1
2

(24)

for any p ∈ [1,∞] such that p > n/(2α).
We have to proceed more carefully with the integral I1(t) and the reasoning depends on the value of

α.
Case 1: 1 ≤ α < n/2. Since n/(2α) > 1, by (15) with p > n/(2α) and (17) with p = q = n/α, we

obtain

‖I1(t)‖p ≤ C
∫ t/2

0

(t− τ)−
1
2−

n
2 ( 2α

n −
1
p )‖u(τ)‖2n/α,∞ dτ. (25)

Now, the assumption (4) implies immediately

‖I1(t)‖p ≤ Ct−
n
2 (αn−

1
p )−

α−1
2 (26)

for all t > 0.
Case 2: α = n/2. Here, we fix q ∈ (1, p) (recall that p > n/(2α) = 1) satisfying, moreover,

(n/2)(1− 1/q) < 1. Using (15), the Hölder inequality, and (5) we obtain

‖I1(t)‖p ≤ C
∫ t/2

0

(t− τ)−
1
2−

n
2 ( 1

q−
1
p )‖u(τ)‖22q dτ

≤ C
∫ t/2

0

(t− τ)−
1
2−

n
2 ( 1

q−
1
p )(1 + τ)−n(

1
2−

1
2q ) dτ

≤ Ct−
n
2 (αn−

1
p )−

α−1
2

(27)

for all t > 0.
Case 3: n/2 < α < n/2 + 1. Here, we have n/α < 2, hence, by inequalities (15), (17), and (5) with

p = 2, we get

‖I1(t)‖p ≤ C
∫ t/2

0

(t− τ)−
1
2−

n
2 (1− 1

p )‖u(τ)‖22 dτ

≤ Ct−
1
2−

n
2 (1− 1

p )

∫ t/2

0

(1 + τ)−n(
α
n−

1
2 ) dτ

(28)

for any p ∈ [1,∞]. Since n(α/n − 1/2) < 1, computing the integral on the right-hand side of (28) we
show (26) for α ∈ (n/2, 1 + n/2).

Case 4: α = n/2 + 1. Now, n(α/n− 1/2) = 1, hence by inequalities (28), we obtain

‖I1(t)‖p ≤ Ct−
1
2−

n
2 (1− 1

p ) log(e+ t) (29)



for any p ∈ [1,∞].
Case 5: n/2 + 1 < α < n. Since n(α/n− 1/2) > 1, inequality (28) implies

‖I1(t)‖p ≤ Ct−
1
2−

n
2 (1− 1

p ) (30)

for any p ∈ [1,∞]. This argument completes the proof of (20).
Now, we proceed with the proof of (21).
First, we deal with I2(t), where by (15), (17) and the inequality ‖u(τ)‖2n/α,∞ ≤ C‖u(τ)‖2n/α, we

get

‖I2(t)‖n/α,∞ ≤ C
∫ t

t/2

(t− τ)−
1
2 ‖u(τ)‖22n/α dτ

≤ C
∫ t

t/2

(t− τ)−
1
2 τ−n(

α
n−

α
2n ) dτ = Ct−

α−1
2 .

Next, we estimate I1(t). In the case of 1 ≤ α < n/2 (so n/(2α) > 1), by (15) and (17), we get

‖I1(t)‖n/α,∞ ≤ C
∫ t/2

0

(t− τ)−
1
2−

n
2 ( 2α

n −
α
n )‖u(τ)‖2n/α,∞ dτ.

Using assumption (4) we immediately deduce

‖I1(t)‖n/α,∞ ≤ Ct−
α−1
2 . (31)

If α = n/2, it suffices to use the inequality ‖I1(t)‖2,∞ ≤ C‖I1(t)‖2 and to follow the reasoning from
inequalities (27).

For n/2 < α < n/2 + 1, we have n/α < 2 and n(α/n− 1/2) < 1, consequently, by (5), (15), and (17),
we again obtain

‖I1(t)‖n/α,∞ ≤ C
∫ t/2

0

(t− τ)−
n
2 (1−αn )− 1

2 ‖u(τ)‖22 dτ

≤ C(t/2)−
n
2 (1−αn )− 1

2

∫ t/2

0

(1 + τ)−n(
α
n−

1
2 ) dτ ≤ Ct−

α−1
2 .

(32)

The proof of (21) for n/2 + 1 < α < n is completed by the same reasoning as in the case of the
inequality (28).

4. Second term of asymptotics.

Proof of Theorem 1. In order to find the second term of asymptotics of solutions to (1), we use the
decomposition (23) from the proof of Proposition 10.

We begin by noting that for α > 1 + n/2 the solution u satisfies estimate (5) for any p ≥ 2.
Consequently, in our reasoning below, we have the fundamental inequality

‖(u⊗ u)(t)‖p ≤ ‖u(t)‖22p ≤ C(1 + t)−n(αn−
1
2p ) for all p ∈ [1,∞]. (33)

Moreover, since n(α/n−1/2) > 1, the integral
∫∞
0

∫
Rn(u⊗u)(u, τ) dydτ is convergent by (33) with p = 1.

Step 1. Let us show that the term I2(t) = −
∫ t
t/2

P∇S(t− τ)
(
u⊗ u

)
(τ) dτ does not contribute to the

large time asymptotics of solutions. Indeed, we have

lim
t→∞

t
n
2 (1− 1

p )+
1
2 ‖I2(t)‖p = 0 for any p ≥ 1. (34)

This relation follows from (24) combined with (33) due to the inequality

n

2

(
α

n
− 1

p

)
+
α− 1

2
>
n

2

(
1− 1

p

)
+

1

2
for α > 1 +

n

2
.



Step 2. Now, we prove that the term I1(t) = −
∫ t/2
0
∇PS(t− τ)

(
u⊗ u

)
(τ) dτ determines the second

term of the asymptotic expansion from (10), and by this reason, we write it in the form

I1(t)+∇V (·, t)
∫ ∞
0

∫
Rn

(
u⊗ u

)
(y, τ) dydτ

=∇V (·, t)
∫ ∞
t/2

∫
Rn

(
u⊗ u

)
(y, τ) dydτ

−
∫ t/2

0

∫
Rn

(
∇V (· − y, t− τ)−∇V (·, t− τ)

)(
u⊗ u

)
(y, τ) dydτ

−
∫ t/2

0

∫
Rn

(
∇V (·, t− τ)−∇V (·, t)

)(
u⊗ u

)
(y, τ) dydτ

=J11(t) + J12(t) + J13(t).

(35)

It is obvious that
lim
t→∞

t
1
2+

n
2 (1− 1

p ) ‖J11‖p = 0

since ‖(u ⊗ u)(·)‖1 ∈ L1(0,∞) and ‖∇V (·, t)‖p = t−
1
2−

n
2 (1− 1

p )‖∇V (·, 1)‖p. In order to obtain estimates
for other terms on the right-hand side of (35) (and to complete the proof of (10)) it suffices to copy the
corresponding calculations from [9, Proof of Thm. 4.1.i]. Hence, we skip other details of this proof.

Proof of Theorem 3. Now, we rewrite the integral equation (22) as follows

u(t)− S(t)u0+

∫ t

0

P∇S(t− τ)
(
ũ⊗ ũ

)
(τ) dτ

=−
∫ t

0

P∇S(t− τ)
(
(u− ũ)⊗ u

)
(τ) dτ

−
∫ t

0

P∇S(t− τ)
(
ũ⊗ (u− ũ)

)
(τ) dτ

≡J1(t) + J2(t),

(36)

where ũ(τ) = S(τ)u0, and we estimate each term on the right-hand side.
We begin with 1 < α < n/2, so 2 < n/α. Applying, first (15) and next (4)-(5) and (20)-(21), we

obtain for any p > n/(2α)

‖J1(t)‖p ≤C
∫ t/2

0

(t− τ)−
1
2−

n
2 ( 2α

n −
1
p )‖(u− ũ)(τ)‖n/α,∞‖u(τ)‖n/α,∞ dτ

+ C

∫ t

t/2

(t− τ)−1/2‖(u− ũ)(τ)‖2p‖u(τ)‖2p dτ

≤Ct−
1
2−

n
2 ( 2α

n −
1
p )

∫ t/2

0

(1 + τ)−
α−1
2 dτ + Ct−

3α
2 + n

2p+1.

(37)

Repeating this reasoning in the case of J2(t) we get

‖J2(t)‖p ≤ Ct−
1
2−

n
2 ( 2α

n −
1
p )

∫ t/2

0

(1 + τ)−
α−1
2 dτ + Ct−

3α
2 + n

2p+1

for any p > n/(2α).
Hence, the proof of (11) for α ∈ (1, n/2) is complete due to the estimates

∫ t/2

0

(1 + τ)−
α−1
2 dτ ≤

 Ct−(α−3)/2 if 1 < α < 3,
C log(e+ t) if α = 3,
C if 3 < α

and the relation
n

2

(
2α

n
− 1

p

)
+

1

2
=
n

2

(
α

n
− 1

p

)
+
α− 1

2
+ 1.



For n/2 < α < 1 + n/2, one should note that u(t) ∈ Lq(Rn) for any q ∈ [2,∞] (analogously,
u(t) ∈ Lq(Rn) for any q ∈ (2,∞] if α = n/2). Hence, by analogous calculations as those from (37) for
every p ∈ [1,∞] if n/2 < α < 1 + n/2, and for every p ∈ (1,∞] if α = n/2, we complete the proof of (11)
if α ∈ (1, 1 + n/2).

A similar argument based on inequalities from (37) holds true also in the limit case α = 1 + n/2 and
Theorem 3 is shown.

Proof of Theorem 5. Since U0 ∈ Ln/α,∞(Rn), it follows from inequalities (15) and (16) that

‖Uα(t)‖p ≤ Ct−
n
2 (αn−

1
p )‖U0‖n/α,∞ and ‖Uα(t)‖n/α,∞ ≤ C‖U0‖n/α,∞ (38)

for any p ∈ (n/α,∞]. Now, by estimates (38), (20), (21), and assumption (12), we have

lim
t→∞

t
n
2 (αn−

1
p )
∥∥u(t)− Uα(t)

∥∥
p

= 0 for every p ∈ (n/α,∞]. (39)

In order to prove Theorem 5, it is sufficient, in view of (11), to derive the asymptotic expansion of∫ t
0
P∇S(t− τ)(ũ(τ)⊗ ũ(τ)) dτ with ũ(τ) = S(τ)u0. So, we split∫ t

0

P∇S(t− τ)(ũ(τ)⊗ ũ(τ)) dτ −
∫ t

0

P∇S(t− τ)(Uα(τ)⊗ Uα(τ)) dτ = K1(t) +K2(t)

with

K1(t) ≡
∫ t

δt

P∇S(t− τ)
(
(ũ− Uα)⊗ ũ

)
(τ) dτ

+

∫ t

δt

P∇S(t− τ)
(
Uα ⊗ (ũ− Uα)

)
(τ) dτ,

K2(t) ≡
∫ δt

0

P∇S(t− τ)
(
(ũ− Uα)⊗ ũ

)
(τ) dτ

+

∫ δt

0

P∇S(t− τ)
(
Uα ⊗ (ũ− Uα)

)
(τ) dτ,

where, δ ∈ (0, 1/2) is a parameter to be determined later.
Applying (15), (38) and (39), we get

‖K1(t)‖p ≤ C
∫ t

δt

(t− τ)−1/2‖(ũ− Uα)(τ)‖2p (‖ũ(τ)‖2p + ‖Uα(τ)‖2p) dτ

≤ Cg(δ)t
1
2−α+

n
2p sup
τ∈[δt,t]

τ
n
2 (αn−

1
2p )‖(ũ− Uα)(τ)‖2p

with g(δ) =
∫ 1

δ
(1− s)−1/2s−n(α/n−1/(2p)) ds. Hence, by (39), we obtain

t
n
2 (αn−

1
p )+

α−1
2 ‖K1(t)‖p ≤ Cg(δ) sup

τ∈[δt,t]
τ
n
2 (αn−

1
2p )‖(ũ− Uα)(τ)‖2p → 0 as t→∞ (40)

for each fixed δ ∈ (0, 1/2) and for any p ∈ [1,∞] such that p > n/(2α).
Next we study K2 and, as usual, we have to distinguish three cases: 1 < α < n/2, α = n/2, and

n/2 < α < n/2 + 1.
For 1 < α < n/2, computing its Lp-norm with p ∈ [1,∞] and p > n/(2α), by (15) and (17) we have

‖K2(t)‖p ≤ C
∫ δt

0

(t− τ)−
n
2 ( 2α

n −
1
p )−

1
2 ‖(ũ− Uα)(τ)‖n/α,∞

×
(
‖ũ(τ)‖n/α,∞ + ‖Uα(τ)‖n/α,∞

)
dτ.

(41)

Hence, by (4) and (38), we conclude

t
n
2 (αn−

1
p )+

α−1
2 ‖K2(t)‖p ≤ C

∫ δ

0

(1− s)−
n
2 ( 2α

n −
1
p )−

1
2 ds (42)



with a constant C independent of δ and for any p ∈ [1,∞] such that p > n/(2α). Since δ > 0 can be
arbitrarily small, the results stated in (40) and (42) complete the proof of Theorem 5 for 1 < α < n/2.

The estimate of ‖K2(t)‖p for α ∈ [n/2, 1 + n/2) is obtained as in (41) replacing the Ln/α,∞-norm by
the Lq-norm with the decay as in (39)(with p replaced by q) and with a suitably chosen q analogously as
in estimates (27).

If α = 1 + n/2, one should follow more-or-less similar reasoning using, moreover, the relation

lim
t→∞

1

log(e+ t)

∫ t/2

1

∫
Rn

(Uα ⊗ Uα)(y, τ) dydτ =

∫
Rn

(Uα ⊗ Uα)(y, 1) dy,

which is an immediate consequence of the self-similar form of Uα (see [17] for a detailed proof of the
corresponding result in the case of a convection-diffusion equation).
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