Algebras with Kazhdan-Lusztig theories

Arun Ram
Department of Mathematics
University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

February 17, 2005

1 Convolution algebras

1.1 Cellular algebras

A cellular algebra is an algebra A with

$$
\begin{array}{ccc}
\text { a basis } & \left\{a_{S T}^{\lambda} \mid \lambda \in \hat{A}, S, T \in \hat{A}^{\lambda}\right\} & \\
\text { an involutive antihomomrphism } & & { }^{\prime}: A \rightarrow A, \\
\text { a partial order } & \leq \text { on } \hat{A} &
\end{array}
$$

such that
(a) $\left(a_{S T}^{\lambda}\right)^{*}=a_{T S}^{\lambda}$,
(b) If $A(<\lambda)=\operatorname{span}-\left\{a_{S T}^{\mu} \mid \mu<\lambda\right\}$
then

$$
a a_{S T}^{\lambda}=\sum_{Q \in \hat{A}^{\lambda}} A^{\lambda}(a)_{Q T} a_{Q T}^{\lambda} \quad \bmod \quad A(<\lambda), \quad \text { for all } a \in A .
$$

Applying the involution * to (b) and using (a) gives that

$$
a_{T S}^{\lambda} a^{*}=\sum_{Q \in \hat{A}^{\lambda}} A^{\lambda}(a)_{Q S} a_{T Q}^{\lambda} \quad \bmod \quad A(<\lambda), \quad \text { for all } a \in A .
$$

1.2 The decomposition theorem

The concept of a cellular algebra is not really the "right" one. The "right" one comes from the structure of a convolution algebra whenever the decomposition theorem holds [CG, 8.6.9].

Let M be a smooth G-variety and let N be a G-variety with finitely many G-orbits such that the orbit decomposition is an algebraic stratification of N,

$$
N=\bigsqcup_{\varphi} G x_{\varphi}, \quad \text { and } \quad \mu: M \longrightarrow N
$$

[^0]is a G-equivariant projective morphism. Let \mathcal{C}_{M} be the constant perverse sheaf on M. The decomposition theorem [CG, 8.4.12] says that
$$
\mu_{*} \mathcal{C}_{M}=\bigoplus_{\substack{i \in \mathbb{Z} \\ \lambda=(\varphi, \chi) \in \hat{M}}} L(\lambda, i) \otimes I C^{\lambda}[i] \doteq \bigoplus_{\lambda \in \hat{M}} L(\lambda) \otimes I C^{\lambda}, \quad \text { where } \quad L(\lambda)=\bigoplus_{i \in \mathbb{Z}} L(\lambda, i),
$$
μ_{*} is the derived functor of sheaf theoretic direct image, λ runs over the indexes of the intersection cohomology complexes $I C^{\lambda}, L(\lambda)$ are finite dimensional vector spaces, and \doteq indicates an equality up to shifts in the derived category.

Let $x \in N$ and define

$$
Z=M \times_{N} M=\left\{\left(m_{1}, m_{2}\right) \in M \times M \mid \mu\left(m_{1}\right)=\mu\left(m_{2}\right)\right\} \quad \text { and } \quad M_{x}=\mu^{-1}(x) .
$$

There are commutative diagrams

which (via base change) provide isomorphisms

$$
\begin{aligned}
H_{*}(Z) & =\operatorname{Hom}_{D^{b}\left(Z_{12}\right)}\left(\mathbb{C}_{Z_{12}},\left(\mathbb{C}_{Z_{12}}[*]\right)^{\vee}\right) \\
& =\operatorname{Hom}_{D^{b}\left(Z_{12}\right)}\left(\mu_{12}^{*} \mathbb{C}_{N}, \iota^{!} \mathcal{C}_{M_{1} \times M_{2}}\left[m_{1}+m_{2}\right][-*]\right) \\
& =\operatorname{Hom}_{D^{b}(N)}\left(\mathbb{C}_{N},\left(\mu_{12}\right)_{*}!\mathcal{C}_{M_{1} \times M_{2}}\left[m_{1}+m_{2}-*\right]\right) \\
& =\operatorname{Hom}_{D^{b}(N)}\left(\mathbb{C}_{N}, \Delta^{!}\left(\mu_{1} \times \mu_{2}\right)_{*}\left(\mathcal{C}_{M_{1}} \boxtimes \mathcal{C}_{M_{2}}\right)\left[m_{1}+m_{2}-*\right]\right) \\
& =\operatorname{Hom}_{D^{b}(N)}\left(\mathbb{C}_{N}, \Delta^{!}\left(\left(\mu_{1}\right)_{*} \mathcal{C}_{M_{1}} \boxtimes\left(\mu_{2}\right)_{*} \mathcal{C}_{M_{2}}\right)\left[m_{1}+m_{2}-*\right]\right) \\
& =\operatorname{Ext}_{D_{1}\left(m_{2}\right)}^{m_{1}-*}\left(\left(\mu_{1}\right)_{*} \mathcal{C}_{M_{1}},\left(\mu_{2}\right)_{*} \mathcal{C}_{M_{2}}\right),
\end{aligned}
$$

$$
\begin{aligned}
H_{*}\left(M_{x}\right) & =\operatorname{Hom}_{D^{b}\left(M_{x}\right)}\left(\mathbb{C}_{M_{x}},\left(\mathbb{C}_{M_{x}}[*]\right)^{\vee}\right)=\operatorname{Hom}_{D^{b}\left(M_{x}\right)}\left(\mu^{*} \mathbb{C}_{\{x\}},\left(\left(\iota^{*} \mathbb{C}_{M}\right)[*]\right)^{\vee}\right) \\
& =\operatorname{Hom}_{D^{b}(\{x\})}\left(\mathbb{C}_{\{x\}}, \mu_{*}\left(\iota^{!} \mathbb{C}_{M}[2 m]\right)[-*]\right)=\operatorname{Hom}_{D^{b}(\{x\})}\left(\mathbb{C}_{\{x\}}, i_{x}^{!} \mu_{*} \mathcal{C}_{M}[m-*]\right) \\
& =H^{m-*}\left(i_{x}^{!} \mu_{*} \mathcal{C}_{M}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
H^{*}\left(M_{x}\right) & =\operatorname{Hom}_{D^{b}\left(M_{x}\right)}\left(\mathbb{C}_{M_{x}}, \mathbb{C}_{M_{x}}[*]\right)=\operatorname{Hom}_{D^{b}\left(M_{x}\right)}\left(\mu^{*} \mathbb{C}_{\{x\}}, \mathbb{C}_{M_{x}}[*]\right) \\
& =\operatorname{Hom}_{D^{b}(\{x\})}\left(\mathbb{C}_{\{x\}}, \mu_{*} \mathbb{C}_{M_{x}}[*]\right)=\operatorname{Hom}_{D^{b}(\{x\})}\left(\mathbb{C}_{\{x\}}, \mu_{!} \iota^{*} \mathbb{C}_{M}[*]\right) \\
& =\operatorname{Hom}_{D^{b}(\{x\})}\left(\mathbb{C}_{\{x\}}, i_{x}^{*} \mu_{!} \mathbb{C}_{M}[*]\right)=\operatorname{Hom}_{D^{b}(\{x\})}\left(\mathbb{C}_{\{x\}}, i_{x}^{*} \mu_{*} \mathcal{C}_{M}[*-m]\right) \\
& =H^{*-m}\left(i_{x}^{*} \mu_{*} \mathcal{C}_{M}\right) .
\end{aligned}
$$

1.3 Convolution algebras

Let $\mu: M \rightarrow N$ be a proper map. The convolution algebra is

$$
A=\operatorname{Ext}_{D^{b}(N)}^{*}\left(\mu_{*} \mathcal{C}_{M}, \mu_{*} \mathcal{C}_{M}\right)=\bigoplus_{k \in \mathbb{Z}} \operatorname{Ext}^{k}\left(\mu_{*} \mathcal{C}_{M}, \mu_{*} \mathcal{C}_{M}\right)
$$

where

$$
\operatorname{Ext}_{D^{b}(X)}^{k}(A, B)=\operatorname{Hom}_{D^{b}(X)}(A, B[k]),
$$

with product given by the Yoneda product

$$
\operatorname{Ext}_{D^{b}(N)}^{p}\left(A_{1}, A_{2}\right) \otimes \operatorname{Ext}_{D^{b}(N)}^{q}\left(A_{2}, A_{3}\right) \longrightarrow \operatorname{Ext}_{D^{b}(N)}^{p+q}\left(A_{1}, A_{3}\right)
$$

which arises from the composition map

$$
\operatorname{Hom}_{D^{b}(N)}\left(A_{1}, A_{2}[p]\right) \otimes \operatorname{Hom}_{D^{b}(N)}\left(A_{2}[p], A_{3}[p+q]\right) \longrightarrow \operatorname{Hom}_{D^{b}(N)}\left(A_{1}, A_{3}[p+q]\right)
$$

and the identification

$$
\operatorname{Hom}_{D^{b}(N)}\left(A_{2}, A_{3}[q]\right) \cong \operatorname{Hom}_{D^{b}(N)}\left(A_{2}[p], A_{3}[p+q]\right)
$$

Then the decomposition theorem for $\mu_{*} \mathcal{C}_{M}$ induces a decomposition of A. Since the intersection cohomology complexes $I C_{\phi}$ are the simple objects in the category of perverse sheaves,

$$
\operatorname{Ext}_{D^{b}(N)}^{0}\left(I C^{\lambda}, I C^{\mu}\right)=\delta_{\lambda \mu} \mathbb{C}, \quad \text { and } \quad \operatorname{Ext}_{D^{b}(N)}^{k}\left(I C^{\lambda}, I C^{\mu}\right)=0, \quad \text { for } k \in \mathbb{Z}_{<0}
$$

and the decomposition of A simplifies to

$$
A=\bigoplus_{\lambda \in \hat{M}} \operatorname{End}_{\mathbb{C}}(L(\lambda)) \bigoplus\left(\bigoplus_{\lambda, \mu \in \hat{M}} \operatorname{Hom}_{\mathbb{C}}(L(\lambda), L(\mu)) \otimes\left(\bigoplus_{k \in \mathbb{Z}_{>0}} \operatorname{Ext}_{D^{b}(N)}^{k}\left(I C^{\lambda}, I C^{\mu}\right)\right)\right)
$$

In this context there is a good theory of projective, standard and simple modules, and their decomposition matrices satisfy a BGG reciprocity. View elements of A as sums

$$
\sum_{\lambda, \mu} \sum_{P \in \hat{L}(\lambda), Q \in \hat{L}(\mu)} c_{P Q}^{\lambda \mu} a_{P Q}^{\lambda \mu} \quad \text { where } \quad c_{P Q}^{\lambda \lambda} \in \mathbb{C}, \quad \text { and } \quad a_{P Q}^{\lambda \mu} \in \bigoplus_{k>0} \operatorname{Ext}_{D^{b}(N)}^{k}\left(I C^{\lambda}, I C^{\mu}\right) .
$$

The algebra A is completely controlled by the multiplication in

$$
\operatorname{Ext}^{*}(I C, I C) \quad \text { where } \quad I C=\bigoplus_{\lambda \in \hat{M}} I C^{\lambda} .
$$

an algebra which has all one dimensional simple modules. The radical of A is

$$
\operatorname{Rad}(A)=\bigoplus_{\lambda, \mu \in \hat{M}} \operatorname{Hom}_{\mathbb{C}}(L(\lambda), L(\mu)) \otimes\left(\bigoplus_{k \in \mathbb{Z}>0} \operatorname{Ext}_{D^{b}(N)}^{k}\left(I C^{\lambda}, I C^{\mu}\right)\right)
$$

and the nonzero

$$
L(\lambda) \text { are the simple } A \text {-modules. }
$$

1.4 Projective modules

Let e^{λ} be a minimal idempotent in $\bigoplus_{\mu} \operatorname{End}(L(\mu))$. Then

$$
P(\lambda)=A e^{\lambda}=L(\lambda) \bigoplus\left(\bigoplus_{\substack{k>0 \\ \mu}} L(\mu) \otimes \operatorname{Ext}_{D^{b}(N)}^{k}\left(I C^{\mu}, I C^{\lambda}\right)\right)
$$

is the projective cover of the simple A-module $L(\lambda)$. Define an A-module filtration

$$
P(\lambda) \supseteq P(\lambda)^{(1)} \supseteq P(\lambda)^{(2)} \supseteq \cdots
$$

by

$$
P(\lambda)^{(m)}=\bigoplus_{\substack{k \geq m \\ \mu}} L(\mu) \otimes \operatorname{Ext}_{D^{b}(N)}^{k}\left(I C^{\mu}, I C^{\lambda}\right) .
$$

Then

$$
L(\lambda)=P(\lambda) / P(\lambda)^{(1)} \quad \text { and } \quad \operatorname{gr}(P(\lambda)) \quad \text { is a semisimple } A \text {-module } .
$$

Thus the multiplicity of the simple A-module $L(\mu)$ in a composition series of $P(\lambda)$ is

$$
[P(\lambda): L(\mu)]=\operatorname{dim}\left(\operatorname{Ext}^{*}\left(I C_{\mathbb{O}, \chi}, I C_{\mathbb{O}^{\prime}, \chi^{\prime}}\right)\right)=\sum_{k \geq 0} \operatorname{dim}\left(\operatorname{Ext}_{D^{b}(N)}^{k}\left(I C^{\mu}, I C^{\lambda}\right)\right)
$$

1.5 Standard and costandard modules

Let $\lambda=(\varphi, \chi)$,

$$
x \in \mathbb{O}^{\varphi}, \quad \text { and let } \quad i_{x}:\{x\} \hookrightarrow N \quad \text { be the injection. }
$$

Then $i_{x}^{!} \mu_{*} \mathcal{C}_{M}$ is the stalk of $\mu_{*} \mathcal{C}_{M}$ at x and the Yoneda product makes
$\Delta^{\varphi}=H^{*}\left(i_{x}^{!} \mathcal{C}_{M}\right)=\operatorname{Hom}_{D^{b}(\{x\})}\left(\mathbb{C}, i_{x}^{!} \mu_{*} \mathcal{C}_{M}[*]\right)=\operatorname{Hom}_{D^{b}(N)}\left(\left(i_{x}\right)!\mathbb{C}[-*], \mu_{*} \mathcal{C}_{M}\right), \quad$ and $\nabla^{\varphi}=H^{*}\left(i_{x}^{*} \mathcal{C}_{M}\right)=H^{*}\left(\{x\}, i_{x}^{*} \mu_{*} \mathcal{C}_{M}\right)=\operatorname{Hom}_{D^{b}(\{x\})}\left(\mathbb{D}, i_{x}^{!} \mu_{*} \mathcal{C}_{M}[*]\right)=\operatorname{Hom}_{D^{b}(N)}\left(\left(i_{x}\right)!\mathbb{C}[-*], \mu_{*} \mathcal{C}_{M}\right)$,
into right A-modules. The action of an element $a \in \operatorname{Ext}^{k}\left(\mu_{*} \mathcal{C}_{M}, \mu_{*} \mathcal{C}_{M}\right)=\operatorname{Hom}_{D^{b}(N)}\left(\mu_{*} \mathcal{C}_{M}, \mu_{*} \mathcal{C}_{M}[k]\right)$ sends

$$
H^{*}\left(\{x\}, i_{x}^{!} \mu_{*} \mathcal{C}_{M}\right) \longrightarrow H^{*+k}\left(\{x\}, i_{x}^{!} \mu_{*} \mathcal{C}_{M}\right)
$$

A G-equivariant local system is a G-equivariant locally constant sheaf. The orbit \mathbb{O}^{φ} can be identified with G / G_{x} where G_{x} is the stabilizer of $x . \pi_{0}\left(\mathbb{O}^{\varphi}, x\right)=G_{x} / G_{x}^{\circ}$ where G_{x}° is the connected component of the identity in $\left.G_{x}\right)$. There is a homomorphism $\pi_{1}\left(\mathbb{O}^{\varphi}, x\right) \rightarrow \pi_{0}\left(\mathbb{D}^{\varphi}, x\right)=$ G_{x} / G_{x}° and the representations of $\pi_{1}\left(\mathbb{O}^{\varphi}, x\right)$ on the fibers \mathcal{L}_{x} of G-equivariant local systems \mathcal{L} are exactly the pullbacks of finite dimensional representations of $C=G_{x} / G_{x}^{\circ}$ to $\pi_{1}\left(\mathbb{O}^{\varphi}, x\right)$. In this way the irreducible G-equivariant local systems on \mathbb{O}^{φ} can be indexed by (some of the) irreducible representations of G_{x} / G_{x}° [CG, Lemma 8.4.11]. There is an action of $C=G_{x} / G_{x}^{\circ}$ on Δ^{φ} which commutes with the action of A. Similar arguments apply to ∇^{φ}. As (A, C) bimodules,

$$
\Delta^{\varphi}=\bigoplus_{\chi \in \hat{C}} \Delta(\varphi, \chi) \otimes \chi \quad \text { and } \quad \nabla^{\varphi}=\bigoplus_{\chi \in \hat{C}} \nabla(\varphi, \chi) \otimes \chi,
$$

and the standard and costandard A-modules are

$$
\Delta(\lambda)=\Delta(\varphi, \chi) \quad \text { and } \quad \nabla(\lambda)=\nabla(\varphi, \chi) .
$$

Using the decomposition theorem

$$
\Delta(\lambda)=H^{*}\left(i_{x}^{!} \mathcal{C}_{M}\right)_{\chi}=\bigoplus_{\substack{k \in \mathbb{Z} \\ \mu}} L(\mu) \otimes H^{k}\left(i_{x}^{!} I C^{\mu}\right)_{\chi}
$$

where the subscript χ denotes the χ-isotypic component. Define a filtration

$$
\Delta(\lambda) \supseteq \Delta(\lambda)^{(1)} \supseteq \Delta(\lambda)^{(2)} \supseteq \cdots \quad \text { by } \quad \Delta(\lambda)^{(m)}=\bigoplus_{j \geq m} \bigoplus_{\phi} L(\mu) \otimes H^{j}\left(i_{x}^{!} I C^{\mu}\right)_{\chi} .
$$

Then $\Delta(\lambda)^{(m)}$ is an A-module and $\left.\operatorname{gr}(\Delta(\lambda))\right)$ is a semisimple A-module. This (and a similar argument for $\nabla(\lambda))$ show that the multiplicity of the simple A-module $L(\mu)$ in composition series of $\Delta(\lambda)$ and $\nabla(\lambda)$ are

$$
[\Delta(\lambda): L(\mu)]=\sum_{k} \operatorname{dim}\left(H^{k}\left(i_{x}^{!} I C^{\mu}\right)_{\chi}\right) \quad \text { and } \quad[\nabla(\lambda): L(\mu)]=\sum_{k} \operatorname{dim}\left(H^{k}\left(i_{x}^{*} I C^{\mu}\right)_{\chi}\right) .
$$

Define the standard KL-polynomial and the costandard $K L$-polynomial of A to be

$$
P_{\lambda \mu}^{\Delta}(\mathrm{t})=\sum_{k} \mathrm{t}^{k} \operatorname{dim}\left(H^{k}\left(i_{x}^{!} I C^{\mu}\right)_{\chi}\right) \quad \text { and } \quad P_{\lambda \mu}^{\nabla}(\mathrm{t})=\sum_{k} \mathrm{t}^{k} \operatorname{dim}\left(H^{k}\left(i_{x}^{*} I C^{\mu}\right)_{\chi}\right),
$$

respectively. Then ??? says that

$$
[\Delta(\lambda): L(\mu)]=P_{\lambda \mu}^{\Delta}(1) \quad \text { and } \quad[\nabla(\lambda): L(\mu)]=P_{\lambda \mu}^{*}(1)
$$

These identities are analogues of the original Kazhdan-Lusztig conjecture describing the multiplicities of simple \mathfrak{g}-modules in Verma modules.

1.6 The contravariant form

Note that there is a canonical homomorphism

$$
\Delta(\lambda) \xrightarrow{c_{\lambda}} \nabla(\lambda)
$$

coming from applying the functor H^{*} to the composition

$$
\left(i_{x}\right)_{!}\left(i_{x}\right)^{!} \mu_{*} \mathcal{C}_{M} \longrightarrow \mu_{*} \mathcal{C}_{M} \longrightarrow\left(i_{x}\right)_{*}\left(i_{x}\right)^{*} \mu_{*} \mathcal{C}_{M},
$$

where the two maps arise from the canonical adjoint functor maps. Use the map c_{λ} to define a bilinear form on $\Delta(\lambda)$ by

$$
\begin{array}{rllc}
\langle,\rangle: \quad \Delta(\lambda) \otimes \Delta(\lambda) & \longrightarrow & \mathbb{C} \\
m_{1} \otimes m_{2} & \longmapsto m_{1} \cap c_{\lambda}\left(m_{2}\right)
\end{array}
$$

Then

$$
L(\lambda)=\Delta(\lambda) / \operatorname{Rad}(\langle,\rangle) .
$$

1.7 Contragradient modules

There is an involutive antiautomorphism ${ }^{t}: A \rightarrow A$ on A (coming from switching the two factors in $\left.Z=M \times_{N} M\right)$. If M is an A-module the contragredient module is

$$
M^{*}=\operatorname{Hom}_{\mathbb{C}}(M, \mathbb{C}) \quad \text { with } \quad(a \psi)(m)=\psi\left(a^{t}(m)\right), \quad \text { for } a \in A, \psi \in M^{*}, \text { and } m \in M .
$$

Then

$$
\nabla(\lambda) \cong \Delta(\lambda)^{*}
$$

1.8 Reciprocity

If $\lambda=(\varphi, \rho)$ define

$$
d_{\lambda}=\operatorname{dim}_{\mathbb{C}}\left(\mathbb{O}^{\varphi}\right), \quad \text { and assume that } \quad \operatorname{Ext}_{D^{b}(N)}^{d_{\psi}+d_{\varphi}+k}\left(I C^{\varphi}, I C^{\psi}\right)=0, \quad \text { for all odd } k .
$$

Then

$$
\begin{aligned}
{[P(\lambda): L(\mu)] } & =\sum_{k} \operatorname{dimExt}_{D^{b}(N)}^{k}\left(I C^{\lambda}, I C^{\mu}\right) \\
& =\sum_{k} \operatorname{dimExt}_{D^{b}(N)}^{d_{\lambda}+d_{\mu}+k}\left(I C^{\lambda}, I C^{\mu}\right) \\
& =\sum_{k}(-1)^{k} \operatorname{dimExt}_{D_{\lambda}(N)}^{d_{\lambda}+d_{\mu}+k}\left(I C^{\lambda}, I C^{\mu}\right) \\
& =(-1)^{d_{\phi}+d_{\psi}} \sum_{\mathbb{O}} \chi\left(\mathbb{O}, i_{\mathbb{O}}^{!} I C_{\phi}^{\vee} \dot{\otimes} i_{\mathbb{O}}^{!} I C_{\psi}\right) \\
& =(-1)^{d_{\phi}+d_{\psi}} \sum_{\mathbb{O}} \chi\left(\mathbb{O},(-1)^{d_{\phi}} \sum_{\alpha, k}\left[\mathcal{H}^{k} i_{\mathbb{O}}^{!}\left(I C_{\phi}^{\vee}\right): \alpha\right] \alpha \dot{\otimes}(-1)^{d_{\psi}} \sum_{\beta, \ell}\left[\mathcal{H}^{\ell} i_{\mathbb{O}}\left(I C_{\psi}\right): \beta\right] \beta\right) \\
& =\sum_{\mathbb{O}, \alpha, \beta} \chi\left(\mathbb{O}, \sum_{k}\left[\mathcal{H}^{k} i_{\mathbb{O}}^{!}\left(I C_{\phi}\right): \alpha^{*}\right] \alpha \dot{\otimes} \sum_{\ell}\left[\mathcal{H}^{\ell} i_{\mathbb{O}}^{!}\left(I C_{\psi}\right): \beta\right] \beta\right) \\
& =\sum_{\alpha, \beta} \sum_{k} \operatorname{dim}^{k} \mathcal{H}^{k}\left(i_{\alpha}^{!} I C_{\phi}\right)\left(\sum_{\mathbb{O}} \chi\left(\mathbb{O}, \alpha^{*} \dot{\otimes} \beta\right)\right) \sum_{\ell} \operatorname{dim} \mathcal{H}^{\ell}\left(i_{\beta}^{!} I C_{\psi}\right) \\
& =\sum_{\alpha, \beta}\left[\mathcal{M}_{\alpha}^{!}: L_{\phi}\right]\left(\sum_{\mathbb{O}} \chi\left(\mathbb{O}, \alpha^{*} \otimes \beta\right)\right)\left[\mathcal{M}_{\beta}^{\prime}: L_{\psi}\right] \\
& =\sum_{\alpha, \beta} P_{\phi \alpha}(1) D_{\alpha \beta} P_{\psi \beta}(1) \\
& =\left(P D P^{t}\right)_{\phi \psi},
\end{aligned}
$$

where
(1) the third equality follows from the vanishing of Ext groups in odd degrees,
(2) χ denotes the Euler characteristic,
(3) P is the matrix $\left(P_{\phi \alpha}(1)\right)$, and
(4) D is the matrix $\left(\sum_{\mathbb{O}} \chi\left(\mathbb{O}, \alpha^{*} \otimes \beta\right)\right)$.

This identity is the "BGG reciprocity" for the algebra A.

1.9 The category $D^{b}(N)$

The category $C_{o m p}{ }^{b}(S h(N))$ is the cateogry of all finite complexes

$$
A=\left(0 \rightarrow A^{-m} \rightarrow A^{-m+1} \rightarrow \cdots \rightarrow A^{n-1} \rightarrow A^{n} \rightarrow 0\right), \quad m, n \in \mathbb{Z}_{\gg 0}
$$

of sheaves on N with morphisms being morphisms of complexes which commute with the differentials. The j th cohomology sheaf of A is

$$
\mathcal{H}^{j}(A)=\frac{\operatorname{ker}\left(A^{j} \rightarrow A^{j+1}\right)}{\operatorname{im}\left(A^{j-1} \rightarrow A^{j}\right)}
$$

A morphism in $C o m p^{b}(S h(N))$ is a quasi-isomorphism if it induces isomorphisms on cohomology. The category $D^{b}(S h(N))$ is the category $\operatorname{Comp}^{b}(S h(N))$ with additional morphisms obtained by formally inverting all quasi-isomorphisms.

Assume that N is a G-variety with a finite number of orbits such that the G-orbit decomposition

$$
N=\bigsqcup_{\varphi} \mathbb{O}^{\varphi} \quad \text { is an algebraic stratification of } X
$$

A constructible sheaf is a sheaf that is locally constant on strata of N. A constructible complex is a complex such that all of its cohomology sheaves are constructible.

The derived category of bounded constructible complexes of sheaves on N is the full subcategory $D^{b}(N)$ of $D^{b}(S h(N))$ consisting of constructible complexes. Full means that the morphisms in $D^{b}(N)$ are the same as those in $D^{b}(S h(N))$.

The shift functor $[i]: D^{b}(N) \rightarrow D^{b}(N)$ is the functor that shifts all complexes by i.
The Verdier duality functor ${ }^{\vee}: D^{b}(N) \rightarrow D^{b}(N)$ is defined by requiring
$\operatorname{Hom}_{D^{b}(N)}\left(A_{1}, A_{2}[i]\right)=\operatorname{Hom}_{D^{b}(N)}\left(\Delta^{*}\left(A_{1} \boxtimes A_{2}^{\vee}\right)[-i], \mathbb{C}_{N}\left[2 \operatorname{dim}_{\mathbb{C}} N\right]\right), \quad$ for all $i \in \mathbb{Z}$, where $\Delta: N \rightarrow N \times N$ is the diagonal map.

The Verdier duality functor satisfies the properties

$$
\left(A^{\vee}\right)^{\vee}=A, \quad(A[i])^{\vee}=A^{\vee}[-i], \quad \text { and } \quad \operatorname{Hom}_{D^{b}(N)}\left(A_{1}, A_{2}\right)=\operatorname{Hom}_{D^{b}(N)}\left(A_{2}^{\vee}, A_{1}^{\vee}\right)
$$

Define

$$
\begin{array}{ll}
\operatorname{Ext}_{D^{b}(X)}^{k}\left(A_{1}, A_{2}\right)=\operatorname{Hom}_{D^{b}(X)}\left(A_{1}, A_{2}[k]\right), & \\
H^{k}(A)=H^{k}(X, A)=\operatorname{Hom}_{D^{b}(X)}\left(\mathbb{C}_{X}, A[k]\right), & \text { the hypercohomology of } A \in D^{b}(N) \\
H^{k}(N)=\operatorname{Hom}_{D^{b}(N)}\left(\mathbb{C}_{N}, \mathbb{C}_{N}[k]\right), & \text { the cohomology of } N, \\
\left.H_{k}(N)=\operatorname{Hom}_{D^{b}(N)}\right)\left(\mathbb{C}_{N},\left(\mathbb{C}_{N}[k]\right)^{\vee}\right), & \text { the Borel-Moore homology of } N, \\
\mathbb{D}_{X}=\mathbb{C}_{X}^{\vee}, & \text { the dualizing complex },
\end{array}
$$

respectively. The Yoneda product

$$
\operatorname{Ext}_{D^{b}(N)}^{p}\left(A_{1}, A_{2}\right) \times \operatorname{Ext}_{D^{b}(N)}^{q}\left(A_{2}, A_{3}\right) \longrightarrow \operatorname{Ext}_{D^{b}(N)}^{p+q}\left(A_{1}, A_{3}\right)
$$

is given by

$$
\operatorname{Hom}_{D^{b}(N)}\left(A_{1}, A_{2}[p]\right) \times \operatorname{Hom}_{D^{b}(N)}\left(A_{2}[p], A_{3}[p+q]\right) \longrightarrow \operatorname{Hom}_{D^{b}(N)}\left(A_{1}, A_{3}[p+q]\right)
$$

using the canonical identification $\operatorname{Hom}_{D^{b}(N)}\left(A_{2}, A_{3}[q]\right) \cong \operatorname{Hom}_{D^{b}(N)}\left(A_{2}[p], A_{3}[p+q]\right)$.
If $f: X \rightarrow Y$ is a morphism define

$$
\begin{aligned}
& f_{*}=\text { derived functor of sheaf theoretic direct image } \\
& f^{*}=\text { derived functor of sheaf theoretic inverse image }
\end{aligned}
$$

$$
f^{!} A=\left(f^{*} A^{\vee}\right)^{\vee}, \text { for } A \in D^{b}(Y), \quad \text { and } \quad f_{!} A=\left(f_{*} A^{\vee}\right)^{\vee}, \text { for } A \in D^{b}(X) .
$$

Then

$$
\begin{aligned}
& \operatorname{Hom}_{D^{b}(X)}\left(f^{*} A_{1}, A_{2}\right)=\operatorname{Hom}_{D^{b}(Y)}\left(A_{1}, f_{*} A_{2}\right), \quad \text { and } \\
& \operatorname{Hom}_{D^{b}(X)}\left(A_{2}, f^{!} A_{1}\right)=\operatorname{Hom}_{D^{b}(Y)}\left(f_{!} A_{2}, A_{1}\right) .
\end{aligned}
$$

If $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ define The base change formula is

$$
\begin{array}{clll}
X \times_{Z} Y & \xrightarrow{\pi_{2}} & Y \\
\left.\right|_{1} & & \left.\right|^{g} \\
X & \xrightarrow{\pi_{1}} & g^{\prime}
\end{array} \quad g_{*} A=\left(\pi_{2}\right)_{*} \pi_{1}^{!} A, \quad \text { for } A \in D^{b}(X),
$$

where $X \times_{Z} Y=\{(x, y) \in X \times Y \mid f(x)=g(y)\}$.
The category of perverse sheaves on X is a full subcategory of $D^{b}(X)$ which is abelian. The simple objects in the category of perverse sheaves are the intersection cohomology complexes

$$
I C_{\phi} \quad \text { indexed by pairs } \quad \phi=(\mathbb{O}, \chi),
$$

where \mathbb{O} is a G-orbit on X and χ is an irreducible local system on X. By ???, the local systems χ on \mathbb{O} can be identified with (some of the) representations of the component group $Z_{G}(x) / Z_{G}(x)^{\circ}$ where x is a point in \mathbb{O}. If X is smooth the constant perverse sheaf \mathcal{C}_{X} on X is given by

$$
\left.\mathcal{C}_{X}\right|_{X_{i}}=\mathbb{C}_{X_{i}}\left[\operatorname{dim}_{\mathbb{C}} X_{i}\right]
$$

on the irreducible components of X. Since the intersection cohomology complexes $I C_{\phi}$ are the simple objects of the category of perverse sheaves,

$$
\operatorname{Ext}_{D^{b}(N)}^{0}\left(I C_{\phi}, I C_{\psi}\right)=\mathbb{C} \cdot \delta_{\phi \psi} \quad \text { and } \quad \operatorname{Ext}_{D^{b}(N)}^{k}\left(I C_{\phi}, I C_{\psi}\right)=0, \quad \text { if } k>0
$$

References

[Dr1] .G. Drinfel'd, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 No, 2 (1998), 212-216.

[^0]: Research supported in part by NSF Grant ????.

