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1 Convolution algebras

1.1 Cellular algebras

A cellular algebra is an algebra A with

a basis {aλST | λ ∈ Â, S, T ∈ Âλ}
an involutive antihomomrphism ∗ : A→ A, and

a partial order ≤ on Â

such that

(a) (aλST )∗ = aλTS ,

(b) If A(< λ) = span-{aµST | µ < λ}

then
aaλST =

∑
Q∈Âλ

Aλ(a)QTaλQT mod A(< λ), for all a ∈ A.

Applying the involution ∗ to (b) and using (a) gives that

aλTSa
∗ =

∑
Q∈Âλ

Aλ(a)QSaλTQ mod A(< λ), for all a ∈ A.

1.2 The decomposition theorem

The concept of a cellular algebra is not really the “right” one. The “right” one comes from the
structure of a convolution algebra whenever the decomposition theorem holds [CG, 8.6.9].

Let M be a smooth G-variety and let N be a G-variety with finitely many G-orbits such
that the orbit decomposition is an algebraic stratification of N ,

N =
⊔
ϕ

Gxϕ, and µ : M −→ N
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is a G-equivariant projective morphism. Let CM be the constant perverse sheaf on M . The
decomposition theorem [CG, 8.4.12] says that

µ∗CM =
⊕
i∈Z

λ=(ϕ,χ)∈M̂

L(λ, i)⊗ ICλ[i]=̇
⊕
λ∈M̂

L(λ)⊗ ICλ, where L(λ) =
⊕
i∈Z

L(λ, i),

µ∗ is the derived functor of sheaf theoretic direct image, λ runs over the indexes of the intersec-
tion cohomology complexes ICλ, L(λ) are finite dimensional vector spaces, and =̇ indicates an
equality up to shifts in the derived category.

Let x ∈ N and define

Z = M ×N M = {(m1,m2) ∈M ×M | µ(m1) = µ(m2)} and Mx = µ−1(x).

There are commutative diagrams

Z = M ×N M
ι−→ M ×Myµ12

yµ1×µ2

N = N∆
∆−→ N ×N

and
Mx

ι−→ Myµ yµ
{x} ix−→ N

which (via base change) provide isomorphisms

H∗(Z) = HomDb(Z12)(CZ12 , (CZ12 [∗])∨)

= HomDb(Z12)(µ
∗
12CN , ι

!CM1×M2 [m1 +m2][−∗])

= HomDb(N)(CN , (µ12)∗ι!CM1×M2 [m1 +m2 − ∗])

= HomDb(N)(CN ,∆!(µ1 × µ2)∗(CM1 � CM2)[m1 +m2 − ∗])

= HomDb(N)(CN ,∆!((µ1)∗CM1 � (µ2)∗CM2)[m1 +m2 − ∗])
= Extm1+m2−∗

Db(N)
((µ1)∗CM1 , (µ2)∗CM2),

H∗(Mx) = HomDb(Mx)(CMx , (CMx [∗])∨) = HomDb(Mx)(µ
∗C{x}, ((ι

∗CM )[∗])∨)

= HomDb({x})(C{x}, µ∗(ι
!CM [2m])[−∗]) = HomDb({x})(C{x}, i

!
xµ∗CM [m− ∗])

= Hm−∗(i!xµ∗CM ),

and

H∗(Mx) = HomDb(Mx)(CMx ,CMx [∗]) = HomDb(Mx)(µ
∗C{x},CMx [∗])

= HomDb({x})(C{x}, µ∗CMx [∗]) = HomDb({x})(C{x}, µ!ι
∗CM [∗])

= HomDb({x})(C{x}, i
∗
xµ!CM [∗]) = HomDb({x})(C{x}, i

∗
xµ∗CM [∗ −m])

= H∗−m(i∗xµ∗CM ).

1.3 Convolution algebras

Let µ : M → N be a proper map. The convolution algebra is

A = Ext∗Db(N)(µ∗CM , µ∗CM ) =
⊕
k∈Z

Extk(µ∗CM , µ∗CM ),
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where
ExtkDb(X)(A,B) = HomDb(X)(A,B[k]),

with product given by the Yoneda product

Extp
Db(N)

(A1, A2)⊗ Extq
Db(N)

(A2, A3) −→ Extp+q
Db(N)

(A1, A3)

which arises from the composition map

HomDb(N)(A1, A2[p])⊗HomDb(N)(A2[p], A3[p+ q]) −→ HomDb(N)(A1, A3[p+ q])

and the identification

HomDb(N)(A2, A3[q]) ∼= HomDb(N)(A2[p], A3[p+ q]).

Then the decomposition theorem for µ∗CM induces a decomposition of A. Since the intersection
cohomology complexes ICφ are the simple objects in the category of perverse sheaves,

Ext0Db(N)(IC
λ, ICµ) = δλµC, and ExtkDb(N)(IC

λ, ICµ) = 0, for k ∈ Z<0,

and the decomposition of A simplifies to

A =
⊕
λ∈M̂

EndC(L(λ))
⊕ ⊕

λ,µ∈M̂

HomC(L(λ), L(µ))⊗
( ⊕
k∈Z>0

ExtkDb(N)(IC
λ, ICµ)

) .

In this context there is a good theory of projective, standard and simple modules, and their
decomposition matrices satisfy a BGG reciprocity. View elements of A as sums∑

λ,µ

∑
P∈L̂(λ),Q∈L̂(µ)

cλµPQa
λµ
PQ where cλλPQ ∈ C, and aλµPQ ∈

⊕
k>0

ExtkDb(N)(IC
λ, ICµ).

The algebra A is completely controlled by the multiplication in

Ext∗(IC, IC) where IC =
⊕
λ∈M̂

ICλ.

an algebra which has all one dimensional simple modules. The radical of A is

Rad(A) =
⊕
λ,µ∈M̂

HomC(L(λ), L(µ))⊗
( ⊕
k∈Z>0

ExtkDb(N)(IC
λ, ICµ)

)
and the nonzero

L(λ) are the simple A-modules.

1.4 Projective modules

Let eλ be a minimal idempotent in
⊕

µ End(L(µ)). Then

P (λ) = Aeλ = L(λ)
⊕⊕

k>0
µ

L(µ)⊗ ExtkDb(N)(IC
µ, ICλ)
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is the projective cover of the simple A-module L(λ). Define an A-module filtration

P (λ) ⊇ P (λ)(1) ⊇ P (λ)(2) ⊇ · · ·

by
P (λ)(m) =

⊕
k≥m
µ

L(µ)⊗ ExtkDb(N)(IC
µ, ICλ).

Then
L(λ) = P (λ)/P (λ)(1) and gr

(
P (λ)

)
is a semisimple A-module.

Thus the multiplicity of the simple A-module L(µ) in a composition series of P (λ) is

[P (λ) : L(µ)] = dim
(
Ext∗(ICO,χ, ICO′,χ′)

)
=
∑
k≥0

dim
(
ExtkDb(N)(IC

µ, ICλ)
)
.

1.5 Standard and costandard modules

Let λ = (ϕ, χ),
x ∈ Oϕ, and let ix : {x} ↪→ N be the injection.

Then i!xµ∗CM is the stalk of µ∗CM at x and the Yoneda product makes

∆ϕ = H∗(i!xCM ) = HomDb({x})(C, i!xµ∗CM [∗]) = HomDb(N)((ix)!C[−∗], µ∗CM ), and

∇ϕ = H∗(i∗xCM ) = H∗({x}, i∗xµ∗CM ) = HomDb({x})(D, i!xµ∗CM [∗]) = HomDb(N)((ix)!C[−∗], µ∗CM ),

into rightA-modules. The action of an element a ∈ Extk(µ∗CM , µ∗CM ) = HomDb(N)(µ∗CM , µ∗CM [k])
sends

H∗({x}, i!xµ∗CM ) −→ H∗+k({x}, i!xµ∗CM ).

A G-equivariant local system is a G-equivariant locally constant sheaf. The orbit Oϕ can
be identified with G/Gx where Gx is the stabilizer of x. π0(Oϕ, x) = Gx/G

◦
x where G◦x is the

connected component of the identity in Gx). There is a homomorphism π1(Oϕ, x) → π0(Oϕ, x) =
Gx/G

◦
x and the representations of π1(Oϕ, x) on the fibers Lx of G-equivariant local systems L

are exactly the pullbacks of finite dimensional representations of C = Gx/G
◦
x to π1(Oϕ, x). In

this way the irreducible G-equivariant local systems on Oϕ can be indexed by (some of the)
irreducible representations of Gx/G◦x [CG, Lemma 8.4.11]. There is an action of C = Gx/G

◦
x on

∆ϕ which commutes with the action of A. Similar arguments apply to ∇ϕ. As (A,C) bimodules,

∆ϕ =
⊕
χ∈Ĉ

∆(ϕ, χ)⊗ χ and ∇ϕ =
⊕
χ∈Ĉ

∇(ϕ, χ)⊗ χ,

and the standard and costandard A-modules are

∆(λ) = ∆(ϕ, χ) and ∇(λ) = ∇(ϕ, χ).

Using the decomposition theorem

∆(λ) = H∗(i!xCM )χ =
⊕
k∈Z
µ

L(µ)⊗Hk(i!xIC
µ)χ,
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where the subscript χ denotes the χ-isotypic component. Define a filtration

∆(λ) ⊇ ∆(λ)(1) ⊇ ∆(λ)(2) ⊇ · · · by ∆(λ)(m) =
⊕
j≥m

⊕
φ

L(µ)⊗Hj(i!xIC
µ)χ.

Then ∆(λ)(m) is an A-module and gr
(
∆(λ))) is a semisimple A-module. This (and a similar

argument for ∇(λ)) show that the multiplicity of the simple A-module L(µ) in composition
series of ∆(λ) and ∇(λ) are

[∆(λ) : L(µ)] =
∑
k

dim
(
Hk(i!xIC

µ)χ
)

and [∇(λ) : L(µ)] =
∑
k

dim
(
Hk(i∗xIC

µ)χ
)
.

Define the standard KL-polynomial and the costandard KL-polynomial of A to be

P∆
λµ(t) =

∑
k

tkdim
(
Hk(i!xIC

µ)χ
)

and P∇λµ(t) =
∑
k

tkdim
(
Hk(i∗xIC

µ)χ
)
,

respectively. Then ??? says that

[∆(λ) : L(µ)] = P∆
λµ(1) and [∇(λ) : L(µ)] = P ∗λµ(1).

These identities are analogues of the original Kazhdan-Lusztig conjecture describing the multi-
plicities of simple g-modules in Verma modules.

1.6 The contravariant form

Note that there is a canonical homomorphism

∆(λ) cλ−→∇(λ)

coming from applying the functor H∗ to the composition

(ix)!(ix)!µ∗CM −→ µ∗CM −→ (ix)∗(ix)∗µ∗CM ,

where the two maps arise from the canonical adjoint functor maps. Use the map cλ to define a
bilinear form on ∆(λ) by

〈, 〉 : ∆(λ)⊗∆(λ) −→ C
m1 ⊗m2 7−→ m1 ∩ cλ(m2)

Then
L(λ) = ∆(λ)/Rad(〈, 〉).

1.7 Contragradient modules

There is an involutive antiautomorphism t : A→ A on A (coming from switching the two factors
in Z = M ×N M). If M is an A-module the contragredient module is

M∗ = HomC(M,C) with (aψ)(m) = ψ(at(m)), for a ∈ A, ψ ∈M∗, and m ∈M .

Then
∇(λ) ∼= ∆(λ)∗.
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1.8 Reciprocity

If λ = (ϕ, ρ) define

dλ = dimC(Oϕ), and assume that Extdψ+dϕ+k

Db(N)
(ICϕ, ICψ) = 0, for all odd k.

Then

[P (λ) : L(µ)] =
∑
k

dimExtkDb(N)(IC
λ, ICµ)

=
∑
k

dimExtdλ+dµ+k

Db(N)
(ICλ, ICµ)

=
∑
k

(−1)kdimExtdλ+dµ+k

Db(N)
(ICλ, ICµ)

= (−1)dφ+dψ
∑
O
χ(O, i!OIC∨φ

!
⊗ i!OICψ)

= (−1)dφ+dψ
∑
O
χ

O, (−1)dφ
∑
α,k

[Hki!O(IC∨φ ) : α]α
!
⊗(−1)dψ

∑
β,`

[H`i!O(ICψ) : β]β


=
∑

O,α,β
χ

(
O,
∑
k

[Hki!O(ICφ) : α∗]α
!
⊗
∑
`

[H`i!O(ICψ) : β]β

)

=
∑
α,β

∑
k

dimHk(i!αICφ)

∑
O
χ(O, α∗

!
⊗β)

∑
`

dimH`(i!βICψ)

=
∑
α,β

[M!
α : Lφ]

∑
O
χ(O, α∗ ⊗ β)

 [M!
β : Lψ]

=
∑
α,β

Pφα(1)DαβPψβ(1)

= (PDP t)φψ,

where

(1) the third equality follows from the vanishing of Ext groups in odd degrees,

(2) χ denotes the Euler characteristic,

(3) P is the matrix (Pφα(1)), and

(4) D is the matrix (
∑

O χ(O, α∗ ⊗ β)).

This identity is the “BGG reciprocity” for the algebra A.

1.9 The category Db(N)

The category Compb(Sh(N)) is the cateogry of all finite complexes

A = (0 → A−m → A−m+1 → · · · → An−1 → An → 0), m, n ∈ Z>>0,
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of sheaves on N with morphisms being morphisms of complexes which commute with the dif-
ferentials. The jth cohomology sheaf of A is

Hj(A) =
ker(Aj → Aj+1)
im(Aj−1 → Aj)

.

A morphism in Compb(Sh(N)) is a quasi-isomorphism if it induces isomorphisms on cohomology.
The category Db(Sh(N)) is the category Compb(Sh(N)) with additional morphisms obtained
by formally inverting all quasi-isomorphisms.

Assume that N is a G-variety with a finite number of orbits such that the G-orbit decom-
position

N =
⊔
ϕ

Oϕ is an algebraic stratification of X.

A constructible sheaf is a sheaf that is locally constant on strata of N . A constructible complex
is a complex such that all of its cohomology sheaves are constructible.

The derived category of bounded constructible complexes of sheaves on N is the full subcate-
gory Db(N) of Db(Sh(N)) consisting of constructible complexes. Full means that the morphisms
in Db(N) are the same as those in Db(Sh(N)).

The shift functor [i] : Db(N) → Db(N) is the functor that shifts all complexes by i.

The Verdier duality functor ∨ : Db(N) → Db(N) is defined by requiring

HomDb(N)(A1, A2[i]) = HomDb(N)(∆
∗(A1�A

∨
2 )[−i],CN [2dimCN ]), for all i ∈ Z, where

∆: N → N ×N is the diagonal map.

The Verdier duality functor satisfies the properties

(A∨)∨ = A, (A[i ])∨ = A∨[−i ], and HomDb(N)(A1, A2) = HomDb(N)(A
∨
2 , A

∨
1 ).

Define

ExtkDb(X)(A1, A2) = HomDb(X)(A1, A2[k]),
Hk(A) = Hk(X,A) = HomDb(X)(CX , A[k]), the hypercohomology of A ∈ Db(N),
Hk(N) = HomDb(N)(CN ,CN [k]), the cohomology of N,
Hk(N) = HomDb(N)(CN , (CN [k])∨), the Borel-Moore homology of N,
DX = C∨

X , the dualizing complex ,

respectively. The Yoneda product

Extp
Db(N)

(A1, A2)× Extq
Db(N)

(A2, A3) −→ Extp+q
Db(N)

(A1, A3)

is given by

HomDb(N)(A1, A2[p])×HomDb(N)(A2[p], A3[p+ q]) −→ HomDb(N)(A1, A3[p+ q]),

using the canonical identification HomDb(N)(A2, A3[q]) ∼= HomDb(N)(A2[p], A3[p+ q]).
If f : X → Y is a morphism define

f∗ = derived functor of sheaf theoretic direct image,
f∗ = derived functor of sheaf theoretic inverse image,
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f !A = (f∗A∨)∨, for A ∈ Db(Y ), and f!A = (f∗A∨)∨, for A ∈ Db(X).

Then
HomDb(X)(f∗A1, A2) = HomDb(Y )(A1, f∗A2), and
HomDb(X)(A2, f

!A1) = HomDb(Y )(f!A2, A1).

If f : X → Z and g : Y → Z define The base change formula is

X ×Z Y
π2−→ Yyπ1

yg
X

f−→ Z

g!f∗A = (π2)∗π!
1A, for A ∈ Db(X),

where X ×Z Y = {(x, y) ∈ X × Y | f(x) = g(y)}.
The category of perverse sheaves on X is a full subcategory of Db(X) which is abelian. The

simple objects in the category of perverse sheaves are the intersection cohomology complexes

ICφ indexed by pairs φ = (O, χ),

where O is a G-orbit on X and χ is an irreducible local system on X. By ???, the local systems χ
on O can be identified with (some of the) representations of the component group ZG(x)/ZG(x)◦

where x is a point in O. If X is smooth the constant perverse sheaf CX on X is given by

CX
∣∣
Xi

= CXi [dimCXi],

on the irreducible components of X. Since the intersection cohomology complexes ICφ are the
simple objects of the category of perverse sheaves,

Ext0Db(N)(ICφ, ICψ) = C · δφψ and ExtkDb(N)(ICφ, ICψ) = 0, if k > 0.
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