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Introduction

Network design deals with installing sufficient capacities in a weighted graph, to ensure
safe communication. Many interesting network design problems are NP-hard. In this
diploma thesis we will consider the NP-hard problem of Virtual Private Network Design,
which has attracted much attention in recent literature.

VPND is motivated by the fact that upcoming flow or traffic scenarios, that have to be
handled, cannot be anticipated. This is the case particularly with regard to the internet,
where stand-alone terminals communicate with each other. Because of this, models are
developed, in which a flow is feasible if it respects certain bounds at the terminals. The
VPND model assigns two values to each terminal, an upper bound for the value of flow
that the terminal is able to send and an upper bound for the amount of flow that the
terminal is able to receive. It is easy to see, that we can simplify this problem by just
allowing two kinds of terminals, called senders and receivers. Senders can send one unit
of flow but cannot receive any flow and receivers only can receive one unit of flow. The
design of such virtual private networks will be part of this study.

If it is our goal to compute capacities for a VPND problem at minimal costs, we get
a generalization of the NP-hard Steiner tree problem. The previously known reduction
from Steiner tree to VPND enforces, that the resulting VPND instance has only one
sender. Interestingly we can show, that if the number of senders and receivers is nearly
balanced, VPND is still NP-hard (section 4.2), while the tree variant of VPND (denoted
by VPNDTree) can be optimized in polynomial time (section 5.2).

In section 5, we present the structure of VPNDTree in detail, which will give us a
new view of the problem. This will allow us to prove a couple of new results. We can
improve the ratio of 1 + |R|

|S| for the shortest path tree [5] to |R|+|S|
2|S| , compared to the

costs of an optimal tree solution, whereupon S and R denote the sets of senders and
receivers, respectively, and we assume |S| ≤ |R|. A simple instance will show that this
bound is tight. Afterwards we prove that VPNDTree is efficiently solvable in the case
|R| = |S|±O(1), extending the previously known case of |R| = |S| [10]. If |R| = O(1)·|S|,
we will still be able to give a PTAS.

The Rent-or-Buy problem consists of sending one unit of flow from a set of nodes to
a distinguished root, choosing for each edge, whether to pay all-in or per unit of flow.
If we can choose the root arbitrarily, the problem is called Connected Facility Location
problem (CFL). Meanwhile CFL is a classic problem in recent network design literature.
Up to now the best approximation algorithm for Connected Facility Location is due
to Gupta, Kumar and Roughgarden [8] and consists of choosing each demand with a
particular probability into the set of facilities. Together with an innovative analysis,
this simple procedure yields an approximation ratio of 3.55. During this work, we will
refine this analysis, showing that adjusting the probability leads to an improved ratio
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of 3.05. We also present simple worst-case instances that give a lower bound of 2.36 to
the approximation ratio of this sampling algorithm. Despite of the different definitions
of CFL and VPND we will see that basically CFL accords to the tree variant of VPND.
Because of this we can convey the gained approximation ratio of 3.05 from CFL to
VPNDTree.

The task of the Maybecast problem, that is a more general form of the Steiner tree
problem, is to connect the nodes of a graph to a root within minimal costs. But each node
has a probability, that its connection has to be paid. The first constant approximation
ratio for the Maybecast problem has been 40.7 and has been proven in [12]. We will give
an approximation preserving reduction from Maybecast to CFL, which implies a ratio
of 4.83, applying results for CFL that we achieve in section 2.1.

For the variant of VPND that aims to minimize congestion on the edges (denoted
by VPNDMinCon) neither good approximation algorithms nor a lower bound on its ap-
proximability are known. But we will be able to prove an integrality gap of at least
Ω(
√

n/ log n) w.r.t. the natural relaxation of this problem, with n being the number
of nodes in the regarded graph. This is the first evidence indicating the hardness of
approximation for this problem. Additionally we will show that randomized rounding
of an optimal, fractional solution can not even give the modest approximation ratio of
o(n).

At first we will define all problems that we will talk about in section 1. Chapter 2
deals with the Connected Facility Location problem that will turn out to be related
to VPND. We will apply gained results to give a better approximation algorithm to
the Maybecast problem in chapter 3. In the following chapters, we will consider three
variants of VPND, which are

• The general case → VPND

• The case restricted to tree solutions → VPNDTree

• The variant that aims for minimizing congestion instead of costs → VPNDMinCon

In the last chapter we go into unanswered questions, that have evolved during this thesis
and are worth to be discussed in the future.

5



Contents

1 Definitions 7

2 Connected Facility Location 11
2.1 The sampling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Worst-case instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The Maybecast problem 22
3.1 A new cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Reduction to Connected Facility Location . . . . . . . . . . . . . . . . . . 23

4 The complexity of VPND 26
4.1 The previously known reduction from Steiner tree to VPND . . . . . . . . 26
4.2 The new reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 The VPNDTree problem 29
5.1 The structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 A polynomial time algorithm for the case |R| = |S| ±O(1) . . . . . . . . 32
5.3 A PTAS for the case |R| = O(1) · |S| . . . . . . . . . . . . . . . . . . . . . 33
5.4 The shortest path tree is a |R|+|S|

2|S| -approximation . . . . . . . . . . . . . . 37
5.5 A worst-case example for the shortest path tree solution . . . . . . . . . . 39
5.6 A factor 3.05 approximation algorithm . . . . . . . . . . . . . . . . . . . . 40

6 The VPNDMinCon problem 41
6.1 A polynomial time algorithm for the relaxed problem . . . . . . . . . . . . 41
6.2 Permutation Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 A general lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Integrality gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.5 Why randomized rounding will not work . . . . . . . . . . . . . . . . . . . 47

7 Open questions 51

6



1 Definitions

To clarify, what we are talking about, we start by declaring some problem definitions.

Def. Steiner tree. We are given an undirected graph G = (V,E) with a cost function
c : E → R+ and a subset of distinguished nodes R ⊆ V , that we will call terminals.
An optimal solution is a tree T ⊆ E, spanning all the terminals and minimizing
the costs c(T ) =

∑
e∈T c(e).

One can imagine this problem as connecting a given set of locations R on the map
at minimal costs, by building streets between them. There are many applications of
this problem. The aspect of particular relevance to us is, that Steiner trees occur as
subproblems in other optimization problems. Because of this, the following facts are of
interest.

• The Steiner tree problem is NP-hard. Up to now the best known approximation
algorithm has a ratio of 1 + ln(3)

2 ≤ 1.55 [16].

• Steiner tree is even APX-complete [1] what implies that there is no PTAS for it
unless P = NP.

• The problem is solvable in polynomial time via dynamic programming, if |R| =
O(log |V |) [3].

Now we present a problem that contains Steiner tree as a subproblem.

Def. Connected Facility Location (CFL). The input consists of an undirected, weighted
graph G = (V,E) with cost function c : E → R+, a parameter M ≥ 1 and distin-
guished nodes D ⊆ V , that are called demands. A solution is a tuple (F, T ), with
so called facilities F ⊆ V and a tree T , that is spanning F and has costs of

M · c(T ) +
∑
d∈D

`(d, F ),

which are to be minimized.

For two nodes v, u ∈ V we define `(v, u) to be the length of the shortest path from
v to u (w.r.t. cost function c) in G. Given a node set U ⊆ V , we denote `(v, U) :=
minu∈U{`(v, u)} to be the shortest distance of v to a node in U .

Since T is spanning F , T is a Steiner tree w.r.t. terminals F . If we are given a facility
r, CFL is also called Rent-or-Buy problem, because we can interpret the problem, such
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that we have to send one unit of flow from each demand in D to the root r via cables.
For each cable we have the choice of renting the cable and pay for each unit of flow or
buying the cable for M times the renting costs, such that we can send arbitrary amounts
across the cable.

Choosing any terminal as root r, we can interpret the Steiner tree problem as finding
the cheapest set of edges, connecting all terminals to the root. The Maybecast problem
[12] generalizes this view, such that the expected connection costs are to be minimized,
since there is a certain probability pi for each terminal i to be active and we only have
to pay for the connection of active terminals. More precisely the problem is defined as
follows.

Def. Maybecast problem. We are given an undirected weighted graph G = (V,E) with
costs c : E → R+, root r ∈ V and terminals R ⊆ V with values pi ∈ Q ∩ [0, 1]
for each i ∈ R, that define the probabilities, that terminals become active. The
problem consists of finding paths Pi from i to r for each terminal i ∈ R, such that
the expected costs of all active edges are minimized, while all edges on paths of
active terminals become active.

Now let us define the Virtual Private Network Design problem.

Def. VPND. The input of the VPND problem is an undirected, weighted Graph G =
(V,E) with costs c : E → R+, two distinguished sets of nodes, the senders S ⊆ V
and the receivers R ⊆ V , which have to be distinct. A solution is given by paths
P = {Psr|s ∈ S, r ∈ R,Psr is s-r path} from each sender to each receiver and by
edge capacities u : E → N0, such that u is sufficient, to support all feasible traffic
scenarios and the costs ∑

e∈E

c(e)u(e)

are minimized. A feasible traffic scenario consists of paths P ′ ⊆ P, that contain
each sender and receiver at most once as starting and ending point, respectively.
The capacities u(e) on edge e are sufficient for traffic scenario P ′, if u(e) ≥ |{P ∈
P ′|e ∈ P}|. This means that the number of paths in P ′, containing edge e, may
not exceed the capacity on e.

If we switch the set of senders and the set of receivers, the value of the optimal solution
remains the same. Because of this, we may assume |S| ≤ |R| during this work.

We will call the union of senders and receivers terminals.
To give motivation we can imagine that we have to establish a network, connecting

computers, divided into senders and receivers, and we have to install enough capacities,
such that the computers may communicate with each other. But the pairs of senders
and receivers, that communicate, are not known previously. This model is certainly close
to reality.

In literature this problem is often denoted as asymmetric variant. The symmetric
variant [7] does not distinguish senders from receivers, such that each terminal can send
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(a) chosen paths (b) graph Ge (c) resulting capacities

Figure 1.1: Example for needed capacities, in which s1, s2 are senders and r1, r2, r3 are
receivers. Terminals (senders or receivers) are depicted as rectangles, circles
depict ordinary nodes. (a) shows the chosen paths, (b) depicts the bipartite
graph Ge and (c) shows the resulting capacities.

and receive. In this setting an optimal tree solution is computable in polynomial time.
This solution is at most twice as expensive as an optimal general solution [7]. The
so called Tree Conjecture supposes, that there is always an optimal solution for this
problem, that forms a tree. Up to now this conjecture has only been proven for ring
graphs [9].

The significant part of the definition of VPND is, that we claim that each feasible
traffic scenario has to be supported by the installed capacities. We must be able to
verify this efficiently, otherwise we would not call this problem to be a well-defined
optimization problem1. Let us consider an example in figure 1.1 (a). Assume that we
decide for the (non-optimal) depicted paths. Let us try to determine the needed amount
of capacity on edge e. For this purpose we construct a bipartite graph Ge = (S ∪R,Ee),
with senders and receivers forming both partitions. Ge contains an edge (s, r) with s ∈ S
and r ∈ R if and only if the path from s to r crosses edge e (figure 1.1 (b)). Let M⊆ Ee

be a matching on Ge, then each sender and receiver is incident to at most one edge in
M. This means that M is in accordance to a valid traffic scenario, in which exactly |M|
paths are crossing e and we know that the capacity on e has to fulfill u(e) ≥ |M|. We
conclude that we have to install the value of the maximal matching in Ge as capacity
on e. Since we can compute maximal matchings efficiently, the needed capacities can be
verified in polynomial time.

A (not unique) maximal matching in our example in figure 1.1 consists of edges (s1, r3)
and (s2, r2). This means we have to install 2 units of capacity on e. If we apply this
method to the other edges, we obtain the capacities, depicted in figure 1.1 (c). As we
can see, the edges, that have strictly positive capacity, contain a circle and hence do not
form a tree. In network design, solutions that define a tree are very important. Because
of this we define the following tree variant of VPND.

1see definition of complexity class NPO in [19]
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Def. VPNDTree. Input and output are equal to VPND, but the union of all paths must
form a tree.

We know that a tree implies unique paths between all pairs of nodes on the tree. This
means, that we can use a tree T ⊆ E as a solution for VPNDTree instead of paths. In
section 5 we will see, that the computation of the needed capacities is very simple, if the
solution is a tree.

An easy and intuitive tree solution consists of choosing an arbitrary node r ∈ V as
root and adding edges on shortest paths from root to the terminals to the solution. The
resulting tree is called the shortest path tree w.r.t. root r. The cheapest of all shortest
path trees is of particular importance.

In other articles mostly the following generalization of VPND is defined [4, 5, 7, 8, 10].

Def. General VPND. The input consists of an undirected graph G = (V,E) with costs
c : E → R+ and values b+(v) and b−(v) for each node v ∈ V that define, how
many units v may send and receive, respectively. A solution is defined by paths
between each pair of nodes and edge capacities u : E → N0 that support each
valid traffic scenario, whereupon such a valid traffic scenario is given by a matrix
A : V × V → N0 with

∑
u∈V,u 6=v A(u, v) ≤ b−(v) and

∑
u∈V,u 6=v A(v, u) ≤ b+(v).

We can easily reduce this more general problem to VPND, by replacing each node v ∈ V
by b+(v) many senders and b−(v) receivers. Even if b+(v) or b−(v) are not bounded
polynomially, all presented algorithms can be implemented, such that running time
remains polynomial.

Many flow problems possess variants, that deal with minimizing congestion, instead
of costs [15]. So we want to examine such a variant for VPND, too.

Def. VPNDMinCon. We are given an undirected graph G = (V,E) with senders S ⊆ V
and receivers R ⊆ V (fulfilling S ∩ R = ∅). A solution consists of paths P =
{Psr|s ∈ S, r ∈ R,Psr is s-r path} from each sender to each receiver and edge
capacities u : E → N0 that support each feasible traffic scenario. The goal is to
minimize max{u(e)|e ∈ E}.
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2 Connected Facility Location

Recent results and our contributions

The goal of the Connected Facility Location problem is to compute a set of facilities
F ⊆ V and a tree T spanning F in a weighted graph G = (V,E), minimizing c(T ) +∑

d∈D `(v, F ). The best known approximation ratio was improved over time from 9.002
[7] via 4.55 [17] to 3.55 [8]. In this section we will refine the algorithm and the analysis
in [8] to obtain a ratio of 3.05.

If we are given a facility r ∈ V , we can interpret CFL to be the problem of sending
one unit of flow from each demand to the root r. Let k be the amount of flow crossing an
edge e, then this causes costs of k · c(e), if k ≤ M . Otherwise if k > M , it is cheaper to
add e to T , so that we have to pay M · c(e) for this edge. Another point of view is, that
we may decide, whether we want to rent an edge, such that we have to pay c(e) per unit
of flow on the edge or we can buy it for M · c(e) and send an arbitrary amount of flow
across the edge. Because of this view, that variant is called Rent-or-Buy problem. The
costs, depending on the flow across an edge are piecewise linear with 2 different slopes.
So the Rent-or-Buy problem is a special case of the Single-Sink-Buy-At-Bulk problem
[8].

There is a generalization of CFL that contains additional costs fi to open a facility
i ∈ F and restricts the possible facilities to a subset of the nodes. Up to now the best
known approximation algorithm for this problem has a ratio of 8.55 [17].

2.1 The sampling algorithm

CFL Algorithm 1 was presented in [8] and chooses each demand with a probability of
1/M (i.e., q = 1) to be a facility. We assume, that we know a node r∗, that is a facility
in an optimal solution. We remember that

M · c(T ) +
∑
d∈D

`(d, F )

defines the costs of a solution (F, T ). We call c(T ) Steiner tree costs and
∑

d∈D `(d, F )
connection costs. (F ∗, T ∗) denotes an arbitrary optimal solution, with objective function
value of OPT = M ·S∗+C∗, whereupon S∗ = c(T ∗) and C∗ =

∑
d∈D `(d, F ∗) denote the

Steiner tree costs and connection costs in the optimal solution, respectively. ρ denotes
the approximation ratio of the Steiner tree problem. The best known bound on ρ is
ρ ≤ 1.55 due to [16].
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Algorithm 1 Sampling algorithm [8]

Input: Weighted graph G = (V,E); demands D ⊆ V ; parameter M ≥ 1

Output: Facilities F ; tree T

1. Guess a facility r∗ ∈ F ∗

2. Mark each demand d ∈ D with probability q/M

3. Set F := {marked demands} ∪ {r∗}

4. Compute ρ-approximative Steiner tree T on terminals F

5. Output (F, T )

The analysis of Gupta et al.

In [8] the authors bound the costs of an optimal Steiner tree, spanning F by OPT , if
sampling probability 1/M is used. By ρ-approximation one obtains E[c(T )] ≤ ρ ·OPT .
Using an innovative analysis the authors show that the connection costs are at most
M times the costs of the Steiner tree spanning F , if this tree is constructed using the
MST-heuristic. Hence the connection costs can be bounded by 2 ·OPT . In total Gupta,
Kumar and Roughgarden [8] were able to bound the approximation ratio by ρ+2 ≤ 3.55.

Our contribution consists of proving an upper bound of 3.05 to the expected appro-
ximation ratio, choosing q = 0.67. To be able to compare our bound to results in [8], at
first we will repeat the analysis of Gupta et al. for an arbitrary sampling probability of
q/M . We will adopt the analysis of the Steiner tree costs for our analysis, but we will
give a completely new proof that bounds the connection costs.

Lemma 2.1. [8] The Steiner tree costs can be bounded by

E[c(T )] ≤ ρ(S∗ +
q

M
C∗)

Proof. We show that a tree T ′, spanning F , exists with expected costs of E[c(T ′)] ≤
S∗+ q

M C∗. By ρ-approximation the claim then follows. Let Ed be the edges on a shortest
path1 from d ∈ D to F ∗. Apply T ′ := T ∗ ∪

⋃
d∈F Ed, then T ′ spans facilities F and has

expected costs of

E[c(T ′)] ≤ c(T ∗) +
∑
d∈D

q

M
c(Ed) = S∗ +

q

M

∑
d∈D

`(d, F ∗) = S∗ +
q

M
C∗

We proceed with the analysis of the connection costs in [8].
1If a shortest path is ambiguous we choose an arbitrary shortest path.
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Figure 2.1: Schematic situation of connection cost analysis in [8]. Demands are squares,
demands sampled into F are filled gray. Solid edges belong to the MST
Steiner tree, dotted lines denote connections from demands to F .

Theorem 2.2. [8] The connection costs can be bounded by

E[
∑
d∈D

`(d, F )] ≤ 2
q
MS∗ + 2C∗

Proof. A simple approximation algorithm for Steiner tree consists of computing a mi-
nimum spanning tree in the metric closure of graph G. Such a solution gives a 2-
approximation [18]. Now let us consider the approximative Steiner tree T on F that has
been constructed in this way. We have already shown that a Steiner tree on F exists,
with expected costs of at most S∗ + q

M C∗. So our MST Steiner tree T has costs of at
most 2S∗ + 2 q

M C∗.
The idea of the analysis in [8] is to compare the connection costs with the costs of

the MST-heuristic tree. Let At be the set of demands, that has been considered by the
algorithm until step t and let Bt ⊆ At be the set of considered demands, that have been
sampled into F until step t. We start with A1 = B1 = {r∗}. In step t we regard demand
jt+1 ∈ D\At, that is next to Bt. With probability q/M we choose jt+1 to be in F and
we set Bt+1 = Bt ∪ {jt+1} (and At+1 = At ∪ {jt+1}). This decision causes Steiner tree
costs of `(jt+1, Bt), because the MST-heuristic would choose now this path from Bt to
jt+1. Because we do so with probability q/M , this raises the expected Steiner tree costs
by q

M `(jt+1, Bt).
In the other case, we do not sample jt+1 into F and set Bt+1 = Bt and At+1 =

At ∪ {jt+1}. This decision causes connection costs of `(jt+1, Bt). Because this event
occurs with probability 1 − q

M the expected connection costs for demand jt+1 are at
most (1− q

M )`(jt+1, Bt) ≤ `(jt+1, Bt). This situation is depicted in figure 2.1.
By linearity of expectation one obtains

expected connection costs
expected costs of MST Steiner tree

≤
∑

t `(jt+1, Bt)∑
t

q
M · `(jt+1, Bt)

=
M

q
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Now one can bound the expected connection costs by

M

q
· expected costs of MST Steiner tree ≤ M

q
(2S∗ + 2

q

M
C∗) =

2
q
MS∗ + 2C∗

If we sum up Steiner tree and connection costs we obtain total costs of

M ρ(S∗ +
q

M
C∗)︸ ︷︷ ︸

Steiner tree costs

+
2
q
MS∗ + 2C∗︸ ︷︷ ︸

connection costs

= (ρ +
2
q
)︸ ︷︷ ︸

↘with q

MS∗ + (2 + qρ)︸ ︷︷ ︸
↗with q

C∗

for solution (F, T ). Because the first coefficient ρ + 2
q decreases with q and the second

one 2 + qρ increases with q, we determine a solution of ρ + 2
q = 2 + qρ, which is q = 1.

This implies costs of

(ρ +
2
1
)MS∗ + (2 + 1ρ)C∗ = (2 + ρ)OPT

and yields, according to [8], an approximation ratio of 2 + ρ ≤ 3.55. Another choice of
q would not improve the bound of this analysis. But now we show a tighter bound on
the connection costs, which results in an improved bound on the approximation ratio.

Our contribution

Now we present our new method to upper bound the connection costs. The point is the
following

Theorem 2.3. The connection costs can be bounded by

E[
∑
d∈D

`(d, F )] ≤ 1
q
MS∗ + 2C∗

Proof. To prove this theorem, we connect demands in a particular way to sampled
facilities in F . The expected value of the costs of these connections will satisfy the
bound of the theorem. Since the algorithm connects each demand to its closest facility,
the theorem then follows.

The connection node of a demand d ∈ D is a facility from the optimal set of facilities
F ∗, to which d is assigned to in the optimal solution. For demands d ∈ F ∗ d is the
connection node of itself. The shortest path from a demand d ∈ D to its connection
node is called the connection path of d.

There exists a cycle C in the metric closure of G, whose nodes are the connection nodes
of the demands and whose cost is bounded by 2 · c(T ∗) (see figure 2.2). This cycle can
in fact be obtained by doubling the edges of T ∗ and by considering the Euler tour of the
thereby obtained graph, in which non-connection nodes and already visited connection
nodes are shortcut.
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Figure 2.2: Example instance for CFL with depicted optimal solution. Squares are de-
mands, circles represent ordinary nodes. Solid edges are elements of T ∗ and
dotted lines are connection paths. Dashed lines are edges of C, grey ones
belong to C′.

Now let d1, ..., d|D| be an ordering of the demands, which is in accordance to the order
in which the connection nodes of the demands are visited on the cycle C. More precisely
the ordering has to satisfy the following condition: If i < j then the connection node of
di precedes the connection node of dj on a clockwise walk on the cycle C, starting at the
connection node of d1. We have to pay the connection of each demand. We do this by
charging the accounts of connection paths and edges in C by one each time, we have to
cross such edges for a connection.
The connection scheme which we use is now the following.

Connect di to the first demand from the following list, that has been sampled
into F

di, di+1, di−1, di+2, di−2, di+3, ...

We now analyze the expected cost that is caused by this connection scheme. To sim-
plify notation, let us imagine that the sequence d1, ..., d|D| is continued periodically, i.e.,
d|D|+i = di.

First we inspect, by how much each connection path is charged. Each demand d ∈ D
charges at most 2 of such paths, namely the connection path of d and the connection
path of the facility in F , to which d is assigned. By symmetry each connection path is
charged with the same value in expectation. Since the number of demands equals the
number of connection paths, in expectation each connection path is charged at most
twice.

Now we want to estimate, by how much each edge of the cycle C is charged by this
connection scheme. Recall that edges of C correspond to shortest paths between the
connection nodes.
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For this we consider the cycle C′, which is defined by the sequence d1, d2, . . . d|D|, d1,
and distribute charge on edges of C′, if the demands are connected via the suggested
connection scheme. For each edge in C there is one edge in C′, that is charged by the
same amount. Thus by upper bounding charge on C′ we get an upper bound on the
charge on C.

How many edges of C′ do we have to cross, to connect a demand di ∈ D with the
above scheme? Let Xi be the random variable, which corresponds to this number. This
number is larger than k ∈ N, if none of the 2k+1 demands di−k, ..., di+k has been chosen
into F . Clearly

Pr(Xi > k) = Pr(di−k /∈ F, ..., di+k /∈ F ) =
i+k∏

j=i−k

Pr(dj /∈ F ) ≤ (1− q

M
)2k+1

since we choose each demand independently with probability q/M . This probability
maybe strict less than (1− q

M )2k+1, if r∗ is among di−k, ..., di+k.
It follows that

E[Xi]
(1)
=

∑
k≥1

Pr(X ≥ k)

≤
∑
k≥1

(1− q

M
)2k−1

= (1− q

M
)−1

∑
k≥1

((1− q

M
)2)k

(2)
= (1− q

M
)−1 (1− q

M )2

1− (1− q
M )2

=
1− q

M

(1− (1− q
M )) · (1 + (1− q

M ))

=
1− q

M
q
M · (2− q

M ))

≤ M

q
·

1− q
2M

2(1− q
2M ))

=
M

2q

Because of Xi ∈ N0 equality (1) holds (see [14], p. 31), (2) resolves the geometric series.
Thus in expectation, the connection scheme uses at most M

2q edges of C′ to reach the first
demand, that has been sampled into F . The number of edges in C′ is |D|. Because of
symmetry each edge of C′ is charged by at most M

2q in expectation.
By summing the costs distributed on C and on the connection paths, we can upper

bound connection costs by
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∑
d∈D

2`(d, F ∗) +
M

2q
c(C) ≤ 2C∗ +

M

q
S∗

because of c(C) ≤ 2 · S∗.

By adding Steiner tree costs from lemma 2.1 and connection costs from theorem 2.3,
we obtain the following

Theorem 2.4. For q = 0.67 algorithm 1 is a randomized 3.05-approximation algorithm
for Connected Facility Location.

Proof. Lemma 2.1 and theorem 2.3 reveal, that we can bound expected costs of the
solution, given by algorithm 1, by

M ρ(S∗ +
q

M
C∗)︸ ︷︷ ︸

Steiner tree costs

+ 2C∗ +
M

q
S∗︸ ︷︷ ︸

connection costs

= (ρ +
1
2q

)︸ ︷︷ ︸
↘with q

MS∗ + (2 + qρ)︸ ︷︷ ︸
↗ with q

C∗ (2.1)

Plugging in q = 0.67 yields a value of

≤ 3.05 ·MS∗ + 3.05 · C∗ = 3.05 ·OPT

for equality 2.1 and thus the claim follows.

2.2 Worst-case instances

In this section we want to engage the question, whether the upper bound, gained in
the last section, is tight. For this purpose we present two worst-case instances for the
sampling algorithm. To deal with varying sampling probabilities, the first instance is
designed to lead to an expensive solution, if q/M is large and the sampling algorithm
behaves unfavorable on the second one, if q/M is small. In both cases we consider the
limit of the obtained approximation ratio if the number of demands n goes to ∞ and if
we define M := n1/3. This choice implies that the expected number of facilities, chosen
by the sampling algorithm is unbounded, too.

Let G1 be the graph, which is depicted in figure 2.3 and consists of a comb graph and
a star with center dn. Edges (di, vi) have cost 1, the other ones are for free. Now we will
examine why the sampling algorithm has difficulties with this instance.

Lemma 2.5. The expected approximation ratio of the sampling algorithm on graph G1

is at least (q + 2) · (1− o(1)) for n →∞ if we define M := n1/3.

Proof. An optimal solution for this instance is given by choosing facilities F ∗ = {v1, ..., vn, dn}
and a Steiner tree T ∗ = {(vi, vi+1)|i ∈ {1, ..., n − 1}} ∪ {(dn, vn)} with costs c(T ∗) = 1.
We have to pay connection costs of n− 1, thus if we denote OPT1 to be the value of an
optimal solution, we have OPT1 ≤ n + M · 1. Because of M/n → 0 this value basically
consists of the connection costs.
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Figure 2.3: Instance G1 which leads to an expensive solution, if q/M is large. Edges are
labeled with their costs.

Figure 2.4: Instance G2 is the metric closure of the depicted graph and leads to an
expensive solution, if q/M is small. Edges are labeled with their costs.

Let (F, T ) be the solution, computed by the sampling algorithm. The algorithm
assumes to know a facility in the optimal solution. Let dn be this facility. Without the
existence of demands dn+1, ..., dn+M we would not have been able to make this choice.
Now these demands have served their purpose and we concentrate on the costs that the
other demands D′ := {d1, ..., dn} cause.

Because of n/M →∞, the probability of |F ∩D′| ≥ 2 converges to 1, so we can assume
|F ∩D′| ≥ 2 w.l.o.g.. Then the computed Steiner tree T contains at least |F ∩D′| edges
with cost 1. Each demand d ∈ D′\F causes connection costs of 2. Thus the expected
cost of the solution (F, T ) is at least

E[|F ∩D′|] ·M + E[|D′\F |] · 2 ≥ q

M
n ·M + (1− q

M
)n · 2 = qn + (1− q

M
)n · 2

The reached ratio of solution (F, T ) is then at least

qn + (1− q
M )n · 2

OPT1
≥

qn + (1− q
M )n · 2

n + M
=

q + 2 · (1− q
n1/3 )

1 + n−2/3
= (q + 2) · (1− o(1))

whereupon the last equality follows by considering n →∞ and thus the claim follows.

Now we define graph G2 as metric closure of the path graph on nodes V = D =
{d1, ..., dn}, which is depicted in figure 2.4. Each edge (di, di+1) has cost of 1. Thus, G2

is a complete graph on D with edge costs c(di, dj) = |i− j|.
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Figure 2.5: Resulting solution of the sampling algorithm on graph G2 for n = 8, if
F = {d2, d8} is chosen. Solid edges belong to the Steiner tree T spanning
F , dotted lines are connections from demands to F . Edges are labeled with
their costs.

Lemma 2.6. The expected approximation ratio of the sampling algorithm on graph G2

is at least (1 + 1
2q ) · (1− o(1)) for n →∞ if we define M := n1/3.

Proof. Consider the following solution. Choose F ∗ = {d1, ..., dn} as facilities and T ∗ =
{(di, di+1)|i = 1, ..., n − 1} spanning F ∗. This solution costs M · (n − 1), which implies
OPT2 ≤ Mn, if we define OPT2 to be the value of an optimal solution on graph G2.

Now let us regard solution (F, T ), which is returned by the sampling algorithm. Figure
2.5 will let us better understand the behavior of the algorithm on graph G2. To give a
lower bound we have to assume, that the computed Steiner tree on F is optimal. Then
we know c(T ) ≥ max{i − j|di, dj ∈ F}. The probability that neither one of the first k
demands d1, ..., dk, nor one of the last k demands dn−k+1, ..., dn is chosen to be a facility, is
exponentially small in k. Thus we have E[c(T )] ≥ E[max{i−j|di, dj ∈ F}] = n·(1−o(1)).
This means that we have to pay a Steiner tree nearly ranging across the whole path graph.

Now we will show that nearly all of the demands have expected connection costs of
approximately M

2q . For this purpose we define the following random variable that denotes
the costs to connect an arbitrary demand di ∈ D.

Xi = min{|i− j| |dj ∈ F} = cost to connect di

The sampling algorithm assumes to know a node, which is facility in the optimal solution.
We denote this node by di∗ = r∗ ∈ F ∗. We define a set of demands that are far away
from di∗

D′ :=
{

di ∈ D| |i− i∗| > n2/3
}

Because we consider a limit process for n →∞, we can restrict our claim to values of n
such that n2/3 is integral. We will assume this from now on. If {di−k, ..., di+k} ∩ F = ∅
we know that Xi > k. For di ∈ D′ and k ≤ n2/3 we know Pr(Xi ≥ k) ≥ (1 − q

M )2k−1.
Assuming di ∈ D′ we can conclude similar to the analysis in the proof of theorem 2.3
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that

E[Xi] =
∞∑

k=1

Pr(Xi ≥ k)

≥
n2/3∑
k=1

Pr(Xi ≥ k)

≥
n2/3∑
k=1

(1− q

M
)2k−1

≥
n2/3∑
k=1

((1− q

M
)2)k

(1)

≥

(
1− q

n1/3

)2
−
((

1− q
n1/3

)2
)n2/3+1

1− (1− q
M )2

(2)
=

(1− o(1))− o(1)
(1− (1− q

M )) · (1 + (1− q
M ))

=
1− o(1)

q
M ·

(
2− q

n1/3

)
=

M

2q
(1− o(1))

In (1) we resolve the geometric series using

m∑
i=1

pi =
p− pm+1

1− p

for −1 < p < 1 and plug in M = n1/3. (2) holds because of (1− q
n1/3 )2 = 1− o(1) and((

1− q

n1/3

)2
)n2/3+1

≤
((

1− q

n1/3

)n1/3
)2n1/3

≤ e−q·2n1/3 → 0

for n →∞. Because of |D′| = n · (1− o(1)) we obtain expected total connection costs of
at least

n(1− o(1)) · M

2q
(1− o(1)) = n

M

2q
(1− o(1))

to connect all demands. If we divide the cost of solution (F, T ) by the upper bound on
OPT2, we get a lower bound of

Mn(1− o(1)) + nM
2q (1− o(1))

Mn
= (1 +

1
2q

)(1− o(1))

on the approximation ratio.
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Corollary 2.7. The sampling algorithm with selection probability q/M has an asymp-
totical approximation ratio of at least

max
{

2 + q, 1 +
1
2q

}
for n →∞ choosing M := n1/3.

Proof. Add lemmata 2.5 and 2.6.

Remark. In section 2.1 we have proven, that max{2+ρq, ρ+ 1
q} is an upper bound on the

approximation ratio of the sampling algorithm. One reason for the gap between lower
and upper bound is due to the fact, that we have to use a Steiner tree algorithm as a
black-box. The other reason lies in the estimation of the connection costs. Our analysis
of these, charges each edge in T ∗ by M

q , while we do not find a worst-case instance in
which more than M

2q of charge is needed. It is a conjecture of the author, that this upper
bound is not tight and that connection costs can be bounded by

E[
∑
d∈D

`(d, F )]
?
≤ 1

2q
MS∗ + 2C∗

Corollary 2.8. The original algorithm in [8] using q = 1 has an approximation ratio of
at least 3.

Proof. Plugging q = 1 into corollary 2.7 yields a ratio of at least max{2+1, 1+ 1
2} = 3.

Corollary 2.9. The sampling algorithm with sampling probability q/M has an approxi-
mation ratio of at least 2.36, for each constant q.

Proof. Because 2 + q increases with q while 1 + 1
2q is decreasing, the best choice for q is

the solution of q +2 = 1+ 1
2q which is q =

√
3−1
2 ≥ 0.36. Then max{2+ q, 1+ 1

2q} ≥ 2.36
implies the claim.
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3 The Maybecast problem

Recent results and our contributions

The Maybecast problem demands to find paths from each terminal i ∈ R ⊆ V in a
weighted graph G = (V,E) to the root r ∈ V . Each terminal i becomes active with
probability pi and then activates all the edges on its path to r. The expected costs of
active edges are to be minimized.

Clearly this problem is NP-hard, because for pi = 1 the Maybecast problem is equal
to the Steiner tree problem. The Maybecast problem was first examined in [12], with
the result of a factor 40.7 approximation algorithm. In this thesis we will improve this
result by presenting an approximation algorithm with ratio 4.83.

3.1 A new cost function

Let Ue denote the set of terminals that send flow across edge e ∈ E and let ke denote
the probability that edge e is active. Therefore we know

ke = 1−
∏
i∈Ue

(1− pi)

This means we have to pay kec(e) in expectation for edge e. We reason, that the expected
costs increase with pi, but the ratio of expected costs to the sum over all pi’s decreases.
Thus the cost function ke is concave. Karger and Minkoff [12] have proven that a concave
cost function implies, that there is always an optimal solution, which forms a tree. From
now on we demand the solution of the Maybecast problem to be a tree.

An important simplification relies on replacing ke by a more simple function k̂e, which
is piecewise linear w.r.t. the probabilities pi and differs from ke only by a constant factor.
This is ensured by the following lemma, which is due to Karger and Minkoff.

Lemma 3.1. [12] Let k̂e = min
{∑

i∈Ue
pi, 1

}
. Then we have

ke ≤ k̂e ≤
1

1− 1/e
ke (3.1)

for arbitrary probabilities pi and sets Ue.

Proof. We start proving the first inequality. The union bound yields

ke = Pr(
⋃

i∈Ue

i is active) ≤
∑
i∈Ue

Pr(i is active) =
∑
i∈Ue

pi
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Since probabilities are bounded by 1, we have ke ≤ min{
∑

i∈Ue
pi, 1}. Now we show

inequality

min

{∑
i∈Ue

pi, 1

}
≤ 1

1− 1/e

(
1−

∏
i∈Ue

(1− pi)

)
Let us fix s :=

∑
i∈Ue

pi. The inequality 1− x ≤ e−x implies∏
i∈Ue

(1− pi) ≤
∏
i∈Ue

e−pi = e−s

So we have to verify

min{s, 1} ≤ 1
1− 1/e

(1− e−s)

In the case s ≥ 1 we have 1
1−1/e(1− e−s) ≥ 1

1−1/e(1− e−1) = 1. Otherwise if 0 ≤ s < 1
we have to show that

s ≤ 1
1− 1/e

(1− e−s) ⇔ s

1− e−s
≥ 1

1− 1/e

But s
1−e−s is monotonically increasing for s ∈ (0, 1], thus we reach a maximum for s = 1

and the claim follows.

This lemma yields that we may assume k̂e as cost function, if we accept that costs of
the resulting solution may increase by a factor of at most 1

1−1/e ≤ 1.59.

3.2 Reduction to Connected Facility Location

After introduction of the simplified cost function k̂e in [12] the Maybecast problem is
reduced to the so called Gathering problem. This problem consists of choosing some
nodes to be hubs, such that the costs to connect the demands to the next hub are
minimized while enough terminals have to be assigned to each hub. More precisely the
weight w.r.t. pi of the terminals, assigned to a hub, must be at least 1/2. Afterwards
the Gathering problem is reduced to the Facility Location problem, for which a solution
consists of a set of facilities like CFL, but we have to pay a fix value for each facility
instead of connecting the set of facilities. Because of these reductions the approximation
ratio accumulates to a value of 40.7. After introduction of cost function k̂e, we will use
another strategy, such that we do not need more than one reduction, which leads to an
approximation ratio of 4.83.

Our goal is to show that the Maybecast problem equals the Rent-or-Buy problem, if
we use cost function k̂e. Let us recall, that we assumed pi ∈ Q. If M ∈ N is the common
denominator of all pi’s, then we can denote pi = ni/M for some ni ∈ {1, ...,M}. For
simplicity we replace each terminal i ∈ R by ni terminals with activation probability
of 1/M for each one. This does not change the value of k̂e

1. Even if
∑

i∈R ni is not

1But the value ke would have changed by this replacement.
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polynomially bounded, this can be implemented efficiently. The value of a tree solution
T ⊆ E is therefor

∑
e∈T

c(e) ·min
{

1
M

· number of terminals in subtree below e, 1
}

(3.2)

which is to be minimized. Scaling this objective function by factor M does not change
the optimal solution and we obtain∑

e∈T

c(e) ·min {number of terminals in subtree below e,M}

matching the cost function of the Rent-or-Buy problem, using parameter M . Now we
have to show, that our approximation algorithm for CFL can be applied to Rent-or-Buy.

Lemma 3.2. There is a randomized 3.05-approximation algorithm for the Rent-or-Buy
problem.

Proof. We apply the sampling algorithm (algorithm 1) to the Rent-or-Buy problem,
using root r to be the facility, that is chosen with probability 1. The analysis in section
2.1 can be adopted without any modification. We only have to show, that the Rent-or-
Buy problem matches CFL, provided r ∈ F ∗. Let (F ∗, T ∗) be an optimal CFL solution,
and let T ′ denote the union of edges in T ∗ and edges on connection paths. It is possible
to choose connection paths, such that T ′ forms a tree. Consider an arbitrary edge
e ∈ T ′. By removing e out of T ′ the tree resolves into two connected components. Let
k be the number of terminals in the component not containing r. Edge e causes cost of
c(e) ·min{k, M} in the Rent-or-Buy setting. Now let us regard the caused costs in CFL.
In the case k < M , in an optimal solution we have e /∈ T ∗, then we have to pay c(e) ·k for
k connections crossing e. Otherwise we have k ≥ M and in an optimal solution Steiner
tree T ∗ contains e, then we have to pay c(e) ·M for e. This argument holds, because all
edges charged by at least M are connected. We have proven, that the cost function of
both problems are equal and the claim follows.

We have shown that we can firstly reduce Maybecast to Rent-or-Buy and then we can
solve the Rent-or-Buy problem using our 3.05-approximation algorithm. Now we want
to assemble both aspects into an explicit algorithm. Therefor we have to deliberate at
which probability a terminal i ∈ R that is active with probability pi = ni/M will be
part of the Steiner tree, spanning the chosen facilities in the sampling algorithm. Let us
call the ni demands, that replace terminal i during reduction, d1, ..., dni . Each of these
demands d1, ..., dni is chosen with probability 0.67/M by the CFL algorithm. Thus the
established Steiner tree contains terminal i with probability

Pr

 ni⋃
j=1

dj is sampled

 = 1−
(

1− 0.67
M

)ni

= 1−

((
1− 0.67

M

)M
)pi
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Algorithm 2 Maybecast algorithm

Input: Graph G = (V,E); terminals R ⊆ V with probabilities pi ∀i ∈ R; root r ∈ V

Output: Maybecast tree solution

1. Mark each terminal i ∈ R with probability 1− e−0.67pi

2. Set R′ := {marked terminals} ∪ {r}

3. Compute a ρ-approximative Steiner tree T spanning R′

4. Connect terminals to R′ using shortest paths

5. Output union of edges in T and edges on shortest paths

We have chosen M to be common denominator of all pi’s, but instead we can set M to
an arbitrary multiple of the common denominator, the analysis remains feasible. If we
consider M →∞ we obtain

lim
M→∞

1−

((
1− 0.67

M

)M
)pi

= 1− e−0.67pi

We conclude, that we can replace the reduction to the Rent-or-Buy problem by algorithm
2.

Corollary 3.3. Algorithm 2 computes a solution for the Maybecast problem, that has
expected costs of at most 4.83 times the optimal value.

Proof. Cost function 3.2 differs from the original cost function by a factor of at most
1

1−1/e . We are able to approximate the problem defined by cost function k̂e within a
factor of 3.05. Thus we obtain an approximation ratio of

1
1− 1/e

· 3.05 ≤ 4.83
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4 The complexity of VPND

Recent results and our contributions

During the last years, the best known approximation ratio for VPND was improved from
the first constant ratio of 5.55 [8] via 4.74 [4] to 3.55 [5]. Both of the first two algorithms
give tree solutions and imply approximation ratios of 4.74 for VPNDTree.

Before this work, NP-hardness of VPND was known only in the special case that
either cardinality of the senders or of the receivers is 1, using a reduction from Steiner
tree problem to VPND [7]. There is also a reduction from Max Leaf Spanning Tree
problem to VPNDTree which proves NP-hardness for |S| = 2 and |R| = 2, respectively.
We will repeat the reduction from Steiner tree to VPND in section 4.1. This will allow
us to state a new reduction in section 4.2, proving NP-hardness for the general case
|R| = |S| + b for each b ∈ Z\{0}. Interestingly in section 5.2 we are able to show that
VPNDTree is still solvable in polynomial time in the case b = ±O(1).

4.1 The previously known reduction from Steiner tree to
VPND

Let us consider the well-known reduction from Steiner tree problem to VPND. Regard
a Steiner tree instance consisting of graph G = (V,E), cost function c : E → R+ and
terminals {s, r1, ..., rk} ⊆ V . Now we construct a VPND instance by taking over graph
G and costs c and by choosing S = {s} to be the set of senders and R = {r1, ..., rk} to be
the receivers. Each VPND solution has to connect the senders to all receivers. Because
of this T = {e ∈ E|u(e) > 0} is spanning all terminals. In each optimal solution, we have
u(e) ∈ {0, 1}, because |S| = 1. Furthermore, circles in T can be eliminated making the
solution cheaper. We conclude that in an optimal VPND solution of this instance, set
T is the cheapest tree spanning all the terminals and therefore T is an optimal solution
of the Steiner tree instance (see figure 4.1).

This reduction even implies strong NP-hardness and the absence of a PTAS for
VPND, unless NP = P.

4.2 The new reduction

Now we present a modified reduction, that proves NP-hardness even if |S| > 1. Let ISt

denote a Steiner tree instance, consisting of graph G = (V,E) and terminals r1, s1, ..., sk.
Let b ≥ 1 be an arbitrary integral number. We choose m = |S|+b and construct a VPND
instance IVPND with senders S = {s1, ..., sk} and receivers R = {r1, ..., rm} as follows
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Figure 4.1: Graph with depicted optimal Steiner tree which represents an optimal VPND
solution too, if one unit of capacity is reserved on all drawn edges.

• Take graph G.

• Add receivers r2, ..., rm and dummy node d.

• Add edges (si, d) at costs K for i = 1, ..., k choosing K sufficiently large (for
example choose K := |V |

∑
e∈E c(e)).

• Add edges (d, ri) at costs 0 for i = 2, ...,m.

Let T ∗ be an optimal solution of ISt.

Theorem 4.1. An optimal VPND solution of instance IVPND consists of reserving
exactly one unit of capacity on each edge in T ∗∪{(si, d)|i = 1, ..., k}∪{(d, ri)|i = 2, ...,m}.
Paths starting at r1 are given by the unique path using edges in T ∗. The si-rj path with
i ∈ {1, ..., k} and j ∈ {2, ...,m} is defined as path si → d → rj.

Proof. It is easy to see that the given solution is feasible, because the paths imply that
never more than one unit of capacity is needed on an edge. Let OPTSt = c(T ∗) and
OPTVPND denote costs of the optimal Steiner tree and VPND solution, respectively.
The presented VPND solution has costs of

OPTSt + k ·K

Thus, we have to prove, that each VPND solution for this instance costs at least OPTSt+
k ·K.

Let us consider the traffic scenario in which k senders communicate to k receivers
{r2, ..., rk+1}1. To support this scenario, at least k units of capacity have to be reserved
on expensive edges (si, d).

Assume that there is not enough capacity on edges in sub graph G to connect r1 to
the senders using only edges in G. Then there must be a pair of senders si 6= sj such

1here the assumption m > k is needed
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Figure 4.2: VPND instance IVPND. It is important for the proof of theorem 4.1 that the
number of receivers exceeds the number of senders.

that a path si → d → sj → ... → r1 exists, which is supported by installed capacities.
However, this path needs 2 expensive edges. Choosing the traffic scenario, in which si

sends to r1 and the remaining k − 1 senders communicate with r2, ..., rk, leads to k + 1
units of capacity needed on expensive edges. Because of (k + 1)K > OPTVPND, such a
solution can not be optimal.

We conclude, that an optimal solution contains exactly k expensive edges (si, d) and
edges in G, that are spanning {r1, s1, ..., sk}. But the optimal Steiner tree T ∗ is the
cheapest set of edges in G spanning {r1, s1, ..., sk}, so we have

OPTVPND ≥ c(T ∗) + k ·K

and the claim follows, that the presented VPND solution is optimal.

The possibility of optimizing VPND in the case |R| = |S|+b would also imply that the
NP-hard Steiner tree problem could be solved. Since we can switch the sets of senders
and receivers in the VPND problem, we obtain NP-hardness for VPND in the general
case of |R| = |S|+ b for all b ∈ Z\{0}.

Unfortunately this proof does not work in the interesting case |S| = |R|. We observe
that the optimal VPND solution contains the circle r1 → ... → si → d → sj → ... → r1

for each i, j ∈ {1, ..., k} and therefore does not form a tree. This means that this
reduction does not work for VPNDTree.
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5 The VPNDTree problem

Recent results and our contributions

VPNDTree was studied in [7], resulting to a factor 9.002 approximation. This was done
using a reduction to Connected Facility Location. Up to now the best CFL algorithm
would lead to a ratio of 3.55 for VPNDTree. Using our refined analysis of the sampling
algorithm, an approximation ratio of 3.05 follows even for VPNDTree.

We can adopt the reduction in 4.1, to proof NP-hardness for VPNDTree in the case
|S| = 1. In this chapter, we will show, that it is worthwhile to distinguish VPND and
VPNDTree, because we are able to proof results for the tree variant, that do not hold in
the general case.

After working on the structure of VPNDTree in section 5.1, we proceed by extending
the cases that are solvable in polynomial time from |R| = |S| [7] to |R| = |S| ± O(1).
Later we give a PTAS in the case |R| = O(1) · |S|. In section 5.4, we will improve the
approximation ratio of the cheapest shortest path tree solution from 1 + |R|/|S| [5] to
|R|+|S|

2|S| and we will show that this bound is tight.

5.1 The structure

As we have seen in section 1, we need just a tree T ⊆ E as solution for VPNDTree; all
paths are induced unique by this tree. Of course, we could compute needed capacities in
the same manner as for VPND, using maximal matchings. But we will work out, that
this aspect becomes easier, if we restrict to tree solutions. Consider an edge e ∈ T . Let
T1 and T2 denote the subtrees that remain, if we remove e from T . s1 and s2 denote the
number of senders in T1 and T2, respectively. We define r1 to be the number of receivers
in T1 and r2 to be the number of receivers in T2. This situation is depicted in figure
5.1. Let us assume s1 + r1 ≤ s2 + r2 (this means T1 is the subtree with less terminals).
Obviously the worst-case scenario for edge e consists of sending min{s1, r2} units of flow
from T1 across e to T2 and min{s2, r1} units of flow from T2 across e to T1. Therefore
the amount of capacity, that has to be installed on e, is

u(e) = min{s1, r2}+ min{s2, r1}

Let us consider the case s1 > r2, then we know about the number of terminals in T1, that
s1 + r1 > r1 + r2 holds. Since we assume that the number of senders does not exceed the
number of receivers (i.e., r1 + r2 ≥ s1 + s2), tree T1 would contain more than half of the
terminals. Because we assumed T1 to be the smaller of both subtrees, a contradiction
follows. Thus we have s1 ≤ r2 and
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Figure 5.1: Represents notation used in computation of capacities for tree solutions.

u(e) = s1 + min{s2, r1}

holds. Now two cases are possible. If we have s1 + r1 < |S|, we conclude r1 < s2,
because of s1 + s2 = |S|. It follows

u(e) = s1 + min{s2, r1} = s1 + r1 = #terminals in T1

Otherwise we have s1 + r1 ≥ |S|, then r1 ≥ s2 holds and we have

u(e) = s1 + min{s2, r1} = s1 + s2 = |S|

All in all we have proven the following lemma.

Lemma 5.1. Consider a VPNDTree instance with graph G = (V,E), senders S and
receivers R with |S| ≤ |R|. For a solution T and an edge e ∈ T the needed capacity u(e)
on edge e is given by

u(e) = min{|S|,#terminals in smaller subtree below e}

(The smaller subtree is here defined to be the subtree adjacent to e that contains less
terminals.)

Using this simplified rule, it is easy to compute capacities for the example in figure
5.2 (a), as we see in figure 5.2 (b). To clarify that capacities do not depend on which
terminal is sender and which is receiver, terminals in figure 5.2 are not labeled. Only
the number of senders is of relevance. We can divide edges in a tree solution T into two
categories

• edges with capacity |S|

• edges with capacity < |S|
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(a) tree solution T

(b) needed capacities

(c) separation into core and shortest paths

Figure 5.2: Needed capacities for tree solution with |S| = 3. Edges in (b) are labeled with
capacities. In (c) solid edges belong to core C, dotted lines denote shortest
paths. Hatched nodes are connection nodes.
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We deliberate that edges with maximal capacity of |S| are connected and hence, form a
tree. We call this subtree of T , the core C = {e ∈ T |u(e) = |S|}. After removing the
core, distinct subtrees T1, ..., Tk ⊆ T remain, that share exactly one node with the core.
Let Ti∩C = {vi} for all i ∈ {1, ..., k}. Regard a subtree Ti with senders Si and receivers
Ri. Capacities on edges e ∈ Ti are smaller than |S| and are equal to the number of
terminals in the subtree below e. We can interpret capacities inside of Ti, such that
there is a separate path from each terminal in Si ∪Ri to vi. This means, each terminal
in Ti has its own “private” path to the first node in the core, with one unit of capacity
installed on it. We call vi to be the connection node of the terminals in Ti. Such paths
never share capacity. Because of this, we can change paths independently from each
other. But this means, that in an optimal solution paths from terminals to connection
nodes must be shortest paths between both.

Let us assume we know all edges in C. We know that we have to install capacity |S|
on all of these edges and then we have to connect each terminal in S ∪R via its shortest
path to the next node in C, installing one unit of capacity cumulative. Cumulative
means, that if k shortest paths cross an edge, we have to install capacity k on this edge.
The cost of such a VPNDTree solution with core C and connection nodes V ′ is

|S| · c(C) +
∑

v∈S∪R

`(v, V ′)

Core C is a Steiner tree, spanning all connection nodes, thus in an optimal solution
C must be the optimal Steiner tree on the connection nodes.

In other words: If we knew the set of connection nodes in the optimal solution and
if we were able to compute an optimal Steiner tree spanning these connection nodes,
then we would be able to compute the whole optimal solution. This leads to an exact
algorithm for a special case of VPNDTree.

5.2 A polynomial time algorithm for the case |R| = |S| ±O(1)

Let T ∗ denote an optimal tree solution with corresponding core C∗. Regard algorithm
3. We have already clarified, that the algorithm computes an optimal solution. But
in general, it does not do this in polynomial time. We have to implement step 1 by
choosing the cheapest solution after iterating all possible subsets. Thus running time
for this step will only be polynomial, if the number of connection nodes can be bounded
by a constant. Step 2 is still computable in polynomial time, if |V ′| = O(log |V |), using
the Wagner-Dreyfus algorithm [3]. All in all the algorithm runs in polynomial time, if
the number of connection nodes is bounded by a constant. This leads to the following
question. How many connection nodes are included in an optimal VPNDTree solution?

Lemma 5.2. We are given a VPNDTree instance with senders S and receivers R. If
|R| = |S|+ O(1), then there are O(1) many connection nodes in the optimal solution.

Proof. Let C∗ be the core in the optimal tree solution T ∗. So C∗ forms a tree. Let
T ∗1 , ..., T ∗k ⊆ T ∗ denote the connected components in T ∗\C∗. There is one of the subtrees
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Algorithm 3 Exact algorithm for VPNDTree

Input: Graph G = (V,E); costs c; senders S ⊆ V ; receivers R ⊆ V

Output: Tree solution T ⊆ E

1. Guess connection nodes → V ′

2. Compute an optimal Steiner tree T ∗ spanning V ′

3. Install capacity |S| on edges in T ∗

4. Connect all terminals in S ∪ R to T ∗ using shortest paths and install one unit of
capacity cumulative

5. Output resulting tree

T ∗i , hanging below each connection node. If C∗ is empty, there is only one connection
node and the claim follows. Otherwise C∗ has at least 2 leafs, because it’s a non-empty
tree. Trees T ∗i , hanging below leafs of C∗, contain at least |S| terminals, since otherwise
there would be no need to install |S| units of capacity on the edge that T ∗i is attached
to1. So we have at least |S| terminals at each of at least 2 leafs, that have the same
connection node. We conclude, that we can upper bound the number of connection
nodes by

|S|+ |R| − 2(|S| − 1) = |R| − |S|+ 2 = O(1)

using assumption |R| = |S|+ O(1).

So if we regard the case |R| = |S|+ O(1), algorithm 3 runs in polynomial time. The
case |R| = |S| − O(1) follows similarly. Of course this case |R| = |S| ± O(1) is strongly
restricted. Now we consider the case, in which we can not guess all connection nodes,
but at least some of them.

5.3 A PTAS for the case |R| = O(1) · |S|

Again T ∗ denotes an optimal tree solution for the given VPNDTree instance, as depicted
in figure 5.3 and C∗ denotes the core of this solution. We try to find out, how useful
it is, to guess 2k appropriate nodes belonging to C∗ for an integral constant k. Let us
regard approximation algorithm 4.

The number of possibilities to choose 2k nodes is at most n2k and thus polynomially
bounded. Since an optimal Steiner tree on V ′ can be computed in polynomial time,
because of |V ′| = 2k = O(1), the running time of the algorithm is still polynomial.

1We should mention, that we cannot give a proposition about the number of terminals, belonging to a
specific connection node that is an inner node of C∗.
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Figure 5.3: An example for the optimal tree solution T ∗ is depicted. The drawn edges
belong to C∗ and are labeled with their capacities. Triangles represent con-
nected components of T ∗\C∗.

Algorithm 4 PTAS for VPNDTree

Input: Graph G = (V,E); costs c; S, R ⊆ V ; parameter k ∈ N

Output: Tree solution T ⊆ E

1. For each V ′ ⊆ V with |V ′| ≤ 2k:

a) Compute an optimal Steiner tree C spanning V ′

b) Install capacity |S| on edges in C

c) Connect all terminals in S ∪ R, using shortest paths to next node in V ′ and
install one unit of capacity cumulative

2. Return the cheapest regarded solution
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Figure 5.4: Illustration of the analysis of algorithm 4. Circles have radius c(C∗)/k. Nodes
in V ′ are filled grey. Grey edges belong to Steiner tree C.

Since the algorithm considers all subsets of size at most 2k, we obtain a correct upper
bound on the gained approximation ratio, if we choose V ′ in a particular manner. The
following lemma will guarantee the existence of an appropriate choice of V ′.

Lemma 5.3. Let C∗ be an arbitrary tree, then a subset V ′ ⊆ V (C∗)2 exists, such that
|V ′| ≤ 2k and `(v, V ′) ≤ c(C∗)

k for all v ∈ V (C∗).

Proof. Use the following method to construct set V ′. We start by setting V ′ := ∅. While
there is a node v ∈ V with `(v, V ′) > c(C∗)

k , we add this node to V ′ (set V ′ := V ′ ∪{v}).
It is easy to see, that this procedure terminates after at most |V (C∗)| steps. The question
to answer is: How many vertices does V ′ contain in the end?

Consider the Euler tour, containing each edge in C∗ exactly twice. Of course the
length of this tour is 2c(C∗) and each node in V ′ occurs at least once in the tour. We
assign all edges in this tour to the unique node v ∈ V ′ that is visited next on a clockwise
walk. Since nodes in V ′ have a distance of at least c(C∗)

k to each other, the total length
of all edges assigned to each node is at least c(C∗)

k . Because the length of the edges sums
up to 2c(C∗) we conclude

|V ′|c(C
∗)

k
≤ 2c(C∗)

By rearranging terms, we obtain |V ′| ≤ 2k.
2V (C∗) denotes the nodes of C∗

35



In figure 5.4 an appropriate choice of V ′ and the resulting Steiner tree is depicted. We
use this lemma to proof the ratio of our algorithm during the next theorem.

Theorem 5.4. The approximation ratio of algorithm 4 is at most 1 + |S|+|R|
k|S| .

Proof. Lemma 5.3 guarantees, by considering all possible subsets of size at most 2k, that
algorithm 4 will find a set V ′ ⊆ V with |V ′| ≤ 2k such that `(v, V ′) ≤ c(C∗)

k holds for
all v ∈ V (C∗). We bound costs for such a choice of V ′. Let again T ∗ be an optimal tree
solution with core C∗. We denote w : S ∪ R → V to be the function that returns the
connection node of a terminal in an optimal solution. So we can upper bound costs of
the computed solution by

|S|c(C) +
∑

v∈S∪R

`(v, V ′)

(1)

≤ |S|c(C∗) +
∑

v∈S∪R

`(v, w(v)) +
∑

v∈S∪R

`(w(v), V ′)

(2)
= OPT +

∑
v∈S∪R

`(w(v), V ′)

(3)

≤ OPT + |S ∪R| · c(C∗)
k

(4)

≤ OPT + |S ∪R| · OPT

k|S|

= OPT ·
(

1 +
|S|+ |R|

k|S|

)
(1) follows by triangle inequality and by c(C) ≤ c(C∗), since an optimal Steiner tree
spanning V ′ ⊆ V (C∗), can not be more expensive than a Steiner tree C∗ spanning
V (C∗). (2) holds, since in an optimal solution, each terminal v is connected to its
connection node w(v) via a private path. This implies

|S|c(C∗) +
∑

v∈S∪R

`(v, w(v)) = OPT.

Step (3) follows from our assumption to V ′, that we gained in lemma 5.3. The last
inequality finally holds because of |S|c(C∗) ≤ OPT .

Now we state the following

Corollary 5.5. If |R| ≤ l|S| for any constant l ≥ 1, algorithm 4 gives a PTAS for
VPNDTree.

Proof. We are given ε > 0. The costs of the solution, computed by algorithm 4 is at
most

OPT ·
(

1 +
|S|+ |R|

k|S|

)
≤ OPT ·

(
1 +

|S|+ l|S|
k|S|

)
= OPT ·

(
1 +

1 + l

k

)
Choosing k :=

⌈
1+l
ε

⌉
, we obtain costs of at most OPT ·(1+ε), implying an approximation

ratio of 1 + ε.
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Figure 5.5: Illustration of a tree T , that does not contain a node, which is closer than
c(T )

2 to all other nodes in T . The point on edge e = (u1, u2), fulfilling this
property is drawn dotted.

5.4 The shortest path tree is a |R|+|S|
2|S| -approximation

The most simple approximative solution for VPND is the cheapest shortest path tree.
This means, we choose in turn each node v ∈ V to be the root and add all edges
on shortest paths from the root to terminals into the solution, installing one unit of
capacity per path cumulative. In [5] it was shown, that the cost of such a solution is
within 1 + |R|/|S| times the cost of an optimal VPND solution. This is revealed by
summing up the costs of all shortest path trees and arguing that the cost of the cheapest
one can not exceed average costs of all shortest path trees.

But if we know, that the optimal solution forms a tree, we are able to argue better.
Consider an optimal tree solution T ∗ ⊆ E for our VPNDTree instance with capacities
u : E → N0 and core C∗ = {e ∈ T ∗|u(e) = |S|}. We will show that a node v∗ ∈ V exists,
that leads to an acceptable shortest path tree, if we use it as root.

Lemma 5.6. In each weighted tree T = (V,E), a node v∗ ∈ V exists, such that∑
v∈V `(v, v∗) ≤ |V | c(T )

2 .

Proof. If a node v∗ exists with `(v, v∗) ≤ c(T )
2 for each v ∈ V , there is nothing to show.

But regarding figure 5.5 reveals that this is not always the case. But then there must be
an edge e = (u1, u2) in T , such that removing e divides T into two connected components
with costs of < c(T )

2 for each one. We denote V1 as the nodes in the first component
and denote V2 = V \V1 to be the nodes in the other component. If we think of edge e

as a line of length c(e), there must be a point on e that has a distance of at most c(T )
2

to all nodes in V . We choose λ ∈ [0, 1], such that the distance between u1 and this
point is λc(e) and distance between u2 and this points is (1 − λ)c(e). We insert a new
node v∗ at this point, by substituting e through edges (v∗, u1) and (v∗, u2) with costs
c(v∗, u1) := λc(e) and c(v∗, u2) := (1−λ)c(e), respectively. Our artificial node v∗ fulfills
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`(v, v∗) ≤ c(T )
2 for all v ∈ V . We conclude the following fact for V1

|V1|
c(T )

2
≥
∑
v∈V1

`(v, v∗) =
∑
v∈V1

`(v, u1) + λ|V1|c(e)

analogous we know for V2

|V2|
c(T )

2
≥
∑
v∈V2

`(v, v∗) =
∑
v∈V2

`(v, u2) + (1− λ)|V2|c(e).

Adding both inequalities we obtain

∑
v∈V1

`(v, u1) + λ|V1|c(e) +
∑
v∈V2

`(v, u2) + (1− λ)|V2|c(e) ≤ (|V1|+ |V2|)
c(T )

2

By rearranging terms we get

∑
v∈V1

`(v, u1) +
∑
v∈V2

`(v, u2) + |V2|c(e)︸ ︷︷ ︸
independent from λ

+λc(e) (|V1| − |V2|) ≤ |V |c(T )
2

(5.1)

using V1 ∪ V2 = V . If we now minimize the left hand side over λ ∈ [0, 1], we either
reach a minimum for λ = 0 or for λ = 1. The first case occurs if |V1| ≥ |V2|, then we
choose v∗ := u1, otherwise we set v∗ := u2. Since the left hand side of 5.1 is equal to∑

v∈V `(v, v∗) we conclude ∑
v∈V

`(v, v∗) ≤ |V |c(T )
2

The main work has been done, now we proof the following theorem.

Theorem 5.7. The cheapest shortest path tree has an approximation ratio of at most
|R|+|S|

2|S| for VPNDTree.

Proof. Let C∗ be the core of an optimal VPNDTree solution T ∗, then we denote w(v) as
the connection node of terminal v ∈ S ∪R in the optimal solution. We apply lemma 5.6
to tree C∗, regarding V as multiset containing each node in C∗ with the same multiple,
that the node occurs as connection node of terminals. We obtain a node v∗ with the
following property ∑

v∈R∪S

`(w(v), v∗) ≤ |R ∪ S|c(C
∗)

2
(5.2)
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Now we bound the cost of a shortest path tree using v∗ as root∑
v∈R∪S

`(v, v∗)

(1)

≤
∑

v∈R∪S

`(v, w(v)) +
∑

v∈R∪S

`(w(v), v∗)

(2)

≤
∑

v∈R∪S

`(v, w(v)) + (|R|+ |S|)c(C
∗)

2

=
∑

v∈R∪S

`(v, w(v)) + 2|S|c(C
∗)

2
+ (|R| − |S|)c(C

∗)
2

(3)

≤ OPT + (|R| − |S|)OPT

|S|2

= OPT
|R|+ |S|

2|S|

In (1) we apply the triangle inequality, step (2) follows from inequality 5.2. (3) holds
because of ∑

v∈R∪S

`(v, w(v)) + |S|c(C∗) = OPT

and |S|c(C∗) ≤ OPT .

We wonder whether this bound is tight. But the next section will show, that this is
the fact.

5.5 A worst-case example for the shortest path tree solution

Let us regard instance I depicted in figure 5.6. We assume |S| and |R| to be even.
Roughly spoken, the depicted graph contains one half of the terminals on each side.
Now we deliberate, how expensive the cheapest shortest path tree solution is for this
instance.

Lemma 5.8. The approximation ratio of the shortest path tree solution on instance I
is |R|+|S|

2|S| (1− ε) w.r.t. an optimal VPNDTree solution.

Proof. The distance from v∗ to each demand is 1−ε, thus a shortest path tree with root
v∗ has costs of (|R|+|S|)·(1−ε). If we use any other node as root the distance to one half
of the terminals will be 0 and the distance to the other half will be 2 · (1− ε), implying
that a shortest path tree having such a node as root has costs of |R|+|S|2 · 2 · (1 − ε) =
(|R|+ |S|) · (1− ε). Hence, the cheapest shortest path tree costs (|R|+ |S|) · (1− ε), too.

The larger R compared to S is, the better is a solution that is created by installing
capacity |S| on edges (v1, v

∗) and (v2, v
∗) and adding edges from terminals to v1 and v2,

respectively. Since the cost of this solution is 2|S|, the ratio of the shortest path tree is
|R|+|S|

2|S| (1− ε).
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Figure 5.6: Worst-Case instance I for shortest path tree solution. Dotted edges have cost
0, dashed edges cost 1− ε and solid edges have cost 1. Rectangles represent
terminals, other nodes are represented by circles.

Because ε > 0 can be chosen arbitrarily small, the ratio of the shortest path tree is in
general not better than |R|+|S|

2|S| , according to the proven upper bound.

5.6 A factor 3.05 approximation algorithm

Let us recall results from section 5.1. An alternative view to VPNDTree is to choose
connection nodes, a Steiner tree spanning all these connection nodes and connections
from each demand to the next connection node. If we denote V ′ as the set of connection
nodes, we can state the value of an optimal VPNDTree solution as

min
V ′⊆V

{
|S| · costs of a Steiner tree spanning V ′ +

∑
v∈S∪R

`(v, V ′)

}

Consider a CFL instance with given demands D ⊆ V and parameter M . The optimal
objective function value of this problem is

min
F⊆V

{
M · costs of a Steiner tree spanning F +

∑
v∈D

`(v, F )

}

It is easy to see that we can state an approximation preserving reduction from VPNDTree

to Connected Facility Location by choosing S ∪ R as demands and setting M := |S|.
Thus we can solve VPNDTree with algorithm 2.1, obtaining an approximation ratio of
3.05 for VPNDTree, too.
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6 The VPNDMinCon problem

Recent results and our contributions

Up to now there are no relevant publications about VPNDMinCon. Neither approximation
algorithms with non-trivial bounds, nor lower bounds on its approximability are known.
The only known fact is the NP-hardness of this problem. In this chapter we will show,
that the relaxed problem is solvable in polynomial time. We state a general lower
bound for VPNDMinCon in section 6.3 that will put us into the position, to proof an
integrality gap of Ω(

√
n/ log n), related to the natural relaxation of VPNDMinCon. This

is an indication for the non-approximability of this problem, but unfortunately not a
proof. Additionally we will show that randomized rounding leads to disastrously bad
approximation ratios.

6.1 A polynomial time algorithm for the relaxed problem

We start by giving a definition of the relaxed VPNDMinCon problem.

Def. Relaxed VPNDMinCon. We are given an undirected graph graph G = (V,E),
senders S ⊆ V and receivers R ⊆ V (with S ∩ R = ∅). A solution is given by
paths P i

s,r for each pair of sender s ∈ S and receiver r ∈ R with weights λi
s,r ≥ 0

fulfilling
∑

i λ
i
s,r = 1, as well as edge capacities u : E → N0, supporting each valid

traffic scenario. The goal is to minimize max{u(e)|e ∈ E}.

Similar to VPND, we can compute needed capacities on an edge e ∈ E, by creating a
complete, bipartite graph Ge = (S ∪R,S ×R) with weight

∑
i: e∈P i

s,r
λi

s,r on edge (s, r).
The value of a maximal matching in Ge denotes the capacity, needed on e.

Now we want to state an integral linear program for VPNDMinCon using well-known
flow conditions from literature [15, 13]. But these only work on directed graphs. Hence
we replace each undirected edge {u, v} in our graph by two directed edges (u, v) and
(v, u). The congestion on {u, v} is defined to be the sum of the congestion on (u, v) and
(v, u).

We start by introducing the integral variables

xs,r
e =

{
1 if edge e lies on path from s ∈ S to r ∈ R
0 otherwise

y = maximal congestion
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Now the integral linear program (ILP ) is the following

min y∑
e∈δ+(v)

xs,r
e −

∑
e∈δ−(v)

xs,r
e =


1 if v = s
−1 if v = r
0 otherwise

∀s ∈ S ∀r ∈ R ∀v ∈ V

∑
(s,r)∈M

xs,r
e + xs,r

e−1 ≤ y ∀e ∈ E ∀matchings M in S ×R

xs,r
e ∈ {0, 1} ∀e ∈ E ∀s ∈ S ∀r ∈ R

For an edge e = (u, v), we define e−1 = (v, u) to be the edge in the opposite direction. Let
δ+(v) and δ−(v) denote outgoing and incoming edges of v, respectively. Integrality of y
follows by integrality of xs,r

e . The first inequality ensures, that for each pair (s, r) ∈ S×R
of senders and receivers, a flow of strength 1 is sent from s to r. The second inequality
guarantees, that the congestion on edge e, defined by any valid traffic scenario, does not
exceed y.

We obtain relaxation (LP ) by substituting condition xs,r
e ∈ {0, 1} by 0 ≤ xs,r

e ≤ 1.
But we cannot solve (LP ) as usual, because the second inequality causes trouble. Since
there is an exponential number of matchings on S × R, there are exponential many
inequalities of type 2. However we can proof the following lemma.

Lemma 6.1. An optimal fractional solution of (LP ) can be computed in polynomial
time.

Proof. We can solve this problem by using the ellipsoid method, because this algorithm
does not need an explicit formulation of all inequalities. It can compute an optimal
solution in polynomial time, if we give an oracle that can decide whether a solution
(xs,r

e , y) is feasible and in the negative case, return a violated inequality. This principle
is called optimization by separation [6, 13].

Let (xs,r
e , y) denote a solution, for which we have to solve the separation problem. We

use the following oracle:

1. Verify inequalities of type 1 and 3. If one of this polynomial many inequalities is
violated by (xs,r

e , y), return the according inequality.

2. Verify inequalities of type 2. For each edge e ∈ E, we construct a complete,
bipartite graph Ge = (S ∪ R,S × R), in which edge (s, r) ∈ S × R is weighted
with xs,r

e + xs,r
e−1 . If the value of maximal matching in Ge exceeds y, the following

inequality is returned ∑
(s,r)∈M

xs,r
e + xs,r

e−1 ≤ y

whereupon M denotes a maximal matching on Ge.

3. If no violated inequality is found in steps (1) and (2), return “solution feasible”.
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Since a maximal matching can be computed efficiently and verifying a polynomial num-
ber of inequalities takes polynomial time, separation can be done efficiently. We con-
clude, that we are able to compute an optimal solution of (LP ) in polynomial time.

We aren’t ready, yet, because we have just weights xs,r
e , that are induced by all s-r

paths and not yet the s-r paths itself and their weights. Now it is our goal to compute
these paths. We define a weighted graph Gs,r = (V,Es,r) with

e ∈ Es,r :⇔ xs,r
e > 0

and weight xs,r
e on edge e. Let P 1

s,r = (s = v1, v2, ..., vl = r) be an arbitrary path in Gs,r

from s to r obtained via depth first search. We assign a weight of

λ1
s,r := min

e∈P 1
s,r

{xs,r
e } > 0

to this path P 1
s,r. Afterwards we lower weights xs,r

e on all edges in P 1
s,r by λ1

s,r. Edges
now having weight 0 are removed. We proceed with this method, until graph Gs,r is
empty. Because in each step at least one edge is being removed, we obtain at most
|E| s-r paths and their weights λi

s,r. This principle of flow decomposition, called path
stripping, has already been applied in [15]. We conclude

Corollary 6.2. An optimal fractional solution of VPNDMinCon can be computed in poly-
nomial time.

6.2 Permutation Routing

An alternative view to VPNDMinCon is that we have to compute paths, on which we
send packets, such that the number of packets crossing a single edge in the worst-case
is minimized. Now we want to present a well-known routing problem, that is related to
VPNDMinCon.

Def. Permutation Routing. We are given an undirected graph G = (V,E) with V =
{1, ..., n}. We have to compute paths P = {Pu,v|u, v ∈ V, Pu,v is u-v path} for all
pairs of nodes, such that for each permutation σ ∈ Sn the maximal number of
steps is minimized, that are needed to route n packets from nodes i ∈ {1, ..., n} to
σ(i) using paths Pi,σ(i), whereupon in each step at most one packet may cross a
single edge; other packets have to wait.

The main difference to VPNDMinCon is that Permutation Routing tries to minimize
the number of steps, needed until all packets have reached their destinations, while
VPNDMinCon minimizes maximal congestion on an edge. But if k packets cross an edge,
the number of needed steps in Permutation Routing must be at least k, since only one
packet may pass that edge per step. So both problems have substantial similarity. Since
Permutation Routing is a well examined problem in literature [2, 14, 11] we can adopt
results and use it for VPNDMinCon.
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Figure 6.1: Destination graph Gr for receiver r

6.3 A general lower bound

In section 6.4, it is our goal to proof a large integrality gap for VPNDMinCon. Before
we can do this, we have to do some preliminary work. We claim that graphs with low
degrees never have cheap VPNDMinCon solutions. Borodin and Hopcroft [2] proved that
oblivious deterministic Permutation Routing in a graph with n nodes and degree of at
most d, takes time Ω(

√
n/d3/2). This bound was improved to Ω(

√
n/d) in [11]. Now we

will adopt a theorem from [11] for our use.

Theorem 6.3. We are given a graph G = (V,E) with n nodes, degree of at most d,
senders S ⊆ V and receivers R ⊆ V , fulfilling |S| = Ω(n) and |R| = Ω(n). Then the
value of each solution for VPNDMinCon is at least Ω(

√
n/d).

Proof. Let Ps,r denote the path from sender s to receiver r. Consider a fixed receiver
r ∈ R and all paths that have r as destination. We call the union of this paths the
destination graph Gr (see figure 6.1). We define an edge in Gr, that is contained in at
least k paths with destination r, to be k-congested. Sk denotes the set of all k-congested
edges and V (Sk) denotes the set of vertices, being incident to k-congested edges. We
assume k ≤ |S|/d. Since r has degree of at most d and the number of paths reaching
r is |S|, we know that r ∈ V (Sk). Because a k-congested edge is incident to only two
nodes, we have |V (Sk)| ≤ 2|Sk|.

We consider s-r path Ps,r = (s = v1, v2, ..., vl−1, vl = r) with sender s ∈ S. Let vi be
the first node on this path, belonging to V (Sk) (nevertheless no edge on path Ps,r has to
be k-congested). Such a node must exist, because r ∈ V (Sk). We conclude vi−1 /∈ V (Sk)
and hence (vi−1, vi) is not k-congested. Let us assign each of the |S| many paths to the
first node in such paths, lying in V (Sk). In each path this first node in V (Sk) is reached,
using an edge that is not k-congested. Therefore there are at most (k − 1)d = O(kd)
paths assigned to each node in V (Sk). This implies |S| = O(kd) · |V (Sk)|. Because of
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|S| = Ω(|V |) it follows that

n = |V |
= O(kd · |V (Sk)|)
= O(kd · |Sk|)

For the number of k-congested edges we know that

|Sk| = Ω
( n

kd

)
holds. We define the weight of an edge, to be the number of destination graphs, in which
this edge is k-congested. Since we have |R| = Ω(n) many destination graphs, total weight
of all edges is at least Ω(n2

kd ). Because the graph is degree-bounded, it contains at most nd
edges and thus, the pigeon-hole principle implies, that there is an edge e ∈ E with weight
of at least Ω( n2

kd·nd) = Ω( n
kd2 ). Now we choose k, fulfilling k = Θ( n

kd2 ) ⇔ k = Θ(
√

n
d ),

then we have chosen k, such that e is k-congested in k destination graphs. This means,
a valid traffic scenario can be built, which puts a congestion of at least k = Ω(

√
n

d ) on
edge e. We conclude that the objective function value of each VPNDMinCon solution is
at least Ω(

√
n

d ) and the claim then follows.

6.4 Integrality gap

To state a proof for a high integrality gap for VPNDMinCon we need a graph

1. having a small degree, such that the lower bound given by theorem 6.3 can be
applied

2. allowing a cheap fractional solution

It will turn out, that the well-known k-dimensional hypercube fits these requirements.

Def. Hypercube. We call graph Hk = (V,E) with V = {0, 1}k, containing an edge
((x1, ..., xk), (y1, ..., yk)) ∈ {0, 1}k if and only if (x1, ..., xk) and (y1, ..., yk) differ in
exactly one position, the k-dimensional hypercube (see figure 6.2).

Now we apply the lower bound, proven in theorem 6.3 to prove the following lemma.

Lemma 6.4. Let Hk = (V,E) be the k-dimensional hypercube containing senders S =
{(0, x2, ..., xk)|xi ∈ {0, 1}} and receivers R = {(1, x2, ..., xk)|xi ∈ {0, 1}}. Then for n =
|V | = 2k the value of any VPNDMinCon solution for this instance is at least Ω(

√
n/ log n).

Proof. The degree in graph Hk is k = log n in each node. Because of |S| = |R| = n/2
theorem 6.3 gives a lower bound of OPT = Ω(

√
n/ log n).
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Figure 6.2: Hypercubes H1,H2 and H3

Remark. The authors in [11] present a deterministic scheme for Permutation Routing in
the hypercube, that is able to send all packets to their destinations in time O(

√
n/ log n).

If we take the same paths for our VPNDMinCon setting, we obtain a solution, in which
the congestion on edges is within O(

√
n/ log n). This implies OPT = Θ(

√
n/ log n) for

the hypercube graph.

Let OPTf denote the value of an optimal fractional solution of VPNDMinCon on hyper-
cube Hk with senders S = {(0, x2, ..., xk)|xi ∈ {0, 1}} and receivers R = {(1, x2, ..., xk)|xi ∈
{0, 1}}. Now we want to construct a cheap fractional solution, to give an upper bound
on OPTf .

We have to state fractional paths from each s ∈ S to each r ∈ R. We use each
node w ∈ V to serve as interstation and hence put a weight of 1

2k on path s → w → r,
whereupon paths from s to w and from w to r, respectively, are given by bitfixing routing.
The path, given by bitfixing routing from (x1, ..., xk) to (y1, ..., yk), is defined as path
starting at (x1, ..., xk), then going to (y1, ..., yi∗ , xi∗+1, ..., xk) with i∗ = min{i|xi 6= yi}.
Afterwards bitfixing proceeds routing recursively to (y1, ..., yk). For example in the case
k = 3 the path from 100 to 010 visiting interstation 111 would be

100 → 110 → 111 → 011 → 010

The idea behind this method is that the weight we put on a path is equal to the
probability at which the randomized algorithm for Permutation Routing in [14] chooses
this path. Thus, we can adopt the analysis from [14].

Lemma 6.5. Maximal congestion caused by the given fractional solution on Hk is at
most 1.

Proof. Consider the congestion, that is caused by the first half of the paths from senders
to the interstations (this means we do not consider the full paths s → w → r, but
s → w). Since interstations do not depend on the receiver, which is given as destination,
the following analysis is valid for each traffic scenario. Because of symmetry we can
bound congestion, caused by the second half, in the same manner.
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Let e = ((a1, ..., aj−1, aj , aj+1, ..., ak), (a1, ..., aj−1, 1− aj , aj+1, ..., ak)) be an arbitrary
edge in the hypercube. An edge in Hk connects two nodes that differ in exactly one
position. For edge e this is bit j. All paths that may cross e, using bitfixing, are of the
following form

(∗, ..., ∗, aj , aj+1, ..., ak) → (a1, ..., aj−1, aj , aj+1, ..., ak)
→ (a1, ..., aj−1, 1− aj , aj+1, ..., ak)
→ (a1, ..., aj−1, 1− aj , ∗, ..., ∗)

whereupon ∗ is a wild-card for arbitrary values in {0, 1}. Such paths can only have their
beginning in nodes, whose bits match the bits of the starting node of e up from bit j.
The first j bits of the destination node of such a path have to match the corresponding
bits in the end node of e. Thus there are at most 2j−1 many senders, that have paths
crossing e. From each of these senders at most 2k−j paths, that contain edge e, have
their beginning. Thus the weight of all paths starting at a single sender and crossing e is
bounded by (1

2)j . Summing up weights of all paths crossing e, we obtain a total weight
of at most 1

2 . If we now add the left out second half, we conclude OPTf ≤ 1.

All in all we have proven the following

Corollary 6.6. The integrality gap of VPNDMinCon related to its natural relaxation is
at least OPT/OPTf = Ω(

√
n/ log n).

A fractional VPNDMinCon solution can be interpreted, such that paths are chosen
with a probability, according to their weight. This possibility of randomization does not
exist in the integral problem. This discrepancy corresponds to the difference between
randomized and deterministic routing. It is well-known, that deterministic routing is
quite more expensive w.r.t. congestion than randomized routing [2, 11].

If VPNDMinCon occurs in practice, it will be a good idea to verify, whether the given
application allows choosing paths randomized. As we have seen in section 6.1 in this
case, optimal paths and their probabilities can be computed efficiently.

6.5 Why randomized rounding will not work

Many approximation algorithms for NP-hard optimization problems consist of rounding
an optimal fractional solution. Since we can compute an optimal solution in polynomial
time, we should answer the question, whether this proceeding can be successfully applied
to VPNDMinCon.

Simplifying our problem, such that only one previously known traffic scenario has to
be supported, is known as MinCongestion [15]. The algorithm presented in [15] uses
randomized rounding and its ratio can be bounded by O(log n/ log log n), with n being
the number of sender-receiver pairs.

Although we have proven an integrality gap of Ω(
√

n/ log n) in section 6.4 we could
hope to get a feasible integral solution that has costs of O(

√
n/ log n)·OPTf ≤ O(

√
n/ log n)·

OPT via randomized rounding, to gain an approximation ratio of O(
√

n/ log n). In this
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Figure 6.3: Worst-case instance for randomized rounding. All s3-r1 paths with weight
1/k for each, are drawn bold.

section we want to give a (negative) answer to this question, because we can show, that
randomized rounding will not work.

For this purpose let us regard graph G = (V,E) with nodes V = {si, ri, ui, vi|i =
1, ..., k} (i.e., n = |V | = 4k), senders S = {s1, ..., sk} and receivers R = {r1, ..., rk} which
is depicted in figure 6.3. The edges (si, uj) and (vi, rj) exist for all i, j = 1, ..., k and for
all i = 1, ..., k we have edges (ui, vi).

Let OPT and OPTf be values of an optimal integral and fractional solution, respec-
tively. Choosing path si → ui → vi → rj from sender si to receiver rj , we obtain an
integral solution with maximal congestion of 1, thus we have OPT = 1.

Now we give a fractional solution, having the same value. We define the set of paths
from sender si to receiver rj to be the set Pij = {si → ul → vl → rj |l = 1, ..., k},
containing each of these k paths with weight 1/k. No matter which valid traffic scenario
is chosen, each edge (ui, vi) is crossed by exactly k paths having weight 1/k for each
one, therefore the value of this fractional solution is 1. Each traffic scenario defined by
a maximal matching, sends k units of flow from the senders to the receivers. Because
edges {(ui, vi)|i = 1, ..., k} form a cut containing k edges, the pigeon-hole principle
implies, that there is an edge congested with at least one unit of flow. Hence there can
not be a cheaper fractional solution and OPTf = 1 follows.

Now we reveal what happens, if we use standard randomized rounding.

Theorem 6.7. Consider a VPND solution in graph G, in which we choose path si →
ul → vl → rj for sender-receiver pair (si, rj) ∈ S×R independently with probability 1/k.
Then with probability 1− 2−Ω(k) there is an edge, congested with Ω(k).

Proof. Clearly, we obtain a lower bound on maximal congestion on an edge, if we give a
lower bound on congestion on edge (u1, v1). We give the following view for determining
congestion on (u1, v1).

We construct a bipartite graph G′ = (S∪R,E′), in which the node partitions are given
by senders and receivers. Graph G′ contains edge (si, rj) if and only if the randomly
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chosen path from si to rj crosses edge (u1, v1) in G. This means G′ contains each edge
independently with probability 1/k. Maximal congestion on (u1, v1) (w.r.t. graph G)
then equals the cardinality of the maximal matching in G′.

We give a lower bound to the cardinality of a maximal matching, by choosing an
arbitrary matching M that is large enough for our purposes with high probability. We
start with the empty matching M := ∅. Now we consider all senders si for i = 1, ..., k/2
and check, whether an edge (si, ∗) exists, that is not adjacent to an edge in M and in the
positive case, we add this edge to M. We call receivers, that are not incident to any edge
in M free receivers. In the course of time the number of free receivers decreases, but
since we stop our procedure if we reach sender sk/2, we have |M| ≤ k/2 and the number
of free receivers is at least k/2 at any time. For simplicity we modify our procedure,
such that only edges incident to the first k/2 free receivers are accepted. Then in each
step, we have exactly k/2 free receivers. Clearly, edge set M remains a matching, since
we never add an edge, which is violating this property. Let Xi : Ω → {0, 1} denote a
random variable, that is defined as follows

Xi :=
{

1 if (si, ∗) ∈M
0 otherwise

Consider a sender si with i ∈ {1, ..., k/2}. There are k/2 possible edges starting at si

and each edge exists with probability 1/k. Thus we can bound the probability, that we
are able to add an edge to our matching in step i by

Pr(Xi = 1) ≥ 1−
(

1− 1
k

)k/2

= 1−

((
1− 1

k

)k
)1/2

(1)

≥ 1− e−1/2
(2)

≥ 1
3

Inequality (1) holds, because of (1− 1
k )k ≤ 1

e and (2) follows from 1−e−1/2 ≈ 0.3935.. > 1
3 .

If we define X := X1 + ...+Xk/2 this variable gives the cardinality of matching M. Thus
the expected size of a maximal matching in G′ must be at least

E[X] = E[X1 + ... + Xk/2] = E[X1] + ... + E[Xk/2] ≥
1
3

+ ... +
1
3︸ ︷︷ ︸

k/2 summands

=
k

6

Here, second equality holds because of linearity of expectation and the inequality follows
from

E[Xi] = 0 · Pr(Xi = 0) + 1 · Pr(Xi = 1) = Pr(Xi = 1) ≥ 1
3

Since randomized rounding chooses paths in G independently, distribution of edges in
the bipartite graph G′ is also independent. Random variable X is a sum of independently
0/1-distributed random variables Xi, thus we can apply Chernoff bounds. Here, we will
use the following Chernoff bound

Theorem 6.8. (Chernoff bound) Let Y1, ..., Ym be independently 0/1-distributed random
variables. Then, for Y := Y1 + ... + Ym and 0 < δ < 1

Pr(Y ≤ (1− δ)E[Y ]) ≤ e−E[Y ]δ2/2
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holds.

Proof. See [19, 14].

Now we can accomplish proof of theorem 6.7 by applying this Chernoff bound to
cardinality X of matching M

Pr(X ≤ k/12) = Pr(X ≤ (1− 1/2)E[X]) ≤ e−
k
6

1
4

1
2 = e−k/48 =

(
1
2

)Ω(k)

We conclude that with a probability exponential close to 1, congestion on edge (u1, v1)
in the rounded solution is at least k/12 = Ω(k), and thus the claim follows.

Because of OPT = 1 and n = 4k, randomized rounding leads to an approximation
ratio of Ω(n), which is asymptotically the worst possible value, because the value of each
VPNDMinCon problem can be bounded by min{|S|, |R|} ≤ |V | = n.

Some approximation algorithms that use randomized rounding exploit properties, that
so called base solutions of linear programs possess [18]. Unfortunately the solution given
in this section is not such a base solution, which means that the solution does not define
a vertex of the polyhedron, that is induced by the LP. We can show this, by expressing
our solution as a convex combination of other feasible solutions. For this purpose we
consider all n! possible permutations on {1, ..., k}. For each permutation σ ∈ Sk, we
define a VPND solution consisting of paths Pσ

ij = {si → uσ(i) → vσ(i) → rj}. Thus, for
each sender-receiver pair, we choose one path with weight 1. Since all paths of a sender
si cross the same edge (uσ(i), vσ(i)), the value of these solutions is always 1. The mean of
the solutions, defined by paths Pσ

ij = {si → uσ(i) → vσ(i) → rj}, is a fractional solution,
which contains a path si → ul → vl → rj with weight 1/k for all i, j, l ∈ {1, ..., n}. So
we obtain the solution consisting of paths Pij from above.

Nevertheless we should not conclude that VPNDMinCon is hard to approximate, only
because of the fact that randomized rounding results in a catastrophe, since the same
fact holds for VPND itself. To show this, we install costs of 1 on edges (ui, vi), while
other edges are for free and use the same fractional paths Pij with weight 1/k for each
one. Then, randomized rounding will lead to solutions that need capacity of Ω(k) on
each edge (ui, vi) with high probability. Hence such a rounded solution would cost
Ω(k2), which is extremely expensive, compared to an optimal solution with costs of n.
However there are algorithms for VPND, that have a constant approximation ratio. But
in contrast to VPNDMinCon no instances are known to the author, that would reveal a
non-constant integrality gap for VPND.

One remaining possibility to deal with VPNDMinCon is to use iterated randomized
rounding. This means, after determining an optimal fractional solution, we would choose
a path according to the computed probabilities. After this, we could reoptimize the LP
while setting the variables belonging to the chosen path constant. Then we would repeat
this procedure, until all variables are constant. Clearly, this procedure can not give better
approximation ratios than O(

√
n/ log n).
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7 Open questions

We have been able to answer some questions during this work, but there are many
unsolved problems left. In this section we want to present open questions, that are
worth to think about.

There are polynomial time algorithms for Steiner tree and VPNDTree in the case of a
constant number of terminals. It is not known whether such algorithms exist for VPND.
We also have not been able to proof NP-hardness of VPND in the interesting case
|R| = |S|.

An unsatisfying fact is, that we could only give an indication that VPNDMinCon is hard
to approximate, by showing a high integrality gap, but a formal proof is still absent.

A further point of interest is the following. Let OPT be the optimal value of a VPND
instance. We denote OPTTree to be the optimal objective function value of VPNDTree

for the same instance. Clearly we have OPT ≤ OPTTree, but the critical question is: By
which factor can OPTTree be larger than OPT? The best known VPND algorithm, that
also gives a tree solution, has a ratio of 4.74 [4]. Thus we have OPTTree ≤ 4.74 · OPT .
But we do not know an example, in which relation OPTTree/OPT reaches a value close to
4.74. It is an author’s conjecture, that at least OPTTree/OPT ≤ 2 holds. Unfortunately
we haven’t been able to proof this. But possibly the reader is more successful in proving
this assumption...
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