Combining Multiple Results of a Reverse Engineering Algorithm: Application to the DREAM Five Gene Network Challenge

The output of reverse engineering methods for biological networks is often not a single network prediction, but an ensemble of networks that are consistent with the experimentally measured data. In this paper, we consider the problem of combining the information contained within such an ensemble in order to (1) make more accurate network predictions and (2) estimate the reliability of these predictions. We review existing methods, discuss their limitations, and point out possible research directions towards more advanced methods for this purpose. The potential of considering ensembles of networks, rather than individual inferred networks, is demonstrated by showing how an ensemble voting method achieved winning performance on the Five Gene Network Challenge of the second DREAM conference (Dialogue on Reverse Engineering Assessment and Methods 2007, New York, NY).

Published in:
Annals of the New York Academy of Sciences, 1158, 102-113
Blackwell Publishing, 9600 Garsington Rd, Oxford Ox4 2Dq, Oxen, England

 Record created 2008-08-29, last modified 2018-01-28

External link:
Download fulltext
Rate this document:

Rate this document:
(Not yet reviewed)