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Abstract

We consider the problem of minimizing delay when broadcasting over erasure channels with feed-
back. A sender wishes to communicate the same set of µ messages to several receivers. The sender can
broadcast a single message or a combination (encoding) of messages to all receivers at each timestep,
through separate erasure channels. Receivers provide feedback as to whether the transmission was
received. If, at some time step, a receiver cannot identify a new message, delay is incurred. Our
notion of delay is motivated by real-time applications that request progressively refined input, such
as the successive refinement of an image encoded using multiple description coding.

Our setup is novel because it combines coding techniques with feedback information to the end of
minimizing delay. Uncoded scheduling or use of erasure correction coding, such as maximum distance
separable (MDS) codes, has been well-studied in the literature. We show that our setup allows Θ(µ)
benefits as compared to both previous approaches for offline algorithms, while feedback allows online
algorithms to achieve smaller delay compared to online algorithms without feedback.

Our main complexity results are that the offline minimization problem is NP -hard when the sender
only schedules single messages and that the general problem remains NP -hard even when coding is
allowed. However we show that coding does offer complexity gains by exhibiting specific classes of
erasure instances that become trivial under coding schemes. We also discuss online heuristics and
evaluate their performance through simulations.

Keywords: broadcasting, feedback, delay, erasures, linear coding, computational complexity, online
scheduling and coding algorithms.

1 Introduction

Current and emerging applications, such as satellite imaging, roadside to vehicle communication, internet
tv, wireless downlink broadcasting, require content to be downloaded quickly and reliably from a host
over possibly unknown channels. In practical networks, transmissions are subject to errors: packets get
dropped due to congested links, wireless fading and interference, expired timestamps, etc. Such losses are
perceived as packet erasures at higher layers, and are often modeled using independent erasure channels.

To cope with unknown channels, feedback information is often available at the broadcasting source.
Thus the source, when deciding what to transmit next, knows which subset of receivers successfully
received each of its past transmissions. That is, the source has perfect feedback information. Feedback
can be efficiently employed in a wireless environment: the source might acquire such information by
taking advantage of the symmetry of wireless links, or by collecting acknowledgment packets explicitly
using specifically designed control traffic [10], or implicitly, by overhearing transmissions from the receiver
nodes [16]. In satellite transmissions, a satellite might learn when a receiver goes in a deep fade (e.g.,
enters a tunnel), in which case it loses a sequence of packets. It is also known how to explicitly collect
acknowledgments in wired networks, when the source multicasts the same content over a distribution
tree in an overlay network [13].

In this paper, we consider the problem of combining coding techniques and feedback information
over broadcasting channels to offer reliable content delivery under delay guarantees. Our notion of delay
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is motivated from real-time applications with progressively refined input. Such a paradigm is provided
by multiple description coding that we adopt as our illustrating example in the following; however, our
notion of delay is relevant to a much more general class of applications.

Multiple description is a well studied data compression technique which allows to provide robustness
and graceful recovery in the presence of unknown channel conditions. Although the theoretical problem
was already introduced in the 80’s (see for example [14]), the research interest in the field was significantly
invigorated during the last few years, due to the numerous identified network applications, such as image
and video delivery (see for example [25, 9, 3, 26, 27], and [15] for a tutorial paper). The main idea is
that we encode our file, for example an image, using a number µ of equally important descriptions, and
each description is send separately to the receiver. Depending on the channel conditions, the receiver
may receive a different number of descriptions. These descriptions are constructed to have the following
property: if a receiver receives a single description (any one of them), it gets a coarse version of the
image that is within some appropriately defined distortion guarantees from the original. If a receiver gets
any two descriptions, it can reconstruct the image more accurately. Generally, the larger the number of
descriptions, the smaller the distortion distance from the original. Reception of all descriptions results
in the most accurate reconstruction. Note that in this construction, it is only the number of different
received files that defines the reconstruction accuracy; the ordering at which files are received plays no
role.

Consider now an application that requires fast delivery of images over a wireless network, for ex-
ample from a road-basestation of a transportation network to passing vehicles. Assume that the image
is encoded using multiple description, and thus the basestation has µ blocks to deliver. When commu-
nicating towards a single receiver, simple sequential transmission of the blocks suffices: the underlying
multiple description coding will determine the image quality experienced by the receiver, as a function
of the number different blocks collected. The problem becomes much more challenging when the image
needs to be broadcasted to a number of receivers, each of which receives information over its own erasure
channel. The sender may use a scheduling algorithm to decide which image block to broadcast next. In
this paper, we propose instead to use a coding algorithm, that encode the blocks we need to transmit
to the receivers. Both in the case of scheduling or coding, the algorithm may use the feedback informa-
tion it has collected (i.e., which receivers received the previous transmissions) to decide on the current
transmission. Note that our proposed coding is additional to the multiple description data compression:
it decides which and how many image blocks it will combine together, and falls in the area of network
coding, as its main purpose is to better share the network resources among the contending receivers.
Network coding is an emerging area that has attracted a very significant research interest during the
last decade, as it promises to revolutionize information flow through networks (see [1, 18] and [12] for
an introductory tutorial).

Every time receiver rj receives successfully, it wants to learn some missing piece of information,
namely any image description it does not know yet. This motivates us to increment the delay dj of rj

by one every time rj successfully receives a transmission of the following type: (i) an image description
rj already knows, or (ii) an encoding of image descriptions which, when combined with rj’s successful
receptions so far, does not allow rj to immediately extract at least one image block rj does not know
yet. This definition allows us to disengage delay from the erasure frequency as we only count delay
when a transmission is successful. It also allows us to capture two causes of delay: delay due to useless
received packets, namely packets that bring duplicate information to their receiver, and delay due to
packets that, although useful, do not allow their receiver to immediately decode some unknown message.
Finally, our definition of delay is the simplest instantiation possible, as it does not take into account any
ordering: we thus hope that a good understanding of this problem can serve as a first step towards more
combinatorially demanding delay definitions.

The main questions we consider in this paper are (i) whether coding offers benefits in terms of delay,
and (ii) how to design coding schemes that minimize average and maximum delay, and what is the
complexity of this task. We focus in the case where all receivers are interested in the same content
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because understanding this simple model offers a first step towards variations, where receivers may
demand different subsets of the messages or request the messages in a specific order. It is worth noting
that the popular solution of employing rate-less erasure correcting codes at the source such as LT or
Raptor codes [20, 28] for reliable broadcasting over erasure channels, performs very poorly in terms of
delay (see also Subsection 1.1).

Our contributions include the following. Concerning the complexity of the offline problem, we show
that minimizing the average and maximum delay when the source uses scheduling is NP -hard. We then
examine the complexity of the problem when coding is allowed and show that, although specific classes of
erasure instances become trivial, the general problem remains NP -hard. We examine classes of erasure
instances where coding offers significant benefits in terms of delay, and give a simple inapproximability
result for maximum offline delay. Finally, we discuss heuristic online algorithms where the erasures of
different receivers are independent and i.i.d. distributed. We evaluate the performance of our heuris-
tics through simulations. The latter verify our observation that coding can significantly reduce delay
compared to scheduling.

The importance of our work lies perhaps in that, to the best of our knowledge, it is the first to
examine the complexity and algorithmic aspects of the joint use of coding and feedback information for
delay-optimal content delivery. Erasures are inherent in many realistic networks, and we believe that
the trade-off beween rate and delay that arises in our setting is worth exploring further.

The remainder of this paper is organized as follows. Section 2 introduces our model and notation.
Section 3 examines the complexity of offline broadcasting with scheduling, while Section 4 examines the
complexity when coding at the source is allowed. Section 5 discusses online results. Section 6 concludes.

1.1 Related Work

A significant body of work has investigated the problem of scheduling user requests over a broadcast
medium to maximize the per-user received rate and minimize the response time; see for example [7, 4, 8,
22]. In this setup, users typically arrive at different time instances, and ask for possibly different content.
No coding is employed and no errors are assumed. The difficulty of the problem, which was recently
shown to be NP -hard [7], arises from having to share the common medium over the contenting requests.
It is worth mentioning that if receivers were to ask for the same data items (e.g., satellite images) in any
order, then even if the requests arrive at different time instances, a periodic (circular) transmission of
the data items would suffice.

In uncoded transmissions, maximizing the per user throughput naturally minimizes the delay: the
faster information is received, the better. However, in the presence of erasures, uncoded transmission
leads to repetitive reception and cannot achieve rates close to the optimal, and thus can also not achieve
the optimal delay. On the other hand, when coding is employed, delay and rate may become conflicting
requirements. For rate-less codes for example, to operate close to capacity and avoid duplicate receptions,
we need to encode at the source across µ packets, for large values of µ [20, 28]. A receiver needs to wait to
collect Θ(µ) coded packets to be able to decode, which implies a delay of Θ(µ). Indeed, in the presence
of erasures, satisfying requests even for the same content becomes a challenging problem [11]. In [?, 29]
use of MDS codes has also been proposed, but their performance is inferior to Raptor codes both in
terms of complexity and adaptability to unknown channel conditions.

Our work can also be viewed as an instantiation of network coding with feedback. Recent work
has looked at use of acknowledgments and coding to optimize the achievable rate, under the condition
that each received packet is either useless or can be immediately decoded by the destination [16]. Such
schemes, although simple to implement, do not offer rate or delay guarantees. Another line of work has
looked into use of coding and feedback to minimize the queue size at the sender [30]. This performance
metric is quite different from delay. Also, [23] examines use of feedback over broadcast erasure channels
to optimize rate and achieve zero probability of error.

Finally, Birk and Kol [6] introduced a related broadcasting scenario, called Index Coding. Index
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Coding was examined in a line of works [5, 19, 2]. A more general setting than Index Coding, recently
analyzed by Alon et. al. in [2], is as follows. A source possesses m messages. There are n receivers.
Each receiver somehow, e.g., through some initial phase where the source schedules single messages only
and every receiver receives these messages through an erasure channel, ends up with a subset of the m
messages by some time t; this subset is the side information of the receiver. It is then assumed that no
receiver experiences any erasures after time t, and that each receiver wants exactly one of the source
messages it is still missing. The goal is to find the minimum length of the codeword whose transmission
will allow all receivers to simultaneously recover the messages they want.

Our problem differs from the formulation above in many ways. First, we do not restrict our model to
guarantee that there is some time t after which every receiver will have a perfect communication channel
with the source. Second, the source is allowed to transmit linear combinations at any time slot, so even
if there was such a time t, the side information of a receiver would not just be single messages. More
importantly, given that we do not impose any time t after which every receiver successfully receives
the source transmissions, it is not difficult to see that applying at every time step an erasure correcting
code that allows every successfully receiving receiver to reconstruct one of its missing message does not
necessarily minimize delay.

As far as we know, this is the first work that examines jointly optimizing coding and use of feedback
information for delay-optimal content delivery. Our paper builds on a preliminary work [17], where we
introduced the problem and proposed some online heuristics.

2 The Model

Consider a source that wants to convey µ messages to ρ receivers using broadcast transmissions. Time
is slotted, and at the beginning of each time slot t ≥ 1, the source is allowed to transmit (linear or
non-linear) combinations of the messages, which we call packets. We denote the packet transmitted at
the beginning of time slot t ≥ 1 by p(t). We call a broadcasting scheme that schedules single (uncoded)
messages at every time step a scheduling scheme. If the scheme is allowed to use coding operations
(combinations) on the messages, we call it a coding scheme. Each receiver receives information from the
source through an erasure channel, which might range from only deep fadings to i.i.d. erasures and may
depend on the erasure channels of other receivers. We denote by Kt

j ∈ {0, 1} the realization of receiver
rj ’s channel at time t with Kt

j = 1 if and only if rj receives p(t). In a worst case model these realizations
could have given values, while in a probabilistic setting they would be random variables.

Depending on whether the transmitted packet successfully reached a receiver or not, the receiver
sends an ACK or a NACK to the source respectively (we assume that the feedback channels are perfect).
We assume that Kt

j is received by the source at the end of time slot t. Therefore the source can use
this information for generating the packet p(t + 1) transmitted at the next time slot t + 1. We assume
that the duration of the time slot is sufficient for the receivers to receive the packet and decode it (if
possible) using the packets they have already received. A receiver who has decoded all µ messages is no
longer interested in the source transmissions. The source transmits a packet during every time slot until
all receivers have decoded all messages.

We can think of the µ source messages as defining a µ-dimensional space over a finite field Fq, where
each message corresponds to one of the orthonormal basis vectors {e1, e2, . . . , eµ}. We will denote by p(t)
the linear packet 1 the source transmits at time t. Linear packets are of the form (c, x) where c ∈ Fµ

q and
x =

∑
j cjej ; the choice of the coefficient vector c determines x, so we leave x implied in what follows.

Operations over a finite field Fq of size say q = 2` in practice means that we divide the binary packets
the source produces into contiguous sets of ` bits, and treat each such set as a symbol of Fq. Linear
combining of the packets occurs symbol-wise.

Let Πt
j be the subspace collected by rj at the end of time slot t and Et

j the set of vectors e` ∈ Πt
j .

1It is not difficult to generalize this discussion to packets that consist of nonlinear combinations of messages.
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We say that a received vector (packet) brings novel information to a receiver rj if it increases the
dimension of Πj by one. A class of schemes that will play an important role henceforth are schemes
where every successfully received packet brings innovative information to its receiver. We call these
schemes rate-optimal. In a rate-optimal scheme, a receiver rj that has received ` packets, has collected
an `-dimensional subspace Πj of the µ-dimensional space. For ` = µ, the receiver can successfully decode
all source messages. The following properties of rate-optimal schemes are straightforward (also see [17]):
1. A receiver rj can decode the source message ei if and only if ei ∈ Πj ; and
2. With slight abuse of notation, let Π1 denote the subspace spanned by the vectors < p(i1), . . . , p(it1) >
receiver rj has collected by time t1 (recall that rj may have some erasures during the t1 time steps, hence
it1 ≤ t1), and Π2 the subspace spanned by the vectors < p(it1 + 1), . . . , p(it2) > the same receiver rj

collects between times t1 +1 and t2. If E1 is the set of vectors e` ∈ Π1 and E2 the set of vectors e` ∈ Π2,
then E1 ∩ E2 = ∅, for all j, t1 < µ and t2 ≤ µ.

Let 1( · ) be the indicator function.

Definition 1 The delay dT
j that receiver rj experiences when the source uses transmission scheme T is

the number of packets that, although successfully received, did not allow rj to immediately decode a new
message. 2 In symbols,

dT
j , 1 +

∑

t:|Et
j |<µ

1( Et
j = Et−1

j ) · Kt
j

Let DT
a and DT

w denote the average and worst case delay of transmission scheme T respectively, given
by

DT
a ,

1

ρ

∑

1≤j≤ρ

dT
j , and DT

w , max
1≤j≤ρ

dT
j .

Different schemes may result in different values for DT
a and DT

w. Our goal is to find among all transmission
schemes the (possibly different, e.g. , see [17]) transmission schemes under which the average and worst-
case delay are minimized.

As an example, given our definition of delay, if a given broadcasting instance allows for the minimum
delay of one, the scheme must be rate-optimal or proved rate-optimal because of the realization of the
channels. In other words, may have transmitted packets that were not novel for certain receivers during
certain time steps but the specific receivers experienced erasures at the specific time steps. On the other
hand, if a scheme is not rate optimal, then any successfully received packet that does not bring new
information to its receiver, increments the delay of its receiver by one. Hence any scheme that is not
rate optimal given the realizations of the channels will have average delay strictly larger than one and
maximum delay at least two.

The discussion above implies that further insight into the online problem can be gained by examining
its offline version. The offline broadcasting instance has two additional inputs: (a) an integer τ that stands
for the number of source transmissions by which all receivers have received all messages, and (b) a τ × ρ
symbolic matrix P whose entries take values from {√,x}. P is defined by the successful receptions and
the erasures of the ρ receivers during the τ time slots, which are known in the offline scenario: entry
P (t, j) =

√
if and only if receiver rj successfully received the packet p(t) transmitted at time slot t. 3

We shall henceforth denote an offline broadcasting instance by the quadruple (µ, ρ, τ, P ), and refer to P
as the erasure matrix of the instance.

We say that a broadcasting scheme for the source completes the offline instance (µ, ρ, τ, P ) if by time
τ , all receivers have decoded all messages. Observe that a necessary and sufficient condition for a scheme
to complete the offline instance is that every receiver has at least µ successful receptions by time τ . For

2We introduce the +1 in the delay for technical reasons –we can interpret this as setup time: e.g., the time slot t = 0 is
used by the source to identify the number of receivers in the system.

3We introduce P (t, j) for the offline scenario while we use Kt
j in the online scenario.
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example, any rate-optimal scheme requires exactly µ successful receptions per receiver to guarantee that
all receivers can decode all messages, regardless of the delay.

Offline analysis is useful because it can be used as a benchmark for the online algorithms: the
performance of the optimal offline algorithm lower bounds the performance of any online algorithm.
Moreover, offline problems can be particularly interesting and challenging on their own, as the works on
Index Coding [6, 5, 19, 2] show.

3 Minimizing Delay with Scheduling Schemes is NP -hard

Given an offline broadcasting instance (µ, ρ, τ, P ), the scheduling problem we are considering is to mini-
mize the average (maximum) delay under any scheduling scheme that completes the instance. Observe
that a priori this appears to be an easier problem than the one studied in [7] since our notion of delay
is relaxed as all receivers need all messages and not just specific subsets of messages, and further, the
order in which the messages are received does not matter.

The decision version of the optimization problem above has as an extra input an integer d ≥ 1, and
answers “yes” if and only if there is a scheduling scheme that completes (µ, ρ, τ, P ) with total (maximum)
delay at most d 4 . An algorithm that solves the minimization problem for total (maximum) delay should
be able to answer the decision problem for every value of d. Since the minimum possible value for both
average and maximum delay is one (the delay corresponding to the initialization phase), and since average
delay of one implies maximum delay of one, it suffices to prove that it is hard to decide if the average
delay is one, in order to prove that both minimization problems are NP-hard. This is the main result of
this section and it is summarized in the following theorem.

Theorem 1 Minimizing average and maximum delay in offline broadcasting in the presence of erasures
and when the source uses scheduling schemes is NP -hard.

In the rest we will prove Theorem 1 by reducing 3SAT to average delay of one in offline broadcasting.
We shall henceforth refer to average delay simply as delay.

Given a formula φ in CNF on n variables x1, . . . , xn, and m clauses c1, . . . , cm, where each clause
consists of disjunctions of exactly 3 literals, we want to decide if there exists an assignment of truth
values to the variables such that all clauses are satisfied.

We will construct an offline broadcasting instance B(φ) = (µ, ρ, τ, P (φ)) such that φ is satisfiable if
and only if there is a scheduling scheme that completes B(φ) with delay one. In our instance, the source
has µ = 2n messages, there are ρ = n + 2m receivers, and τ = 4n + 5m time slots. Our construction
guarantees that each receiver has exactly µ = 2n successful receptions by time τ . Notice that this
choice of τ suffices to decide if there is a delay-one scheme for our instance: any such scheme has to
be rate-optimal and therefore must deliver all µ messages to every receiver during the first µ successful
receptions of the receiver starting at t = 1.

In more detail, our construction works as follows. For every variable xi, 1 ≤ i ≤ n we introduce 2
messages, ei and ei. One receiver Di is introduced for every variable xi (their role will be discussed after
the construction of P (φ) is complete). Also, two receivers, Cj

1 and Cj
2 are introduced for every clause cj ,

1 ≤ j ≤ m. This results in the erasure matrix P (φ) having ρ = n + 2m columns.
We now move on to discussing the number of rows in P (φ). For every variable xi, we introduce 4

consecutive time slots, which we call the variable period βi; βi starts at time slot 4(i − 1) + 1, and ends
at time slot 4i. Following the n-th variable period, we introduce m consecutive clause periods: the j-th
clause period, denoted by γj, consists of 5 time slots, starts at time slot 4n + 5(j − 1) + 1, and ends at
time slot 4n + 5j. Hence P (φ) has τ = 4n + 5m rows.

To complete our construction, we need to assign values to the τ · ρ entries of P (φ). We will do this
sequentially in time, i.e., by first considering the variable periods and then the clause periods.

4Minimizing total delay is equivalent to minimizing average delay when m is independent of n.
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Time slot Cj
1 Cj

2

4(i − 1) + 1
√

x
4(i − 1) + 2 x x
4(i − 1) + 3 x

√

4i x x

Time slot Cj
1 Cj

2

4(i − 1) + 1
√

x
2(i − 1) + 2 x x
4(i − 1) + 3 x x

4i x
√

Time slot Cj
1 Cj

2

4(i − 1) + 1
√ √

4(i − 1) + 2
√ √

4(i − 1) + 3 x x
4i x x

Table 1: Erasure patterns for receivers Cj
1 , Cj

2 during βi. If clause cj contains xi, they receive as in the
left table; if cj contains xi, they receive as in the middle table; else (cj does not contain xi or xi), they
receive as in the right table.

Time slot D1 . . . Di−1 Di Di+1 . . . Dn

4(i − 1) + 1
√

. . .
√

x
√

. . .
√

4(i − 1) + 2
√

. . .
√

x
√

. . .
√

4(i − 1) + 3 x . . . x
√

x . . . x
4i x . . . x

√
x . . . x

Time slot Cj
1 Cj

2

4n + 5(j − 1) + 1
√ √

4n + 5(j − 1) + 2 x
√

4n + 5(j − 1) + 3 x
√

4n + 5(j − 1) + 4
√

x
4n + 5j

√
x

Table 2: The left table shows receptions of D1, . . . ,Dn during βi. The right table shows receptions of
Cj

1 , Cj
2 during clause period γj (all other receivers experience erasures during γj).

During variable period βi, for all 1 ≤ j ≤ m, receivers Cj
1 , C

j
2 corresponding to clause cj receive as

shown in Table 1 depending on whether xi, xi or none of them appears in cj . Also, during βi, receivers
D` for 1 ≤ ` ≤ n, receive as shown in Table 2: for ` 6= i, D` receives during the first two time slots of βi,
while Di receive during the last two time slots.

During clause period γj , receivers Cj
1 , Cj

2 corresponding to clause cj receive as shown in the right
table of Table 2. All other receivers experience erasures during γj .

The above completes our construction. Table 4 in the Appendix shows P (φ) for the example formula
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) for which B(φ) = (8, 10, 31, P (φ)).

Some remarks are appropriate at this point. First it is trivial to check that the reduction can be
carried out by a deterministic Turing machine in logarithmic space, and that every receiver has exactly
µ successful receptions. So a priori there could be a scheduling scheme completing B(φ) with delay one.
The role of the receivers Di is to guarantee that exactly 2 messages are sent during each βi, with the
two messages sent during the first two time slots being rescheduled during the last two time slots, in
any order (see Proposition 2 for a proof). In effect, this flexibility in the scheduling of the messages
during the last two time slots of each βi is our choice gadget. Our consistency gadget is that during βi,
Cj

2 receives a different message from C`
2 when xi appears in clause cj and xi in c`. Finally our clause

constraint gadget is the simultaneous reception of the two receivers corresponding to clause cj during
the first time slot of γj .

We now move to showing that φ is satisfiable if and only if B(φ) admits delay one. Before, we
introduce the following two schedulings which will prove useful for our arguments.
Scheduling 1 for variable period βi: the ordered sequence of messages ei, ei, ei, ei.
Scheduling 2 for variable period βi: the ordered sequence of messages ei, ei, ei, ei.

Proposition 1 If φ is satisfiable, then there is a scheduling scheme TS that satisfies the offline broad-
casting instance B(φ) = (2n, 2m + n, 4n + 5m,P (φ)) with delay one.

Proof. Consider a satisfying truth assignment for φ. For 1 ≤ i ≤ n, if xi is true, TS applies Scheduling 1
for βi during βi, else if xi is false, TS applies Scheduling 2 for βi during βi. Then the first 4n transmissions
of TS incur delay one, and D1, . . . ,Dn obtain all messages.
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Since φ is satisfiable, every clause has at least one literal that is true. W.l.o.g., let cj = (`i ∨ `a ∨ `b)
be any clause, where `y is either xy or xy, and suppose that `i is (one of) the satisfying literal(s) for this
clause, i.e., xi is set to true if and only `i = xi. We now show how TS completes the clause periods so
that the clause receivers obtain all messages without delay.

By time 4n, receivers Cj
1 , Cj

2 know 2n− 6 messages, i.e., all messages corresponding to the variables

that do not appear in clause cj. Further (see Table 1), Cj
1 knows {ei, ea, eb}, and Cj

2 knows exactly one

from {ea, ea} and one from {eb, eb}. Cj
2 also knows ei which he received at the third time slot of βi if

xi appears in cj (in which case, since `i is the satisfying literal of cj, xi was set to true, and TS applied
Scheduling 1 for βi during βi), or at the fourth time slot of βi if xi appears in cj (in which case, xi was
set to false and TS applied Scheduling 2). Then during the first time slot of γj (see Table 2), TS sends

ei. Next, TS sends ea or ea, depending on which one Cj
2 missed during βa; similarly for eb during the

third time slot. Finally Ts schedules ea and eb during the last two slots of γj. Since these transmissions

result in Cj
1 , C

j
2 obtaining all messages without delay, TS satisfies B(φ) with delay one. �

Conversely, let T ′
S be any scheduling scheme that satisfies B(φ) with delay one. We will exhibit a

satisfying truth assignment for φ. We first introduce some notation: for 1 ≤ t1 ≤ tT ≤ 4, we define
Et1...tT

i to be the (simple) set of the messages scheduled at the discrete time steps t1, . . . , tT of βi. For
example, E123

i is the simple set of messages sent during the first 3 slots of βi. We can now show a
technical but useful lemma concerning properties of T ′

S during the variable periods.

Proposition 2 Consider any scheduling scheme T ′
S that satisfies B(φ) with delay one. For 1 ≤ i ≤ n,

T ′
S schedules exactly two new messages during βi, with the messages sent during the first two time slots

of βi being resent (in some order) during the last two time slots. In symbols, for all 1 ≤ i 6= j ≤ n,
E12

i = E34
i and E12

i ∩ E12
j = ∅.

Proof. Trivially, T ′
S is rate-optimal for every Di since it satisfies B(φ) with delay one. Thus |E12

i ∪E34
i | ≥

2 for all i. Now suppose that there is a k such that E12
k 6= E34

k . It follows that |E12
k ∪ E34

k | ≥ 3, so
by the pigeonhole principle, there is a message m that was scheduled during both βk and some βj with
j 6= k. During βk, m was either received by all D` with ` 6= k or by Dk or both. During βj , m was
either received by all Di with i 6= j or by Dj or both. If m was received by all D` and all Di, all Dy

with y 6= k, j receive m twice (in βk and in βj). If m was received by Dk and all Di, then Dk received
m twice. If m was received by all D` and Dj, then Dj received m twice. Since T ′

S does not introduce
delay, we conclude that none of these scenarios may have happened and it must be that m was received
by Dk in βk and by Dj in βj . Then m ∈ E34

k ∩ E34
j . Since T ′

S is rate-optimal for Dk and Dj, it follows

that |E12
1 ∪ . . .∪E12

k−1∪E34
k ∪E12

k+1∪ . . .∪E12
n | = 2n, and |E12

1 ∪ . . .∪E12
j−1∪E34

j ∪E12
j+1∪ . . .∪E12

n | = 2n,

hence E12
j ∪ E34

k = E34
j ∪ E12

k . Since T ′
S is also rate-optimal for every Di with i 6= j, k, we have that

E12
j ∩ E12

k = ∅ (Di receives E12
j in βj and E12

k in βk). We arrive at a contradiction: if m ∈ E34
k ∩ E34

j ,

it is impossible that E12
j ∪ E34

k = E34
j ∪ E12

k when E12
j ∩ E12

k = ∅. Hence m cannot be in E34
k ∩ E34

j ,

implying that for all k, E12
k = E34

k . �

W.l.o.g., assume that T ′
S schedules the two messages exi

, eyi
during the first two time slots of βi,

in this order. By Proposition 2, these messages will not be rescheduled before time 4n, so for the sake
of clarity, we may relabel them as ei, ei respectively. We define the following truth assignment. For
1 ≤ i ≤ n, if T ′

S applied Scheduling 1 for βi during βi, xi is set to true, else if T ′
S used Scheduling 2 for

βi during βi, xi is set to false. Notice that Proposition 2 guarantees that any T ′
S indeed applied one of

these two schedulings during βi.
We are now ready to conclude the converse direction of our reduction after stating one more propo-

sition whose proof will appear shortly.

Proposition 3 Let cj = (`i ∨ `a ∨ `b) be any clause. Any T ′
S that satisfies B(φ) with delay one is such

that Cj
2 has received at least one of ei, ea, eb by time 4n.

8



Corollary 1 If T ′
S is a scheduling scheme that satisfies B(φ) with delay one then φ is satisfiable.

Proof. Consider any clause cj = (`i ∨ `a ∨ `b). By Proposition 3, any T ′
S is such that Cj

2 has received

at least one of ei, ea, eb by time 4n. W.l.o.g., assume Cj
2 received ei. If Cj

2 received this message at time
4(i − 1) + 3, then xi appears in cj and T ′

S used Scheduling 1 for βi. Hence our truth assignement set

xi to true. Otherwise, if Cj
2 received ei at time 4i, then xi appears in cj and T ′

S used Scheduling 2 for
βi. Hence our truth assignement set xi to false. In either case, our truth assignment for xi satisfies cj .

Since Proposition 3 applies to all Cj
2 for 1 ≤ j ≤ m, there is (at least) one literal in every clause that is

set to true by our truth assignment. Hence φ is satisfiable. �

We now give the proof of Proposition 3.
Proof. Consider the 2 receivers Cj

1 , C
j
2 corresponding to cj . By Proposition 2, under any T ′

S , at the

beginning of γj, each of Cj
1 , C

j
2 knows the 2n − 6 messages that correspond to the n − 3 variables that

do not appear in cj . Further, Cj
1 knows {ei, ea, eb}, and Cj

2 knows exactly one of {ei, ei}, one of {ea, ea},
and one of {eb, eb}.

Suppose that Cj
2 received {ei, ea, eb}. Then at the first slot of γj where he receives simultaneously

with Cj
1 , there is no way to avoid delay since every message needed by one receiver incurs delay to the

other. However if Cj
2 had received at least one of ei, ea, eb, say ei, then at the first time slot of γj , T ′

S

could schedule ei which does not delay any receiver. �

4 Benefits and Limits of Coding in Reducing Complexity

We here start by attempting to understand what are structural properties of instances where use of offline
scheduling results in delay greater than one. We will then show that use of coding across messages can
offer two benefits: (i) Reduce the delay. For example, we will see that there are instances where with
coding we can have delay one, while with scheduling we cannot. (ii) Reduces the complexity of solving
the problem for several cases. For example, for the erasure pattern in Section 3, we can trivially achieve
average and maximum delay one: during βi, with 1 ≤ i ≤ n, send ei, ei, ei, ei, while during βj for clause

cj , with 1 ≤ j ≤ m, send ei + ei, then whatever is missing from Cj
2 , and finally ma,mb. The main

prupose of this section is to examine whether and how much use of coding can help.
We will use the following notation. Let Bt denote the set of messages the source has transmitted up

to time t and Bt the set of remaining messages. For receiver rj, let Et
j denote the set of messages from

Bt that rj has received, and E
t
j the messages from Bt it has not. That is, Bt = Et

j ∪ E
t
j for all rj .

For the case of one receiver, trivially, scheduling achieves delay one. For the case of two receivers, we
can use the following simple algorithm to ensure delay one: if at time time t (i) both r1 and r2 receive,

transmit a message from Bt (ii) only rj receives, if Ēt
j 6= ∅ transmit a message from E

t
j, otherwise a

message from Bt. This scheme ensures that at each time t either E
t
1 = ∅ or E

t
2 = ∅; moreover, Bt = ∅

only when at least one of the two receivers has received all messages.
For the case of three receivers, offline scheduling can result in worst case delay of O(µ). Indeed, note

that for scheduling, delay is introduced only when the transmission scheme cannot be rate optimal. For
the erasure pattern in Table 3, assume that each line is repeated for µ/2 time slots. Rate optimality for

r3 implies that at t = µ+1, E
t
1∩E

t
2 = ∅ and thus, the transmissions at time-slots t = µ+1, . . . , 3µ/2 will

incur sum delay µ/2 for r1 and r2. The existence of receiver r3 is necessary to ensure that E
t
1 ∩ E

t
2 = ∅

occurs in offline.
The following straightforward proposition formalizes this observation.

Proposition 4 If at time t there exist receivers ri and rj such that E
t
i ∩ E

t
j = ∅, and following time t,

for the next D timeslots that ri succesfully receives so does rj , with D , min{|Et
i|, |Et

j |}, then offline
scheduling results in delay O(D).
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time-slots r1 r2 r3

t = 1, . . . , µ/2
√

x
√

t = µ/2 + 1, . . . , µ x
√ √

t = µ + 1, . . . , 3µ/2
√ √

x

time-slots r1 r2 r3 r4

t = 1, . . . , µ/2
√

x
√

x
t = µ/2 + 1, . . . , µ x

√ √
x

t = µ + 1, . . . , 3µ/2
√ √

x
√

Table 3: The left table gives an erasure pattern where scheduling incurs delay O(µ) but coding achieves
delay one; the right table gives an erasure pattern where coding as well incurs delay O(µ).

Use of coding allows to make the source transmissions rate optimal, for all possible erasure patterns.
For example, for the pattern in the left Table 3, it is sufficient at time-slots t = µ + 1, . . . , 3µ/2 to

transmit µ/2 messages from E
t
1 + E

t
2. However, in this case delay is introduced, if a receiver cannot

decode a received linear combination. This is the case for the pattern in the right Table 3 (see also [17]).

It is easy to see that, at time t = µ + 1, E
t
1 ∩ E

t
2 = ∅, and additionally, E

t
1 ⊂ E

t
4, E

t
2 ⊂ E

t
4. To be

rate optimal with respect to r1 and r2 we need, like before, to transmit from E
t
1 + E

t
2. However, these

transmissions cannot be decoded by r4. Thus similarly to before we now have:

Proposition 5 If at time t there exist receivers ri, rj and rk such that E
t
i ∩E

t
j = ∅, E

t
i ⊂ E

t
k, E

t
j ⊂ E

t
k,

and following time t, for the next D timeslots that ri successfully receives so does rj and rk, with

D , min{|Et
i|, |Et

j |}, then offline coding results in delay O(D).

Clearly, coding allows to achieve delay one for a larger set than scheduling. Some additional such
patterns are described in the following proposition (the proof can be found in the appendix).

Proposition 6 With coding we can achieve delay one when we have an arbitrary number of receivers
ρ and: 1. Erasure patterns where each broadcast transmission is successfully received by at most two
receivers (this corresponds to high erasure probability). 2. Patterns where each broadcast transmission is
not received by at most one receiver (this corresponds low erasure probability).

4.1 Minimizing Delay with Coding Schemes is NP -hard

Given that there exist instances where the problem becomes simpler with the use of coding, the next
question is, whether the general problem, when we are allowed to use coding, becomes polynomial time,
or remains NP -hard. Note that the problem of maximizing the throughput when multicasting over
graphs becomes polynomial time if coding at intermediate network nodes is allowed [?, 21], while, if
coding is not allowed, it is NP -hard. However the theorem below shows that this is not the case in our
problem.

Theorem 2 Minimizing average and maximum delay in offline broadcasting in the presence of erasures
and when the source uses (linear or nonlinear) coding is NP -hard.

The proof of this theorem appears in the Appendix due to space limitations and builds on the ideas
in the proof of Theorem 1.

We conclude this section with an inapproximability result following the definitions in [24] (the proof
appears in the Appendix).

Proposition 7 Unless P = NP , there is no ε-factor approximation (coding) algorithm for maximum
delay in offline broadcasting with erasures for ε < 1/2.
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5 Online Algorithms

In this section, we discuss the competitive ratio of a natural class of systematic rate-optimal online
algorithms for minimizing average (maximum) delay in the cases of arbitrary and i.i.d. erasures. We also
suggest an online heuristic that improves significantly on the performance of the best heuristic from [17]
for i.i.d. erasures.

A systematic coding algorithm uses the first µ transmissions to send all messages once uncoded
and then starts sending combinations of messages. Rate optimal systematic algorithms have smaller
average delay than their non-systematic variants where linear combinations of all messages are used
for every transmission. The competitive ratio of systematic rate-optimal algorithms in the presence of
a deterministic adversary who only knows that the source is using such an algorithm is given by the
following proposition (a proof appears in the Appendix). The adversary is allowed to incur an erasure
at any channel during any time step but is not allowed to eavesdrop any channel.

Proposition 8 For µ = O(ρ) and arbitrary erasures, a systematic rate-optimal online algorithm is
(µ − O(1))-competitive for minimizing average delay and (µ − 1)-competitive for minimizing maximum
delay.

Proposition 8 motivates us to look at algorithms that are not rate-optimal in the online scenario. Specif-
ically, we examine the case where all ρ channels experience i.i.d. erasures with common constant erasure
probability q. Figure 1 compares the performance of scheduling, two heuristics from [17], and a new
heuristic algorithm that improves on the latter. A short description of these algorithms appears in the
Appendix. As mentioned in Section 1, use of coding is critical to achieve lower delay as simple schedul-
ing performs very poorly. The rate optimal algorithm (systematic FEC) achieves the expected delay of
µ · q, which is significantly worse than the performance of our heuristic as q, ρ (graphs below) and µ
(simulations not shown here) increase. Hence the interdependence between delay from useless packets
and delay from non instantly decodable packets has to be exploited in order to improve the performance
of the online algorithm.
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Figure 1: Median delay; the gray area corresponds to confidence interval; ρ = 150 receivers on the left
graph, erasure probability q = 0.3 on the right graph; µ = 100 messages for both graphs

6 Conclusions

We address the question of finding the optimal offline algorithm for broadcast scheduling or coding that
minimizes average and maximum delay when feedback is available. We show that the general problem is
NP -hard both when the source uses scheduling and coding. However we show that coding is a reasonable
alternative to scheduling as it can significantly reduce delay and alleviate the complexity of scheduling
in certain instances. We also suggest online heuristics for minimizing average delay in the presence of
i.i.d. erasures with the same erasure probability q across receivers.
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The most important open questions at this point are the competitive analysis for more general online
algorithms as well as the design of (additive) PTAS for the offline problem.

References

[1] R. Ahlswede, N. Cai, S-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. on Information Theory, pp.
1204–1216, July 2000.

[2] N. Alon, A. Hassidim, E. Lubetzky, U. Stav, A. Weinstein, ”Broadcasting with side information”, FOCS 2008.

[3] J G. Apostolopoulos and M D. Trott. Path diversity for enhanced media streaming. IEEE Communications Magazine, 42(8):
80–87, August 2004.

[4] N. Bansal, D. Coppersmith, M. Sviridenko, “Improved approximation algorithms for broadcast scheduling”, SODA 2006.

[5] Z. Bar-Yossef, Y. Birk, T. S. Jayram, T. Kol, ”Index Coding with Side Information”, FOCS 2006.

[6] Y. Birk, T. Kol, ”Informed-source coding-on-demand (ISCOD) over broadcast channels, ” Proc. IEEE INFOCOM, San Francisco,
CA, 1998, pp. 1257-1264,1998.

[7] J. Chang, T. Erlebach, R. Gailis, S. Khuller, “Broadcast scheduling: algorithms and complexity”, SODA 2008, pages 473–482.

[8] M. Charikar, N. Bansal, S. Khanna, S. Naor, “Approximating the Average Response Time in Broadcast Scheduling”, SODA 2005.

[9] S N. Diggavi, N.J.A. Sloane, and V. A. Vaishampayan. Asymmetric Multiple Description Lattice Vector Quantizers. IEEE
Transactions on Information Theory, 48 (1): 174–191, January 2002.

[10] M. Durvy, C. Fragouli, P. Thiran, “On feedback for network coding”, ISIT 2007.

[11] K. Foltz, L. Xu, J. Bruck, “Coding and Scheduling for Efficient Loss-Resilient Data Broadcasting”, ISIT 2003.

[12] C. Fragouli and E. Soljanin, “Network coding: Fundamentals and Applications,” Foundations and Trends in Networking, vol. 1,
2, 2007.

[13] C. Fragouli, D. Lun, M. Medard, P. Pakzad, ”On feedback for network coding”, Proceedings of CISS 2006.

[14] A. El Gamal and T. M. Cover, “Achievable rates for multiple descriptions,” IEEE Trans. Information Theory, vol. 28, no. 6,
pp. 851–857, Nov. 1982.

[15] V. K. Goyal, “Multiple Description Coding: Compression Meets the Network”, IEEE Signal Processing Mag., vol. 18, no. 5, pp.
74-93, Sept. 2001.

[16] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, J. Crowcroft, “XORs in the Air: Practical Wireless Network Coding”,
Sigcomm06.

[17] L. Keller, E. Drinea, C. Fragouli, “Online broadcasting with Network Coding”, Network Coding 2008.

[18] S-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. on Information Theory, vol. 49, Feb 2003.

[19] E. Lubetzky, U. Stav, ”Non-Linear Index Coding Outperforming the Linear Optimum”, FOCS 2007.

[20] M. Luby, “LT codes”, IEEE Symposium on the Foundations of Computer Science (STOC), pp. 271-280, 2002.

[21] D. Lun, M. Médard, T. Ho, R. Koetter, ”Network coding with a cost criterion”, ISIT 2004.

[22] W. Mao, “Competitive analysis of on-line algorithms for on-demand data broadcast scheduling”, ISPAN’ 00.

[23] J. Massey, P. Massey, “Zero error with feedback”, online tutorial.

[24] C. Papadimitriou, “Computational Complexity”, Addison-Wesley, 1994.

[25] S. S. Pradhan, R. Puri, and K. Ramchandran, “n-channel symmetric multiple descriptions - Part I: (n, k) source-channel erasure
codes,” IEEE Trans. Information Theory, vol. 50, pp. 47–61, Jan. 2004.

[26] R. Puri, S.S. Pradhan, and K. Ramchandran, “n-channel symmetric multiple descriptions - Part II: an achievable rate-distortion
region,” IEEE Trans. Information Theory, vol. 51, pp. 1377–1392, Apr. 2005.

[27] Sachs, D. G., Raghavan, A., and Ramchandran, K. 2000. Wireless Image Transmission Using Multiple-Description Based Con-
catenated Codes. In Proceedings of the Conference on Data Compression 2000, DCC.

[28] A. Shokrollahi, “Raptor Codes”, IEEE Trans. Inf. Theory, vol. 52, 2006.

[29] C. Su, L. Tassiulas, V. J. Tsotras, “Broadcast scheduling for information distribution”, Wireless Networks, Springer 2004.

[30] J. Sundararajan, D. Shah, M. Médard, “On queueing in coded networks –queue size follows degrees of freedom”, ITW 2007.

12



Appendix

Time slot C1
1 C1

2 C2
1 C2

2 C3
1 C3

2 D1 D2 D3 D4

1
√

x
√

x
√ √

x
√ √ √

2 x x x x
√ √

x
√ √ √

3 x
√

x x x x
√

x x x
4 x x x

√
x x

√
x x x

5
√

x
√

x
√

x
√

x
√ √

6 x x x x x x
√

x
√ √

7 x
√

x x x x x
√

x x
8 x x x

√
x

√
x

√
x x

9
√

x
√

x
√

x
√ √

x
√

10 x x x x x x
√ √

x
√

11 x
√

x
√

x x x x
√

x
12 x x x x x

√
x x

√
x

13
√ √ √ √ √

x
√ √ √

x
14

√ √ √ √
x x

√ √ √
x

15 x x x x x
√

x x x
√

16 x x x x x x x x x
√

17
√ √

x x x x x x x x
18 x

√
x x x x x x x x

19 x
√

x x x x x x x x
20

√
x x x x x x x x x

21
√

x x x x x x x x x

22 x x
√ √

x x x x x x
23 x x x

√
x x x x x x

24 x x x
√

x x x x x x
25 x x

√
x x x x x x x

26 x x
√

x x x x x x x

27 x x x x
√ √

x x x x
28 x x x x x

√
x x x x

29 x x x x x
√

x x x x
30 x x x x

√
x x x x x

31 x x x x
√

x x x x x

Table 4: P (φ) for the example formula φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) and the
scheduling construction in Section 3.
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Minimizing Delay with Coding Schemes is NP -hard

In this section we present the proof of Theorem 2. Given an offline instance B(m, n, h, P ), the coding problem we are considering is to
minimize the delay under any coding scheme that satisfies the instance. Again, delay here stands for average delay.

We will construct an offline broadcasting instance B(φ) = (µ, ρ, τ, P (φ)) such that φ is satisfiable if and only if there is a coding
scheme that satisfies B(φ) with delay one. In our instance, the source has µ = 3n messages, there are ρ = 5n + 3m receivers, and
τ = 10n + 6m − 3 time slots. Our construction guarantees that each receiver has µ = 3n successful receptions within these τ time
slots.

Time slot Cj
1 Cj

2 Cj
3

5(i − 1) + 1
√ √

x
5(i − 1) + 2

√
x x

5(i − 1) + 3 x
√

x
5(i − 1) + 4 x x

√
5i x x x

Time slot Cj
1 Cj

2 Cj
3

5(i − 1) + 1
√ √

x
5(i − 1) + 2

√
x x

5(i − 1) + 3 x
√

x
5(i − 1) + 4 x x x

5i x x
√

Time slot Cj
1 Cj

2 Cj
3

5(i − 1) + 1
√ √ √

5(i − 1) + 2
√ √ √

5(i − 1) + 3
√ √ √

5(i − 1) + 4 x x x
5i x x x

Table 5: Erausure patterns for receivers Cj
1 , Cj

2 , Cj
3 during βi. If clause cj contains xi, they receive as

in the left table; if cj contains xi, they receive as in the middle table; else (cj does not contain xi or xi),
they receive as in the right table.

Time slot D`
1 D`

2 D`
3 D`

4 D`
5

5(i − 1) + 1
√ √

x
√ √

5(i − 1) + 2
√ √

x
√ √

5(i − 1) + 3
√ √ √ √ √

5(i − 1) + 4 x x
√

x x
5i x x

√
x x

Time slot Di
1 Di

2 Di
3 Di

4 Di
5

5(i − 1) + 1
√

x x x x
5(i − 1) + 2

√ √
x x x

5(i − 1) + 3
√ √ √

x x
5(i − 1) + 4 x x

√ √
x

5i x x
√ √ √

Table 6: Let 1 ≤ k ≤ 5. During βi, D`
k receive as shown in the left table if ` < i; the right table shows

receptions for Di
k.

Our construction works as follows. For every variable xi, we introduce 3 messages, ei, ei and e′i. For every clause cj , 1 ≤ j ≤ m,

we introduce three receivers, denoted by Cj
1
, Cj

2
and Cj

3
. For every variable xi, 1 ≤ i ≤ n, we introduce five receivers, denoted by Di

k
,

for 1 ≤ k ≤ 5, whose role will be discussed after completing the construction of the erasure pattern.
Also, for every variable xi, we introduce 5 consecutive time slots, which we call the variable period βi; βi starts at time slot

5(i − 1) + 1, and ends at time slot 5i. Following the n-th variable period, we introduce m consecutive clause periods: the j-th clause
period, denoted by γj , consists of 6 time slots, starts at time slot 5n+6(j−1)+1, and ends at time slot 5n+6j. Finally, following the
m clause periods, we introduce 5n− 3 time slots, which we call “patching” time slots, because their role is simply to provide sufficient
time for the receivers Di

k
to obtain all messages.

We now proceed to giving values to the τ · ρ entries of the erasure matrix P . We will do this sequentially in time, i.e., by first
considering the variable periods, then the clause periods, and finally the “patching” time slots.

During variable period βi, for all 1 ≤ j ≤ n, receivers Cj
1
, Cj

2
, Cj

3
corresponding to clause cj receive as shown in Table 5 depending

on whether xi, xi or none of them appears in cj . Also, during βi, receivers D`
k

with 1 ≤ k ≤ 5 receive as shown in Table 6 if ` ≤ i;
otherwise (if ` > i), they all experience erasures.

During clause period γj , receivers Cj
1
, Cj

2
, Cj

3
corresponding to clause cj receive as shown in Table 7. All other receivers experience

erasures during γj .
Finally, consider the “patching” time slots. We can think of them as being grouped into n − 1 periods of 5 time slots, and one

last period of only two time slots. For 1 ≤ i ≤ n, at time 5n + 6m + 5(i − 1) + 1, receivers Di
4
, Di

5
receive. At the next time slot

5n + 6m + 5(i − 1) + 2, receivers Di
2
, Di

5
receive. For 1 ≤ i ≤ n − 1, during the last three time slots of patching period i, all receivers

D`
k

with ` > i, 1 ≤ k ≤ 5 receive.
The above completes our construction. Table 8 shows P (φ) for the example formula φ = (x1∨x2∨x3)∧(x1∨x2∨x3)∧(x2∨x3∨x4)

for which B(φ) = (12, 29, 55, P (φ)).
Again it is easy to check that the reduction can be carried out by a deterministic Turing machine in logarithmic space and that

all receivers have exactly 3n successful receptions by time τ , hence any rate-optimal scheme would satisfy B(φ). Here the role of the
receivers Di

k
is twofold (see Lemma 1 for a proof): they guarantee that (a) a single message is scheduled during every time slot of every

βi, and (b) exactly 3 messages are sent during each βi, with the two messages sent during the first two time slots being rescheduled
during the last two time slots, in any order. Similarly to Section 3, this flexibility in the scheduling of the messages during the last
two time slots of each βi is our choice gadget. Our consistency gadget is that during βi, Cj

3
receives a different message from C`

3

when xi appears in clause cj and xi in c`. Finally our clause constraint gadget is the simultaneous reception of the three receivers
corresponding to clause cj during the first time slot of γj .

We now move to showing that φ is satisfiable if and only if B(φ) admits delay one. Before, we introduce the following two
schedulings that will prove useful for our arguments.
Scheduling 1 for βi: the ordered sequence of messages ei, ei, e′i, ei, ei.
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Time slot Cj
1 Cj

2 Cj
3

5n + 6(j − 1) + 1
√ √ √

5n + 6(j − 1) + 2 x x
√

5n + 6(j − 1) + 3 x
√ √

5n + 6(j − 1) + 4
√

x
√

5n + 6(j − 1) + 5 x
√ √

5n + 6j
√

x
√

Table 7: Receiving pattern of Cj
1 , C

j
2 , C

j
3 during clause period γj .

Scheduling 2 for βi: the ordered sequence of messages ei, ei, e
′

i, ei, ei.

Proposition 9 If φ is satisfiable, then there is a coding scheme T that satisfies the offline broadcasting instance B(φ) = (3n, 3m +
5n, 10n + 6m − 3, P (φ)) with delay one.

Proof. Consider a satisfying truth assignment for φ. For 1 ≤ i ≤ n, if xi is true, the coding scheme T applies Scheduling 1 for βi

during variable period βi. Othewise, if xi is false, it applies Scheduling 2 for βi during βi. Then the first 3n transmissions of T incur
delay one, and D1

1
, D1

3
obtain all messages.

Since φ is satisfiable, every clause has at least one literal that is true. W.l.o.g., let cj = (`i ∨ `a ∨ `b) be any clause, where `y is
either xy or xy , and suppose that `i is (one of) the satisfying literal(s) for this clause, i.e., xi is set to true if and only `i = xi. We
now show how T completes the clause periods so that the clause receivers obtain all messages without delay.

By time 5n, receivers Cj
1
, Cj

2
, Cj

3
know 3n − 9 messages, i.e., all messages corresponding to the variables that do not appear

in clause cj . Further (see Table 5), Cj
1

knows {ei, ei, ea, ea, eb, eb}, Cj
2

knows {ei, e′i, ea, e′a, eb, e
′

b
}, and Cj

3
knows exactly one from

{ea, ea} and one from {eb, eb}. Cj
3

also knows ei which he received at the fourth time slot of βi if `i = xi (in which case, xi was set
to true, and T applied Scheduling 1 for βi during βi), or at the fifth time slot of βi if `i = xi (in which case, xi was set to false and T
applied Scheduling 2).

During γj (see Table 7), T sends the following packets: first it sends ei + e′i. This results in Cj
1

obtaining e′i, Cj
2

obtaining ei,

and Cj
3

obtaining e′i. Next it sends ei. During the third and the fourth slots, if Cj
3

received ea during βa, it sends ea + ea, and e′a
respectively. Otherwise, if Cj

3
received ea during βa, it sends ea + e′a and ea + e′a respectively. The situation for `b is identical. Hence

by time 5n + 6j, Cj
1
, Cj

2
and Cj

3
have obtained all messages without delay.

At time 5n + 6m + 1, every receiver Di
k

except for D1
1

and D1
3

still needs some messages. For 1 ≤ i ≤ n, at the first time slot of

the i-th patching period, T sends e′i, which both Di
4 and Di

5 need (see Table 6). At the second slot, it sends ei + ei if xi was set to
true, or ei if xi was set to false; this satisfies both Di

2 and Di
5. At this point, Di

2, Di
4, Di

5 have received all messages. For 1 ≤ i ≤ n− 1
5 , during the last three slots of patching period i, T sends ei, ei, e′i, which receivers D`

k
with ` > i had missed during βi. These

transmissions result in Di+1

1
, Di+1

3
obtaining all messages. This explains why the n-th patching period consists of only two slots: the

only receivers still requiring some messages are Dn
2 , Dn

4 , Dn
5 . We conclude that by the end of the n-th patching period all receivers

know all messages. Hence T satisfies B(φ) with delay one. �

Conversely, consider any coding scheme T ′ that satisfies B(φ) with delay one. We will exhibit a satisfying truth assignment for

φ. We first extend our previous notation of E
t1...tT

i to include all time steps 1 ≤ t1 ≤ tT ≤ 5. We now show a technical but useful
lemma concerning properties of T ′ during the variable periods.

Lemma 1 Any coding scheme T ′ that satisfies B(φ) with delay one is rate-optimal and sends a single message at every time step j
for 1 ≤ j ≤ 5n. Moreover T ′ sends exactly 3 messages during every βi, with the messages sent during the first two time slots of βi

being resent (in some order) during the last two time slots of βi. After βi, these messages will not be sent again before (potentially)
time 5n + 1.

Proof. Trivially, T ′ must be rate-optimal. Suppose that at time step 5(i − 1) + k, for any 1 ≤ i ≤ n and 1 ≤ k ≤ 5, a (linear or
nonlinear) function of at least two messages is sent. Then receiver Di

k
will delay, as he has received nothing so far.

For the second part of the lemma, we need to show that E12345
i ∩ E12345

j = ∅ for all 1 ≤ i 6= j ≤ n. Also, we must show that

E12
i = E45

i .
Since D1

1
receives during the first three time slots of every βi, and the scheme is rate-optimal, E123

i ∩E123
j = ∅ for all 1 ≤ i < j ≤ n.

Similarly, since D1
3

receives during the last three time slots of all βi, and T ′ is rate-optimal, E345
i ∩ E345

j = ∅ for all 1 ≤ i < j ≤ n.

Therefore we need show that E12
i ∩ E45

j = ∅ for all 1 ≤ i 6= j ≤ n. Equivalently we just need to show that E12
i = E45

i .

Oberve that, for all i, Di
4

receives E45
i ∪ E123

i+1
∪ . . . ∪ E123

n , and T ′ is rate-optimal. Hence E45
i ∩ E123

j = ∅ for all j > i.

Moreover, for example for i = 1, |E45
1

∪ E123
2

∪ . . . ∪ E123
n | = 3n − 1. Hence D1

4
knows 3n − 1 messages by time 5n. Since T ′

satisfies B(φ) and D1
1

does not receive after time 5n, D1
1

must know all 3n messages by time 5n. Since D1
1

and D1
4

know the same
3n − 3 messages corresponding to E123

2 ∪ . . . ∪ E123
n , it follows that E45

1 ⊂ E123
1 . Since E3

1 6⊂ E12
1 as D1

1 receives during all three time
steps 1,2,3, and E3

1 6⊂ E45
1 as D1

3 receives during all three time steps 3,4,5, we conclude that E12
1 = E45

1 . The same argument holds
for all i > 1.

�

5Recall that the last patching period consists of only two time slots.
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W.l.o.g., assume that T ′ schedules the three messages exi
, eyi

, ezi
during the first three time slots of βi, in this order. By Lemma 1,

these messages will not be rescheduled before time 5n, so for the sake of clarity, we may relabel them as ei, ei, e′i respectively. We
define the following truth assignment. For 1 ≤ i ≤ n, if T ′ applied Scheduling 1 for βi during βi, xi is set to true, else if T ′ used
Scheduling 2 for βi during βi, xi is set to false. Notice that Lemma 1 guarantees that any T ′ applied one of these two schedulings
indeed during βi.

Similarly to Lemma 1, the following proposition presents necessary and sufficient conditions for the clause periods to be completed
with delay one.

Proposition 10 Let cj = (`i ∨ `a ∨ `b) be any clause. In any scheme T ′ that satisfies B(φ) with delay one, Cj
3

has received at least
one of ei, ea, eb by time 5n.

Before we give the proof of Proposition 10, we show how it concludes the second direction of our reduction.

Corollary 2 If T ′ is a coding scheme that satisfies B(φ) with delay one then φ is satisfiable.

Proof. Consider any clause cj = (`i ∨ `a ∨ `b). By Proposition 10, T ′ is such that Cj
3

has received at least one of ei, ea, eb by time 5n.

W.l.o.g., assume Cj
3

received ei. If Cj
3

received this message at time 5(i − 1) + 4, then xi appears in cj and T ′ used Scheduling 1 for

βi. Hence our truth assignement set xi to true. Otherwise, if Cj
3

received ei at time 5i, then xi appears in cj and T ′ used Scheduling
2 for βi. Hence our truth assignement set xi to false. In either case, our truth assignment for xi satisfies cj . Since Proposition 10

applies to all Cj
3

for 1 ≤ j ≤ m, there is (at least) one literal for every clause that is set to true by our truth assignment. Hence φ is
satisfiable. �

We now give the proof of Proposition 10.
Proof. Consider the 3 receivers Cj

1
, Cj

2
, Cj

3
corresponding to cj . By Lemma 1, under any T ′, at the beginning of γj , each of Cj

1
, Cj

2
, Cj

3

knows the 3n − 9 messages that correspond to the n − 3 variables that do not appear in cj . Further, Cj
1

knows {ei, ei, ea, ea, eb, eb},

Cj
2

knows {ei, e′i, ea, e′a, eb, e
′

b
} and Cj

3
knows exactly one of ei, ei, one of ea, ea, and one of eb, eb.

Suppose that Cj
3

did not receive any of ei, ea, eb. Then he received ei, ea, eb. Now at the first slot of γj where Cj
1
, Cj

2
, Cj

3
receive

simultaneously, there is no way to avoid delay: Cj
3

needs exactly one single message either from {ei, ea, eb}, or one from {e′i, e
′

a, e′
b
},

while Cj
1

needs no single message from the first set and Cj
2

needs no single message from the second set.

On the other hand suppose that Cj
3

received at least one of ei, ea, eb, w.l.o.g. ei. Then at time 5n + 6(j − 1) + 1, a function of ei

and exactly one from {e′i, e
′

a, e′
b
} would suffice to incur zero delay to all 3 receivers. �
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Proposition 6 With coding we can achieve delay one when we have an arbitrary number of receivers ρ and: 1. Erasure patterns
where each broadcast transmission is successfully received by at most two receivers (this corresponds to high erasure probability). 2.
Patterns where each broadcast transmission is not received by at most one receiver (this corresponds low erasure probability).
Proof. For two sets A, B, the notation A + B means {a + b : a ∈ A, b ∈ B}.

1. If two receivers ri and rj receive, transmit a message from E
t
i ∩ E

t
j if not empty, otherwise from E

t
i + E

t
j if not empty, otherwise

from Bt. If only ri receives, if Ēt
i 6= ∅ transmit from Ēt

i otherwise transmit a message from E
t
i, otherwise a message from Bt.

2. Use systematic transmission for µ time slots. After µ timeslots there exists at most one receiver who has not received each message.

Continue by transmitting messages from +iE
t
i, where in the summation we include all receivers i that receive the transmission (and

have not completed reception). �

Proposition 7 Unless P = NP , there is no ε-factor approximation (coding) algorithm for maximum delay in offline broadcasting
with erasures for ε < 1/2.
Proof. Let OPT be the optimal algorithm for offline broadcasting in the presence of erasures, and OPT (x) the maximum delay incurred
by OPT on instance x = (µ, ρ, τ, P ). Let TC be an ε-factor approximation algorithm for maximum delay in offline broadcasting with
erasures for some ε < 1/2. Then for all inputs x to TC , TC(x) ≤ 1

1−ε
· OPT (x).

Given a formula φ in 3CNF, we construct B(φ) in polynomial time as described in the proof of Theorem 2 and run TC on input
B(φ). There are two cases: if TC(B(φ)) = 1, then we know that φ is satisfiable. Otherwise, if TC(B(φ)) ≥ 2, then we conclude that

2 ≤ TC(B(φ)) ≤
1

1 − ε
· OPT (B(φ)) ⇒ 2(1 − ε) ≤ OPT (B(φ)) ⇒ 1 < OPT (B(φ)).

Since the maximum delay of B(φ) is one if and only if φ is not satisfiable, we conclude that φ is not satisfiable. Since B(φ) can be
constructed in polynomial time, and TC runs in polynomial time, we can decide whether φ is satisfiable in polynomial time. �

Proposition 8 For µ = O(ρ) and arbitrary erasures, a systematic rate-optimal online algorithm is (µ − O(1))-competitive for average
delay and (µ − 1)-competitive for maximum delay.
Proof. During the first µ transmissions, the adversary allows receiver rj to obtain transmission j and causes erasures to all other
receivers. After the µ-th transmission the adversary allows all ρ receivers to successfully receive all transmitted packets.

Since exactly one receiver has obtained each message by time µ, the source must transmit linear combinations of all messages
starting at time µ + 1 in order to be rate optimal for every receiver. This incurs a total delay of

ρ + (µ − 2) · ρ + (ρ − µ)

during the following µ transmissions. The first term comes from t = 0, the second term from time µ + 1 up to time 2µ − 2 where
all receivers delay, and the last term from time 2µ − 1 where receivers rµ+1, . . . , rρ delay (at this point, receivers r1, . . . , rµ have
successfully received µ packets hence can decode for the µ messages and do not delay). It follows that the average delay is given by

µ −
µ

ρ
= µ − O(1),

while the maximum delay is µ − 1 (the delay of any receiver rj with j > µ).
On the other hand, the optimal offline algorithm incurs average and maximum delay of one: it only transmits e1 during the first

µ transmissions, followed by e2, . . . , eµ, e1 during the following µ transmissions. The proposition follows. �

Short Description of the Heuristics in Figure 1, Section 5

1. Scheduling (sorted): At every time slot, the message that is requested by most receivers is transmitted.

2. Systematic FEC [17]: During the first µ transmissions, all µ messages are transmitted once. Then packets with random
linear combinations of the messages are transmitted so that every transmitted packet is rate optimal for every receiver.

3. Cost driven 2: This is a variant of Cost driven 1 from [17]. During the first µ transmissions, all µ messages are transmitted
once. From then on, the packet p(t) is built as follows: first a packet s(t) that is instantly decodable for every receiver is
built in a random manner; s(t) might not be novel for every receiver. At this point, the algorithm sets p(t) = s(t) and then
augments p(t) by adding more messages to build the final packet as follows. While there are still messages that are not included
in p(t) and have not yet been chosen by the algorithm, one such message m is chosen at random. This message is added to
p(t) (multiplied by a random coefficient c) according to the following condition. Assume that all receivers will receive p(t).
If the number of receivers that will not experience delay upon reception of p(t) + c · m is larger than the number of receivers
that will not experience delay upon reception of p(t), then set p(t) = p(t) + c · m. When the erasures are i.i.d. and identically
distributed across receivers, the assumption that all receivers will receive p(t) may be replaced by the assumption that the
expected number of receivers receive p(t) without affecting the condition for adding m to p(t).
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t C1
1 C1

2 C1
3 C2

1 C2
2 C2

3 C3
1 C3

2 C3
3 D1

1 D1
2 D1

3 D1
4 D1

5 D2
1 D2

2 D2
3 D2

4 D2
5 D3

1 D3
2 D3

3 D3
4 D3

5 D4
1 D4

2 D4
3 D4

4 D4
5

1
√ √

x
√ √

x
√ √ √ √

x x x x x x x x x x x x x x x x x x x
2

√
x x

√
x x

√ √ √ √ √
x x x x x x x x x x x x x x x x x x

3 x
√

x x
√

x
√ √ √ √ √ √

x x x x x x x x x x x x x x x x x
4 x x

√
x x x x x x x x

√ √
x x x x x x x x x x x x x x x x

5 x x x x x
√

x x x x x
√ √ √

x x x x x x x x x x x x x x x

6
√ √

x
√ √

x
√ √

x
√ √

x
√ √ √

x x x x x x x x x x x x x x
7

√
x x

√
x x

√
x x

√ √
x

√ √ √ √
x x x x x x x x x x x x x

8 x
√

x x
√

x x
√

x
√ √ √ √ √ √ √ √

x x x x x x x x x x x x
9 x x

√
x x x x x x x x

√
x x x x

√ √
x x x x x x x x x x x

10 x x x x x
√

x x
√

x x
√

x x x x
√ √ √

x x x x x x x x x x

11
√ √

x
√ √

x
√ √

x
√ √

x
√ √ √ √

x
√ √ √

x x x x x x x x x
12

√
x x

√
x x

√
x x

√ √
x

√ √ √ √
x

√ √ √ √
x x x x x x x x

13 x
√

x x
√

x x
√

x
√ √ √ √ √ √ √ √ √ √ √ √ √

x x x x x x x
14 x x

√
x x

√
x x x x x

√
x x x x

√
x x x x

√ √
x x x x x x

15 x x x x x x x x
√

x x
√

x x x x
√

x x x x
√ √ √

x x x x x

16
√ √ √ √ √ √ √ √

x
√ √

x
√ √ √ √

x
√ √ √ √

x
√ √ √

x x x x
17

√ √ √ √ √ √ √
x x

√ √
x

√ √ √ √
x

√ √ √ √
x

√ √ √ √
x x x

18
√ √ √ √ √ √

x
√

x
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

x x
19 x x x x x x x x

√
x x

√
x x x x

√
x x x x

√
x x x x

√ √
x

20 x x x x x x x x x x x
√

x x x x
√

x x x x
√

x x x x
√ √ √

21
√ √ √

x x x x x x x x x x x x x x x x x x x x x x x x x x
22 x x

√
x x x x x x x x x x x x x x x x x x x x x x x x x x

23 x
√ √

x x x x x x x x x x x x x x x x x x x x x x x x x x
24

√
x

√
x x x x x x x x x x x x x x x x x x x x x x x x x x

25 x
√ √

x x x x x x x x x x x x x x x x x x x x x x x x x x
26

√
x

√
x x x x x x x x x x x x x x x x x x x x x x x x x x

27 x x x
√ √ √

x x x x x x x x x x x x x x x x x x x x x x x
28 x x x x x

√
x x x x x x x x x x x x x x x x x x x x x x x

29 x x x x
√ √

x x x x x x x x x x x x x x x x x x x x x x x
30 x x x

√
x

√
x x x x x x x x x x x x x x x x x x x x x x x

31 x x x x
√ √

x x x x x x x x x x x x x x x x x x x x x x x
32 x x x

√
x

√
x x x x x x x x x x x x x x x x x x x x x x x

33 x x x x x x
√ √ √

x x x x x x x x x x x x x x x x x x x x
34 x x x x x x x x

√
x x x x x x x x x x x x x x x x x x x x

35 x x x x x x x
√ √

x x x x x x x x x x x x x x x x x x x x
36 x x x x x x

√
x

√
x x x x x x x x x x x x x x x x x x x x

37 x x x x x x x
√ √

x x x x x x x x x x x x x x x x x x x x
38 x x x x x x

√
x

√
x x x x x x x x x x x x x x x x x x x x

39 x x x x x x x x x x x x
√ √

x x x x x x x x x x x x x x x
40 x x x x x x x x x x

√
x x

√
x x x x x x x x x x x x x x x

41 x x x x x x x x x x x x x x
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

42 x x x x x x x x x x x x x x
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

43 x x x x x x x x x x x x x x
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

44 x x x x x x x x x x x x x x x x x
√ √

x x x x x x x x x x
45 x x x x x x x x x x x x x x x

√
x x

√
x x x x x x x x x x

46 x x x x x x x x x x x x x x x x x x x
√ √ √ √ √ √ √ √ √ √

47 x x x x x x x x x x x x x x x x x x x
√ √ √ √ √ √ √ √ √ √

48 x x x x x x x x x x x x x x x x x x x
√ √ √ √ √ √ √ √ √ √

49 x x x x x x x x x x x x x x x x x x x x x x
√ √

x x x x x
50 x x x x x x x x x x x x x x x x x x x x

√
x x

√
x x x x x

51 x x x x x x x x x x x x x x x x x x x x x x x x
√ √ √ √ √

52 x x x x x x x x x x x x x x x x x x x x x x x x
√ √ √ √ √

53 x x x x x x x x x x x x x x x x x x x x x x x x
√ √ √ √ √

54 x x x x x x x x x x x x x x x x x x x x x x x x x x x
√ √

55 x x x x x x x x x x x x x x x x x x x x x x x x x
√

x x
√

Table 8: P (φ) for φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) and the coding example in Sec-
tion 4.


