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1 Introduction

This paper is concerned with a classical problem
in real-time scheduling. We are given n tasks
(c1,p1), .-+, (cn,pn), where each task is determined
by a running time ¢; and a period p; > ¢;. Each task
generates a job of length ¢; at each integer multiple
of p; (starting at time 0), which has to be finished
before the next job is released; the jobs have implicit
deadlines, i.e., the deadlines are given by the peri-
ods themselves. A preemptive, static-priority sched-
ule consists of a priority assignment to all tasks,
such that jobs of higher priority always preempt
jobs of lower priority.

Liu and Layland [LL73] have shown that the
rate-monotonic schedule is optimal. Meaning that
if there is any feasible priority assignment, then
all jobs will meet their deadline if task i has pri-
ority 1/p;. This means that the computation of an
optimal schedule is tractable. Still an important
problem remains: Is there a polynomial algorithm
which decides whether a task in this schedule is
feasible, i.e., whether each job of a task finishes be-
fore its implicit deadline?

The response time of a task is the maximum
amount of time that may elapse between the ar-
rival of a job of this task and its completion. It was
already shown in [LL73] that the time required by
the first job of each task defines its response time.
If r; denotes the response time of the task (c;, p;),
then the system is feasible, if and only if r; < p;
holds for each j. What is this number r; and how
can it be computed?

Assume that the periods are ordered, i.e., p; <
p2 < ... < py. The first job of task (c;,p;) needs
time r;. While it is running, the i-th task, i < j,
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interrupts this job [r;/p;] many times and requires
time ¢; at each interruption. Therefore, r; is the
smallest non-negative value such that

)

neer T[]
K3

i<j

holds, see [JP86, LSD89]. Thus to test feasibility,
it suffices to compute all response times and to
check, whether r; < p; holds fori =1,...,n.

Now the question is, whether the smallest r; sat-
isfying (1) can be found efficiently. Several authors
write that “equations of this form do not lend them-
selves easily to analytical solution” [JP86, ABD*95]
which raises the suspicion that response-time cal-
culation is difficult.

Our main result is a proof that this is indeed diffi-
cult. There does not exist a polynomial algorithm
for computing the response time of a task in a
given task-system, unless P = NP. If P # NP,
there cannot even exist a constant approximation
algorithm for response time computation. This
also implies that there cannot be an efficient test
for the feasibility of one task in a task system unless
P = NP. If such a test would exist, we could apply
it, together with binary search, to find the response
time efficiently.

This result complements a recent result of Fisher
and Baruah [FB05], who can guarantee feasibility
of a task, or its infeasibility if the processor has
speed 1 4 ¢ for any constant ¢ > 0 in polyno-
mial time. Our result shows that their algorithm
is best possible in the sense that resource augmenta-
tion is indeed necessary for an efficient feasibility
test which is based on response-time calculation.
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Proof method

The insight which leads to our hardness result is
the fact that response-time calculation is related to
simultaneous diophantine approximation, a classical
problem from the geometry of numbers, see, e.g.
[NZMO1]. Here one is given n rational numbers
a1, ...,0n, anatural number N € N and a rational
error bound £ > 0. The task is to find a natural
number 1 < @ < N such that the distance of each
Q- «; toits nearest integer is bounded by ¢. In other
words, we are searching for a natural number @
such that

Vii|@-oi = [Q-ail| <e

where |z| denotes the nearest integer to z. La-
garias [Lag85] has shown that simultaneous dio-
phantine approximation is NP-hard. Equation (1)
reminds of diophantine approximation. However
there are two main difficulties which prevent the
immediate application of the result of Lagarias,
apart from several minor adjustments.

i) Due to the rounding up in equation (1), we
want to consider a variant of diophantine ap-
proximation in which we measure the dis-
tance of @ - ; to the nearest integer which is
larger that Q - «y;, ie., [Q - a;].

ii) The error in the classical simultaneous ap-
proximation has to be small for each individ-
ual @ - o;, whereas equation (1) seems to accu-
mulate the errors.

The following variant of simultaneous diophan-
tine approximation, which we call directed simulta-
neous diophantine approximation incorporates these
difficulties. This variant, plays also an important
role in integer programming and combinatorial
optimization, see, e.g. [HW97, HW02].

DIRECTED DIOPHANTINE APPROXIMATION
(DDA)

Given rational numbers ag,...qa, € Q4 and a
rational number ¢ > 0, find the smallest ¥ € N
such that there existsa Q € {1,...,k} with

n
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Here () denotes the solution of the problem, while
k gives its value. In the first part of this paper,
we show that response-time computation can be
reduced to DDA with an approximation preserving
reduction with factor 2. To explain this, we first for-
mally describe the response-time problem.

RESPONSE TIME COMPUTATION (RTC)
Given tasks (¢;,p;) € Q% fori = 1,...,n, find
the smallest r € Q, such that

c+ Y {i-‘cigr
; Di

Denote the optimum solutions of DDA and RTC
by OPIppa and OPTRrrc respectively. We show
that RTC <, DDA holds. More general a reduc-
tion A <, B for optimization problems A, B and
a constant v > 1 means, that the existence of a
B-approximation algorithm for B implies the exis-
tence of a v - f-approximation for any fixed 5 € N.
Thus a chain of reductions 4; <, ... <. | Ap,
implies that if finding O(1)-approximations to A,,
is NP-hard, then the same holds for A;.

The second part of this paper deals with a proof
that there does not exist a polynomial algorithm
which computes a solution to DDA of value k*
with k* < - OPT for any constant v > 1. This es-
tablishes the main result of this paper, namely the
fact that response time calculation is NP-hard and
also that there does not exist a constant approxima-
tion algorithm for response-time calculation unless
P = NP.

Apart from yielding a contribution to the theory
of real-time scheduling, we think that the proof of
inapproximability of DDA is of interest on its own.

2 DDA <; RTC

In this section we show the following result, which
is the promised link of response time computation
to directed diophantine approximation.

Theorem 1 (DDA <y RTC). If there exists a (3-
approximation algorithm for RTC for some 3 € N,
then there exists a 2 - 3-approximation algorithm
for DDA.

The proof is a small sequence of reductions. The
first problem that we introduce in this sequence is
earliest idle time.

EARLIEST IDLE TIME (IDLE)

Given n pairs of rational numbers (c;,p;) €
2,i=1,...,n compute the minimum r > 0

with

n

Zhﬂ ¢ <.

i=1

This r can be understood as the first time at which
the processor is idle.
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Lemma 2 (IDLE <; RTC). For each 8 € N, if there
exists a J-approximation algorithm for RTC, then
there exists a 3-approximation algorithm for IDLE.

Proof. Consider an instance of IDLE given by
(¢i,pi), i = 1,...,n. Clearly, we can scale all num-
bers by the least common multiple D of all denom-
inators to obtain integers. Since r is a solution to
the scaled instance if and only if /D is a solu-
tion of the original IDLE-instance, we can assume
that (c;,p;) € N2 fori = 1,...,n. Now define
P =TT, p;. Either there is no IDLE solution, then
there is nothing to do, or OPTipz < P. Assume
the latter one.
Consider the RTC-instance

6+§Lﬂ (ci—06) <

where § = 1/(2-n - P). If r is a solution to IDLE,
then r is clearly a solution to RTC.

On the other hand, let r < P be a solution to
RTC. We have

minr

—
ISR
—_
o
A

< r+1/2,

which shows that [r] is a solution to IDLE and that
OPTipg = [OPTrrc] holds. Let r* be a solution
to RTC with * < - OPTgrrc. One has [r*] <
[B-OPTrrc] < B3-OPTipg since § € Nis aninteger.

O

The next problem that we consider is a weighted
version of directed diophantine approximation.

WEIGHTED DIOPHANTINE APPROXIMATION

(DDAY)
Given rational numbers a,...,a, € Qi,
weights wy, ..., w, € Q1 and a value of ¢ > 0.

Find the smallest Q € Q with

n

> wi([Qei] — Qo) < £-Q

i=1

Lemma 3. One has DDA" <; IDLE.

Proof. Consider an instance aq, ..., ay, wi,...,wy,
and ¢ of DDA™. We construct an instance of IDLE
such that any r € Q4 is a solution to this instance
of IDLE if and only if r is a solution to the DDA™-
instance.

To this end, choose periods p; := ai and con-

sider an r € Q4 which is a solution of ﬁDAw, ie.,
an r satisfying

(5] 5) <

Rewriting this equation one obtains

which shows that an r is a feasible solution to
DDA if and only if this r is a feasible solution
IDLE. |

To complete the proof of Theorem 1 it remains to
show the next lemma.

Lemma 4. One has DDA <, DDA"Y.

Proof. Suppose that there is a S-approximation al-
gorithm for DDA" and let a1, ..., oy, € define an
instance of DDA. Consider now the instance of
DDAY with some ¢ > 0, where we have ad-
ditionally to the «; above, an extra ap = 1 and
weights wy, ..., w, with wg = M and w; = 1 for
i = 1,...,n. Here M is a large number which
enforces any [-optimum solution to be an integer.
This shows that there is a J-approximation algo-
rithm for the problem

minQ € N: Y ([Qai] — Qo) < Q- (2)

i=1

Consider now the following problem, which looks
very similar to DDA

min@ € N: Z((Qaz] - Qua;) <€, 3)

i=1

for some ¢” > 0. Let Q* be an optimal solu-
tion of (3). We now show that we can use the -
approximation algorithm for (2) tofinda @ < 8-Q*
which satisfies

S ([Qei] — Qay) <2-5-¢”.

i=1
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By trying out a polynomial number of candidates,
we can assume to know a natural number N € N
with N > @Q* > N/2. Lete’ = ¢”/(N/2), then

Y ([Q ] —Q o) <" <Q"- ¢,

i=1
which shows that Q* is a solution of inequality (2).
Now we compute a [-approximation @ of (2).
Clearly Q < 8- Q* < 8- N and thus

Z((@a[l _Qvai) < @.5/ < 2'6'5”,

i=1

(4)

which is what we need.
Remember that we aim at a 2 - 8-approximation
algorithm for DDA which is

mink € N: 3Q € {1,...,k} : Y _([Qei]-Qay) < k.

i=1

Let Q. be the integer returned by the above de-
scribed algorithm for approximating (3), where
¢’ := k - ¢ and denote the optimum solution of (3)
by Q}. With binary search, we can find a k such
that Q. > 3-kand Qry1 < B(k+1). Since Q% > k,
there does not exista @ € {1,..., k} such that

n

Y ([Qai] = Qay) < k-e

=1
holds. On the other hand, we have

n

Z(f@kﬂoﬂ — Q1) <2-6-(k+1)-¢

=1

and @k+1 < B (k + 1) which shows that @k+1 isa
2 - B-approximate solution of DDA.
O

Summarizing, we have already shown the re-
ductions in Figure 1, implying that if computing
an O(1)-approximation to DDA is NP-hard to ob-
tain, then the same holds for response time compu-
tation. What now follows is the proof, that DDA is
indeed hard to solve.

3 PIR <, DDA

In this section we show that DDA can be used to
find the shortest, non-negative, integer vector in a
hyperplane through the origin. More formally, we
consider the following problem.

DIRECTED DIOPHANTINE APPROXIMATION
(DDA)

Given: ai,...a, € Qp, e >0

Find: mink e N:3Q € {1,...,k}:

n

DQ-ail —Q-ai) <k-e

i=1

<s

WEIGHTED DIOPHANTINE APPROXIMATION
(DDA"Y)

Given: aq,...,qy,,wr,..
Find: min@ € Qy :

Wy € Qp,e>0

sz‘(@aﬂ - Qi) <e-Q

<1

EARLIEST IDLE TIME (IDLE)

Given: (c1,p1),.--, (cn,pn) € Q%
Find: minr > 0:

n
r
i— | Pi

K2

<

RESPONSE TIME COMPUTATION (RTC)

Given: (Clvpl)v ) (Cnvpn) € in c>0
Find: minr > 0:

c+ Y {i-‘cigr
; Di

Figure 1: Overview over reductions, leading to
DDA <, RTC
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POSITIVE INTEGER RELATION (PIR)
Given a hyperplane Y | a;z; = 0, find that
vector € Z}\{0} on the hyperplane, which

minimizes ||z||, = Y i, ;.

The following proof is a modification of a proof
of Lagarias [Lag85] used for giving a reduction
from shortest integer relation w.rt. {.-norm to si-
multaneous diophantine approximation w.r.t. {-
norm. Lagarias reduced shortest integer relation
without the positiveness constraint to the classical
diophantine approximation problem, where the
rounding operation is the replacement with the
nearest integer. Our problem PIR is an adaption of
shortest integer relation which takes care of the fact
that the rounding operation in DDA is the nearest
larger integer. In fact we further adapt the proof of
Lagarias such that it works for the accumulation of
errors, i.e., for the /;-norm. The proof of Lagarias
was also used by [RS96] to show that simultane-
ous diophantine approximation is intractable w.r.t.
approximations.

Let [z] := [z] — « be the distance of z to the next
larger integer. In case that z € Q" is a vector, we
define [z] := Y"1, [z;] to be the accumulated dis-
tance of the entries to the next larger integer.

Define OPTpir to be the length ||z*||; of an op-
timal solution z* to PIR. For given ¢ the number
OPTppa denotes the smallest integer k£ such that
thereisa @ € {1,..., k} with [Qa] < ke. Using lin-
ear programming [Kha79] we can compute a frac-
tional solution z’/D in the hyperplane a2z = 0
with 2’ € Z and D € N (both of polynomial en-
coding size). Then 2’ is an (in general extremely
bad) integer solution. However from now on, we
need to consider only PIR solutions whose values
are upperbounded by p := ||2’||. The precise claim
that we are going to show is as follows

Theorem 5. (PIR <, DDA). Given a PIR instance,
there is a DDA instance such that a PIR solution of
value k € N implies the existence of a DDA solu-
tion of value at most k- N, while a DDA solution of
value kN can be turned efficiently into a PIR solu-
tion of value 2k. Here, N is a number, depending
on the instance and k < p with p as defined above.

Clearly this theorem implies that OPTpr <
OPTppa/N < 2 - OPTpr as well as that a g-
approximation algorithm for DDA can be used to
construct a 23-approximation algorithm for PIR.

Denote A := p3 |a;|. Choose different primes
D,q1,-..,Gn, such that gi,...,q, are sufficiently
close to each other. More precisely we demand that

1L A<pli<ogl <gf <..<ql <2 4F

2. pand all ¢; are co-prime to all g;
3. ¢ > 2pn - pft

for suitable choices of R, T € N.

It is shown in [Lag85, RS96] that such prime
numbers (having even stronger properties) exist
and can be computed in polynomial time. Further-
more the values of R and T are both bounded by a
polynomial in the input size. For the sake of com-
pleteness the proof can be found in the appendix.

The following system of congruences appears al-
ready in [MA78] and is crucial for the reduction.

ri  =gr 0Vi#£j (5)
rj =pr aj (6)
rj #q O 7)

Since the moduli ¢!, p” are co-prime there are so-
lutions for r;, by the Chinese Remainder Theorem, see
e.g. [INZM91]. Choose the smallest possible solu-
tion for r;.

There is also an efficient way to compute r;. De-
fine B := [[_, ¢], then the Chinese Remainder
Theorem allows to compute some 7 < pftB/ qu,
which simultaneously solve (5) and (6). Then there
are two possibilities: Either we have 7 #,. 0, then
r; = 1} is a suitable choice. Otherwise we have
rj =T+ pRB/qu #q;, 0, while (5) and (6) still
hold. In any case r; < 2p"B/q] .

We need the following observation

Lemma 6. The systems

n n
E zja; =0 E xTirj =pr 0
Jj=1 j=1

reZy and xcZl
L<|lzll, <p L<|lzl, <p
SN———— SN————

(€] (1)

have the same set of solutions.

Proof. Since a; =,r r;, each solution z for (I) is
a solution for (II). Vice versa, let = be a solution
for (IT), thus Y7, zjr; =pr 0. Due to a; =pr 7
congruence .7, ¥;ja; =,r 0 holds. But we have

n
1Y wjay) <
j=1

=p

laj| < p"
1

n
|1 -

J

X

<A

thus >°7_, zja; = 0. We conclude that z solves
I). O
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Basically this lemma allows us, to replace each
a; by a value r;, having additional properties. This
procedure will pay off later.

By rj € Zyr we denote the unique value s.t. r; -
= g 1 (this must exist since r; #,, 0 implies
that ged(rj,qf ) = 1). Define N := 37",
the DD A-instance for the reduction is

Tj, then

ag L
0o = o
o = Q Vi=1,...,n
J q;]" 9 9
1
g = N

To give some intuition behind this system: Since
allq] are co-prime, there is a one-to-one correspon-
dence between solutions x and good diophantine
approximations (). We will see that z lies on the
hyperplane o’z = 0 if and only if the correspond-
ing Q is a multiple of p®. Moreover the distance of
Qa; to the next larger integer will be proportional
tox G

Theorem 7. If there exists an x € Z7\{0} with
a’z = 0 and ||z||; = k, then one has OPTpps <

Proof. Let x € Z'}\{0} be that PIR solution with
k:=|z|, = OPTPIR It suffices to prove the exis-
tence of a Q € {1,...,k- N} with [Qa] < k/q¢l =
kN -e. We choose Q := 37 | z; r; >0.Clearly
—~—
>0 >0
one has

Z 1y <zl N =Fk-N.

thus @ is within the feasible bounds. It remains to
show that Qa gives a good approximation. Note

that
DG T
[Qao] = [JT =0,
due to the reason that a”’2 = 0 and therefore

> i mizj =pr 0 (see Lemma 6). Furthermore we
derive that

_ B | . 23—1 i Ty
Qo] = [Q_O;o]Jr;[Qaz] = ; lﬁ- 7 ]
_ Z |:.I'l;‘17°l:| 0<m1<<q Z SC_T _T
i=1 ) i=1 4q; a1

using that r; =;r O fori # jandr; - rj = —1.
The claim then follows. O

Next, we show the reverse direction.

Theorem 8. Given a DDA solution ) of value kN
for k € N, one can efficiently derive a PIR solution
of cost at most 2k.

Proof. Suppose there is a number @ € {1,...,kN}
with [Qa] < ekN = qiT, then we have to show the
1

existence of an integer vector z > 0 with a’z = 0
and 1 < [|z||; < 2k. Since we already know a PIR
solution of cost p, we may suppose that k£ < p/2.
Assume for contradiction, that @) is not a multiple
of p%, then

1 af >pp">kp® [k
> — >

Q
Qo] 2 [Qaol LﬂR} ~pk af
Thus it follows that Q == 0.

Compute &; := Q - (—r}) mod ¢] (such that0 <
&j < q] ). We will show that since @Q yields a good
approximation to o, the vector I is a short vector
on the hyperplane aTz = 0. Using ¢/ < 24] for
i=1,...,n we obtain

< 2y

>

]2

at

IN

thus in fact the candidate solution Z is short:
2]l < 2k.

It remains to show, that & lies on the hyperplane
o’z = 0. Multiplying equation Q - (—r%) =
with r; yields

Q =g Q(-77)

q].T T

Tj Eq]T ZjiTj

Recall that B = []/_, q; . See the following impli-
cation

Q =g Tyry Vi O
(N . = = Z;r;
l() =g &ry ViFE] @ B;JJ
Next, we need to compare ) and B. Plugging in

the bound on r; we derive

- " 2np B B B

<—=<=,

af p -k

j=1 j=1
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thus Q < k- N < B. Furthermore

.....

<k ——
=N

But then Q=)77_, @;r; holds (not only =p).
Clearly

0 EPR Q EPR Z.fj’l’j,
j=1
thus Z is a solution of (II) (recall that ||Z||, < k <
p) and due to Lemma 6 also for (I). To see that
& # 0, note that otherwise Q = 37, 0-7; = 0,
contradicting @ > 0. O

4 £k-SET COVER <5 PIR

Recall that k-SET COVER is the well-known
SET COVER problem with the additional con-
straint, that the cardinality of all sets is bounded
by a constant k.

k-SET COVER

Given sets S1, ..., S, with cardinality |S;| < k
fori=1,...,noveraground set U = |J._, S;,
find min{|7| | U,c; S: = U}

In this section we convey the known inapprox-
imability results for k-SET COVER to PIR. Trevisan
[Tre01] observed that

Unless NP = P, there is a univer-
sal constant ¢, such that each fixed k,
k-SET COVER cannot be approximated
within a factor of Ink — cInlnk. This is
an implicit result of the proof in [Fei98].

Theorem 9. For any fixed k € N one has
k-SET COVER <5 PIR.

Proof. Kannan [Kan83] showed that given a sub-
space Az = 0, one can easily find a vector a € Z"
whose encoding size is polynomial (in log x and
the encoding size of the matrix A), such that

B,n{z €Z" | Az =0} = B,n{zx € Z" | a"x = 0}

(here B,, denotes the ball of radius y around the
origin). Thus we may assume to have some -
approximation algorithm for finding short non-
negative integer vectors in a subspace (which is
not a hyperplane). In fact a choice of u = Gn suf-
fices for our reduction from £-SET COVER. Given
a constant k, a k-SET COVER instance consists of

sets S1,...,5, C U with{J;_, S; = U and |S;| < F,
|U| = m. We call a family of sets complete, if for
sets S; all subsets S C S; are also contained in the
instance. After adding at most 2*n = O(n) sets
we may assume that the instance is complete. Of
course this does not change the minimal number
OPTsc of sets, needed to cover U. Moreover any
solution for the complete instance can be turned
into a solution for the original instance which has
at most of the same cost. This can be done by re-
placing each “artificial” set in the solution by the
corresponding superset.

Consider the set of all solutions (z,y) € (Z7 x
Z+)\{0} in the subspace

21 x(S1) 4+ .ot xn - x(Sn)=y-1

where x(S;) denotes the characteristic vector of S;.
We need to show two claims

(1) If thereis a solution of cost « for k-SET COVER,
then there is a solution of cost at most 2« for
PIR.

(2) From a PIR solution of cost « one can effi-
ciently derive a cheaper k-SET COVER solu-
tion.

We begin by showing (1). Let I C {1,...,n} bea
k-SET COVER solution. Since the instance is com-
plete, we may assume that each element in U is

covered exactly once in (J;.; Si. Denote o := |I].
Then

ifiel

1
T = . and
0 otherwise

y=1

is a feasible PIR solution of cost o + 1 < 2a.

For (2), let (z, y) be any PIR instance of cost o« =
y + Y., z;. Since we have a nontrivial solution
and all characteristic vectors are non-negative, we
must have y > 1. Then I := {i | x; > 1} is clearly
a k-SET COVER solution of cost [I] < > | z; < a.
This shows the claim. O

To keep polynomiality one can choose k = logn,
deriving that PIR cannot be approximated within
a factor of loglogn — clogloglogn.

Note that for all integer linear programs with
only a constant number of equations an optimum
solution can be found in pseudo-polynomial time,
thus the same holds for PIR. In that sense the last
result is remarkable, since such problems often ad-
mit an FPTAS.

The above proof yields the last building block
for proving inapproximability of DDA, see Figure
2 for an overview.
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k-SET COVER
Given: Sets 51, ..
Find: min{|I| | U

LS, CU: S| <kVi
S; = U}

iel

<2

POSITIVE INTEGER RELATION (PIR)
Given: a € Z™\{0}
Find:

min{||x||1 |aTz =0, z € Z’_f_\{()}}

<2

DIRECTED DIOPHANTINE APPROXIMATION
(DDA)

Given: aq,...a, € Q1, >0

Find: mink e N: 3Q € {1,...,k}:

n

Y (Q-ail —Q-ai)<k-e

i=1

Figure 2: Overview over 2nd part of reductions

Note that the related shortest integer rela-
tion cannot be approximated within a factor of
2108”7 n in the ls-norm for any v > 0, unless
NP C DTIME(nP°¥8(") [RS98]. On the other
hand shortest integer relation can be approximated
within a factor of \/n - 2"/2 using the famous LLL-
algorithm [LLL82]. No such result is known for
PIR, thus the following question arises.

Is there a 27(™)-approximation algorithm
for PIR for some polynomial p?

5 Conclusions and open ques-
tion

We showed that response time computation for
Rate-monotonic, preemptive scheduling is NP-
hard. However, what we did not show is that the
feasibility test itself is NP-hard. The problem is
that although it is NP-hard to decide, whether all
jobs of a given task meet its deadlines, it might be
the case for some of the constructed instances, that
prior tasks are obviously infeasible. In fact, what
one has to do is to design a suitable instance, for
which all but the last task are clearly feasible.

Moreover the utilization of the instances de-
signed in the reduction have utilizations, very
close to one. The question arises, whether the re-
sponse time can be computed in polynomial time,
if the utilization is upper bounded by 1 — ¢ for any
constant € > 0.

References

[ABD*95] Neil C. Audsley, Alan Burns, Robert L
Davis, Ken Tindell, and Andy J.
Wellings. Fixed priority pre-emptive
scheduling: An historical perspective.
Real-Time Systems, 8(2-3):173-198, 1995.

[FBO5] Nathan Fisher and Sanjoy Baruah. A
fully polynomial-time approximation
scheme for feasibility analysis in static-
priority systems with arbitrary relative
deadlines. In ECRTS ’05: Proceedings
of the 17th Euromicro Conference on Real-
Time Systems (ECRTS’05), pages 117-
126, Washington, DC, USA, 2005. IEEE
Computer Society.

Uriel Feige. A threshold of In n for
approximating set cover. Journal of the
ACM, 45(4):634-652,1998.

D. R. Heath-Brown.
primes in a short interval.
Angew. Math., 389:22-63,1988.

[Feio8]

The number of
J. Reine

[HIBSS]

[HBI79] D. R. Heath-Brown and H. Iwaniec.
On the difference between consecutive
primes. Bull. Amer. Math. Soc. (N.S.),

1(5):758-760, 1979.

Henk and Weismantel. Test sets of
the knapsack problem and simultane-
ous diophantine approximation. In
ESA: Annual European Symposium on Al-
gorithms, 1997.

[HW97]

[HWO02] Martin Henk and Robert Weismantel.
Diophantine approximations and inte-
ger points of cones.  Combinatorica,

22(3):401-407, 2002.

[JP86] Mathai Joseph and Paritosh K. Pandya.
Finding response times in a real-time
system. Computer Journal, 29(5):390—

395, 1986.

[Kan83] Ravindran Kannan. Polynomial-time
aggregation of integer program-
ming problems. Journal of the ACM,

30(1):133-145, January 1983.



REFERENCES

[Kha79]

[Lag85]

[LL73]

[LLL82]

[LSD89]

[MA78]

[NZM91]

[RS96]

[RS98]

[Tre01]

Khachiyan, L. G. A polynomial algo-
rithm for linear programming. Soviet
Math. Doklady, 20:191-194, 1979. (Rus-
sian original in Doklady Akademiia
Nauk SSSR, 244:1093-1096).

Lagarias. The computational complex-
ity of simultaneous diophantine ap-
proximation problems. SICOMP: SIAM
Journal on Computing, 14, 1985.

C. L. Liu and James W. Layland.
Scheduling algorithms for multipro-
gramming in a hard-real-time environ-
ment. J. ACM, 20(1):46-61,1973.

A. K. Lenstra, H. W. Lenstra Jr., and
L. Lovasz. Factoring polynomials with
rational coefficients. Mathematische An-
nalen, 261:515-534, 1982.

John P. Lehoczky, Lui Sha, and Y. Ding.
The rate monotonic scheduling algo-
rithm: Exact characterization and av-
erage case behavior. In IEEE Real-
Time Systems Symposium, pages 166—
171, 1989.

Kenneth L. Manders and Leonard
Adleman. NP-complete decision prob-
lems for binary quadratics.  Jour-
nal of Computer and System Sciences,
16(2):168-184, April 1978.

Ivan Niven, Herbert S. Zuckerman, and
Hugh L. Montgomery. An Introduction
to the Theory of Numbers, fifth edition. Wi-
ley, 1991.

Carsten Rossner and Jean-Pierre
Seifert. Approximating good simul-
taneous Diophantine approximations
is almost NP-hard. In Mathematical
foundations of computer science 1996
(Cracow), volume 1113 of Lecture
Notes in Comput. Sci., pages 494-505.
Springer, Berlin, 1996.

C. Rossner and J.P. Seifert. On the hard-
ness of approximating shortest inte-
ger relations among rational numbers.
TCS: Theoretical Computer Science, 209,
1998.

Trevisan. Non-approximability results
for optimization problems on bounded
degree instances. In STOC: ACM Sym-
posium on Theory of Computing (STOC),
2001.

Appendix

We still have to show that suitable prime numbers
for the reduction PIR <; DDA exist and that they
can be found in polynomial time. The proof fol-
lows closely [RS96].

Lemma 10. Let m be the encoding size of the PIR
instance and let p be a value, whose encoding
length is bounded by a polynomial in m. One can
find different primes p, q1, ..., gn as well as natural
numbers R and T in polynomial time, such that

1. A=p>ajl <plt<ql <gl <..<ql <
2-qf

2. p and all ¢; are co-prime to all a;
3. qf >2pn-pft

4. Ta R7paq11 s
mial in m.

,qn are bounded by a polyno-

Proof. The number of different prime factors ap-
pearing in some a; is clearly bounded by m. Due to
the prime number theorem, see, e.g. [NZM91], the
first m+1 prime numbers can be computed in poly-
nomial time by testing the first O(m log(m)) natu-
ral numbers. Choose p among these primes, s.t.
ged(p,aj) = 1fori =1,...,n. Compute the small-
est R and T (for example using binary search) such
that p© > A as well as 27 > 2pn -pfand T > m.
Clearly both, R and T are polynomially bounded
in m. It remains to find prime numbers ¢1, ..., ¢n,
which are sufficiently close to each other. Fortu-
nately, we may use a very deep result in number
theory at this point.

Theorem 11. [HBI79, HB88] For each § > % there
exists a constant cs such that for all z > cs the in-
terval [z, 2°] contains a prime.

Consider an arbitrary i € {0,...,7?—1}. Choose
§ = 2 then for sufficiently large m, there is a prime
between each z := T2° +i(2T)'? and z + 2% with

2’6 < (T20 +i(2T)12)3/5 < ((2T)20)3/5 _ (2T)12.

Thus there must be a prime in each interval [T%° +
i(27)'2, 72 + (i + 1)(2T)*?[. Since T is polyno-
mially bounded, we can compute m + n + 1 <
T? distinct primes from [T2°, 720 + T2(2T)1?] C
[T2°,T%0 4 T15]. Select n of these primes, which
are co-prime to p and all a; and denote them by

q1,---,qn- Using 1 + 2 < e* for x € R we obtain
T 20 15\ T T
7=(F) =(em) =

The claim then follows. O



