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0. Introduction

Let U denote Hall’s universal group. Thus U is countable, locally
finite, contains a copy of every finite group and isomorphic finite sub-
groups of U are conjugate in U . Moreover, U is characterized by these
properties (see [2]). From the local finiteness of U it follows that
K0(CU) is the direct limit of the Grothendieck groups of the its fi-
nite subgroups. Thus K0(CU) is made up from the character theory
of all finite groups and we found it of interest to see how all these
character theories fit together. We write X(U) for K0(CU). There is
a natural ring structure on X(U) and a natural ring homomorphism
ε : X(U) → Z. Since X(U) is a limit of torsion free groups, it is torsion
free. The rational Grothendieck group Q ⊗Z X(U) has a very simple
structure. There is, for each positive integer n, an element cn of X(U),
defined by an element of U of order n. The elements cn form a Q-basis
of Q⊗ZX(U) and multiply according to the rule cmcn = cr, where r is
the least common multiple of m and n.

The structure of X(U) itself is only slightly more complicated. For
each prime p, we write Xp(U) for the subgroup of X(U) generated by
the image of Grothendieck groups of finite p-groups. Each Xp(U) is a
subring of X(U) and we have X(U) = ⊗pXp(U), the tensor product
is taken over Z and p runs over all primes. To further elucidate the
structure of X(U) we consider the kernel Ip(U) of the restriction εp :
Xp(U) → Z of ε : X(U) → Z. We show that Ip(U) is p-divisible and, as
a Z[1/p]-module, is free on basis 1−cp, 1−cp2 , 1−cp3 , . . .. Thus we have
Xp(U) = Z⊕(⊕r≥1Z[1/p](1−cpr)). Putting all this together, we obtain
the concrete description X(U) = ⊕∞

n=1Z[1/n]c̃n, where c̃1 = c1 = 1 and
1
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c̃n = (cq1−1)(cq2−1) . . . (cqr −1), for n = q1q2 . . . qr, with q1, . . . , qr > 1
powers of distinct primes.

This paper was written while the author enjoyed the hospitality and
support of the Centre Interfacultaire Bernoulli during programme in
Group Representation Theory, January to July 2005.

1. Rational Structure

Let G be a locally finite group.We write proj(G) for the category of
finitely generated projective CG-modules and module homomorphisms.
If φ : G → H is an isomorphism of locally finite groups and V ∈
proj CH then we write V φ for the vector space V regarded as an element
of proj CG via the action g · v = φ(g)v, g ∈ G, v ∈ V .

We write X(G) for the Grothendieck group K0(CG) = K0(proj CG).
LetH be a subgroup ofG. We have the induction functor from proj CH
to proj CG taking V ∈ proj CH to the induced module V ↑G

H= CG⊗CH

V . We write indG
H for the group homomorphism from X(H) to X(G)

given by induction. Let F(G) denote the directed system of all finite
subgroups of G. With respect to the homomorphisms indK

H : X(H) →
X(K), for H,K ∈ F(G), with H ≤ K, we have X(G) = lim

→
X(H).

We obtain, in particular, that X(G) is torsion free since each X(H)
(H finite) is. We write X(G)Q for Q⊗Z X(G) and identify X(G) with
a subgroup of Q⊗Z X(G).

In case G is finite, we have the natural isomorphism ch : X(G) →
char(G), where char(G) denotes the group of generalized characters of
G. Thus, for V,W ∈ proj CG and φ = [V ] − [W ] ∈ X(G), we have
ch(φ)(x) = trace(x, V )− trace(x,W ), for x ∈ G.

In general we have the ” “augmentation homormorphism” εG : X(G) →
Z, given by εG([V ]) = dimH0(G, V ), for V ∈ proj CG. Note that, by
Frobenius Reciprocity, we have εG ◦ indG

H = εH , for a subgroup H of G.
By abuse of notation, we also write indG

H and εG for the Q linear maps
X(H)Q → X(G)Q and X(G)Q → Q, obtained from indG

H : X(H) →
X(G) and εG : X(G) → Z by base change.

We write Aut(G) for the automorphism group of G, and for a sub-
group H of G, write NG(H) for the normalizer of H in G. Recall that,
for H ∈ F(U), the natural map NU(H) → Aut(H) is surjective. [There
is a subgroup Y , say, of U isomorphic to the holomorph of H. Then
Y has a normal subgroup A isomorphic to H and the natural map
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Y → Aut(A) surjective. Thus NU(A) → Aut(A) is onto. But H is iso-
morphic to A and hence conjugate in U to A so that NU(H) → Aut(H)
is also surjective.] It follows that if φ : H → K is an isomorphism be-
tween finite subgroups H,K of U then there exists an element g ∈ G
such that φ(x) = gxg−1 for all x ∈ H. Now if V ∈ proj CK then we
have an isomorphism Φ : V φ ↑U

H→ V ↑U
K satisfying Φ(1⊗ v) = g−1 ⊗ v,

for v ∈ V . Thus we have the following.

(1) Suppose H,K ∈ F(U) and φ : H → K is an isomorphism. Then,
for V ∈ proj CK we have indU

H([V φ]) = indU
K([V ]) and in particular

indU
H([V φ]) = indU

H([V ]) for φ ∈ Aut(H).

Now G be any finite group and let V be a finite dimensional CG-
module. Then we may choose H ∈ F(U) and an isomorphism φ : H →
G. Then it follows from (1) that the the element [V φ ↑U

H ] of X(U)
is independent of the choice of H and φ. We denote this element by
eG,V . We write simply eG for eG,V with V the (one dimensional) trivial
module. Since X(U) is the direct limit of the X(H) with H ∈ F(U)
we get that X(U) is generated by all elements eG,V but in fact we have:

(2) X(U) is spanned by all elements eG, G finite.

Proof. Let φ ∈ X(U). Then we have φ = indU
H(ψ), for some H ∈

F(U) and ψ ∈ X(H). Let J be a subgroup of U containing H such
that J is isomorphic to a symmetric group. Then φ = indU

J (indJ
H(ψ))

so that we may replace H by J and ψ by indJ
H(ψ), that is, we may

assume that H is a symmetric group. Now it is well know that the
group of generalized characters of a symmetric group is generated by
permutation characters. Thus we have ψ =

∑r
i=1 aiindH

Hi
([C]), some

some integers a1, . . . , ar and subgroups H1, H2, . . . , Hr. Hence we have
φ =

∑r
i=1 aiindU

Hi
(C) =

∑r
i=1 aieHi

.

We now construct some elements of X(U) which we will show form a
Q-basis of X(U)Q. Let g ∈ U and let n be the order of n. We write c′g
for the element of X(〈g〉)Q such that the character of c′g takes the value

n on g and 0 on all other elements. We write cg for indU
〈g〉(c

′
g) ∈ X(U)Q.

Let H be a subgroup of U containing g which is isomorphic to the
symmetric group Sym(n) of degree n. Let b = indU

〈g〉(c
′
g) ∈ X(H)Q

and let φ denote the character of b. Then φ takes the value 1 on all
elements of H of order n and 0 on all other elements. For an irreducible
character χ of H we have (φ, χ) = χ(g). As is well known, all character
values of Sym(n) are integers. Hence (φ, χ) ∈ Z, for all characters of
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H so that φ is a generalized character and b ∈ X(H). By transitivity
of induction we have cg = indU

H(b) ∈ X(U). Moreover, if g′ is another
element of U of order n, then g′ is contained in a subgroup H ′ of U
isomorphic to Sym(n) and the element cg′ of X(U) is induced from
the element b′ of X(H ′) whose character is 1 on all elements of H ′ of
order n and 0 on all other elements. Since the groups H and H ′ are
conjugate in U we have indU

H(b) = indU ′

H′ and hence cg = cg′ . Hence the
element cg depends only on n and we write simply cn for cg.

Let G ∈ F(U), let V ∈ proj CG have character χ. We shall work in
X(U)C = C ⊗Z X(U) and identify X(U)Q with a subgroup of X(U)C.
For a positive integer r we write G(r) for the set of all elements of
order r. Suppose G contains an element of order r, let Cr1, . . . , Crdr

be the conjugacy classes of G contained in G(r) and let grj be an
element of Crj, for 1 ≤ j ≤ dr. Let Grj be the subgroup generated
by grj and let φrj be the character of indG

Grj
(c′grj

), for 1 ≤ j ≤ dr.

Then the value of φrj is the order of the centralizer ZG(grj) on the

class Crj and is 0 elsewhere. Hence we get χ =
∑

r,j χ(grj)
φrj

|ZG(grj | .

Thus |G|χ is the character of
∑

g∈G χ(g)indG
〈g〉(c

′
g) so we have [V ] =

1
|G|

∑
g∈G χ(g)indG

〈g〉(c
′
g) in X(G)C. Thus we have the following:

(3) Let G be a finite group and V a finite dimensional CG-module
with character χ. Then we have the formula eG,V = 1

|G|
∑

g∈G χ(g)cg in

X(U)C. In particular we have eG = 1
|G|

∑∞
r=1 |G(r)|cr, in X(U)Q.

(4) The elements c1, c2, . . . form a Q-basis of X(U)Q.

Proof. From (2) and (3) the elements c1, c2, . . . form a spanning set.
Now suppose we have

∑n
i=1 aici = 0, with all ai rational, not all

zero. Thus we have
∑n

i=1 aiindU
Gi

(c′gi
) = 0, where gi is an element of

order i and where Gi is the subgroup generated by gi, for 1 ≤ i ≤ n.
Let G be a finite subgroup of U containing g1, g2, . . .. Then we have
indU

G(
∑n

i=1 aiindG
Gi

(c′gi
)) = 0. Hence there is a finite subgroup H of U

containing G such that indH
G (

∑n
i=1 aiindG

Gi
(c′gi

) = 0. Replacing G by H

we may suppose that
∑n

i=1 aiindG
Gi

(c′gi
) = 0. However, the character of∑n

i=1 aiindG
Gi

(c′gi
) takes the value ai|ZG(gi)| on gi, which gives ai = 0,

for 1 ≤ i ≤ n. Hence the elements c1, c2, . . . are linearly independent
and so form a basis.

We now introduce a Q-linear product structure on X(U)Q by declar-
ing crcs = ct, where t is the least common multiple of r and s. Thus
X(U)Q is a commutative, associative algebra. Indeed, X(U)Q is the
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monoid algebra on the monoid {cr|r ≥ 1}. We extend the Q-algebra
structure on X(U)Q to a C-algebra structure on X(U)C by base change.
For C vector spaces (or CG-modules, G a finite group) V,W we write
simply V ⊗W for the vector space (or CG-module) V ⊗C W .

From (3) we obtain the following.

(5) Let G and H be finite groups and let V be a finite dimensional
CG-module and W be a finite dimensional CH-module. Then, in X(U)
we have eG,V eH,W = eG×H,V⊗W . In particular we have eGeH = eG×H .

Remark One may introduce the product structure on X(U) in a
more natural manner in the following way. Since U × U is a locally
finite countable group there is an embedding of U × U into U . Hence
we have a homomorphism X(U × U) → X(U), moreover we have the
natural isomorphism X(U)⊗Z X(U) → X(U × U) and hence a group
homomorhism X(U) ⊗Z X(U) → X(U). We leave it to the reader
to check that this product structure is independent of the choice of
embedding U × U → U and agrees with the one introduced above.

(6) (i) For G a finite group and V a simple CG-module we have

ε(eG,V ) =

{
1, if V is trivial

0, otherwise.

In particular we have ε(eG) = 1.
(ii) ε(cn) = 1 for all integers n.
(iii) ε : X(U) → Z is a ring homomorphism.

Proof. (i) Let φ : H → G be an isomorphism from a subgroup H of
U onto V . Then we have eG,V = indU

H([W ]), where W = V φ. Hence we
have ε(eG,V ) = ε(indU

H([W ]) = εH([W ]) = dimH0(H,W ), which is 1 if
W (and hence V ) if trivial and 0 if W (and hence V ) is non-trivial.
(ii) Let n ≥ 1 and suppose that ε(cr) = 1 for all 1 ≤ r < n. We take
G to be a cyclic group of order n. Then we have neG =

∑n
r=1 |G(r)|cr.

Applying ε and using the induction hypothesis we get we get n =
|G| − |G(n)|+ |G(n)|ε(cn) and hence ε(cn) = 1.
(iii) Clear.

To summarize, we have shown that X(U)Q is naturally isomorphic,
as an augmented algebra, to the monoid algebra QM , where M is the
monoid of positive integers and product m ∗n being the least common
multiple of m and n.
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2. Local Structure

We fix a prime p and writeXp(U) for the subgroup ofX(U) generated
by all elements eG,V , where G is a p-group. By §1,(5), Xp(U) is a sub-
ring of X(U). Let εp : Xp(U) → Z be the restriction of ε : X(U) → Z
and let Ip(U) be the kernel of εp. For a finite group G and finite dimen-
sional CG-module V affording the representation ρ : G → GL(V ) we
also write eG,ρ for eG,V . The main technical point needed to elucidate
the structure of Xp(U) that Ip(U) is a p-divisible group. It will be
useful to know the following.

(1) The group Ip(U) is generated by the elements eG−eH , for all finite
p-groups G,H together with all elements eG,λ, for G a finite group and
λ : G→ C× a non-trivial homomorphism.

Proof. Let φ ∈ Xp(U) with ε(φ) = 0. Then φ has the form∑n
i=1 aieGi,Vi

, for finite groups G1, G2, . . . , Gn and modules
V1, V2, . . . , Vn with

∑n
i=1 aiε(eG,Vi

) = 0. Hence Ip(U) is generated by
all elements eG,V − ε(eG,V )1. Furthermore, we may assume that V
is irreducible. Hence Ip(U) is generated by all elements eG − 1 and
eG,V with V irreducible and non-trivial. For such V we have eG,V =
indU

H([W ]) for a suitable p subgroup of U and non-trivial irreducible
CH-module W . However, and irreducible module for a p-groups is
induced from a one dimensional module for a subgroup. Hence we
have [W ] = indH

J ([L]), for some subgroup J and one dimensional CJ-
module. Hence we get eG,V = indU

H([L]), which gives eG,V = eJ,λ, where
λ : J → C× is the representation afforded by L.

We define Xp(U)0 to be the subgroup of Xp(U) generated by all
elements eG, with G a p-group. Thus, by §1,(5), Xp(U)0 is a subring
of Xp(U). We write Ip(U)0 for Xp(U)0 ∩ Ip(U).

(2) Let G be a p-group and λ : G→ C× be a homomorphism. Then
we have eG,λ = eG,λi , for all integers i prime to p.

Proof. From §1,(3) we have eG,λ =
∑

r(λ, ηG(r))cr, where ηG(r) is the
characteristic function on G(r), and r runs over all powers of p. So the
result follows from the fact that G(r) = {xi|x ∈ G(r)} for all such r.

We consider a finite p subgroup G and a non-trivial homomorphism
λ : G → C×. Let N be the kernel of λ and let |G/N | = pm. The
character 1G +λ+λ2 + · · ·+λpm−1 is the character of C ↑G

N . Writing Vi

for a CG-module affording λi, we get that ⊕pm

i=1Vi is isomorphic to C ↑G
N .
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NowG/N is cyclic. LetM be the subgroup ofG containingN such that

M/N is cyclic of order p. Then we have that ⊕pm−1

i=1 Vpi is isomorphic
to C ↑G

N . Hence we have that (⊕1≤i≤pm,(i,p)=1Vi)⊕ C ↑G
M is isomorphic

to C ↑G
N . Passing to the Grothendieck group of CG-modules, applying

indU
G and using (3), we get (pm − pm−1)eG,λ = eN − eM .

(3) (i) For a p-group G and non-trivial homomorphism λ : G → C×

with kernel N and G/N of order pm we have (pm−pm−1)eG,λ = eN−eM ,
where M is the subgroup of G containing N such that M/N has order
p.
(ii) We have eG − eN ∈ (p− 1)Ip(U), for all p-groups G,N , and hence
Ip(U)0 ≤ (p− 1)Ip(U).

Proof. (i) has already been proved. To prove (ii) it suffices to prove
that eG − 1 is divisble by p− 1 in X(U). We suppose G is non-trivial
and choose a (normal) subgroup of index p. Let λ : G → C× be a
homomorphism with kernel N . We get eG − eN ∈ (p − 1)Ip(U) from
(i). We may assume, inductively, that eN −1 ∈ (p−1)Ip(U) and hence
eG − 1 = eG − eN + eN − 1 ∈ (p− 1)Ip(U).

(4) We have 1
pk (p− 1)(1− cpm) ∈ Ip(U) for all integers k,m ≥ 0.

Proof. The result is trivially true for m = 0 and all k. Let m ≥ 1 and
suppose that 1

pk (p−1)(1−cpi) ∈ Ip(U) whenever k ≥ 0 and 1 ≤ i < m.

Let G be a cyclic group of order pm and let e = eG. Then we have

e =
1

pm
(1 + (p− 1)cp + (p2 − 1)cp2 + · · ·+ (pm − pm−1)cpm)

and hence

1− e =
1

pm
(p− 1)((1− cp) + p(1− cp2) + · · ·+ pm−1(1− cpm).

Hence, by the inductive hypothesis, we get 1
p
(1 − cpm) ∈ Ip(U)0. Sup-

pose now that k ≥ 1 and 1
pk (p − 1)(1 − cpm) ∈ Ip(U)0. Then we get

1
p
(p − 1)(1 − cpm) 1

pk (p − 1)(1 − cpm) ∈ Ip(U)0 and hence
(p− 1)2

pk+1
(1 −

cpm) ∈ Ip(U)0, i.e.
p(p− 1)− (p− 1)

pk+1
(1 − cpm) ∈ Ip(U)0. We get

1

pk+1
(p−1)(1−cpm) ∈ Ip(U)0 and hence

1

pk
(p−1)(1−cpm) ∈ Ip(U)0, for

all mk ≥ 1 by induction on k. Hence we also have
1

pk
(p−1)(1− cpm) ∈
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Ip(U) for all k ≥ 1, m ≥ 0 by induction on m. Certainly we must also
have (p− 1)(1− cpm) ∈ Ip(U), for all m.

(5) We have Ip(U)0 = (p− 1)
∑

r≥1 Z[1/p](1− pr).

Proof. We set Ip(U)′ = (p−1)
∑

r≥1 Z[1/p](1−pr). Certainly, we have

Ip(U)′ ≤ Ip(U)0, by (4), and to complete the proof it suffices to prove
that eG−1 ∈ Ip(U)′ for all p-groups. LetG be a non-trivial p-group. We

have eG =
1

|G|
∑

r

|G(r)|cr in X(U)Q, the sum being over 1, p, . . . , pn,

where G has order pn. Thus we have eG − 1 =
1

|G|
∑
r>1

|G(r)|(cr − 1).

Suppose r > 1 and G(r) is non-empty. Let k be such that 1 ≤ k ≤ p−1
and k is a primitive root of 1 modulo p. A cyclic group A of order p−1
with generator a acts on G(r) by a · x = xk. The action is fixed point
free and hence |G(r)| is divisible by p−1. Hence we get eG−1 ∈ Ip(U)′,
as required.

We now prove the main result of this section.

(6) We have:
(i) Ip(U)0 = (p− 1)Ip(U); and
(ii) Ip(U) is a free Z[1/p]-module with basis 1− cp, 1− cp2 , . . ..

Proof. (i) We have already shown that Ip(U)0 ≤ (p−1)Ip(U), see 3(ii)
and the reverse inclusion follows from (1), (3) and (5).
(ii) By §1,(4), the elements 1− cp, 1− cp2 , . . . linearly independent over
Z[1/p]. Hence the elements form a basis over Z[1/p] by (i) and (5).

3. Global Structure

To complete the picture we prove that the product map ⊗pXp(U) →
X(U) is an isomorphism. The main point is that the map is surjective.
This is a simple consequence of Brauer’s Induction Theorem. However,
we prefer a more constructive approach more in keeping with the spirit
of this paper. We write X(U)′ for the image of the multiplication map
⊗pXp(U) → X(U). By §1,(2), it suffices to show that eG ∈ X(U)′, for
every finite group G. We shall do this by a counting argument which
involves regarding the finite group G as a simplicial complex.
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Let ∆ be a finite simplicial complex. We write ∆r for the set of
r-simplices (i.e. sets σ in ∆ with cardinality |σ| equal to r + 1). Let
Z∆ be the free abelian group with basis ∆. For σ ∈ ∆ we define
σ̃ =

∑
θ⊆σ(−1)|σ|−|θ|θ ∈ Z∆. The following is elementary.

(1)
∑

σ∈∆ σ =
∑

σ∈∆N(σ)σ̃, where N(σ) is the number of θ ∈ ∆ such

that σ ⊆ θ. Moreover, we have
∑

σ(−1)|σ|N(σ) = −|∆|.

We now fix a finite group G. We let X be the subset of G consisting
of all non-identity elements of prime power order. We form a simplicial
complex ∆ onX. A subset ofX consisting of elements x1, x2, . . . , xr is a
simplex if xi is a pi-element, 1 ≤ i ≤ r, for distinct primes p1, p2, . . . , pr

and xixj = xjxi for all 1 ≤ i, j ≤ r. Thus there is a natural bijection
from ∆ to G] = G\{1} taking a simplex {x1, . . . , xr} to the product
x1x2 . . . xr. We will identity a non-identity element of G with a simplex
via this bijection. We note that if x ∈ G] and π is the set of primes
dividing the order of x then for y ∈ G] we have x ⊆ y if and only if x
is the π-part of y.

If π is a set of primes we write π′ for the complementary set of primes.

(2) Let x ∈ G] and let π be the set of primes dividing the order of x.
Then N(x) is divisible by the π′ part of the order of ZG(x).

Proof. N(x) is the cardinality of the set A(x) of all y ∈ G] with π-
part equal to x. An element of A(x) has the form xz, where z is a
π′ element of the centralizer of x. Hence N(x) is the number of π′-
elements contained in the centralizer ZG(x) of x. Let n be the π′-part
of the order of ZG(x). Then by a theorem of Frobenius (see e.g. [1] or
[3]) the number of π′ elements in ZG(x) is a multiple of n.

We write X(U)′ for the subring of X(U) generated by the subrings
Xp(U), as p ranges over all primes. We introduce an element c̃n ∈
X(U), for each positive integer n. We set c1 = 1. For n > 1 we
write n as a product n = q1q2 . . . qr where qi > 1 is a power of a
prime pi for 1 ≤ i ≤ r and the primes p1, p2, . . . pr are distinct. We
c̃n = (cq1−1)(cq2−1) . . . (cqr −1). Now for positive integers t1, t2, . . . , tr

we have
1

qt1
1

(cq1 − 1) ∈ Xp1(U),
1

qt2
2

(cq2 − 1) ∈ Xp2(U), . . . ,
1

qtr
r

(cqr −

1) ∈ Xpr(U). Hence we have
1

qt1
1 q

t2
2 . . . q

tr
r

c̃n ∈ X(U)′. Hence we get

Z[1/n]c̃n ∈ X(U)′.
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We define a linear map f : QU → X(U)Q by f(x) = cn, where n is
the order of x.

Let G be a subgroup of U . Let 1 6= x ∈ G and write x = x1x2 . . . xr,
where x1, x2, . . . , xr are commuting elements of prime power orders
q1, q2, . . . , qr, where q1, q2, . . . , qr are powers of distinct primes p1, p2, . . . , pr.
For I a subset of {1, 2, . . . , r} we set x to be the product of the ele-
ments xqi

with i ∈ I. Then we have x̃ = (−1)r
∑

I(−1)|I|xI , where
the sum is over all non-empty subsets of {1, 2, . . . , r}. Hence we have
f(x̃) = c̃n − (−1)|x|, where |x| is the number r of prime divisors of the
order n of x.

By §1,(3), we have

|G|eG = 1+f(
∑
x∈G]

x) = 1+f(
∑
x∈G]

N(x)(x̃+(−1)|x|)−
∑
x∈G]

(−1)|x|N(x)

and since, by (1), we have −
∑

x∈G](−1)|x|N(x) = |G| − 1, we obtain

eG − 1 =
∑
x∈G]

N(x)

|G|
f(x̃+ (−1)|x|).

For x ∈ G] we write α(x) for the order of x. Hence we have

eG − 1 =
∑
x∈G]

N(x)

|G|
c̃α(x).

Let the conjugacy classes of non-identity elements ofG] be C1, C2, . . . , Cm

and choose gi ∈ Ci, for 1 ≤ i ≤ m. Then we have

eG − 1 =
m∑

i=1

(
∑
x∈Ci

N(x)

|G|
c̃α(x)) =

m∑
i=1

N(gi)

|ZG(gi)|
c̃α(gi) (∗).

Now, by (2), for any 1 6= g ∈ G, the quotient N(g)/|ZG(g)|, has the
form a/b, where a, b are non-zero integers and b is divisible only by the
prime divisors of the order of g. Hence N(g)/|ZG(g)| ∈ Z[1/n], where
n is the order of g. Hence, from (*), we have eG − 1 ∈

∑∞
n=1 Z[1/n]c̃n,

i.e. eG − 1 ∈ X(U)′. This shows that the map ⊗pXp(U) → X(U) in
then theorem below is surjective. The remainder follows from the fact
that the elements c̃1, c̃2, . . . form a Q-basis of X(U)Q (and this follows
from the fact the elements c1, c2, . . . form a Q-basis).

Theorem (i) Multiplication ⊗pXp(U) → X(U) is a ring isomor-
phism (where the tensor product is taken over Z and p runs over all
primes).
(ii) We have X(U) = ⊕∞

n=1Z[1/n]c̃n.
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