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Introduction: When G is a finite group, we may endow G×G with the structure
of a probability space by assigning the uniform distribution. As was pointed out
by W.H. Gustafson [10], the probability that a randomly chosen pair of elements
of G commute is then k(G)

|G| , where k(G) is the number of conjugacy classes of G.
We denote this probability by cp(G). It was also noted in [10] that cp(G) ≤ 5

8 for
any non-Abelian finite group G and equality holds precisely when [G : Z(G)] = 4.

Our work here has several objectives. One is to point out some general properties
of cp(G) which may not have been observed before. Another is to give elementary
(ie free of the classification of finite simple groups (CFSG)) proofs of numerical
properties of cp(G) with explicit (but sometimes crude) bounds, though in one case
we use CFSG to sharpen significantly an estimate obtained without it. We show
that cp(G) → 0 as either the index or the derived length of the Fitting subgroup
of G tends to infinity. Dihedral 2-groups illustrate that the same is not true for
the nilpotence class. The third objective is to point out that the solution of the
(coprime) k(GV )-problem can lead to some quite strong information about cp (we
mostly use this for solvable groups in which case the results do not depend on
CFSG. In fact, the case when G is nilpotent is important to us, and that case was
proved by R. Knörr [12] in his early work on the k(GV )-problem). One general
result in this direction which we prove is:

cp(G) ≤ cp(F )1/2[G : F ]−1/2 ≤ [G : F ]−1/2,

where F is the Fitting subgroup of G. This result depends on CFSG for general G
but only on [12] for solvable G. Note that this can be restated as

k(G) ≤ (k(F )|G|)1/2 ≤ (|F ||G|)1/2.

A related result of a similar nature, which makes full use of the solution of the
k(GV )-problem for solvable groups is that for a non-trivial finite solvable group G,
we always have k(G) ≤ |F |

2

2 , where F is as above.
J. Dixon observed that cp(G) ≤ 1/12 for any finite non-Abelian simple group

G (this was submitted by Dixon as a problem in Canadian Math. Bulletin, 13,
(1970), with his own solution appearing in 1973). Of course, this bound is attained
for G = A5. We extend this result to non-solvable groups (and determine precisely
for which non-solvable groups equality is attained). This may be compared with
the result [9] that if G is a finite non-solvable group, then the probability that two
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random elements generate a solvable group is less than 19/30 (CFSG was used in
this proof). Results of this type may be used in some Monte Carlo type algorithms
for determining properties of finite groups.

There is an extensive literature about probabilistic questions in finite group
theory. See, for example, [3] and [20] for some results and additional references.

Notation: Let X be a finite group. When X acts as a group of automorphisms of
another finite group Y, we denote the number of X-orbits on Y by kX(Y ). We let
π(X) denote the set of prime divisors of X.

We recall that a component of X is a subnormal quasi-simple subgroup of X.
We denote the central product of all components of X by E(X). The generalized
Fitting subgroup of X, which is the product F (X)E(X), is denoted by F ∗(X).

A section of a finite group X is a group of the form Y/Z, where Z � Y and Y
is a subgroup of X. We denote the hypercenter of X (that is, the terminal member
of the upper central series of X) by Z∞(X), the terminal member of the derived
series of X by X(∞), and the solvable radical of X (that is, the (unique) maximal
solvable normal subgroup of X) by sol(X). We let Fi(X) denote the i-th term of the
Fitting series of X (so that F (X/Fi(X)) = Fi+1(X)/Fi(X) and F0(X) = 1X). We
let Φ(X) denote the Frattini subgroup of X. For convenience, we will occasionally
use |Y : X| to denote [X : Y ]−1 when Y is a subgroup of a group X.

For a family of finite groups X , we will interpret the statement cp(X) → 0 as
|X| → ∞ for X ∈ X to mean that for all ε > 0, there is an integer N ∈ N such
that whenever X ∈ X with |X| > N, we have cp(X) < ε. If the family is omitted,
it is assumed to be the family of all finite groups. As usual, when π is a collection
of primes, the complementary set of primes is denoted by π′.

We first record some refinements of results of Gallagher [7] and Nagao [16].

Lemma 1. Let G be a finite group.
(i) For every proper subgroup H of G, we have

[G : H]−1k(H) < k(G) ≤ [G : H]k(H).

Moreover, if k(G) = [G : H]k(H), then H contains [G,G] and every L-
conjugacy class is G-stable for every subgroup L with H ≤ L ≤ G. In that
case, setting π = π(H), G is a direct product of a π-group with a (possibly
trivial) Abelian π′-group.

If, conversely, H contains [G,G] and every L-conjugacy class is G-stable
for every subgroup L with H ≤ L ≤ G, then we have k(G) = [G : H]k(H).

(ii) For every normal subgroup N of G, k(G) ≤ k(N)k(G/N).
(iii) If N is a normal subgroup of G and c is an integer with the property that

k(H) ≤ c for every subgroup H of G/N , then k(G) ≤ ckG(N).

Proof. (i) The proof of this part is given in [7], apart from the explicit statements
about the strictness of the inequalities and the consequences of equality. Suppose
that equality is attained in the rightmost inequality. Then whenever L is a subgroup
of G containing H, we have k(L) ≤ [L : H]k(H) and k(G) ≤ [G : L]k(L), so both of
these inequalities become equalities. The proof of the inequality in [7] then shows
that equality implies that whenever µ is an irreducible character of H, the induced
character IndGH(µ) is a direct sum of [G : H] distinct irreducible characters of G.
In particular, when µ is the trivial character of H, we see that IndGH(µ) is a sum
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of [G : H] linear characters of G. Clearly the normal closure N of H is contained
in the kernel of each of these characters. Thus, [G : N ] ≥ [G : H] and so H = N
is normal in G. Moreover all irreducible characters of G/H are linear, so that
G/H is Abelian. Returning to a general irreducible character, µ, of H, we note, in
particular, that µ extends (in [G : H] ways) to an irreducible character of G. Hence
µ is G-stable.

The same argument applies to any subgroup L with H ≤ L ≤ G, so every
irreducible character of L is G-stable for any such L. The statement about G-
stability of L-conjugacy classes follows by Brauer’s permutation lemma.

Conversely, we claim that if [G,G] ≤ H and every irreducible character of L is H-
stable whenever H ≤ L ≤ G, then k(G) = [G : H]k(H). We prove this by induction
on [G : H], so we may suppose that H is proper. Let M be a maximal subgroup
of G containing H. Then [G : M ] = q for some prime q and k(M) = [M : H]k(H)
by induction. By hypothesis, every irreducible character of M is G-stable, so, since
G/M is cyclic, every irreducible character of M extends in q distinct ways to an
irreducible character of G. Thus k(G) = qk(M) = [G : H]k(H), as required to
complete the proof.

Let us now return to the case k(G) = [G : H]k(H). Then, setting π = π(H), and
recalling that H �G with [G,G] ≤ H, we have G = LA, where L = Oπ(G) and A
is an Abelian Hall π′-subgroup of G. As above, we have k(G) = [G : L]k(L), so we
may suppose that H = Oπ(G) to establish the last claim of i). Now A is an Abelian
group of coprime automorphisms of H and A fixes each conjugacy class of H. It
is well-known that A centralizes H under these circumstances, but we outline the
argument (the first part of which is due to G. Glauberman). For any element x of
H, we have G = HCG(x), since A-stabilizes the conjugacy class of x. Thus CG(x)
contains a conjugate of A (by the Schur-Zassenhaus theorem), and A centralizes
an H-conjugate of x. Hence CH(A) meets every conjugacy class of H. In a finite
group, no proper subgroup meets every conjugacy class, so H = CH(A).

The proof of the inequality k(H) ≤ [G : H]k(G) in [7] relies on the fact that
whenever χ is an irreducible character of G, the restricted character ResGH(χ) is a
sum of at most [G : H] irreducible characters of H. However, when H is proper,
the trivial character of G shows that equality can never be attained.
(ii) is proved in [16].
(iii) is Remark A2′ in [13]. �

We note that the conditions in i) are necessary, but not generally sufficient for
the rightmost inequality to become equality (consider, for example, the case when
G is extra-special of order p3 for some prime p, and H = Z(G)).

Next, an omnibus Lemma.

Lemma 2. Let G be a finite group.
(i) For every proper subgroup, H, of G, we have

[G : H]−2cp(H) < cp(G) ≤ cp(H).

Hence cp(G) ≥ [G : H]−2 whenever H ≤ G is Abelian. Furthermore,
cp(H) = cp(G) (for an arbitrary subgroup H) if and only if [G,G] ≤ H and
all L-conjugacy classes are G-stable for every subgroup L with H ≤ L ≤ G.
In that case, setting π = π(H), we have G = Oπ(G)×Oπ′(G).



4 ROBERT M. GURALNICK AND GEOFFREY R. ROBINSON

(ii) Whenever N �G, we have

cp(G) ≤ cp(N)cp(G/N).

In particular, we always have cp(G) ≤ cp(G/N).
(iii) For every section, X, of G, we have

cp(G) ≤ cp(X).

(iv) We have

cp(G) ≤
∏
S

cp(S),

where S runs through the non-Abelian composition factors of G, including
repetitions.

(v) If H is another finite group, we have cp(G×H) = cp(G)cp(H).
(vi) If G is non-Abelian, we have

|[G,G]|−1 < cp(G) ≤ d−2 + (1− d−2)|[G,G]|−1,

where d is the smallest degree of a non-linear complex irreducible character
of G. Furthermore, the rightmost inequality becomes equality if and only
if all non-linear irreducible characters of G have degree d, in which case
[G : G′] is divisible by d.

(vii) If G is non-Abelian, we have

cp(G) <
3
2

[G : CG(x)]−1

for some x ∈ G \ Z(G), and if Z(G) = 1, we have

cp(G) ≤ [G : CG(x)]−1

for some x ∈ G#. In this last case, if G is a direct product of several
groups, the element x may be chosen to have non-trivial projection in each
direct factor.

(viii) If G is a non-Abelian p-group for some prime p, we have

cp(G) <
1
p

+ [G : Z(G)]−1 ≤ 1
p

+
1
p2
.

(ix) If G is nilpotent with a non-Abelian Sylow r-subgroup for some prime r,
then we have cp(G) < 1

r , except, perhaps, when |[G,G]| = r (in which case
the prime r is unique).

(x) If p is a prime such that G is not p-closed, then cp(G) ≤ 1
p .

(xi) If p is a prime divisor of |G| and P is a Sylow p-subgroup of G, then there
is x ∈ G of order p such that

cp(G) < |P |−2 +
|Z(P )||CG(x)|
|G|(|Z(P )| − 1)

.

(xii) If G is non-Abelian with cp(G) > 11
27 , then the derived length of G is 2

and either G is nilpotent with |[G,G]| ∈ {2, 4}, or else G/Z(G) ∼= S3. In
particular, |G| is even.

(xiii) If π is a set of primes such that G has an Abelian Sylow p-subgroup for each
prime p ∈ π and Z is a central π-subgroup of G, then we have cp(G) =
cp(G/Z).
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Proof. Parts (i) and (ii) follow immediately from Lemma 1.
(iii) Follows on combining (i) and (ii).
(iv) Follows from repeated applications of (ii).
(v) This is clear since k(G×H) = k(G)k(H).
(vi) Since G is non-Abelian, we clearly have

[G : G′] < k(G) ≤ [G : G′] + d−2(|G| − [G : G′]).

The rightmost inequality is an equality if and only if all non-linear irreducible
characters of G have degree d, so part vi) follows.
(vii) Let c be the maximum order of CG(x) for x ∈ G\Z(G). Set Z = Z(G) and
k = k(G). From the class equation for G, we have |G| ≥ |Z| + (k − |Z|) |G|c , from
which it readily follows that k ≤ c+ |Z|−1. The inequalities involving cp(G) follow
easily from this. For the last statement, if G = G1 ×G2 × . . .×Gt and Z(G) = 1,
then for each i, we may choose xi ∈ G#

i with k(Gi) ≤ |CGi(xi)|, and, setting
x = x1x2 . . . xt, we have k(G) ≤ |CG(x)|.
(viii) We have k(G) ≤ |CG(x)| + |Z(G)| − 1 for some non-central element x of G.
Since |CG(x)| ≤ |G|p , the result is clear.
(ix) If G is nilpotent, with a non-Abelian Sylow q-subgroup and a non-Abelian
Sylow r-subgroup, where q < r are primes, then

cp(G) ≤ cp(Oq(G))cp(Or(G)) < (
1
q

+
1
q2

)(
1
r

+
1
r2

) ≤ 1
r
,

since q ≥ 2 and r ≥ 3. Hence we may suppose that there is a unique prime r such
that G has a non-Abelian Sylow r-subgroup. If |[G,G]| 6= r, then part (vi) above
yields that cp(G) < 2

r2 ≤ 1
r (since r divides d).

(x) By the earlier parts of this Lemma, we may suppose that every proper section
of G is p-closed. Then certainly G = Op

′
(G) and Op(G) = 1.

Suppose that E(G) = 1. Then CG(F (G)) ≤ F (G). In that case, for an element x
of order p in G, we see that G = F (G)〈x〉. The hypotheses on G then imply that G
is a Frobenius group with kernel F (G), which is a minimal normal subgroup. Then

cp(G) =
p2 + |F (G)| − 1

p2|F (G)|
≤ 1
p
,

since |F (G)| ≥ p+ 1.
Hence G has a component, L say, and the hypotheses on G force G = L and

L simple. In particular, by [3], we have cp(G) ≤ 1
12 so we may suppose that

p ≥ 13. Also, |G| ≥ 2p(p + 1), since ( for a Sylow p-subgroup, P of G) we have
[G : NG(P )] ≥ p + 1 and |NG(P )| ≥ 2p (the second inequality following from (for
example), Burnside’s normal p-complement theorem).

Let d be the smallest degree of a non-trivial complex irreducible character of G.
Then d ≥ p−1

2 by [5]. Now part vi) yields

cp(G) <
4

(p− 1)2
+

1
|G|

,

so certainly

cp(G) <
4

(p− 1)2
+

1
2p(p+ 1)

<
1
p

since p > 5 under current assumptions.
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(xi) By Corollary 2 of [19], there is an element x ∈ G of order p such that the
number of irreducible characters of G which do not lie in p-blocks of defect 0 is less
than |CG(x)||Z(P )|

|Z(P )|−1 . Since the unique irreducible character in any p-block of defect
zero has degree divisible by |P |, we certainly have

k(G) <
|CG(x)||Z(P )|
|Z(P )| − 1

+
|G|
|P |2

,

so the claimed result follows.
(xii) If |G| is odd, then part vi) yields the contradiction cp(G) ≤ 11

27 , since |[G,G]| ≥
3 and d ≥ 3. Hence |G| is even and every subgroup of G of odd order is Abelian,
using part iii). By part x), G has a normal 2-complement, H say. Part vi) yields
that |[G,G]| < 81

17 < 5 since cp(G) > 11
27 and d ≥ 2. If |[G,G]| ∈ {2, 4}, then G is

nilpotent and we are done. If |[G,G]| = 3, then G has an Abelian Sylow 2-subgroup,
S say. Now H = [H,S]× (H ∩ Z(G)) and |[H,S]| = 3, so that [S : S ∩ Z(G)] = 2,
and G/Z(G) ∼= S3.
(xiii) It suffices to prove that k(G) = |Z|k(G/Z). By elementary transfer, we have
Z ∩G′ ∩P = 1 whenever P ∈ Sylp(G) and p ∈ π. Hence Z ∩G′ = 1, so Z certainly
contains no non-identity commutator of G. By (for example), Lemma 4 of [18], we
do have k(G) = |Z|k(G/Z), as required.

�

Concerning part (vii) above, we remark that the groups SL(2, 2n) show that
k(G) = maxx∈G# |CG(x)| for infinitely many non-Abelian simple groups G, since
this maximum order is 2n + 1 = k(G) in these cases.

The (coprime) k(GV ) problem is to show that whenever p is a prime and G is
a finite p′-group acting faithfully on the GF (p)-module V, then k(GV ) ≤ |V |. This
has recently been solved in full generality in [8].

Our next result uses the solution of a special case of the coprime k(GV )-problem
(for nilpotent G) to yield a rather strong bound for cp(G) for solvable G.

Lemma 3. Let G be a finite solvable group with Fitting subgroup F . Set Fi =
Fi(G). Assume that G = F2r = F2r+1. Then we have:

(i) cp(F2) ≤ [F2 : F1]−1 = |F1 : F2|;
(ii) cp(G) ≤

∏r
i=1 |F2i−1 : F2i|; and

(iii) cp(G) ≤ cp(F )
∏r
i=1 |F2i : F2i+1|.

Proof. By induction and repeated use of part (ii) of Lemma 2, we see that (i) implies
(ii). By Lemma 2, cp(G) ≤ cp(F )cp(G/F ). Now (ii) applied to G/F implies (iii).

So we only need prove (i), i.e. we need to prove that k(G) ≤ |F (G)| when
G/F (G) is nilpotent. We prove this by induction, so we assume, as we may,
that k(N) ≤ |F (N)| whenever N is a proper section of G. Since F (G/Φ(G)) =
F (G)/Φ(G) and certainly k(Φ(G)) ≤ |Φ(G)|, part ii) of Lemma 2 allows us to
suppose that Φ(G) = 1, and we do so.

Let M be a minimal normal subgroup of G, which is a p-group for some prime
p. Notice that M ≤ Z(F ). If M = F, then Op(G/M) = 1, while G/M is nilpotent
by assumption, so that G/M is a p′-group. Hence k(G) ≤ |M |, as required, using
the solution of the k(HV )-problem in the case that H is nilpotent, already proved
in [12].

Hence we may suppose that M 6= F. Since Φ(G) = 1, G = ML for some maximal
subgroup L of G and M ∩ L = 1 as M is minimal normal. Set C = CL(M) � G.
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Then F = MF (C). Now k(C) ≤ |F (C)| by the inductive assumption. We claim
that k(G/C) ≤ |M |. Now CG(M) = MC and G/C acts irreducibly on M , so
viewing M as a subgroup of G/C, we see that F (G/C) = M is a self centralizing
minimal normal subgroup of G/C. Moreover, G/CM = G/CG(M) is nilpotent, so
by [12] again, k(G/C) ≤ |M | as required. �

The first part of the previous Lemma shows that if G is solvable of Fitting
height 2, then k(G) ≤ |F (G))| (and indeed that this is equivalent to the coprime
k(GV ) result for G nilpotent). This inequality does not hold in general for solvable
groups. For example, when G = V H with V elementary Abelian of order 9 and
H ∼= GL(2, 3) acting naturally on V, then k(G) = 11 and |F (G)| = 9. An even
smaller counterexample is S4, which may be viewed as the semi-direct product of
GL(2, 2) and its natural module (k(S4) = 5 and |F (S4)| = 4).

The previous result can be used to provide a very good bound for cp(G) in the
solvable case:

Theorem 4. Let G be a finite solvable group with Fitting subgroup F . Then
(i) k(G) ≤ (k(F )|G|)1/2 ≤ (|F ||G|)1/2 = |F |[G : F ]1/2; and
(ii) cp(G) ≤ cp(F )1/2[G : F ]−1/2; and
(iii) cp(G)→ 0 as [G : F (G)]→∞.

Proof. Note that (ii) is equivalent to the leftmost inequality of i), and ii) certainly
implies iii). Parts (ii) and (iii) of the previous lemma, taken together, yield:

cp(G)2 ≤ cp(F )|F |/|G|,
and part ii) of this Theorem follows immediately �

Note that (i) of the previous result gives a weak variation on the k(GV ) question.
Theorem 7 below will give more in this direction. First, we need to rectify an error
in the paper [17] of the second author. In that paper, a function f : N → N was
defined with the property that f(1) = 1, f(ab) = f(a)f(b) whenever a and b are
relatively prime. It is asserted there that whenever pm is a prime power, f(pm)

pm is
the maximal order of a p-subgroup of a p-solvable subgroup G of GL(m, p) with
Op(G) = 1. However, the value of f(2m) given in [17] is larger than the true value,
due to an oversight about the field of realizability of the representations in question.
In fact, the value of f(2m)

2m given in [17] is the maximal possible order of a Sylow
2-subgroup of a finite solvable subgroup G of GL(m,C) with O2(G) = 1. This
means that the statements that k(G) ≤ f(|F (G)|) and that a nilpotent injector, I,
of G has order dividing f(|F (G)|) are correct, but could be improved. However,
the assertion that for every positive integer n, there is a finite solvable group Hn

with |F (Hn)| = n and with a nilpotent injector of order f(n) is incorrect for even
n with the function f given there, though the statement becomes correct with f
amended as in the discussion below.

We recall from [17] that when p is an odd prime and m is a positive integer, we
have

f(pm)
pm

= (m!)p,

except when p is a Fermat prime, in which case,
f(pm)
pm

= [(pb m

p− 1
c)!]p.
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We amend f by defining f(2m) = 2m(m!)2 for each positive integer m.
We remind the reader that for all primes p and positive integers n,

logp((n!)p) =
n− σp(n)
p− 1

,

where σp(n) is the sum of the digits in the p-adic expansion of n.
The following result is proved by Winter for p odd (see [11]) and another proof

for all p was given by Wolf [21]. Wolf’s proof used modular representation theory
while Winter used the Fong-Swan theorem to lift to characteristic 0. Wolf’s proof
for p odd was for solvable groups. We point out a result of the two present authors
that a coprime group of automorphisms of a finite group G acts faithfully on some
nilpotent subgroup of G (this was used in [15] and the proof of the authors is given
there). This easily reduces the general p-solvable case to that of solvable groups
(although this reduction does require CFSG).

We note that it is easy to construct examples to show that the bounds below
can be attained for every prime p and positive integer m.

Lemma 5. Let p be a prime, m be a positive integer. Then the maximal order of
a p-subgroup of a p-solvable subgroup H of GL(m, p) with Op(H) = 1 is [np(m)!]p,
where np(m) = m if p is not a Fermat prime and np(m) = pb m

p−1c if p is a Fermat
prime.

Combining this result with the solution of the coprime k(GV ) result leads to the
following:

Theorem 6. Let m be a positive integer, and let G be a p-solvable subgroup of
GL(V ) ∼= GL(m, p) with Op(G) = 1. Then k(G) < k(V G) ≤ |V |2/p.

Proof. Let P be a Sylow p-subgroup of G and H a Hall p′-subgroup of G. By the
solution of the coprime k(GV ) problem, k(V H) ≤ |V |. By part (i) of Lemma 1,
k(V G) ≤ |V ||P | and by the previous lemma, |P | ≤ |V |/p. Clearly k(G) < k(V G),
since V is non-trivial. �

In fact, the exponent 2 can be made much smaller and it should be possible to
remove the p-solvable hypothesis. In the next result, δab is the usual Kronecker
delta. We remind the reader that a nilpotent injector of a finite solvable group G
is a maximal nilpotent subgroup of G containing F (G).

Theorem 7. Let G be a non-trivial finite solvable group and let I be a nilpotent
injector of G. Let π = π(F (G)), r = |π|, let s be the number of prime factors of
|F (G)| (counting multiplicities) and let |O3(G)| = 3t. Let f : N→ N be the function
defined prior to the previous lemma. Then

max{k(G), |I|} ≤ f(|F (G)|) ≤ 3
3t−2+(2δt0−δt1)

4 2s−t−r+(1−δt0)|F (G)| ≤ |F (G)|2∏
{q∈π} q

.

Proof. For the (amended) function f : N→ N defined as above, arguing as in [17],
we obtain

k(G) ≤ f(|F (G)|) =
∏
p

f(|Op(G)|)

(we have made use of the fact that the (coprime) k(GV )-problem is now known to
have a positive answer for all primes p and for arbitrary G, though we only need
the case that G is solvable here). We also have |I| ≤ f(|F (G)|).
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When p = 2, we have m!2 ≤ 2m−1, while if p is an odd prime which is not
Fermat, we have m!p ≤ p

m−1
p−1 < 2m−1. If p is a Fermat prime, we obtain

f(pm)
pm

≤ p
m

(p−1) +
b m
p−1 c−1

p−1 < p
mp

(p−1)2 .

This information suffices to prove the Theorem, after noting that x
x

(x−1)2 decreases
monotonically on (e,∞), so that if p > 3 is a Fermat prime, we have

p
mp

(p−1)2 ≤ 5
5m
16 < 2

3m
4 .

If this quantity is greater than 2m−1, we must have m < 4. However, in that case,
we have b m

p−1c = 0 and f(pm) = pm. �

A “correct” upper bound for k(G) for solvable G should probably be something
like k(G) ≤ |F (G)|1.2.

We next show that cp(G) → 0 as [G : F (G)] → ∞ for all finite groups. As we
will illustrate, the explicit bound given can be improved considerably using CFSG,
but we first give an elementary proof.

Theorem 8. Let G be a non-solvable finite group.
(i) We have cp(G) < log2([G : sol(G)])−1/3. In particular, cp(G)→ 0 as

[G : sol(G)]→∞.
(ii) cp(G)→ 0 as [G : F (G)]→∞.

Proof. i) By part (ii) of Lemma 2, we may, and do, suppose that sol(G) = 1. Set
I = F ∗(G). Then I is a direct product of non-Abelian simple groups. Now G
is isomorphic to a subgroup of Aut(I) by standard properties of the generalized
Fitting subgroup.

We note that a non-Abelian finite simple group H can be generated by logp(|H|)
or fewer elements, where p is the largest prime divisor of |H|. For let x ∈ H be an
element of order p. We inductively define a sequence of proper subgroups Xd of H
such that Xd can be generated by d conjugates of x for each d and |Xd| ≥ pd. Since
H is simple, H can’t embed into the symmetric group Sn for any n < p, so we must
have |Xd| ≤ |H|p and d ≤ logp(|H|)− 1 for each d. Once Xd has been constructed,
and is proper, we choose a conjugate xd+1 of x which lies outside Xd (this is possible
as H is generated by conjugates of x) and set Xd+1 = 〈Xd, xd+1〉. If this is proper,
we continue the process, and we terminate the sequence at Xd otherwise. We notice
that |Xd+1| ≥ p|Xd| as xd+1 has prime order p. Letting Xm be a maximal member
of this sequence of proper subgroups, we see that m ≤ logp(|H|) − 1, and that H
can be generated by m+1 or fewer elements. We note also that p ≥ 5 by Burnside’s
paqb-theorem.

Hence I can certainly be generated by log5(|I|) or fewer elements, and each of
these generators can have at most |I| images under an automorphism of I, so we
obtain |G| < |I|log5(|I|) and

log2(|G|) < log2(|I|) log5(|I|).

We recall that cp(G) ≤ cp(I), so that cp(G)−1 ≥ cp(I)−1.

By part (vii) of Lemma 2, there is an element x ∈ I with k(I) ≤ |CI(x)| such
that x has non-trivial projection onto every simple direct factor of I. Hence CI(x)
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is core-free in I. Setting n = bcp(I)−1c, we certainly have |I| ≤ [I : CI(x)]! ≤ nn.
Thus

log2(|G|) < n2 log2(n) log5(n) ≤ (cp(G)−1)2 log2(cp(G)−1) log5(cp(G)−1).

To prove part i), it remains to show that

log2(cp(G)−1) log5(cp(G)−1) ≤ cp(G)−1
.

Now log(x)2/x has a unique maximum on (1,∞) at x = e2 < 8. Since

log2(e2) log5(e2) < e2,

we deduce that log2(x) log5(x) < x for all x ≥ 1, and we have the desired inequality.
We note that ii) follows by i) together with part (iii) of Theorem 4 since

cp(G) ≤ min(cp(G/sol(G)), cp(sol(G))).

�

The previous result says that k(G)/|G| < log2(|G|)−1/3 when sol(G) = 1. The
earlier remark also illustrates that the groups SL(2, 2n) provide infinitely many
non-isomorphic examples of finite groups G with sol(G) = 1 and k(G) > |G|1/3. If
we take G to be a product of sufficiently many copies of S5, we may produce an
arbitrarily large finite group G with sol(G) = 1 and k(G) > |G|0.4.

In the next theorem, we use CFSG to show that k(G) <
√
|G| for G with

sol(G) = 1.

Theorem 9. Let G be a finite group. Then cp(G) ≤ [G : sol(G)]−1/2 with equality
if and only if G is Abelian.

Proof. As in the previous proof, we may assume that sol(G) = 1. Set I = F ∗(G)
and suppose that I is a direct product of t simple groups. Let J be the kernel of
the permutation action of G on the simple direct factors of I.

We first note that by [6] (using CFSG), it follows that k(H) < |H|0.41 for H
almost simple (and the example H = S5 shows that this cannot be improved
much). We claim that the same bound holds for J . We proceed by induction on
the number of components contained in J . If there is one such component, then J
is almost simple. Otherwise, let L be a simple component of J and set C = CJ(L).
Then G/C is almost simple (with socle L) and F ∗(C) = E(C) is a direct product
of fewer components than F ∗(J). Since k(J) ≤ k(C)k(J/C), the claim follows.

By a result of Maróti [14], it follows that k(G/J) < 3t/2 < |J |0.14 (the latter
inequality follows since |J | ≥ 60t). Thus k(G) < |J |0.55 and this is less than |G|1/2
when |G/J | > |J |0.1.

If |G/J | ≤ |J |0.1, then |J |0.59 > |G|0.5. Since cp(G) ≤ cp(J), we see that
k(G) < |J |0.41|G/J | ≤ |G|/|J |0.59 < |G|0.5. �

We can combine the previous results to obtain:

Theorem 10. Let G be a finite group with Fitting subgroup F . Then:
(i) k(G) ≤ k(F )1/2|G|1/2 ≤ (|F ||G|)1/2; and
(ii) cp(G) ≤ cp(F )1/2[G : F ]−1/2 ≤ [G : F ]−1/2.

Proof. By part (ii) of Lemma 2, cp(G) ≤ cp(G/sol(G))cp(sol(G)). By part (ii) of
Theorem 4 and Theorem 9, cp(sol(G)) ≤ k(F )1/2|sol(G)|−0.5 and cp(G/sol(G)) ≤
[G : sol(G)]−0.5. This proves (ii). Multiplying both sides of (ii) by |G| yields (i). �
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This gives a much better result on how quickly cp(G) → 0 as [G : F (G)] → ∞
than that implied by Theorem 8.

The next result further highlights the distinguished role of the alternating group
A5.

Theorem 11. Let G be a finite group such that cp(G) > 3
40 = 0.075. Then either G

is solvable, or else G ∼= A5×T for some Abelian group T, in which case cp(G) = 1
12 .

Proof. Suppose that the Theorem is false, and let G be a minimal counterexample.
We note that cp(SL(2, 5)) = 3

40 and cp(S5) = 7
120 , so neither SL(2, 5) nor S5 can

occur as a section of G by part (iii) of Lemma 2.
Since G is not solvable, G has a non-Abelian composition factor S with cp(S) >

3
40 by part (iv) of Lemma 2. By part (vi) of Lemma 2, we have

cp(S) ≤ d−2 + |S|−1(1− d−2),

where d is the smallest degree of a complex irreducible character of S. Suppose that
d > 3. Then we obtain |S| < 75. However, S 6∼= A5 since we are assuming that
d > 3, while A5 has an irreducible character of degree 3.

Hence d ≤ 3. Since S is simple, we have d > 2. Hence S ∼= A5 or PSL(2, 7) from
the classification of the finite irreducible subgroups of GL(3,C). Since
cp(PSL(2, 7)) = 1

28 , we have S ∼= A5.

Suppose that G has a component, L say. Then L ∼= A5 (since L ∼= SL(2, 5)
has already been excluded) and L is unique (otherwise cp(G) ≤ cp(E(G)) ≤ 1

144 ).
If there is some x ∈ G\LCG(L), then L〈x〉 has S5 as a homomorphic image, a
contradiction. Thus G = L × CG(L). By the assumptions on G, the group CG(L)
is Abelian, otherwise cp(G) ≤ 5

8 .
1
12 <

3
40 . Thus F ∗(G) = F (G).

Let M be a maximal normal subgroup of G. Then M is solvable, since otherwise
E(M) 6= 1 by the minimality of G, and then E(G) 6= 1. Let N be a minimal normal
subgroup of G. Then E(G/N) ∼= A5 by the minimality of G, since G/N is not
solvable. It follows that G/N ∼= A5, since every proper normal subgroup of G is
solvable.

Now N is an elementary Abelian p-group for some prime p, and N is an irre-
ducible GF (p)G/N -module. If N is trivial, then the fact that G has no component
is contradicted. Hence |N | ≥ 16. Now every subgroup of G/N has 5 or fewer
conjugacy classes, so by part (iii) of Lemma 1, we have k(G) ≤ 5kG(N). Now
kG(N) ≤ |N |+4

5 , since every orbit of G/N on non-identity elements of N has length
at least 5. Hence

cp(G) ≤ |N |+ 4
60|N |

≤ 1
48
,

contrary to the hypotheses on G. �

It is possible to avoid the classification of three dimensional linear groups. As
above, we may reduce to the case that G is simple. By Lemma 2, there is x ∈ G#

with [G : CG(x)] < 14. Moreover, by a result of Burnside, [G : CG(x)] is not a prime
power, so [G : CG(x)] ∈ {6, 10, 12}. Furthermore, either G embeds into A6 or else
CG(x) is a maximal subgroup of G. By inspection (or by elementary arguments),
we see that only G = A5 can occur.
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Theorem 8 tells us that cp(G)→ 0 as [G : F (G)] tends to infinity. On the other
hand, if we have [G : F (G)] ≤ b for an explicit bound b, then part (i) of Lemma 2
tells us that b−2cp(F (G)) ≤ cp(G) ≤ cp(F (G)). This motivates us to concentrate
attention on cp(G) when G is solvable or nilpotent.

We next demonstrate that when the finite group G is solvable or nilpotent,
then cp(G) → 0 as the derived length of G grows. The estimate in part (i) of
Theorem 12 is rather crude, but sufficient for our immediate purpose. In fact,
careful examination of the proof shows that equality is never attained in part (i) of
the Theorem.

Theorem 12.
i) Let G be a finite solvable group of derived length d ≥ 4. Then

cp(G) ≤ 4d− 7
2d+1

.

ii) Let p be a prime and let G be a finite p-group of derived length d ≥ 2. Then

cp(G) ≤ pd + pd−1 − 1
p2d−1

.

Proof. i) We first establish the case d = 4. It is easy to check that no group of order
less than 24 has derived length greater than 2. Let H be a finite solvable group of
derived length 4. Then |[H,H]| ≥ 24, so part (vi) of Lemma 2 yields that

cp(H) ≤ 1
4

+
3

4|[H,H]|
≤ 9

32
,

which establishes the desired inequality for d = 4. Suppose then that G has derived
length d > 4, and that the result has been established for d− 1.

By part (ii) of Lemma 2, we may replace G by any homomorphic image of the
same derived length. Hence we may suppose that no proper homomorphic image of
G has derived length d. In that case, it follows that G has a unique minimal normal
subgroup, M say, for if G has two distinct minimal normal subgroups M1 and M2,
then G embeds in the direct product G/M1 ×G/M2 and hence has derived length
less than d, a contradiction. Also, G/M has derived length d− 1.

If χ is a complex irreducible character of G which does not contain M in its
kernel, then χ must be faithful by the uniqueness of M. Furthermore, [2] certainly
gives d ≤ 2 + 2 log2(χ(1)). Hence χ(1)2 ≥ 2d−2. It follows that

k(G) ≤ k(G/M) +
|G| − [G : M ]

2d−2
.

Thus we have

cp(G) ≤ cp(G/M)
|M |

+
1− |M |−1

2d−2
.

The inductive assumption tells us that

cp(G/M) ≤ 4d− 11
2d

,

so that

cp(G/M)− 1
2d−2

≤ 4d− 15
2d
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and
cp(G/M)− 22−d

|M |
≤ 4d− 15

2d+1
.

Hence
cp(G) ≤ 8

2d+1
+

4d− 15
2d+1

,

so the result follows by induction.

ii) We proceed by induction on d. If d = 2, then part vi) of Lemma 2 yields
cp(G) ≤ p2+p−1

p3 , since |[G,G]| ≥ p and each non-linear irreducible character of G
has degree a power of p. Suppose then that d > 2, and that the result has been
established for d− 1.

As in part i), we may suppose that every proper homomorphic image of G has
derived length less than d, so that G has a unique minimal normal subgroup, M
say, which is now central of order p. Also, G/M has derived length d − 1. Every
irreducible character of G which does not contain M in its kernel is faithful, and
has degree at least pd−1 since G is a p-group of derived length d.

This time,

cp(G) ≤ cp(G/M)
p

+
p− 1
p2d−1

.

Since

cp(G/M) ≤ pd + pd−1 − p
p2d−2

by the inductive hypothesis, the result follows easily. �

We continue by mentioning further links with the (coprime) k(GV ) problem,
and some consequences for solvable groups.

Theorem 13. Let G be a finite solvable group and π be a set of primes. Then:
i)

cp(G) ≤ kG(Oπ′(G))
|G|π′

.

ii) If Oπ′(G) = 1, we have cp(G) ≤ 1
|G|π′

.

iii) If Oπ′(G) = 1 and cp(G) = 1
|G|π′

, we may write G = Z(G) ×M, where
either M is trivial, or else

M = V1G1 × . . .× VsGs,
where for each i, Vi is an elementary Abelian qi-subgroup for some prime
qi ∈ π, and Gi is a π′-group which acts faithfully and irreducibly on Vi with
k(GiVi) = |Vi|.

Proof. In each case, we will prove the corresponding statements about k(G).
i) We may suppose that π ⊆ π(G). We prove by induction on |π| that if G is
a solvable group with Oπ′(G) = 1, then every subgroup of G has at most |G|π
conjugacy classes, the case |π| = 1 having been dealt with in [18]. Suppose then
that |π| > 1 and that the result has been established for smaller sets of primes.
Choose a prime p ∈ π and an arbitrary subgroup, X, of G. Set σ = π\{p}. By
induction, k(X ∩Op′(G)) ≤ |Op′(G)|σ. Furthermore, we have

k(X/X ∩Op′(G)) ≤ |G|p
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by the |π| = 1 case. Hence we certainly have k(X) ≤ |G|π by part (ii) of Lemma 1.
Now i) follows from part iii) of Lemma 1.
ii) Is just the special case of i) when Oπ′(G) = 1.
iii) We first prove, again by induction on |π|, that if G is solvable with Oπ′(G) = 1,
and k(G) = |G|π, then G has an Abelian normal Hall π-subgroup, the case |π| = 1
having been dealt with in [18]. Again we may suppose that π ⊆ π(G), that |π| > 1,
and that the result has been established for smaller sets of primes. Choose a prime
p ∈ π, set σ = π\{p}, and set H = Op′(G). Then every subgroup of G/H has
at most |G|p conjugacy classes, so that k(G) ≤ |G|pkG(H), again by part (iii) of
Lemma 1. Also, kG(H) ≤ k(H) ≤ |H|σ by part (ii). Since k(G) = |G|π, we must
conclude that |H|σ = |G|σ, that k(H) = |H|σ and that every conjugacy class of H
is G-stable. Furthermore, we must also have k(G/H) = |P | for P ∈ Sylp(G). Hence
by the case |π| = 1, P must be Abelian ( with its image normal in G/H) and by
the inductive assumptions, H has an Abelian normal Hall σ-subgroup. However,
since P is a p-group stabilizing every conjugacy class of H = Op′(G), we must have
[P,H] = 1. Hence P �G since G = HNG(P ) by a Frattini argument. Thus G has
an Abelian normal Hall π-subgroup.

Next, we prove that Φ(G) ≤ Z(G). Let K = Φ(G), which is certainly a π-group.
Then Oπ′(G/K) = 1. For otherwise, we may take T to be a pre-image of Oπ′(G/K)
and, letting L be a Hall π′-subgroup of T, we have G = KNG(L) by a Frattini-type
argument, a contradiction. Hence every subgroup of G/K has at most [G : K]π
conjugacy classes, and we have

k(G) ≤ kG(K)[G : K]π

by part iii) of Lemma 1. By hypothesis, we must have kG(K) = |K|, so that
K ≤ Z(G).

The conclusion of the proof follows the pattern of that in [18], so we only sketch
the beginning of the argument. Let A be the Abelian normal Hall π-subgroup of
G, and let T be a Hall π′-subgroup of G. Then G = CA(T ) × (T [A, T ]), so we
may, and do, suppose that A = [A, T ] as CA(T ) = Z(G). Hence we now have
Z(G) = Φ(G) = 1, as we have already established that Φ(G) ≤ Z(G). Now A is a
direct product of minimal normal subgroups of G, and if A = V1 × . . .× Vs where
each Vi is minimal normal in G, we set Gi = CT (

∏
j 6=i Vj), and we find as in [18]

that
G = V1G1 × . . .× VsGs

under current assumptions. �

We mention a very elementary proof of a result of Brauer-Fowler type which is
related to the themes of this paper.

Theorem 14. (i) For any finite group G, we have

cp(G) ≥

(∑
χ∈Irr(G) χ(1)

|G|

)2

.

(ii) Let G be a finite group of even order with Z(G) = 1. Then we have

|G| < |CG(x)|3

for some x ∈ G#.
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Proof. By the Cauchy-Schwarz inequality and the orthogonality relations, we have∑
χ∈Irr(G)

χ(1) ≤
√
k(G)|G|

and i) quickly follows.
ii) Suppose that G has even order and that Z(G) = 1. The number of solutions of
g2 = 1 in G is given by ∑

χ∈Irr(G)

ν(χ)χ(1),

where ν(χ) is the Frobenius-Schur indicator of χ (in particular, ν(χ) always lies in
{0, 1,−1}). The number of such solutions is strictly greater than [G : CG(t)] for
any involution t of G. From part i), we see that for any involution t ∈ G, we have

[G : CG(t)]2 < k(G)|G|,

which leads to |G| < k(G)|CG(t)|2. From part (vii) of Lemma 2, we know that

k(G) ≤ max
y∈G#

|CG(y)|,

so it follows that |G| < |CG(x)|3 for some x ∈ G#. �

We remark that the groups SL(2, 2n) again show that the bound of part (ii) of
Theorem 14 is close to best possible. We point out that this bound is also strong
enough to recover one of the usual forms of the Theorem of Brauer and Fowler ([1]).
See Isaacs [11] for a similar proof.

Corollary 15. Let G be a finite group of even order greater than 2. Then G has
a proper subgroup H with |G| < |H|3.

Proof. We may, and do, suppose that G is not a 2-group. Set G∗ = G/Z∞(G).
Then Z(G∗) = 1. If G∗ has even order, then there is a non-identity element x∗ of
G∗ with |G∗| < |CG∗(x∗)|3. Let H be the full pre-image in G of CG∗(x∗). Then
H < G and |G| < |H|3. Hence we may suppose that G∗ has odd order. Then G has
a normal Sylow 2-subgroup, and (by the Schur-Zassenhaus theorem), G has a Hall
2′-subgroup. One of these last two subgroups has order greater than

√
|G|. �

We conclude with some restrictions on the structure of solvable groups G for
which cp(G) ≥ 1

n for a positive integer n.

Theorem 16. Let n be a positive integer, and let G be a finite solvable group
with cp(G) ≥ 1

n . Let π denote the set of primes which do not exceed n. Then
G has a nilpotent normal π-complement, there is at most one prime p ∈ π′ for
which G has a non-Abelian Sylow p-subgroup, and any such prime is less than
n +
√
n. If, furthermore, there is such a prime p, then G/Op(G) is Abelian and

[Oπ′(G), Oπ′(G)] has order p. Finally (in all cases), if T is a Hall π-subgroup of G,
we have |T | ≤ n � kG(Oπ(G)), so certainly [T : Oπ(G)] ≤ n.

Proof. We may, and do, suppose that n > 1. By part x) of Lemma 2, G has a
nilpotent normal π-complement, say K. By parts (i) and (ix) of Lemma 2, there is
at most one prime p for which K has a non-Abelian Sylow p-subgroup, and if there
is such a prime, then we have |[K,K]| = p.
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Suppose that there is such a prime p. By parts (i) and (viii) Lemma 2,

1
p

+
1
p2

> cp(Op(K)) ≥ cp(K) ≥ cp(G) ≥ 1
n
.

Hence
1
p

+
1
2
>

1
2

√
1 +

4
n
,

which easily leads to p < n +
√
n. If, furthermore, G/Op(K) is non-Abelian, then

by part (ii) of Lemma 2 and [10], we have

1
n
≤ cp(G) ≤ 5

8

(
1
n

+
1
n2

)
,

a contradiction.

Finally, in all cases, Theorem 13 yields

1
n
≤ cp(G) ≤ kG(Oπ(G))

|T |
.

�
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