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ABSTRACT. Nazarov [Naz96] introduced an infinite dimensional algebra, which
he called the affine Wenzl algebra, in his study of the Brauer algebras. In
this paper we study certain “cyclotomic quotients” of these algebras. We
construct the irreducible representations of these algebras in the generic case
and use this to show that these algebras are free of rank r™(2n — 1)!! (when
Q is u—admissible). We next show that these algebras are cellular and give
a labelling for the simple modules of the cyclotomic Nazarov—Wenzl algebras
over an arbitrary field.

On the occasion of Professor George Lusztig’s 60™ birthday

1. INTRODUCTION

The Brauer algebras were introduced by Richard Brauer [Bra37] in his study
of representations of the symplectic and orthogonal groups. In introducing these
algebras Brauer was motivated by Schur’s theory (see [Gre80]), which links the
representation theory of the symmetric group &, and the general linear group
GL(V) via their commuting actions on “tensor space” V®" where &, acts by
place permutations. The image of GL(V') in End(V®™) is known as a Schur algebra.
Analogously, the Brauer algebras are the images of symplectic or orthogonal groups
in End(V®"), where V is the defining representation for one of these groups.

The Brauer algebras have now been studied by many authors and they have
applications ranging from Lie theory, to combinatorics and knot theory; see, for ex-
ample, [BW89, Bro56, DWH99, Eny04, FG95, HW89a, HW89b, Jon94, Mar96, Naz96,
Rui05, Ter01, Wen88, Xi00]. In this paper we are interested not so much in the
Brauer algebra itself but in affine and cyclotomic analogues of it. Our starting
point is a (special case of) Nazarov’s [Naz96] affine Wenzl algebra #,2%(€), which
could legitimately be called the degenerate affine BMW algebra.

Let R be a commutative ring. The representation theory of the affine Wenzl
algebras #,(Q2), where Q = {w, € R|a >0}, has not yet been studied. Moti-
vated by the theory of the affine Hecke algebras and the cyclotomic Hecke alge-
bras of type G(r,1,n) [Ari96, DJM99, Kle05] we introduce a “cyclotomic” quotient
Wy (1) = #,25(Q) /([Ti=, (X1 — w;)) of #,2(€), which depends on an r—tuple of
parameters u = (ug,...,u,) € R". We call #, ,(u) a cyclotomic Nazarov-Wenzl
algebra. This paper develops the representation theory of the algebras #; ,(u).

The first question that we are faced with is whether the cyclotomic Nazarov—
Wenzl algebra #; ,(u) is always free as an R-module. The Brauer algebra %,
is free of rank (2n — !l = (2n — 1) - (2n — 3)--- - 3 - 1. We expect that the
cyclotomic Nazarov—Wenzl algebra #,. ,(u) should be free of rank 7™(2n — 1)!!. In
section 3, a detailed study of the representation theory of #;. 2(u) shows that, in the
semisimple case, #; 2(u) has rank r™(2n — 1)!l],—2 if and only if Q is u-admissible
(Definition 3.5). This constraint on £ involves Schur’s g—functions. Our first main
result is the following.
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Theorem A. Let R be a commutative ring in which 2 is invertible. Suppose that
u € R” and that Q is u—admissible. Then the cyclotomic Nazarov-Wenzl algebra
Wyrn(u) is free as an R—module of rank r™(2n — 1)L

The proof of this result occupies a large part of this paper. The idea behind
the proof comes from [AK94]: for “generic” R we explicitly construct a class of
irreducible representations of #;. ,(u) and use them to show that the dimension of
#yn(u)/ Rad #,. . (u) is at least r™(2n — 1)!1. It is reasonably easy to produce a set
of r™(2n —1)!! elements which span #,. ,(u), so this is enough to prove Theorem A.
We construct these irreducible representations by giving “seminormal forms” for
them (Theorem 4.13); that is, we give explicit matrix representations for the actions
of the generators of #; ,(u). The main difficulty in this argument is in showing
that these matrices respect the relations of #; ,(u), we do this using generating
functions introduced by Nazarov [Naz96]. There is an additional subtlety in that we
have to work over the real numbers in order to make a consistent choice of certain
square roots in the representing matrices.

The next main result of the paper shows that #; ,(u) is a cellular algebra in
the sense of Graham and Lehrer [GL96]. As a consequence we can, in principle,
construct all of the irreducible representations of #;. ,(u) over an arbitrary field.
Moreover, the decomposition matrix of %, ,(u) is unitriangular.

Theorem B. Suppose that 2 is invertible in R and that € is u—admissible. Then
the cyclotomic Nazarov-Wenzl algebra #, n(u) is a cellular algebra.

We prove Theorem B by constructing a cellular basis for %, ,(u). We recall
the definition of a cellular basis in section 6; however, for the impatient experts
we mention that the cell modules of #; ,(u) are indexed by ordered pairs (f,A),
where 0 < f < [§] and A is a multipartitions of n — 2f, where 0 < f < [ 5], and
the bases of the cell modules are indexed by certain ordered triples which are in
bijection with the n—updown A-tableaux.

Finally we consider the irreducible % ,(u)-modules over a field R. The cell
modules of #.,,(u) have certain quotients D'}, where 0 < f < 2] and X is a
multipartition of n — 2f, which the theory of cellular algebras says are either zero
or absolutely irreducible. Now, the cyclotomic Nazarov—-Wenzl algebra #;. ,(u) is
filtered by two sided ideals with the degenerate Hecke algebras 7. ,_2¢(u) of type
G(r,1,n — 2f) appearing as the successive quotients for 0 < f < [Z]. In section 6
we show that the algebras J& ,,(u) are also cellular (in fact, this is the key to
proving Theorem B); as a consequence, the irreducible %, ,,(u)-modules are the
non-zero modules D*, where ) is a multipartition of m. Combining these facts we
obtain the following classification of the irreducible #;. ,(u)-modules in terms of
the irreducible 2. ,, o (u)-modules, for 0 < f < [§].

Theorem C. Suppose that R is a field in which 2 is invertible, that  is u-
admissible and that wo # 0. Then { DU |0 < f < 2], AFn—2f and D* #0}
is a complete set of pairwise non—isomorphic irreducible ¥, ,(u)-modules.

As an application we give necessary and sufficient conditions for % ,,(u) to be
quasi—hereditary when R is a field and wqy # 0.

2. AFFINE AND CYCLOTOMIC NAZAROV—WENZL ALGEBRAS

In [Naz96], Nazarov introduced an affine analogue of the Brauer algebra which
he called the (degenerate) affine Wenzl algebra. The main objects of interest in this
paper are certain “cyclotomic” quotients of Nazarov’s algebra. In this section we
define these algebras and prove some elementary results about them.
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Fix a positive integer n and a commutative ring R with multiplicative identity 1x.
Throughout this paper we will assume that 2 is invertible in R.

Definition 2.1 (Nazarov [Naz96, §4]). Fix @ = {w,|a >0} C R. The degen-
erate affine Wenzl algebra 7,2 = #/3(Q)) is the unital associative R-algebra with
generators { S;, E;, X; |1 <i¢<nand 1<j <n} and relations

Ll) (Involutions) XZSZ — SiX1'+1 = Ez — 1,
S2=1,for1<i<n. for1<i<n.
b) (Affine braid relations) f) (Unwrapping relations)
(Z) SiSj = SjSl if |Z —j| > 1, ElXilEl = w.Fn, for a > 0.
(i) S;Six15; = Si4+15iSi+1, g) (Tangle relations)
for1§i<n—1, (2) E@Si:EizsiEi,
(ZZ’L) SPXJZX]SZIf‘]#Z,Z—Fl forl1 <i<n-—1,
C) (Idempotent relations) (ZZ) 51E1+1EZ = i+1E1';
Efzoni,for1§i<n. forl1 <i<n-—2,
d) (Commutation relations) (iit) Eip1E;Sit1 = Eiy1S;,
(i) SiE; = E;S;, if |i — j| > 1, for 1 <i<n-—2.
(i) E;E; = EjE;, if |i —j| > 1, h) (Untwisting relations)
(ZZ’L) Ein = XjEi, Ei+1EiE1'+1 = E1'+1 and
if j#£d,i+1, EiEHlEi:Ei,forlgign—Z
(iv) X;X; =X,X;, 1) (Anti-symmetry relations)
for 1 <i,5 <n. E;(X; + Xit+1) =0 and
e) (Skein relations) (Xi+Xi41)E; =0, for 1 <i < n.

SZXZ — Xi_HSi = Ez — 1 and

Our definition of #* differs from Nazarov’s in two respects. First, Nazarov
considers only the special case when R = C; however, as we will indicate, most of
the arguments that we need from [Naz96] go through without change when R is an
arbitrary ring. More significantly, Nazarov considers a more general algebra which
is generated by the elements { S;, E;, X;, &, | 1 <i<n,1<j<nanda>0}such
that the @, are central and the remaining generators satisfy the relations above.
For our purposes it is more natural to define the elements w, to be elements of R
because without this assumption the cyclotomic quotients of #,*f would not be
finite dimensional.

Note that EiEi_;_lSi = E@Ei_,_lEiSi_,_l = E@Si_,_l and Si+1EiE1'+1 =
SiEiv1E;Eiy1 = S;E;y1. Thus a quick inspection of the defining relations shows
that 7,2 has the following useful involution.

2.2. There is a unique anti-isomorphism % : W, — W, such that

S =5, Ef=E; and X;=Xj,

foralll1 <i<mnand all1 < j <mn. Moreover, x is an involution.

Using the defining relations it is not hard to see that %, is generated by the
elements S1,...,S5,-1, F1, X1. There is no real advantage, however, to using this
smaller set of generators as the corresponding relations are more complicated.

Lemma 2.3 (cf. [Naz96, (2.6)]). Suppose that 1 <1i <n and that a > 1. Then

SiX8 = X85 +fo+11 L 1)Xet,
b=1
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Proof. We argue by induction on a. When a = 1 this is relation 2.1(e) . If a > 1
then, by induction, we have

X[ = XX, = { X085+ Z XU E - )X LK
b=1
+1S X + ZXZH-I -1 Xa+l b

Now, by the skein relation 2.1(e), S;X; = X;415; + E; — 1, so

S X = X0 (X1 Si + By — 1) +be LB - 1)xHt

1+1
b=1
a+1
= XS, +ZXf+11 — )Xot
as required. O
Corollary 2.4. Suppose that a > 0. Then
1 2a-+1
w2a+1E1 = 5{ — waq + ; (_l)bilwb71w2a+17b}El.

Proof. Take ¢ = 1 and multiply the equation in Lemma 2.3 on the left and right by
E;. Since S1E, = E; = F1.51, this gives

E\X{E, = E\X$E + Y E\ X} ' (Ey — )X{ "Ey.
b=1
Since ElecEl = wCEl, E1 (Xl + XQ) =0 and XlXQ = XQXl we can rewrite this

equation as

woB1 = (—1)%w. By + Z(—1)b*1E1X{’—1(E1 —-1)X¢ bR
)*waEn + Z EIXVTUEXITE - i XOTE).
= (—1)%w. By + Z(—l)b—l(wb,lwa,b —wa_1)EBy.

—1)%w.E1 + Z(—l)bilwb,lwa,bEl + Z(—l)bwa,lEl.
b=1

Setting a = 2a’ + 1 proves the Corollary. O

If we assume that F; # 0 in #,* and that #,*% is torsion free then this result
says that the w,, for a odd, are determined by the wy, for b even.
Remark 2.5. If a > 0 then the proof of the Corollary also gives the identity

2a

0= { Z(—nb*lwb_lwga_b}m.

b=1
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However, this relation holds automatically because

2a a 2,
SN s = 3 s+ 5 (U s
b=1 b=1 b=a+1
a a
’
= Z(_l)bilwalw&lfb + Z (_1)204717 Wog—b'Wh'—1
b=1 b =1
= 0.

Before we define the cyclotomic quotients of #,2f, which are the main objects

of study in this paper, we recall some standard definitions and notation from the
theory of Brauer algebras and some of Nazarov’s results.

A Brauer diagram on the 2n vertices {1,...,n,1,...,m} is a graph with n edges
such that each vertex lies on a (unique) edge. Equivalently, a Brauer diagram is a
partitioning of {1,...,n,1...,7} into n two element subsets. Let B(n) be the set

of all Brauer diagrams on {1,...,n,1,...,m}. Then #B(n) = (2n — 1)!..

Let v € B(n) be a Brauer diagram. A vertical edge in v is any edge of the form
{m,m}, where 1 < m < n. Horizontal edges are edges of the form {m, p}, or {m, p},
where 1 < m < p < n.

Fori=1,...,n —1let y(i,i + 1) be the Brauer diagram with edges {i,i + 1},
{i+1,i} and all other edges being vertical. Similarly, let ; be the Brauer diagram
with edges {i,i+ 1}, {i,7 + 1}, and with all other edges being vertical. We set s; =
by(ii+1) and €; = b,,. We also let 7, be the graph with edges { {i,i} |1 <i<n}.

Brauer diagrams can be represented diagrammatically as in the following exam-
ples. The vertices in the first rows are labelled from left to right as 1 to 4, and the
vertices in the second row are labelled 1 to 4.

S $ 33 SRR 4 § I fod§

Given two Brauer diagrams v,v" € B(n) we define their product to be the dia-
gram v & 7/ which is obtained by identifying vertex ¢ in + with vertex i in ~/, for
1 <i<n. Let £(v,7") be the number of loops in the graph v e 4" and let v o4’ be
the Brauer diagram obtained by deleting these loops. The following pictures give
two examples of the multiplication v o v’ of diagrams.

X._EI - 21 and IEI - 1701

909 1.1

In the first example v = v(1,2), v/ = 72 and £(v,7’) = 0. In the second example
v=19"=72and {(y,7) =1
Recall that R is a commutative ring.

Definition 2.6 (Brauer [Bra37]). Suppose that w € R. The Brauer algebra %, (w),
with parameter w, is the R-algebra which is free as an R-module with basis
{by | v € B(n) } and with multiplication determined by

byby = w0 b o,

for v,v" € B(n).

It is easy to see that %, (w) is an associative algebra with identity b.,. We abuse
notation and sometimes write 1 = b, .

The second example above indicates that e? = we;, for 1 < i < n. Similarly,
s?zl7f0r1§i<n.
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Let &,, be the symmetric group on n letters. To each permutation w € &,
we associate the Brauer diagram (w) which has edges { {i,w(i)} | for 1 <i <n}.
Notice that if w = (4,7 4+ 1) then this is consistent with the notation introduced
above for the elements s; = b.(; i+1) € %n(w).

The diagrams { y(w) | w € &,, } are precisely the Brauer diagrams which do not
have any horizontal edges. It is easy to see that the map w — b,(,) induces an
algebra embedding of the group ring RS,, of &,, into %, (w). In this way, RS, can
be considered as a subalgebra of %,,(w).

There is a well-known presentation of %, (w), which we now describe. When
R = C this result is proved in [BW89].

Proposition 2.7. Suppose that R is a commutative ring. The Brauer algebra

B, (w) is generated by the elements s1,...,8,-1,€1,-..,en—1 subject to the relations
2 2
sy =1, e; = we;, Sie; = €;8; = e;,
SiSj = sjsi, siej = ejsi, €i€j = ejei,
SkSk+15k = Sk+15kSk+1, €Ler4+1€E = €k, Ck+1€LkCE+1 = €41,
Sk€E4+1€k = Sk+1€k, €k4+1€kSk+1 = €k+1Sk,

where 1 < 4,5 <n, with |i —j| > 1, and 1 <k<n-1

Proof. Let By, (w) be the algebra with the presentation above. The Brauer algebra
Bn(w) is generated by { by,,by(ii41) | 1 < i <n} because any b, € %, (w) can be
written in the form by, )e1€3- - €2m—1by(w,) , for some m and for some wy,wy €
S,. As these elements satisfy all of the relations above, there is a well-defined
surjective algebra homomorphism 6,, : B,(w) — %,(w) which is determined by
0n(5:) = by(i,iv1) and Oy, (e;) = by, for 1 <4 < n. We first prove that

Bn(w) = Bn—l(w) + Bn—l(w)sn—an—l(W) + Bn—l(w)en—an—l(w)-

For n = 1,2 this is easy to see. If n > 3 then we show that the right hand side is
stable under left multiplication by the elements s,,_; and e,_1. So we prove that
hBp_1(w)h', for h,h' € {sp—1,en—1}, are contained in the right hand side. As
thfl(w)h/ = ang(w)hh/ + Bn,g(w)hsn,gh/Bn,g(w) + Bn,g(w)hen,gh’Bn,g(w)
by the induction hypothesis, this may be proved by using the defining relations of
B, (w).

Now we prove the statement of Proposition 2.7 by induction on n. Let D; =
HB(n—1), Dy = B(n—1)y(n—1,n)B(n—1) C B(n) and D3 = B(n—1)y,_1B(n—
1) € B(n). Then Dy N (D3 + D3) = ) and Dy U Dy U D3 = %B(n) by [Wen88,
Prop.2.1(a)]. If S C B(n) let #(S) be the R-submodule of %, (w) spanned by S.
Then

B (w) = B(D1) @D #(D2 U Ds)
and, by the induction hypothesis, 8, ", : Z,_1(w) ~ B,_1(w). Therefore, we have
surjective R-linear maps
PB(D32) — Bp_1(w)sn—1Bn-1(w) and HAB(D3) — Bp_1(w)en—1Bn_1(w).

As B(D3UD3) ~ B(Da) ® B(D3)/{(x,—x)|x € B(D2N D3)}, there is an induced
surjective R-linear map

g(DQ U Dg) — Bn_l(w)sn_an_l(w) + Bn_l(w)en_an_l(w).

Hence, we have a surjective R-linear map %, (w) — By (w). This shows that B, (w)
is spanned by (2n — 1)!! elements. As 6, is surjective and %, (w) is R-free of the
same rank, @, is an isomorphism as desired. O
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Let s;; = by,j), and let e;; = b,,, where ;; is the Brauer diagram with edges
Corollary 2.8 (Nazarov [Naz96, (2.2)]). Suppose that w € R and let Q =

{wa |a >0}, where w, = w(“’T’l)a, for a > 0. Then there is a surjective alge-

bra homomorphism m: W, (Q) — %,,(w) which is determined by

w(S;) =s;, 7w(E;) =e;, and w(X;)=——+ (skj — €xrj),
k=1

for 1 <i<n and1<j<n. Moreover, kerm = (X1 — (251)), so that

Q) (X1 — (451)) = Bu(w).
Notice, in particular, that 7(X;) = “51. To prove this result it is enough to
show that the elements 7(X), for 1 < j < n, satisfy the relations in #,2¥(Q). For
these calculations see [Naz96, Lemma 2.1 and Proposition 2.3].

Fix a Brauer diagram v € B(n). By Proposition 2.7 we can write b, as a word
in the generators sq,...,s8,-1,€1,...,€en—1. Fix such a word for b, and let B, €
"//naff(Q) be the corresponding word in the generators Si,...,S5,-1,F1,..., En_1.
Then 7(B,) = b,.

Given «, 8 € Njj and v € B(n) write

X°B,XP = XM X B XD XD

We want to use these monomials to give a basis of #,2f(Q). The anti-symmetry
relations F;(X; + X;41) = 0, for 1 < ¢ < n, show that the set of all monomials is
not linearly independent. In Theorem 2.12 below we will show that the following
monomials are linearly independent.

Definition 2.9. Suppose that a, 8 € N# and v € B(n). A monomial X*B, X"
in #,2%(Q) is regular if
a) a, = 0 whenever r is the left endpoint of a horizontal edge in the top row
of .
b) if B; # 0 then [ is the left endpoint of a horizontal edge in the bottom row
of ~.

We can view a regular monomial X B, X? as a Brauer diagram if we colour the
horizontal and vertical edges with the non—negative integers using a and .

Following Corollary 2.4 we also make the following definition. (Recall that we
are assuming that 2 is invertible in R.)

Definition 2.10. Let @ = {w, € R|a > 0}. Then Q is admissible if

1 2a+1
Waat1 = 5{ —waa Y (—1)b71Wb71w2a+17b},
b=1

for all a > 0.
By Corollary 2.4 E; is a torsion element if €2 is not admissible.

Remark 2.11. Let y be an indeterminate and consider the generating series
Wi(y) = > u>oway~*. Then the condition for Q2 to be admissible can be writ-

ten as X ) : 1
(W) +v—3) (M) —y—3) = (G —9)(5 +1)

Similar generating functions play an important role in section 4.
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Theorem 2.12 (Nazarov [Naz96, Theorem 4.6]). Suppose R is a com-
mutative ring in which 2 4is a unit and that Q@ = {w,€R|a>0}
is admissible. Then #,%9(Q) is free as an R-module with basis
{X*B,X? | a,B€Np,~veBn), and X*B, X" is reqular}.

Sketch of proof. We have defined the elements of ) to be scalars, but
Nazarov [Naz96] works with a larger algebra %,?\H(Q) generated by elements S,
E;, Xj,forl1<i<mnand1l<j<n,and Q= {@s | @ > 0} where these genera-
tors satisfy the same relations as the corresponding generators of #,2%(€)) except
that the elements of ) are central elements of W(ﬁ) rather than scalars. Hence,

#,24(Q) = V/aﬂ( )/I, where I is the two sided ideal of V/aH(Q) generated by the
elements { W, —w, | @ > 0}.

Nazarov puts a grading on V/aff( ) by setting deg S; = deg E; = deg @, = 0 and
deg X; = 1./3) prove the result it is enough to work with the associated graded
algebra gr(Wnaﬁ((AZ)), where the grading is that induced by the degree function. The
arguments of Lemma 4.4 and Lemma 4.5 from [Naz96] go through without change

for an arbitrary ring, so #,2%(Q) is spanned by

o hy ~ha a,B €N, v € B(n), hg; >0, for i > 1,
{ X°ByX 005" ... withoonly finitely many hao; # 0 }’
where the monomials X*B,X? are all regular (see [Naz96, Theorem 4.6]). This
implies that the regular monomials span #,*(Q2) for any ring R.

To complete the proof we first consider the case where the elements of ' are
indeterminates over Z and we consider the affine Wenzl algebras defined over the
field C(€') and over the ring Z[Q']. We write #3T (') = #*7(V') to emphasize
that #,%(Q)') is defined over the ring R.

Using Nazarov’s algebra Wnaff(ﬁ’ ) and arguing as above, it follows from [Naz96,
Lemma 4.8] that the set of regular monomials are linearly independent when R =
C(€). By the last paragraph, the regular monomials span %1, ,(?'). Using the
natural map 78, ,(Q) — #E{,,(2) it follows that 7, () is free as a
Z[Y']-module and has basis the set of regular monomials. Hence, by a specialization
argument, if R is arbitary ring R and 2 C R then

ngi() WZ[Q/]n( ") ®z101 R,

where we consider R as a Z[Q2']-module by letting w/, € €’ act on R as multiplication
by wg € 2, for a > 0. Hence, ”‘//ﬁfl(ﬂ) is free as an R—-module with basis the set of
regular monomials as claimed. O

We are now ready to define the cyclotomic Nazarov—Wenzl algebras. We assume
henceforth that € is admissible.

Definition 2.13. Fix an integer r > 1 and u = (u1,...,u,) € R". The cy-

clotomic Nazarov—Wenz| algebra #;.,, = #; (1) is the R-algebra #,2%(Q)/((X; —
ul) e (Xl — ur)>

We should write #;. ,(u,2), however, in section 3 we will restrict to the case
where Q is u—admissible (Definition 3.5), which implies that w, is determined by u,
for ¢ > 0. For this reason we omit € from the notation for %, ,(u).

By Corollary 2.8 the Brauer algebras %, (w) are a special case of the cyclotomic
Nazarov-Wenzl algebras corresponding to 7 = 1 and = { w(%5= wlya|q>0}.

By definition there is a surjection m,.,, : #,2#(Q) — #,..,,(u). Abusing notation,
we write S; = m,.,(5:), Ei = mn(Es), X; = mpn(X;), and By = w5 (B,) for
1<i<n,1<j<nand~yeB(n).
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Notice that because (X1 — u1)...(X1 —u,) = 0 in #; ,(u) the cyclotomic
Nazarov—Wenzl algebras have only r unwrapping relations; that is, we only need to
impose the relations E1 X{E; = w.En, for 0 <a <r—1.

Every #;..,(u)-module can be considered as a #,2(Q)-module by inflation along
the surjection ., : #,2(Q) — #,.,(u). In particular, every irreducible Wrn(1)—
module is also an irreducible #,2f(€2)-module. This result has the following con-
verse.

Corollary 2.14. Suppose that R is an algebraically closed field and that M is a
finite dimensional irreducible #,%7(Q)-module. Then M can also be considered as
an irreducible module for some cyclotomic Nazarov-Wenzl algebra #; »(u).

Proof. Let ¢pr(X) be the characteristic polynomial for the action of X1 on M. Since
R is algebraically closed cp(X) = (X —wuy) ... (X — u,), for some us € R. Hence,
(X1—u1)... (X1 —u,) acts as zero on M, so that M is an irreducible representation
for #, »(u), where u = (uy,...,uy). O

In practice this result is not very useful because most of the results in this paper
require that 0 be u—admissible and it is unlikely that 2 will be u—admissible for
all of the parameters u that arise in this way.

For our first result about the cyclotomic Nazarov—Wenzl algebras we prove the
easy half of Theorem A. That is, we show that %, ,(u) is spanned by r"(2n — 1)!l
elements.

Definition 2.15. Suppose that «, 5 € Nj and v € B(n).
a) The monomial X B, X" in #; ,,(u) is regular if X*B., X” is a regular mono-
mial in #2(Q).
b) The monomial X*B,X” in #, ,(u) is r-regular if it is regular and 0 <
i, B; <r,foralll <i<n.

Proposition 2.16. The cyclotomic Nazarov-Wenzl algebra %y () is spanned by
the set of r—regular monomials {X*B,X"}. In particular, if R is a field then

dimp #; n(u) < r"(2n — 1)L

Proof. By Theorem 2.12, and the definitions, #;. ,(u) is spanned by the regular
monomials in %, ,(u). As in the proof of Theorem 2.12, we put a grading on
#yn(u). Then in the associated graded algebra, gr #; ,(u), we have the relation
(X; —u1)--- (X; — ur) = 0. We claim that the regular monomial X*B, X" can
be written as a linear combination of r-regular monomials. If X“B,X fis an r—
regular monomial then there is nothing to prove so we may assume that X B, X?
is not r-regular and, in particular, that |a| + || > 0. Then, using the relation
(Xi —u1)---(X; —ur) = 0 we can subtract a linear combination of r-regular
monomials from X“B,X B to obtain a linear combination of regular elements of
smaller degree. The claim now follows by induction.

Finally, a counting argument shows that the number of r-regular monomials is
equal to r™(2n—1)!l. Therefore, if R is a field then dimpg #; ,(u) < r"(2n—-1)!I. O

The degenerate Hecke algebra 72, ,, (u) of type G(r, 1, n) is the unital associative
R-algebra with generators Ti,...,T,_1,Y1,...,Y, and relations

(Yl—ul)...(Yl—uT):Q TEZL
;1 = 1513, YiY, =Y.,
LY, - YT = —1, YT, —T;Y;41 = —1,

TiTjn Ty = T T T4,
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for1<i<n,1<j<n—1with|i—j| > 1, and 1 <k < n. Therefore there is a
surjective algebra homomorphism %#;.,,(u) — 4. ,(u) determined by

S¢|—>Ti, Ei'—>0, and le—>Y},

for 1 <i<mand1<j<n. (Infact, a special case of Proposition 7.2 below shows
that 42 ,(u) = #;.,(u)/(E1).) Consequently, every irreducible %, ,(u)-module
can be considered as an irreducible #;.,,(u)-module via inflation. These irreducible
modules are precisely the irreducibles upon which F; acts as zero. We record this
fact for future use.

Corollary 2.17. Suppose that R is a field and that M is an irreducible #; ,(u)—
module which is annihilated by some E;. Then M is an irreducible J. , (1) -module.

Proof. As E;1 = 8;Si41E;5:415; and S; is invertible for all j, the two—sided ideal
of #, »(u) generated by E; is the same as the two-sided ideal generated by E;, for
1 <4 < n. The result now follows from the remarks above. O

Recall that the degenerate affine Hecke algebra is a finitely generated module over
its center (see, for example, [Kle05]), which is the ring of the symmetric polynomials
in Y7,...,Y,. This fact, together with Dixmier’s version of Schur’s lemma, implies
that all of the irreducible modules of the degenerate affine Hecke algebra are finite
dimensional. In contrast, the affine Wenzl algebra is not finitely generated over

its center. To see this, we give an example of an infinite dimensional irreducible
#2E(Q)-module.

Example 2.18. Suppose that 2 is admissible and consider V' = @,>0Rv,. Define
an action of #%(Q) on V by Ev, = wnvo, X1vn = Unt1, XUy = —Ups1 and

n—1

Svy, = (_l)nvn — EVp—1 + Z(—l)kwn_k_lvk,
k=0

where ¢ = 1, if n = 1 (mod 2), and ¢ = 0, otherwise. All of the defining relations
except for the relation S? = 1 are easy to check. As S? commutes with X7,
S2vy = vp and X,v, = v,41, we have that S? acts as the identity on V.

Now we suppose that R is an algebraically closed field (in which 2 is invertible),
and we show that V is irreducible. Let W be an irreducible #45*(2)-submodule
of V. Suppose that EW = 0. Then W may be viewed as an irreducible -
module, which implies that W is finite dimensional. In particular, W contains an
eigenvector of X;. This is impossible, as V' does not have such an eigenvector. We
have EW # 0, which implies that vg € W. Hence W = V.

In light of this example, we restrict our attention to finite dimensional 7,2 ()~
modules in what follows.

3. RESTRICTIONS ON ) AND THE IRREDUCIBLE REPRESENTATIONS OF %, o

In this section we explicitly compute the (possible) irreducible representations
of the cyclotomic Nazarov—Wenzl algebras #; 2(u). As a consequence we find a
set of conditions on the parameter set {2 which ensure that #; 2(u) has dimension
3r2 = r"(2n — 1)!! |,—2 when R is a field. In the next section we will see that these
conditions on () are exactly what we need for general n.

The cyclotomic Nazarov—Wenzl algebra #; 2(u) is generated by S, Fy, X1 and
X5. Throughout this section we suppose that R is an algebraically closed field and,
for convenience, we set S = S; and E = Ej.

Proposition 3.1. Suppose that M is an irreducible #;2(u)-module such that
EM = 0. Then either:
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a) M = Rm is one dimensional and the action of #;2(u) is determined by
Sm=em, Em=0, Xim=wum, and Xom = (u;+¢e)m,

where e = £1 and 1 < i < r. In particular, up to isomorphism, there are at
most 2r such representations.
b) M is two dimensional and the action of #r2(u) is given by
S ko (20 B (98), X (508), and Xa (% 0).

Uj—Uj c 1 Uj 0 u;

for some non—zero b,c € R such that bc = (u; — uj)2 —1, where u; # uj. Up
to isomorphism there are at most (;) such representations.

c) M is two dimensional and the action of #r2(u) is given by

S (98), Em(88), X (% 30), and Xow (Y1)

0 wu, 0 u;

Up to isomorphism there are at most r such representations.

Proof. As noted in Corollary 2.17 M is an irreducible . 5(u)-module. The re-
sult now follows from the representation theory of .7 2(u): choose a simultaneous
eigenvector m of R[Y1,Y2]. Then, because 4. 2(u) = R[Y1,Ys] + T1R[Y1,Ys], if M
is not one dimensional then it must be two dimensional. If this is the case, {m, Sm}
is a basis of M. Further, if the eigenvalues for the action Y7 on M are distinct, then
we can simultaneously diagonalize Y7 and Y3. All of our claims now follow. |

Note that since [],_, (Y1 —u;) acts as zero on M, case (c) can only arise if there
exist ¢ # j with u; = u;. The irreducible representations of #;.»(u) upon which E
acts non—trivially take more effort to understand.

Proposition 3.2. Let F be a field in which 2 is invertible and that uy,...,u, are
algebraically independent over F. Let R = F(uq,...,u,) and let #;2(u) be the
cyclotomic Nazarov—Wenzl algebra defined over R, where wg # 0. Then #,2(u)
has a unique irreducible module M such that EM # 0. Moreover, if d = dimg M

then d < r and there exists a basis {my,...,mq} of M and scalars {v1,...,v4} C
{ui,...,u}, with v; # vj when i # j, such that for 1 <i < d the following hold:
a) Xim; =v;m; and Xom; = —v;m;,

b) Em; =v;(mi+ -+ +mq) and

_vi—1 Vi
c) Sm; = %0, mi—l—;w_'_vjmj,
JF1

where v; = (2v; — (—1)%) Ur’——v] Moreover, w, = Z?:l viy;, for all a > 0;
1<j<a Y
J#i
and, in particular,
) 2(vr -+ wa), if d is even,
20+ -4 va) + 1, ifd s odd.

Conversely, if w, = Z?Zl v§yj, for all a > 0, then (a)-(c) define a #;2(u)-

module M with EM # 0.

Proof. Suppose that M is an irreducible #;. o,—module such that EM # 0. Note that
M is finite dimensional. Let d = dimp M. We first show that (a)—(c) hold. Since
U1, ..., U, are pairwise distinct, we can fix a basis {m1,...,mgq} of M consisting of
eigenvectors for X;. Write Xym; = v;m;, for some v; € {uy, -+ ,u}.

Set f = WLOE This is a non—zero idempotent and fM # 0 since EM # 0.

Fix an element 0 # m € fM. Then Em = wom and Sm = m (since SE = E).
As 0 = (X1 + X2)Em = (X1 + X2)wom, we have (X7 + X2)m = 0. However,
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X1 + X is central in #; 2, so X7 + X acts as a scalar on M by Schur’s lemma.
Hence, Xom; = —X1m; = —v;my, for i = 1,...,d, proving (a).

We claim that {m, X1m, ..., X{i_lm} is a basis of M. To see this, for any a > 0
let M, be the R—submodule of M spanned by {m,Xim,..., X{m}. Notice that
M, is closed under left multiplication by E since if k£ > 0 then

1
EXFm = EX¥fm = —EX*Em = £ Em = wem.
wo wo
Also, by Lemma 2.3,

SXim = (X§S+Y X7 HE - DX )m
b=1

* 1
= Xsm+) (Xg’lEXf’bEw—Om — XXt m)
b=1

=Xgm+ Y (wz);ng‘lEm — X0 XL l)
b=1

= (~1)"XIm+ 3 ()" wep X m = (<)X )
b=1

So, M, is closed under multiplication by S. Choose a > 0 to be minimal such
that {m, Xym,..., X** 1 m} is not linearly independent. Since X{**m € M,, M,
is closed under multiplication by X;. Hence, M, = M since M is irreducible. By
counting dimensions, M = My_1, proving the claim.

Next we show that EM = Rm. Suppose that m’ = 2%+ ¢;Xim € EM. Then

] = = =
m = —FEm' = — GEXim=— G EXIEm = —( ciwi)m,
1= Gy g = g it = (0

since Fa = wopa whenever a € FM. Hence, EM = Rm, as claimed.
Recall that we have fixed a basis {mq,...,mq} of M. Write m = Zle r;my, for
some r; € R. Suppose that r; = 0 for some i. Then

H (Xl—vj)-m=0.

1<j<d
J#i

This contradicts the linear independence of {m, X;m, ..., X fflm}; hence, r; # 0
for ¢ = 1,...,d. By rescaling the m;, if necessary, we can and do assume that
m =mj + -+ my in the following.

By the argument of the last paragraph, all of the eigenvalues {v1,...,v4} of m
must be distinet. This also shows that d = dim M < r and that {vy,...,v4} are
algebraically independent (since we are assuming that i, ..., u, are algebraically

independent). In particular, v; and v; +v;, for ¢ # j, are invertible. So the formula
in part (c) makes sense.
As EM = Rm, we can define elements v; € R by
Em; =~vim =y (my + -+ myg), fori=1,...,d

Write Sm; = ijl C§i)mj. Then X;5m; — SXam; = (E — 1)m; reads

d d
> C§Z)Ujmj +oi () c§1)mj) =7i(my+ - +mq) —m;.
=1 =1
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Thus, (v; + v;)e?) = ~; — 6;; and we have
9 J ’Y J

J
7i—1 Vi
Sm; = i ;.
m; 50; m; + Z " m;
J#i

This proves (c).
Next we prove the formula for v; given in (b). Since F = SE we find that

d d
‘ o o 7 =1 Ve .
%ng—Emz—SEmz—%Z{ S0 T ‘Uj+vk}mg,
Jj=1 Jj=1 k#j

for i = 1,...,r. Note that some ~; is non-zero, since EM # 0. Thus, comparing
the coefficient of m; on both sides shows that

d

e gy L,
— v + vg 2v;
forj=1,...,d.
We claim that det (# = (HZUZ) H u)g. To see this
v; + v; 1<W<d v; + v ’

i>]
observe that

1
2
H%Z H v; +v5)° det (Ui iy )1gm§d
i>7
is a symmetric polynomlal in v1,...,vq which is divisible by v; —v; for ¢ # j. This

shows that this determinant is a constant multiple of [, vj)2. To determine

1>7 (

the constant, we multiply det ( by vy, set v, = co and use induction.

m)l<z j<d

By the last paragraph, the matrix ( is invertible, so 71,...,74 are

Vi t+v; )1<z ,7<d
uniquely determined. Hence, to prove the formula for ; it suffices to show that

Z2Uk—(—1)dHUk+Ui :1+i
vj + v Vg — 20,

k=1 i#k
for 1 <j <d. Let f(2) = % Hle zf—f}; and view f(z) as an element of the

function field of the projective line defined over F'(v1,...,v4). Then, the left hand
side can be interpreted as the sum ZZ:1 Res,—, f(z)dz, where Res,—, f(2)dz is
the residue of f(z) at v, if v # oo, and it is the residue of — % f(1) at 0, if v = 0o
Thus, the residue theorem for complete non—singular curves implies that

d
v, — (—1)4 ; )
Z v — (—1) H Vg + U — —( Res f(z)dz+Resf(z)dz) =1+—,
= Y + vk h Vi — V4 =00 R 20,

as required. Hence, we have shown that, for 1 < j < d,

Vi + Uk

v = (205 — (=1)%) H h
Kty 4k

so (b) is proved. (For a combinatorial proof see Proposition 4.21(a) below.)

Now, since Em = wom and m = ) _._; m,;, we have that wy = Zle ~;. Similarly,
we have that w, = Y7, v§v; because

WM = Ya B = —EXfEm =FEX{m
wo wo

d d d
Z EX{m,; = Z v Em; = (Z vf%)m
i=1 i=1 i=1
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We now show that

d . .
wo = E Vi = (’U]_ + + Ud)’ 1 ?S even,
i— 201+ +wg) + 1, ifdis odd.

To evaluate Zle ~i, we consider g(z) = 2= 22 2217 ]_[Z | % and interpret the sum

as 2?21 Res;=y, g(z)dz. Then the residue theorem gives the desired formula for wq.

We next show that M is uniquely determined, up to isomorphism. Suppose
that %, ,(u) has another irreducible module of dimension d’ upon which e acts
non—trivially. Then, by the argument above,

200 + -+ vY), if d' is even,
wop =
0 2wy + -+ )+ 1, if d is odd,
for some v{,...,v} C {ui,...,u}. As we are assuming that wy,...,u, are al-

gebraically independent, this forces d’ = d and v} = V(i)o, for some o € &4 and
1 <4 < d. Hence, by (a)—(c), M = M’ as required.

Finally, it remains to verify that (a)—(c) define a representation of %, 2(u) when-

ever w, = Ele vly;, for @ > 0 and v; as above. It is easy to check that the

action respects the relations E(X; + X2) = 0 = (X1 + X2)FE, EX{E = w,F and
X1S—-SXo = F—-1= SX1 X5S. That SE = FE and ES = E on M, fol-

lows from the identity Y¢_, e = 1 ﬁ proved above. We now prove that

52 = 1. Observe that S? commutes with X; when acting on M. As the v; are
pairwise distinct we have S2m1 = clml7 for some ¢; € R. Explicit computation

shows that ¢; = 2% + % ZJ 1 m Computing the residues of h(z)dz, when
d
h(z) = 22(z+v1,)2 Hk 1 jf;, proves that ¢; =1, for 1 <17 < d. O

Theorem 3.3. Let F be a field in which 2 is invertible and that uy,...,u, are
algebraically independent over F. Let R = F(uy,...,u,) and suppose that ¥, 2(u)
is a split semisimple R-algebra and that wg # 0. Then #;2(u) has dimension
3r2 = r"(2n — D! |,,—2 if and only if, for all a > 0,

T
_ a
wa“§:1%7ﬁ
j=1

Us + Uj

where v; = (2u; — (—1)") IR
]

1<j<r

i#i
Proof. We have constructed all the irreducible %/ o-modules in Propositions 3.1
and 3.2 above. Under our assumptions, Proposition 3.1 implies that #; 2(u) has
(a) 2r pairwise non-isomorphic one dimensional representations and (b) (}) pair-
wise non-isomorphic two dimensional representations. Note that case (c) from
Proposition 3.1 does not occur since uq,...,u, are pairwise distinct. Further,
Proposition 3.2 implies that #; 2(u) has a unique irreducible representation M
such that EM # 0 and, moreover, if d = dim M then 1 < d < r. Hence, by the
Wedderburn—Artin theorem we have

dim ¥ 5(u) = 2r +4(3) + d* = 2% + &%,

where d = r if and only if w,, for a > 0, is given by the formulae in the statement of
the Theorem. Hence, dim #;.2(u) = 3r? if and only if d = r. The result follows. O
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Recall that Schur’s ¢—functions g, = ¢.(x) in the indeterminates x =
(1,...,27) [Mac95, p. 250] are defined by the equation

T

I1 1 J_riz = > ax)y".

i=1 a>0

Note that ¢,(x) is a polynomial in x, for all a > 0.

Lemma 3.4. Assume that R is an integral domain and that 2 is invertible in R.
Suppose that u € R", with u; —uj # 0 whenever i # j. Let F' be the quotient field
of R and for a > 0 define

T

— L)) Ui+ Uy
wa—Z(2ul (—=1)")ug H p— S
=1 1<5<r
J#i
as in Theorem 3.3. Then wq = qap1(0n) — 3(—1)"qa(w) + $640. In particular,
wq € R.

Proof. If a = 0 then the result follows from Proposition 3.2, so we can assume
that @ > 0. Let f(z) = 1207122 — (-1)") [, % Then w, can be interpreted
as > Res,—y, f(2)dz = —Res,—« f(z) dz. Calculating the residue of f(z)dz at
z = 00 now shows that wa = gay1(u) — 3(—1)"qa(u) + 2840. (See [Mac95, (2.9),
p. 209] for a more direct proof.) Hence, w, € R since gy(x) € R[x], for b>0. O

We want the cyclotomic Nazarov—Wenzl algebras to be “cyclotomic” generaliza-
tions of the Brauer algebras. In particular, we want them to be free R—modules
of rank 7™(2n — 1)!. Theorem 3.3 gives sufficient conditions on Q@ = {w, |a >0}
for #; 2(u) to have dimension 7™(2n — 1)!! when R is an algebraically closed field
and n = 2. Consequently, in our study of #;. ,,(u) we will require that Q have the
following property.

Definition 3.5. Let Q = {w, |a >0} C R and suppose that u € R". Then Q is

u-admissible if w, = gor1(u) — $(—1)"qa () + 2840, for a > 0.

Remark 3.6. Let R = Z[u] where u1,...,u, are indeterminates. Assume that
each wg, for @ > 0, is a polynomial in u and that wy # 0. Then, by Theorem 3.3
and Theorems 5.3 and 7.17 below, €2 is u-admissible if and only if

a) Wrn(Q) @z Q(u) is semisimple, and,

b) #,n(Q) is a free R-module of rank r™(2n — 1)!1,
for all n > 0.

Lemma 3.7. Supposgvthat u € R" and that Q is u—admissible. Let y be an inde-
terminate and define Wi (y) = > ,soway~*. Then

__ 1 1 Uy
- - = _ _17‘ .
Wiy) +y -5 = -5(-1) )i|:|1 P—

Proof. By definition, Wi (y) = 24350 (Gat1(0) = 3(=1)"ge(u))y—*. Now expand
this equation using the definition of the Schur ¢—functions. (]

Corollary 3.8. Suppose that € is u—admissible. Then Q is admissible.

Proof. First suppose that x = (z1,...,x,) are algebraically independent and let
Q={ws|a>0}, where w, = ga+1(x) — 3(=1)"¢a(x) + 3840, for a > 0. Then



16 SUSUMU ARIKI, ANDREW MATHAS, AND HEBING RUI

is x—admissible by definition and hence admissible by Corollary 2.4 and Proposi-
tion 3.2. Therefore, by the definition of admissibility we have the following poly-
nomial identity in z1,...,z,
1 2a+1
Waat1 = 5{ — waq + ; (_l)b_lwb71w2a+1fb}'

The general case now follows by specializing x; = u;, for 1 <i <r.
For a second proof, note that if 2 is u—admissible then

—~ 1, =~ 1 1 1
(Wiy) +y— 5)(W1(—Z/) -y - 5) =G ~v(E Ty
by Lemma 3.7. Hence, ) is admissible by Remark 2.11. O

4. THE SEMINORMAL REPRESENTATIONS OF %, (u)

In this section, we will give an explicit description of the irreducible represen-
tations of #;.,(u) in the special case when R is an field of characteristic greater
than 2n and when the parameters u satisfy some rather technical assumptions; see
Theorem 4.13.

The semisimple irreducible representations of the Brauer algebra 4,,(w) are la-
belled by partitions of n—2m, where 0 < m < | %], and a basis of the representation
indexed by the partition ) is indexed by the set of updown A-tableaux. Analogously,
we might expect that the semisimple irreducible representations of #;.,,(u) should
be indexed by the multipartitions of n — 2m, with the bases of these modules being
indexed by the updown A—tableaux, where A is a multipartition. We will see that
this is the case. We begin by defining these combinatorial objects.

Recall that a partition of m is a sequence of weakly decreasing of non—negative
integers 7 = (71,72,...) such that |7| :== 74 + 7 + -+ = m. Similarly, an r—
multipartition of m, or more simply a multipartition, is an ordered r—tuple A =
AD XD of partitions A®), with [A] := AW | + - £ (A = m. If Xis a
multipartition of m then we write A = m.

If A and p are two multipartitions we say that p is obtained from A by adding
a box if there exists a pair (i,s) such that p{® = A® 4+ 1 and ,u§t> = /\g-t) for
(j,t) # (i,s). In this situation we will also say that A is obtained from p by
removing a box and we write A C p and p\ A = (4, )\gs), s). We will also say that

the triple (4, )\ES), s) is an addable node of A and a removable node of . Note that
il = A+ 1.

Fix an integer m with 0 < m < [§] and let A be a multipartition of n — 2m.
An n—updown A—tableau, or more simply an updown A-tableau, is a sequence u =
(u1,ug,...,uy,) of multipartitions where u,, = A and the multipartition u; is obtained
from u;_1 by either adding or removing a box, for ¢ = 1,...,n. For convenience
we set 1y equal to the empty multipartition (). Let .Z7%4()\) be the set of updown
A-tableaux of n. Note that A\ is a multipartition of n — 2m and each element of
T%4()\) is an n-tuple of multipartitions, so the n is necessary in this notation.

In the special case when A is a multipartition of n (so m = 0), there is a natural
bijection between the set of n—updown A—tableaux and the set of standard A\—
tableaux in the sense of [DJM99]. This is the origin of the terminology of updown
A-tableaux. If \ is a multipartition of n we set 7 5'4(\) = Z%4()\) and refer to the
elements of .7%'%()\) as standard \-tableaux.

Definition 4.1. Suppose 1 < k < n. Define an equivalence relation L on TUA(N)
by declaring that u L gif u; = t; whenever 1 < j <n and j # k, for t,u € Z4¢(N).

The following result is an immediate consequence of Definition 4.1.
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Lemma 4.2. Suppose s € T Y (\) with ty_1 = tysr1. Then there is a bijection
between the set of all addable and removable nodes of ti—1 and the set of u € T%4(\)

with u i t.

Let A be a multipartition and suppose that u is an n—updown A—tableaux. For
k = 2,...,n the mutipartitions u; and ui_; differ by exactly one box; so either
up C Ug—1 Or ug_1 C u,. We define the content of & in u to be the scalar ¢, (k) € R
given by

i_j_usa ifukfl\uk = (imja 8)’
More generally, if « = (i, , s) is an addable node of A we define ¢(a) = us + 75 — @
and if « is a removable node of A we set c(a) = —(us + j —1).
The key property of contents that we need to construct the seminormal rep-

resentations is the following. Note that we are not (yet) assuming that R is a
field.

Definition 4.3. The parameters u = (uq, ..., u,) are generic for #; ,,(u) if when-
ever there exists d € Z such that either u; Zu; =d-1p and i # j, or 2u; =d - 1p
then |d| > 2n.

Cu(k) — {.7 -1 +u87 if uk\Uk,]_ = (Zm?a 8)7

For example, u is generic for #; ,,(u) if u1,...,u, are algebraically independent
over a subfield of R.

Lemma 4.4. Suppose that the parameters u are generic for #,,(u) and that
char R > 2n. Let A be a multipartition of n — 2m, where 0 < m < [Z], and
suppose that t,u € Z 4(N\). Then

a) t=uif and only if c((k) = cy(k), for k=1,...,n;

b) if 1 <k <mn then ci(k) — ce(k+ 1) #0; and,

¢) if tk—1 = tir1 then c(k) £ cy(k) # 0, whenever u Kt and u #t.

Proof. Part (a) follows by induction on n. The key point is that our assumptions
imply that the contents of the addable and removable nodes in A are distinct so a A—
tableau t is uniquely determined by the sequence of contents c(k), for k =1,...,n.
The same argument proves parts (b) and (c). O

Until further notice we fix an integer m with 0 < m < [%] and we fix a multi-
partition A of n — 2m.

Motivated by [Naz96], we introduce the following rational functions in an inde-
terminate y. These functions will play a key role in the construction of seminormal
representations of #;. ,(u).

Definition 4.5. Suppose that t € Z%4(\). For 1 < k < n, define rational functions
Wk (y7 t) by

1 1 y+ c(a)
t = - — _— = —1 T _—
Wiy, ) = 5 —y+ (= 5( ))Uy_c(a),
where o runs over the addable and removable nodes of the multipartition t;_1.

The rational functions Wy (y,t) are related to the combinatorics above by the
following result. If f(y) is a rational function and @ € R then we write Resy=q f(y)
for the residue of f(y) at y = a.

Lemma 4.6. Suppose that u is generic and char R > 2n. Let t € Z*4()\) and
1<k<n. Then

Wiy, H) _ Z( Res Wk(yat)) .
~ y

Y y=cla) Y —c(a)’

where o runs over the addable and removable nodes of t;_1.
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Proof. As the c¢(«) are pairwise distinct, we can certainly write

Wi (ya Wk ya ) 1
a+ — + ( es ) : ;
y Z y=c(e) Y y — (@)
for some a,b € R, where a runs over the addable and removable nodes of t;_1.
Now, a = W l|y=oo= 0. Let ¢ be the number of addable and removable nodes of

t;—1. Since a partition always has an odd number of addable and removable nodes,
we have that (—1)¢ = (—1)". Therefore,

b-pg M = - coe) o

as we needed to show. O

We are now ready to define the matrices which make up the seminormal form.

Definition 4.7. Let A be a multipartition and k& an integer with 1 < k < n.
Suppose that t and u are updown A-tableaux in Z,%¢()\) such that t;_1 = tri1.
Then we define the scalars e, (k) € R by

Res M, if t=u,
y=c(k) Y
ew(k) = 4\ feq(k)/eau(k), ift#uandult,
0, otherwise.

(In (4.12) below we will fix the choice of square roots /e (k), for t € Z%¢(\) and
1<k<n)

Wiy, t) +y — %
Note that when c¢(k) # 0 then ey (k) = Re(sk) %
Y=cy

We remark that if t,_1 # t;11 then the definition of ey (k) still makes sense,
however, we do not define ey (k) in this case as we will not need it (see Theorem 4.13
below).

It follows from Definition 4.5 that
ci(k) + c(o)

(4.8) ew(k) = (2e(k) — (1)) I (k) —cla)

where « runs over all addable and removable nodes of t;_1 with ¢(«) # ¢¢(k). Note

that Lemma 4.4 now implies that if u X ¢ then ew (k) #0, for 1 < k < n. This will
be used many times below. We also observe that Lemma 4.6 can be restated as

Wi (y, t ewn(k
(49) k;y ):Zy—c(u()k)'

Given two partitions t and u write t © u = « if either u C t and t\ u = a, or
tCuandu\t=a.

Definition 4.10. Let t € Z"¢(\) and suppose that t;_; # tx. 1, for some k with
1<k<n.
a) We define

1
k)= ————7—— d  b(k) =1 —a(k)?.
ety e o M A (k)
(We fix the choice of square root for b¢(k) in (4.12) below. Note that c¢(k +
1) — ¢¢(k) # 0 by Lemma 4.4(b).)
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b) If t, © ty—1 and tx+1 Ot are in different rows and in different columns then
we define Sit to be the updown A-tableau

Spt=(t, - s e, U, bogr, -, 6)

where 1y, is the multipartition which is uniquely determined by the conditions
Up Ot = o1 Oty and ty_1 O up = t, © tyy1. If the nodes t; © 1 and
tp+1 © ti are both in the same row, or both in the same column, then Syt is
not defined.

We remark that if t_1 = t;41 then the definitions of a((k) and b¢(k) both make
sense, however, we do not define them in this case as we will never need them (see
Theorem 4.13 below). Moreover, the condition tx_; # txy1 is crucial in proving
Lemma 4.11(b) below. (In fact, if we drop this condition then Lemma 4.11(b) is
not correct.)

We leave the following Lemma as an exercise to help the reader familiarize them-
selves with the definitions.

Lemma 4.11. Suppose that t € Z,*4()\) and 1 < k < n. Then:
a) If Sitis defined then ci(k) = cs, ((k+1) and ci(k+1) = cg,1(k); consequently,
&Skt(k) = —Clt(k).
b) If Skt is not defined then a¢(k) = £1 and be(k) = 0.

Finally, if t4_1 = tx41 and u £ t, where 1 < k < n, we set

Ctu (k) — Oty

RGE )

Note that c¢¢(k) + cy(k) # 0 by Lemma 4.4.
We will assume that we have chosen the square roots in the definitions of b¢(k)
and e, (k) so that the following equalities hold.

Assumption 4.12 (Root conditions). We assume that the ring R is large enough
so that \/ew(k) € R and bi(k) = /1 —a((k)2 € R, for all t,tu € F*4()\) and
1 <k < n, and that the following equalities hold:
a) If ty—1 # ter1 and Syt is defined then bg, (k) = bi(k).
b) If ti_y # tisy and t ~u, where |k — 1| > 1, then by(k) = by (k).
c) Ifti—1 # tpy1, te # tppo and Spt and Spq1t are both defined then bs, (k) =
bs,e(k+1).
d) If ts—1 = tgr1 and tx = tgp1o then \/eu(k)\/eu(/f +1)=1.
e) If ty—1 = tiq1, up—1 = upp1 and ey (k) = ey (k) then \/eu(k) = \/euu(k).
f) If ke = tiq1, te = tgo and u e t, o £ t with Sgu and Sk both
defined and Spu = Sip110 then by(k)v/euw(k +1) = by (k + 1)\/€nw (k).

In Lemma 5.4 below we show that if R = R then it is possible to choose u so
that the Root Condition is satisfied.
Assuming (4.12) we can now give the formulas for the seminormal representations

of #, n(u).

Theorem 4.13. Suppose that R is a field such that char R > 2n and that the root
conditions (4.12) hold in R. Assume that u is generic for #, ,(u). Let A(X) be the
R-vector space with basis { v | t € Z4(\) }. Then A(X) becomes a #..,(u)—module
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Ma
Z st (k)vu, if t—1 = tiya,
o Skvp = uke
at(k)'l]t + bl(k)vsklv Zf tk—l % tk—‘rlv
Zetu(k)vu, if th—1 =t
o Frvg= ¢ Ly

07 Zf tp—1 3& tk-‘rlv
o Xjv = ce(j)vy,
for1<k <mnandl <j<n and where we set vg,t = 0 if Skt is not defined.

Definition 4.14. We call A(\) a seminormal representation of #,. ,(u).

We note that the action of the operators Ej and Sy on A()\), with respect to
the basis {v¢ | t € Z44()\) }, are given by symmetric matrices, for 0 < k < n.

For the remainder of this section we assume that R is an algebraically closed field
with char R > 2n and that the parameters u are generic for #; ,(u) and satisfy
(4.12). The proof of Theorem 4.13 will occupy the rest of this section. Our strategy
is to use the rational functions Wy (t, k) to verify that the action that we have just
defined of #;. ,,(u) on A(\) respects all of the relations in #;. ,(u).

Throughout this section it will be convenient to work with formal (infinite) linear
combinations of elements of A(A) and %#. ,,(u); alternatively, the reader may prefer
to think that we have extended our coefficient ring from R to R((y~!)), where y is
an indeterminate over R. In fact, at times we will need to work with formal series
involving more than one indeterminate.

If A is an algebra we let Z(A) be its center.

Lemma 4.15. Suppose k > 0 and that a > 0. Then there exist elements w,(ca) m
Z(%,k,l(u)) NR[X1,...,Xk—1] such that

E X[ E), = w\ " Ej,

and the degree of w,ia), as a polynomial in Xq,..., Xg_1, is less than or equal to a.
Moreover, the generating series Wy, (y) = ZaZO w,ia)y_a satisfies

= I (y+Xe)? —1(y—Xp)® = 1

Wisi(ly) = —y+ -+ (Wk(y)+y——).

2 (y—Xp)? = 1(y+Xp)? 2
Proof. Observe that - Ex X Ery™* = Ep g,

enough to argue by induction on k to show that Fj nyk Ey = %Wk(y)Ek, where

FE, so to prove the Lemma it is

Wk(y) and its coefficients are as above.
If £ =1 then there is nothing to prove. Assume than that & > 1. Starting with
the identity
1 1 1 1 1
Sk + Ey -
y+Xe y—Xe  (y— X))y — Xit1)

Nazarov [Naz96, Prop. 4.2] proves that Fj41 y_leHEkH = %Wk.}rl(y)EkJrl, where

Sk =
y—Xg y—Xpn

Wk+1 (y) satisfies the recurrence relation above. Nazarov assumes that he is working
over the complex field (so, R = C), however, his arguments are valid over an
arbitrary ring. Nazarov also proves that if R = C then the coefficients of Wk (y)
are central in #; ;_1(u). We modify Nazarov’s arguments to establish centrality
for fields of positive characteristic.
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By induction we may assume that the coefficients of Wk(y) commute with
Ey,...,Er_o and Si,...,Sp_2, so it is enough to show that the coefficients of

Wi41(y) commute with Ey_1 and Si_1. Since k > 2 we can write

We1(y) +y — 3 X X)) -1y = Xe) (y+ Xp1)? =1 (y — Xp1)?

Wiay)+y—3 Y =X =1+ Xe)? (y = Xp1)? =1 (y + Xp1)?

As Ej_1 and Si_1 commute with %, ;_2(u) it is enough to show that Ek,1§ =
$Er—1 and Sy_15 = $Sk1. Now, Bx_155 = $ B,y if and only if VE, 1 X =
XEy_1), and this follows easily using relation 2.1(i).

To prove that S;_1 commutes with % let

Z G — (1 + Xk—lz)(l + sz)
= m (1— Xk 12)(1 — Xp2)’
where z = —y~t or z = (y £ 1)7!. Then ag = 1, a1 = 2(Xp_1 + Xy), a2 =
2(Xp-1 + Xk)2 and
am = (Xpk—1+ Xg)am-1 — X1 Xk@m—2, form > 3.
Consequently, if m > 1 then a,, = (Xx—1 + Xi)fm(Xk—1,Xk), for some f,, €
R[X}-1,Xk]. Now, relation 2.1(e) implies that S;_1 and X;_; + X} commute.
Therefore, by induction,
Sk—10m = (Xp—1 + Xi)Sk—1am—1 — (Xp—1 XpSk—1 + Ep—1 X — XpEp—1)am—2
= (Xp—1 + Xp)am—1k—1 — Xp—1 Xp@pm—25k_1

= amSk—l
as required.
Finally, it follows from the recurrence relation that w,(ca) € R[X1,...,Xk-1] and
that w,(f) has total degree at most a as a polynomial in Xq,..., Xj_1. O

Remark 4.16. To prove that the w,(ca) € Z("//nk,l(u)) Nazarov uses the identity

—2a—1
+ Xp—1)(y + Xk)
o(x 20+l | x2a+1 Y _ (y .
eXp(;) K+ ) T ) = X = Xo)

However, this formula is only valid in characteristic zero.

By Lemma 4.15, we have

— 1 ~ 1 . X;)? -1 - Xi)®
Wi(y) +y -5 = (Wl(y)+y—§) 1_[1 84——&;2—1 . EZ‘FXZ;?.

1=

As the right hand side acts on A(\) as multiplication by a scalar we can define

Wi(y,t) € R((y™")) by Wi(y)ve = Wi(y, v
The next Proposition gives a representation theoretic interpretation of the ra-
tional functions Wy (y,t) which were introduced in Definition 4.5.

Proposition 4.17. Suppose that t € Z*%(\) and that 1 <k <n. Then

Proof. As Q is u-admissible, by Lemma 3.7 we have

T

—~ 1 1 Y+ U
4% t — == ——1T+1||—.
l(ya)"‘y ) (y+2( ) )t:1y_ut
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Consequently, we can rewrite the definition of Wk(y, t) as

TIPS DR VAR JURRT) -
Wils:t)+y =3 =300 =5 =G ramr

If ¢ (i) = —c(§), for some 1 <4,j <k —1 with ¢ # j, then

a1 -a@)? Gral)? -1 - al)?
W—al)? -1 Gral) G-aU)?—1 +al)?

Hence, in computing f/[v/k(y, t) we can assume that t = (t1,...,t;m, ..., th—1,. .., tn)
where m = |tg—1], t;, = tg—1 and ¢(i) + (i + 1) = 0 for m < i < k — 1 with
i —m odd (so t;y; is obtained by adding a box to t;, for 1 < i < m, and t; = t_1
for m <i < k —1 with i —m even). Let t;_; = (u™, @, ..., u()). Fix t with
1 <t < r and, abusing notation, write 8 € ,u,(f) to indicate that 8 = (k: j,t) is a

node in row k of u®. Let p; = (k,1,t), po = (k,,u,gf),t) = (k, ,u )41, t) and
ps = (k+1,1,t). Then
[[ LHer -1 ooy
(y—=d(@)? -1 (y+(B)>

=1

pep?
- 1I y—c(B) y—cB) y+(dB)+)y+(d(B) 1)
Pt (@ +Dy—(dB)-1) y+dP) y+c(B)
_y—d)y—cp2)y+c(ps) y+c(pa)
y—c(ps)y —(pa) y + /(p1) y + ¢ (p2)
_y—dp)y—cp2)y+ps)y+c(ps)
y+c(p1)y+cp2)y—c(ps)y—c(ps)’

where for 8 = (a,b,t) we write ¢/(3) = b — a + u;. Taking the product over all k
shows that

(y +ut) (y+cB)? -1 (y- y+ca
(y — ug) H (y—C(ﬂ))2—1 (y+c H y —c(@)

where, in the first product, every node is considered to be an addable node and, in
the second product, o runs over the addable and removable nodes of ). Hence,

Beu®

—~ 1 y+ c(a
Wiy, ) +y -5 = y——— II p—
where o« runs over the addable and removable nodes of ty_1 = (u(l), cop). O

Corollary 4.18. Suppose that t € Z,"4(\) and that 1 <k < n and a > 0. Then
Ep X0 Epv = w\™ Eguy.

Proof. If tx,_1 # txy1 then EkX,iEkvt =0 = w,(f)Ekvt, so we may assume that

th_1 = tk+1. Now, by definition, ey, (k) = \/ew(k)v/ewu (k). So
E Ekvt B, Z — etu Yo, = Z Z — eum(k)etu(lﬂ)vm
u~t

m~u u~t

<Z ) euu(k)> et (k) Vro

mwt u~t

= Wiy, ) Exve = Wi (y, t) By,
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by Proposition 4.17. By Lemma 4.15, w,(ca) € R[Xy,...,Xk_1], so w,g )vt = w,(C )vu

k
whenever t ~ u. Therefore,

Ek'Ut Zetu Wk Z/7 'Uu = Zetu Wk(y,u)vu

UNt u~t

W) ew(k)vy = Wi(y)Exv.
uht

Ey

Y-

Comparing the coefficient of y~%, for a > 0, on both sides of the last equation
proves the Corollary. ]

Lemma 4.19. Suppose that t € T (\) with t,_1 = tyr1 and t, = ti2. Then
ett(k)ett(k + ].) =1.

Proof. The recursion formula of Lemma 4.15 and Proposition 4.17 show that

— C¢ k 2 C¢ k 2
o~ - DA 2

and, by definition,

1 y+cuk
Wiy, ) +y— = =
Ky +y =3 N —= ()’

u~t

Thus,

(k) (y + cu(k))* — 1
(F) (y — c(k))? — 1

Y+ cu(k)
H - cu(k)

ult u;ﬁt

Wi (y,t) +y — 3 :(1_ i(—l) ) Y —c
Yy 2y Y+

Taking residues at y = —c¢¢(k) = ¢¢(k + 1) on both sides of this equation, we have

~2¢(k) + (—1)" ci(k) — ey (k)
eq(k+1)= de(k)2 — 1 kH (k) + cu (k)

u~tuFt

ci(k) — eyu(k) 1

1
ZCt(lﬁ) — (_l)r H Ct(lf) + Cu(lf) eu(k) '

uit,ugﬁt

where the last equality uses (4.8). O

We remark that the condition t; = t;42 is needed in Lemma 4.19 only because
ewt(k + 1) is not defined without this assumption.

Lemma 4.20. Fiz an integer k with 1 < k < n — 1 and suppose that t,u,to €
TU(N) are updown \—tableauz such that ty_1 = tiy1, ty = tyio, U e t, to Kt and
that Siu and Sky1t0 are both defined with Sxu = Sky1t0. Then by (k)% ey (k +1) =
b (k + 1) %€ (k).

Proof. Let 0 =t © ty—1 and 7 = ug41 © t. Spu = Sky1t0 implies 7 = 1oy S 1.
Then, by (4.8),
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where a runs over the addable and removable nodes of t;_; = w,_; with c(a) #
¢(7) and, similarly,

ewn(k+1) = (2c(r) = (=D ] %

where o runs over all addable and removable nodes of t;, = uy with c(a) # ¢(7).
_ 3 Wi (y,0)+y—3 o . Wi (y,t)+y—3
We have e (k) = Resy—c(r) —,— = and euu(k+1) = Resy—c(r) ———F—2.

Yy
Further, by Lemma 4.15 and Proposition 4.17, we have

c(0))? — —¢(0))?
Wk+1(y7f)+y_%:(Wk(y’t)+y_l)8jcgcr;;2—ig*‘i 3 '

2

Q
)
=

[V}

It follows that
ew(b+1)  (c(0) +e(r)? =1 (c(r) —c(0))? _ bu(k+1)?
eron () (c(o) +c(r)? (c(r) —c(0))* =1 bu(k)?
where the last equality follows from the definitions because (¢, (k), ey (k+1), cy(k +
2)) = (¢(0),e(7), —c(7)) and (¢ (K), e (k+1), e (k +2)) = (¢(7), —c(7), ¢(0)). O

The following combinatorial identities will be used in the proof of Theorem 4.13.

Proposition 4.21. Suppose that t,u’ € T 4(\) with tj_1 = tpr1, ty 7 teo, W K
and v # t, where 1 <k <n—1. Let t € Z"(\) be the updown tableau which

is uniquely determined by the conditions t £t and t = tupo. Then the following
identities hold:

eun (k) _ 1
Ll) Z Ct(l{?) + Cu(k) =1 + 2Ct(k‘),

euu(k) . 1 1 1
D) 2l R (1- 4ct(k)2) cw(®) T 2e(R)?

e cuulk) 1
) %:t (ce(k) + cu(k))(cu(k) + e (k) 2c(k)ew (k)

Proof. Tt follows from (4.9) and Definition 4.7 that

Wi (y, t) _ euu (k)
Y - Zk y — cu(k) .

u~t
Evaluating both sides at y = —c¢(k) and using (4.5) gives (a).
By Proposition 4.17 and Corollary 4.18 we have
1 1 Wi t Wi t
Ek Ek;vt: ( k(y7 ) _ k(vﬁ )
(y — Xi) (v — Xy) v—y\ y v
Comparing the coefficients of v¢ on both sides of this equation we obtain
Z euu(k) _ 1 { Wk (ya t) _ Wk (’Ua t) }
y—cu(k))(v—cu(k)) v—yl y v

)Ek’l}t.

u~t

Setting y = —c¢(k) we obtain

euu(k) . Wk 1 1 1
Z; (@) + cal)) (0 —ca(k)) o+ culk {( 1-g)+ (2ct(1€) +%>}
_ 2u—(=1) v+ cy(k) 1
= (ot ct(k)) H v—calk) | 2e(k)0

u~t
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Setting v = —cy (k) gives (c). Now we set v = —c¢(k). Then it gives

ew(k)  2e(k) + (=17 o cdk) — (k) 1
Z( (k) +cu(k))? — dee(k)? H (R) T eul®) " 2e(R?

u&t u~t

On the other hand, multiplying the reciprocal of (4.8) by (1 — W) gives

(1 1 ) 1 2¢e(k) + (—1)" H ci(k) — cu(k)
4Ct(k‘)2 ett(k) 4Ct(k)2 A Ct(k‘) + Cu(k‘) '
u~tu#t
Combining these two equations gives (b). O

We are now ready to start checking that the action of #;.,,(u) on A(\) respects
the relations of #;.,,(u). We break the proof into several lemmas and propositions.

Lemma 4.22. Suppose t € 7"4(\). Then

a) E2vi =woEvy, for 1 <i<n.

b) Ele Eyve = weFhvg, for a > 0.

) (Xl—ul)(Xl—UQ) (Xl—ur)vt:O.

) XiXjve =X, Xv¢ for 1 <i,j <n.

) (X —|—X1+1)1]t (X'—FXH_l)EiUt:O, 1 SZ S’I’L—l

) (S X Xl+]_S )’Ut (.EZ - ].)’Ut = (XZSl - SiXi+1)Ut, fO’I“ 1 § ) S n—1
) EpEve = EjEpug Zf |k — l| > 1.

) Epy X = XiEpve if l £k k4 1.

) SpXjvy = XSk if | 75 k. k+1.

Proof. As wg = w§0) and w, = wga) by Lemma 4.15, parts (a) and (b) have already

been proved in Corollary 4.18. Parts (¢)—(f) follow directly from the definitions of
the actions. If |k — ] > 1 then taking u = St in (4.12)(e) shows that (g) holds.
Assume now that [ # k,k+ 1. If tp_1 # tg41 then cg (1) = (). Ifu X ¢ then
cy(l) = ¢¢(1). Combining the last two statements forces (h) and (i) to be true. O

c
d
e
f
9
h

Lemma 4.23. Suppose t € T4 (\). Then EyEt+1Exve = Ejvy.

Proof. We only prove that EyFEj1 Exve = Eyvy, since the argument for the case
ELE,_1Eyve = B is almost identical.
We may assume tx_; = tx4; since, otherwise, Ey Fi4+1Erve = 0 = Ejve. Let t

be the unique n—updown tableau such that K fand T = tir2. We have

By Eg 1 Epve = eq(R)eg(k+1) ) e (k)oy = eg(R)eg(k +1) Y ew(k)oy
un~t un~t

Hence, EyEjt1 Exvy = Eve by Lemma 4.19. O
It remains to check relations (a), (b)(i), (b)(ii), (d)(i) and (g) from Definition 2.1.
Lemma 4.24. Suppose that t € T"4(\). Then SZvg = vy.

Proof. Case 1. t;_1 # ti41:
If Skt is not defined then a(k) € {—1,1} and b¢(k) = 0, which implies SZvy = vy.
If Sit € Z“4(\) then by the choice of the square roots in (4.12)(a) we have

S2p, = (at(k)g n bt(k)bskt(k))vt n (at(k) n askt(k))bt(k)vskt — v

Case 2. t;_1 = tj41:
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We have S,%vt = Zuﬁt (Znﬁt Sto (k)snu(k))vu. So, the coefficient of v¢ in S,%US is

. ett(k)euu(k) ett(k) 1 _
Zstu(lf)sut(k) = Z (Ct(k) —|—cu(k))2 B QCt(k)2 + 4ct(k)2 =1,

u*’\cJt un~t

where the last equality follows by rearranging Proposition 4.21(b). If u £ ¢ and
u # t then the coefficient of v, in SFvy is

B et (k)eoy (k)
%Stn(k)snu(k) - ;22,\;:2 (Ct(k) +Cn(k))(00(k) +Cu(k))
(eulk) — Dew(k) —(euu(k) — Dew(k)

2¢(k)(eulk) + cu(k))  2eu(R)(e(k) + cu(R))

—e enn(k) B 1
= ewlk) (55 AT T~ Tt
=0

by Proposition 4.21(c). Therefore, SZv¢ = vy. O

The next two Propositions prove that the action of #;. ,,(u) on A(X) respects the
tangle relations 2.1(g).

Proposition 4.25. For any t € Z"4(\), ELSkvy = Exve = Sk Epvy.

Proof. Suppose that ty_1 # tiy1. Then either Skt is not defined, or (Skt)rx—1 #
(Skt)k+1. In either case, we have ESyvy = Exvy = SpErve = 0. Suppose t_1 =
tg41. Then

SpErve = Zetu(/ﬂ)Skvu = Z Z Suw (k)ew (k)vy .
ult whuuke

By Proposition 4.21(a), we have

Zetu(k')suu' (k) = Z eu(k)eww (k) tew (/@M

- X cu(k) + cw (k) 2¢y (k)
un~t ur~tuu’
eun (k) 1
_ (k ( uu _ )
e (k) Xk: cu(k) +cw(k)  2cuw(k)
u~t
= Cw’ (k)
Hence, Sy Exve = Exvi. One can prove that EySipvi = Exve similarly. [l

Proposition 4.26. Suppose that t € 74(\). Then
a) SkEk;+]_EkUt = Sk;Jr]_Ek;’Ut.
b) Ekt1ErSk+10e = Erg1Skvt.
Proof. (a) We may assume that ty_; = txy1 since otherwise SyFEji1Erve =

Sri1Erve = 0. Let t € Z"4()\) be the unique updown tableau such that t 5y
and t; = tgx1o. We have

SkBr Broe = eq(Reg(k+ 1) (sa®og+ > sg,(k)w)
BT utt

+ Y catken b+ 1) (au®)o + buk)vs. ).

ukftlﬂu;éi
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Observe that if Spu is defined, for u in the second sum, then (Siu')i # tiro and
1w = Sk11Sku is also defined. Further, we have 1w X tand ro # t. Similarly,

Swi1 Broe = eq(h) (sl + Dog+ >0 siu(b+ o)

ukilﬂu;ﬁ

+ Z ew (k) (au(k + Doy + bu(k + 1)U5k+1U)'

We now compare the coefficients of vy, in SiEj+1FErve and in Syiq Exve. First,
observe that eg;(k)egi(k +1) =1 by Lemma 4.19.

Case 1. u=t:
Since ¢j(k) = —cy(k 4+ 1), the definitions and the remarks above show that the

coefficient of vy, in Sk Exy1 Fxve is equal to
1—ep(k+1)
eq(k)eg(k +1)si(k) = 6&(’6)7; = egq(k)si(k +1),
ci(k)
which is the coefficient of v, in Sg41 Exvy.

Case 2. uftand u#t
Now, ci(k) = cy(k+2) and ¢y (k+1) = —cy(k), so the coefficient of v, in Sy Eyy1 Epvy

is

etu(k)
(k) + ca (k)
which is the coefficient of v, in Si41 Exvy.

eq(k)e(k + 1)sg, (k) = = ew(k)au(k + 1),

Case 3. u X' { and u # L
Since ¢, (k) = —c;(k + 1), the coefficient of vy in Sy Ekq1 Exvy is
e (k+ Degi(k)
k . ]€ 1 _ ]€ — tu st
a‘u( )etu( + )est( ) Cu(k+1)+0{(k+1)
which is the coefficient of v, in Si41 Exvy.

Now suppose that Siu is defined and let o = Si41S;u be as above. Then the
coeflicient of vg,, in Sk Eyy1 Epvy is

e (k)er, (k + Dbu(k) = vVeu(k)Vewu(k + 1)bu(k)
=\ ett(k)\/ emm(k)bm (k + 1)
= epw (k)bw (k + 1),

where the second equality comes from (4.12)(f). As Sgu = Skiito this is the
coefficient of vg,y in Sk+1Exve. This completes the proof of (a).

= eq(k)sw(k+1),

(b) We let the reader work out the expansions of Fyy1 ESky1v¢ and EjiqSkvi. To
show that these two expressions are equal there are four cases to consider.
Case 1. t; =ty and tx_1 = tp41:
We have
1-— eu(k‘)
By 1By Spiive = Erprew(k)sy(k+ Doy = ————S B qv
ket 1 B Sk 1ve kr1e(k)se(k+ 1)v Seclh 4 1) DY

= sy (k) Erp1ve = By Svy.

Case 2. t # ti12 and t_1 = ti1:

Define t € Z%4()) to be the unique updown tableau such that t K tand §, = tita.
Then t # t and

Ek+1EkSk+1Ut = at(k + 1)6&(/€)Ek+1v{ = St{(k)EkJrl’U{ = Ek+1SkUS,
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where the second equality uses the facts that c¢(k + 1) = —c¢(k), ci(k +2) = (k)
and (Sk41t)k—1 # (Sk+1)k+1-

Case 3. t; = ty10 and t;_1 # tir1:

Define t € Z“4()\) to be the unique updown tableau such that t "' ¢ and th1 =
t,—1. Then

Ek+1EkSk+1Ut = St{(k + l)egz(k')EkJ,_lU{

eq(k + Deg(k)
= e k ]. u

ek +1) -k + 1) ZM Culk + 1)
un~t

= &t(lﬂ) Z etu(k + 1)’0u = Ek+1SkU{,

~k+1
t:r/u

where we have used the facts that ci(k + 1) = —c¢(k) and (Spt)r # (Skt)r+2.

Case 4. t # ti10 and t;_1 # tir1:
First observe that because of our assumptions we have Eyy1FEpSkyi1ve = be(k +
1)Ek+1Ek'USk+1t and Ei1S,v¢ = bt(k)Ek+1USkt- If (Sk-',-lt)k—l #+ (Sk+1t)k+1 then
we also have (Sit)r # (Skt)kt2 so that Exy1SgSkr1ve = 0 = Epi1Skve.

Suppose now that (Spr1t)r—1 = (Sky18)ks1 and let € € 744 (\) be the unique

updown tableau such that f i Spy1t and €, = tpyo. Set u = Spt and v = Syt
and observe that the assumptions of (4.12)(f) hold, so that by(k)/ewu(k +1) =
bio(k + 1)/ (k). As be(k) = by(k) and by(k + 1) = by (k + 1), the reader should
now have no difficulty in using (4.12)(d), together with the fact that u’ " Tif and
only if u’ t Skt, to show that

Ee1BiSppavc=bik+1) Y epg,, (k)eg (b + oy
wFE
=bi(k) Y esoow(k+1)ow = Epy1Skve

k+1
u/ ’j—/ Skt

(]
The next Proposition shows that the action of 7, ,,(u) on A()) respects the two
relations 2.1(b)(i) and 2.1(d)(i).

Proposition 4.27. Suppose that t € Z%(\) and that |k — 1| > 1. Then:
a) SkSl’Ut = SlSkvt.
b) SkEl’Ut = ElSk’Ut.

Proof. We prove only (a) as the proof of part (b) is similar to, but easier than (a).
First suppose that tx_1 = tx4+1 and t;,_1 = t;11. Then

SESivy = Z Stu (1) Suro (k) Vo -

! k
u~t, o~u

Now for each pair of updown tableaux (to,u) with Ew Lt there is a unique

updown tableau w’ such that to Lk t; more precisely, u) = wy, and ul, = t, for
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a # 1. Notice that 0y = 6 and dyy = Sy . Therefore,

V ett \/ euu — Ot V euu \/ emm — duro

Stu(l) Sun (k) =

(l) + Cu(l) cu(k) + Cm(k)
vV Euw \/ emm — Orou’ V ett \/ Cuw — Ourt
(l) + ew (l) ce(k) + cw (k)

= Su/m(l)stu/(k)v

where the second equality uses (4.8) and (4.12)(e). Hence,

SiSwe= Y susuw(B)on = Y sw(k)sww(ve = SiSkuvy,

! k k i
u~t, ro~u u ~t, to~u

as required.
Assume now that t,_1 # tgy1 and ;1 = t;11. Then

SkSivg = Z Stu Uu + by (k)USku)

E Stu 'Uu"‘bt E Stu 'USku

EStu Doy + be(k E ssptw (Dow = SiSkvt.
u’~Skt

Interchanging k and [ covers the case when t;_1 = tx11 and t;_1 # ;41
Finally, consider the case when t;_1 # tx11 and t;_1 # t;41. Then

SeSive = a(k)ac(l)ve + ag, i (k)be(Dvs,e + be(k)ai(Dvs, e + bs,t(k)be(D)vs, st
= a¢(D)ai(k)ve + ac(k)be(Dvs,t + as, (Dbe(k)vs, ¢ + bs, e (D)be(k)vs, s,
since ag, (k) = a¢(k) and a¢(l) = ag,(l), by definition, and bg,i(k) = b¢(k) and

bs, (1) = be(1) by (4.12)(b). Hence, SiSive = SpSkve if ty_1 # ty1 and 41 # 4.
This completes the proof of (a). O

Finally, we prove that the action of % ,,(u) on A(X) respects the braid relations
of length three.

Lemma 4.28. Suppose that t € T (\) with t_1 # tpy1 and 4, # tyro, where
1<k<n-—1. Then SkSk+1Skvt = Sk+1SkSk+1v¢.

Proof. We consider two cases.

Case 1. Skt is not defined, or Sit is defined and (Sit)r # (Skt)kt2:
First suppose that Syt is defined. If Skt is defined then (Sg+1t)k—1 # (Sk+1t)k+1,
and if Si41Skt is defined then (Sk+1Skt)k—1 #+ (Sk+1Skt)k+1 because t; # tpio.
Thus we have
SeSkt1kve = (a(k)?ac(k + 1) 4+ b(k)as,(k + 1)bs, (k) v
—|—(at(k)at(k + l)bt(k) + bt(k)agkt(k + 1)a5kt(l€))vgkt
+a‘f(k)bf(k + 1)a5k+1t(k)v5k+1t + at(k)bt(k + ]‘)bsk+1t(k)usksk+lt
+bl(k')b5kt(k' + 1)a5k+15kt(k)vsk+15kt + bt(k)bskt(k + 1)bsk+lskt(k)vsksk+lskt
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Now, tp—1 # tit1, or if SpSktit is defined, then (SkSkt+1t)r # (SkSk+1t)k+2-
Therefore, we have
Sk+1SkSkr1ve = (at(k + 1)%a(k) + be(k + Das, ,(k)bs, ., «(k + ].))Ut
—l—(at(k + D)ag(k)be(k + 1) + be(k + 1)as, . «(k)as, ¢ (k + 1))v5k+1t
+ai(k + 1)b(k)as,«(k + 1)vs, ¢ + ai(k 4+ 1)be(k)bs, (K + 1)vs, 5.t
+bi(k+ 1)bs, , 1(k)as, s, t(k+1)vs, s, ¢
+be(k + 1)bs, 1 t(k)bsy s, 1t (K + 1)vs, 5,504t

Now, bs, (k) = be(k) and bs,_,¢(k 4+ 1) = be(k + 1) by (4.12)(a). So, in order to
check that the coefficients of v are equal in the last two equations we have to show
that

at(k)Qat(k—i—l)—FaSkt(k—H)(1—at(k)2) = at(k)at(k—i-l)Q—Fa,SkHt(k—i—l)(l—at(k—i-l)Q);

however, this is just a special case of the easy identity

(b—a)i(c—b)+cia(1_ (b—la)2) = (b—a)}c—b)Q +cia(1_ (c—lb)2)'

To see that the coefficients of vg, ¢ and vg, ¢ are equal amounts to the following
easily checked identities

&Skt(k)as‘kt(k + 1) + at(k) (k + 1) = at(k + l)agkt(k + 1)
aSk+1t(k)aSk+1f(k + ]-) + at(k) t(k + ]-) = a’f( )G‘Sk+1t(k)
For the coeflicients of vg, ., 5,¢ and vs, s, ,+, note that ag,, ,s,¢(k) = a¢(k + 1) and
as,s...t(k +1) = a¢(k). Finally, three applications of (4.12)(c) shows that the
coefficients in vs, 5, 5,t = Vs,,,5,5,..t are equal in both equations.

If Skt is not defined then a{(k) = £1 and b¢(k) = 0 by Lemma 4.11(b). Hence,
the argument above is still valid if we set b¢(k) = 0.

Case 2. Sit is defined and (Sit)r = (Sit)gyo:

If Spyit is defined then (Sprit)s—1 = (Skp1t)pr1. Let t be the unique updown
tableau such that T "' Sptand 41 = ty_1. Observe that if u Mo and u # { then
Up—1 7# Ug41. Therefore,

S5 Sy Skve = at(k)ga (k4 Dy + ag(k)ag(k + 1)be(k)vs,

+ a(k Z SSki1t, w(k)vy + be(k) Z SSkt,E(k + 1)sg, (k) vy
u~t uﬁi
+ > bBssicalh+ 1) (ak)os+ bulk)vs,a).
uktlskt
u#t

Similarly,
Sk+1SkSk+10¢ = ag(k + 1)2ag(k)ve + ag(k + Dag(k)b(k + L)vg, ¢
+adk+Db(k) Y sspu(b 4+ Dow+ bk +1) Y sg, o ilk)si,(k+ Doy

k+1~ k+1~

t t
+ > bk A+ Vs, u(k) (aulk + Doy + bu(k + 1)vs, ,,u).-
U£Sk+1t
uz#t

We now compare each of the coefficients in the last two displayed equations.
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First we consider the coefficient of v¢. To show that the coefficients of v are
equal in the two expressions above, we have to prove that

ag(k)?ai(k + 1) + be(k)ss,.s,0(k + 1)bs, (k)
= at(k —+ I)QCLL(]G) + bt(k + 1)SSk+1t,Sk+1t(k)b5k+1t(k + 1)

Now, b¢(k) = bs, (k) and be(k+1) = bs, ,,¢«(k+1) by (4.12)(a). So, the last identity
is equivalent to

eSkt,Skt(k + 1)
ZCSkt(k + 1)

= CLt(k + 1)2at(k) —+

ad(k)2a (k4 1) + — lbskt(k)2

eSk+1f,5'k+1f(k) -
2cSk+1t(k)

This equation is easily verified using the definitions and Lemma 4.20. Hence, the
coefficients of v¢ in SkSk15kv¢ and Sky1S5kSk+1 are equal.
Now consider the coefficient of vg, ¢ in both equations. Since ag,¢(k) —a¢(k+1) =
2¢s, (k4 1)/(ci(k) + cs,p1t(K)) (i (k) + cs,¢(k)), we see that
st 5tk 4+ 1)(as, (k) — ae(k + 1))be(k) + a¢(k)ac(k + 1)be(k)
= eg,t,5.t(k + D)ag(k)a(k + 1)be(k)
_ bst(k)es,t,st(k +1)
(ci(k) + csppr (k) (ci(k + 1) + cse(k + 1))

B bSk+1t(k + 1)\/€Sk+1t,5k+1t(k)\/eskt,Skt(k + 1)

(k) F s (k) (e (b +1) + ek + 1))

=be(k+Dsg, i(k)sy s (k+1).

1
bSk+1t(k + 1)2.

where the second last equality uses (4.12)(f). Consequently,
ag(k)ac(k + 1)be(k) + be(k)ss,e.s.¢(k + 1)as, (k)
= ai(k + 1)be(k)ss,,s,0(k +1) + be(k + 1)sg,  i(k)sy g, (k+1)

Hence, the coefficients of vg, ¢ in Sk Sk+15kve and Sk4+15kSk+1 are equal. A similar
argument shows that

ac(k)be(k +1)s5,,168,51t(k) + be(k)s g i(k + 1)sg s, ,, (k)
= ai(k+ 1)a(k)be(k +1) + be(k 4+ 1)ss, e85, t(k)as,  ¢(k+1).

This proves that the coefficient of vg, ¢ is the same in vg, in SgSky1Skve and in
Sk+15kSk+1 are equal.

Now consider the coefficient of v, where u % T and u & {f, Sp;1t}. This time

sy t(k) + cu(k)
(cspt(k+ 1)+ ci(k+ 1)) (ci(k) + cu(k))”
An argument similar to that for vg, ¢ now shows that
bi(k)sg, i(k + 1)y, (k) = bu(k + 1)ss,.yeu(k) (au(k + 1) — ai(k)).

Therefore, the coefficients of v, for such u in SgSk11Sxvy and Sk41SkSk4+1v¢ are

equal.

Another variation of this argument shows that if u " St and u Z {t, St} then
the coefficients of vy in Sy Sk+1Skve and Sk41S5kSk+1 are both equal.
Next, we suppose that Siu is defined and we compare the coefficients of vg, , in

Sk Sk+15kve and Sk41.SkSk+1v¢, when u Ko Sitand u ¢ {{, Skt}. As Sit is defined,
v = Sk11Sku is defined and to i Spi1t with o & {t, Spy1t}. Conversely, if i it0

ay(k+1) —ak) =
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is defined for such tv then u = S;Sk41t0 is defined. Applying (4.12)(f) twice, we
have

be(k)bu(k)y/es,e st (k + 1)/ ewu(k + 1) = be(k41)bw (k+1)1/ €5, 416,501 (k) V € (K).

Consequently, because cg, ¢(k + 1) + cu(k + 1) = cw (k) + cs,,,¢(k), we have
be(k)ss,u(k + 1)bu(k) = be(k+1)ss, ., 6,0 (k)b (K + 1).

That is, the coeflicients of vg,y in Sk4+1SkSk+1ve and SiSk11Skve are equal.
It remains to compare the coefficients of v; in the two equations. To show that
these two coeflicients are equal we have to prove that

af(k)be(k +sg, ¢ i(k) +bu(k)sg, ik +1)si(k)
= al(k + Dbe(k)sg, ik + 1) + bk + Dsg,, 1(F)si(k + 1).

First note that, by the definitions and (4.12)(a),

be(k +1)v/es,pits.t(k)/eqi(k)
sy t(k) + ci(k)

be(k)v/esi it sisat(k)y/egi(k +1)

- Chrrt (k) + ()

etk +1)+c(k+1)
=b(k i(k+1
t( )SSkt,t( ) CSk_,.lt(k) +C[(/€)

bi(k + Dsg, ,,i(k) =

eqi(k).
So, it is enough to show that

(csue(k+1)+ei(k+1)) e (k) (ae (k) —s(k+1)) = (cs,.t(k)+ei(k)) (ae(k+1)—si(k));

however, this follows from Lemma 4.19. Hence, the coefficients of v; in
Sk+1SkSk+1vt and SkS]H_lSk’Ut are equal.
This completes the proof of Lemma 4.28. g

Lemma 4.29. Suppose that t € Z%4()\) and that either tx_1 = tyr1 and ty #
tpro, or tki1 # tkrr and t = tigo, for 1 < k < n—1. Then SgSky1Skve =
Sk+1SkSk+10

Proof. There are again two cases to consider.

Case 1. Sii1t is defined:

Suppose first that ty_1 = tg;1 and t; # tgio. Then u = Syt € TUI())
is well-defined. Furthermore, u; # ugio and ug_1 # Ugt1, S0 SkSkt15kVy =
Sk+1SkSk+1vy by Lemma 4.28. Now, Spt1vy = ay(k + 1)vy + by(k + 1)ve and
bu(k + 1) # 0. Therefore

1
SkSk+1Skve = mSkSkHSk (Sk+1'Uu — a,u(k + 1)1}u)
1
= m (Sk(Sk-‘rlSkSk-‘rl)Uu - a:u,(k + 1)(Sk5k+lsk)vu)
1

- i D) (Sk(SkSkJrlSk)Uu —ay(k + 1)(Sk+15k5k+1)vu)
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by Lemma 4.28. Hence, using Lemma 4.24 twice,

1
SkSk+15kve = RO (Sk+1SkUu —ay(k + 1)(Sk+15k5k+1)vu)
1
— 7bu(k =y (Sk+1Sk(Sk+1Sk+1)’Uu —ay(k+ 1)(Sk+1SkSk+1)Uu)
1
= NCE) (Sk+15k5k+1)(5k+1vu —ay(k + 1)%)
= (Sk4+1SkSk+1)vt

as required.
The case when t;_1 # t,11 and t; = t; 2 can be proved similarly.

Case 2. Si1t is not defined:

This is equivalent to saying that the two nodes txi2 © tpy1 and tpy1 © t, are
in the same row or in the same column. Therefore, either t, C tp41 C tgyo or
tr D ter1 D ty+o. Note that in either case ty_1 = t;+1, so we have

Epvg = Z et (k)vy + ew(k)vy.

l
un~t

u#t
By Lemma 4.26 and Lemma 4.25, S;Sk+1SkExve = SiSk+1Exve = Exy1 Erve and
Sk+15kSk+1 Exve = Sky1 Ert1 Epvy = Epq1 Egve.

Suppose that u £ ¢ and u # t. Then Siiqu is well-defined and up_—1 = ugy1—
indeed, the two boxes tyi2 © ti11 and tx41 © ug belong to different rows and

columns. Hence, by Case 1, Sk1+1StSk+1vy = SgSk+1Skvy. Consequently,
Sk+15eSkr1ew(k)ve = SpSkr1Skew(k)ve.  Canceling the non-zero factor e (k)
shows that SiSk+15kve = Sk41SkSk+1v¢- O

Proposition 4.30. Suppose that 1 < k < n—1 and t € T 4N). Then
SkSk+15kv¢ = Sky1SkSk+10¢-

Proof. By Lemma 4.28 and Lemma 4.29 it only remains to consider the case when
ti—1 = tgr1 and tp = txyo. By Lemma 4.24, Proposition 4.25 and Proposi-
tion 4.26(a), we have

Sk+1SkSk+1Ekve = Sky1Sk - Sk Erkt1 Epve = Sk1 Eky1 Epve = By Egvy,
on the one hand. Similarly, we also have

SkSk+1SkErve = SpSk+1Ekve = Sk - Sk Ery1 Erve = Epp1 By,

Therefore, recalling the definition of Erv¢, we have

(Ser18k8k1 = SkSer1S) (ke + Y ewlk)on) =0,

ur]f:t,u;ét

Now, if u & t and u # t then SpSk+1Skve = Ski1SkSki1v by Lemma 4.25.
Consequently, SgSk+1S5kvt = Sk+1SkSk+1v¢ since ey (k) # 0. This completes the
proof. O

Proof of Theorem 4.13. The results from Lemma 4.22 to Proposition 4.30 show
that the action of the generators of #;. ,(u) on A(X) respects all of the relations of
Wyrn(u). Hence, A(X) is a #, »(u)-module, as we wanted to show. O

)
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5. IRREDUCIBLE REPRESENTATIONS AND THEOREM A

In this section we use the seminormal representations to show that the cyclotomic
Nazarov—Wenzl algebras are always free of rank 7" (2n — 1)!!. Before we can do this
we need to recall some identities involving updown tableaux

First, if A is a multipartition of n — 2m let (™ be the number of n—updown
A-tableaux. So, in particular, fUMNA) = . F7std() ) is the number of standard \—
tableaux. Sundaram [Sun86, Lemma 8.7] has given a combinatorial bijection to
show that if 7 is a partition (so r = 1) then the number of n—updown 7-tableaux
is equal to (IZI) (n —|7| — DNfUTLT) Terada [Ter01] has given a geometric version
of this bijection when |7| = 0 and n is even.

Lemma 5.1. Suppose that 0 < m < | %] and that X € A} (n —2m). Then

ﬂmﬂzrmcgjmm_lm#ﬁﬂ%m.

Proof. Using Sundaram’s formula from above we have

(nA) _ n - i @) 1y AP LA®)
= 5 (o J I

N1y Ny
ni+-+n,.=n
ne—|A® €2z

r —A®] = (X120
T e = AL Dty

M

iln-.t,;’nT =1 ( - |/\(t)|)'|/\(t)|'

ni Ny=n
ne—|A® €2z

I nt A®| =11
nH |)\(t)|| Z H (ng — |/\t)|)_

oM =1
n1+ Fnr=n

n! st (2a; — D!
e S %

A1 yeeeyQop

a1+v~+ar:m

nt—\k(t)\
2

where the summation is now over a; = , for 1 <t < r. Hence

f(n,)\) —

e TS Y | P

a1+ +aT_m

n! rm

= ——_#Ts()) :W<;J@m—m#me)

(n —2m)! 2mm]

O

It is well-known from the representation theory of the degenerate Hecke algebras
A1 that 3, #.7°14(X)2 = r¥k!, where in the sum A € A (k).

Corollary 5.2. Suppose thatn > 1 and r > 1. Then

le

Z S eV = en - 1.

AFn—2m
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Proof. Using the Lemma we have

[3] L5) 2
SO et {w(ﬁn)(zm—l)u#ﬂstd(x)}.

m=0 A\Fn—2m m=0 A\Fn—2m

15 2 )

=> " (2 ) (@m—11)" > #TMN)
m=0 m AFn—2m
L%J n\?2 2

= 2 r2m <2m) ((2m = 1)11)"r"=2™ (n — 2m)!

l5] a2
= rnmzzo (2m> (2m — 1)) (n — 2m)!

To complete the proof, notice that the sum on the right hand side does not depend
on r, so we can set r = 1 and deduce the result from the representation theory of
the Brauer algebras. |

A representation theoretic proof of this result is given in [RY04] where it is ob-
tained as a consequence of the branching rules for the cyclotomic Brauer algebra.
The cell modules of the cyclotomic Brauer algebras are indexed by the multiparti-
tions of n — 2m, for 0 < m < | §]. The branching rule [RY04, Theorem 6.1] shows
that the dimension of the cell module indexed by A is f(*). On the other hand,
the cellular basis of the cyclotomic Brauer algebras constructed in [RY04, Theo-
rem 5.11] contains 7" (2n — 1)!! elements. Combining these two facts proves the
result.

Given two multipartitions A and u such that p is obtained by adding a box to A
we write A — p, or p «— A.

Theorem 5.3. Suppose that R is a field with char R > 2n and the root conditions
(Assumption 4.12) hold in R. Assume that the parameters ui,...,u, are generic
for W, n(u) and that Q is u-admissible. Then:

a) Suppose n > 1. There is a Wy n—1(u)-module isomorphism

AN 1= Paw P Paw.

=X A—v

where A(X) | is A(N) considered as a Wy n—1(u)-module.

b) The seminormal representation A(X) is an irreducible #, ,(u)-module for
each multipartition X of n — 2m, where 0 < m < |[%].

¢) The set {AN) | AFn—2m,0<m < [5]|} is a complete set of irreducible
Wy (1) -modules.

d) #.n(u) is a split semisimple R—algebra of dimension r™(2n — 1)1

Proof. Part (a) follows if we define A(u) to be the vector subspace spanned by vy,
with u € Z44(\) and u,_; = p.

Let 2" = (X1,...,X,). Since Xpvi = c(k)vy, for all t € Z44(\) and 1 < k < n,
the seminormal representation A(A) = @, gua(x) Rue decomposes into a direct
sum of one dimensional submodules as an 2 ~module. Further, by Lemma 4.4(a),
this decomposition is multiplicity free. In particular, A(A) = A(u) if and only if
A = p. Further, if M is a #, ,(u)-submodule of A(X) then M is spanned by some
subset of {v¢ | t € Z4I(\) 1.

To prove (b) we now argue by induction on n. If n = 1 then A()) is one
dimensional and hence irreducible, for all A. Suppose now that n > 1 and let



36 SUSUMU ARIKI, ANDREW MATHAS, AND HEBING RUI

M C A(N) be a non—zero #, ,(u)-submodule of A(X). By the remarks in the
last paragraph, M is spanned by a subset of {v¢ | t € Z%4()\) }. Therefore, if we
consider M as a #; ,—1(u)-module then M D A(p), for some multipartition p
which is obtained by adding or removing a node from .

Case 1. || =n:

Since |A\| = n, The multipartition u is obtained from A by removing a node. If A =
((0),...,(0),(a’),(0),...,(0)) then A(N) | is irreducible as a #;.,,_1(u)-module,
so there is nothing to prove. Suppose then that A is not of this form and that
v is a different multipartition which is obtained from A by removing a node. Let
t € Z%4()\) be an updown tableau such that t,_1 = g and g\ t,—2 = A\ v. So
ve € A(p) C M and (S,—1t),—1 = v. Now,

Sp—1ve = ag(n — L)vg + be(n — N)vs, ¢ € M,
and be(n — 1) # 0 since A\p and A\v cannot be in the same row or in the
same column. Consequently, vg, ;¢ € M. This implies that A(v) C M since

(Sp—1t)n—1 = v. Therefore, ) A(v) € M, so M = A()\) by part(a). Hence,
A(A) is irreducible as required.

v—A

Case 2. |\ <n:
Since |A\| < n, Z%()\) is non-empty so we fix u € Z%(\). Let t =
(U1, up_2, 01, \), then t € Z%4()\) and vy € A(u) C M. Then

E,_1v = Z e (n — vy € M.

"<t
-1 . .
As e (n — 1) # 0 whenever 10 "~ t, we have vy, € M for each term in this sum.

If v« XAorv — Xthen o = (ug,... 0, 2,0, N) <, so A(v) C M. Hence,
M = A(X) and A()) is irreducible as claimed. This completes the proof of (b).

Finally, we prove (c) and (d). We have already seen that the seminormal rep-
resentations are pairwise non—isomorphic, so it remains to show that every irre-
ducible is isomorphic to A(A) for some A. Let Rad #;. ,(u) be the Jacobson radical
of #, n(u). Then

Ln/2]
dimp #;. () > dimp(#.n(0)/ Rad #,. 5 (0)) > > >~ (dimg A(A \)°.

m=0 A\Fn—2m

By construction, dim A(\) = #.7.%4(\) = f(»A. So using Corollary 5.2, and then
Proposition 2.16, we have

dimp #; . (u) > " (2n — DI > dimg #; »(u).

Therefore, Rad #; ,(u) = 0, which forces dimpg #;.,,(u) = r™(2n — 1)!l. Now, parts
(¢) and (d) both follow from the Wedderburn-Artin Theorem. O

Before establishing a strong version of Theorem A, we show that the Root con-
ditions (Assumption 4.12) can be satisfied when R = R.

Lemma 5.4. Suppose that R = R and we choose u; € R in such a way that

a) |ug] > > |ur] > n and |ui| — Juig1] > 2n,

b) u; <0 ifiis even and u; > 0 if i is odd.
Suppose that t € T*4(N\) and 1 < k < n. Then |ay(k)| < 1, if ts—1 # tey1, and
ew(k) > 0, if th—1 = tey1. In particular, the Root Condition (4.12) holds if we

choose positive square roots \/by(k) > 0 and /ey (k) > 0.
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Proof. We start with the case ty_1 # tpyr1. Let a =t © t—1 and B = tx41 © .
Note that ¢(a) + ¢(8) # 0. Write @ = (4, 4,t) and 8 = (i’,5/,t'). If t = ¢ and both
nodes are addable, or both nodes are removable, then a # 3. Thus, ¢(8) — ¢(a) is
a nonzero integer and |a¢(k)| < 1. If ¢ = ¢ and only one of the nodes is addable
(and the other is removable), then

1
lau (k)|
hence, |a;(k)| < 1if t =¢. A similar argument shows that |ai(k)| <1 when ¢ # t'.
Next we consider the case ty_; = t+1. Let a =t © t—; and A = t;_;. Write
a = (i,7,t). By (4.8) and because R =R, we have

c(a) +¢(8)
ew(k) = (2c(a) — (-1)") | | ———=,
o=

where 3 runs over all of the addable and removable nodes of A with G # «.
Suppose that t is even. First we show that

(@) + ¢(B)
11 (@) = c(B)

Consider the contents of all of the addable and removable nodes of A(*") where
t' #t. If t’ is even then there are [ positive contents |uy| + d; with |d;| < n, for
1 <j <, and I+ 1 negative contents —|uy | —¢; with |¢;| < n, for 1 <i <1+1. Let

ep be the sign of the product of % over all addable and removable nodes (3

of A\!'). Our aim is to show that

= le(@) = e(B)| = [2ue + (G — ) + (5 = ) = 2Jue| = 2(n — 1) = 25

<0.
pea® ¢

By our assumptions, ¢4 is equal to the sign of

(=Jue] 4 ) (=Jue| = e D Ju] + |

(=] = e DT (=] + g N Jag] = g |
Thus, ¢ < 0 if and only if ¢ < ¢. If ' is odd then there are | + 1 positive contents
lug | + ¢; with |e;| < m, for 1 <4 <141, and ! negative contents —|uy | — d; with
|dj| < mn, for 1 < j <. Then, by the same argument, £, < 0 if and only if ¢/ < ¢

again. Thus
[[er =1 =-1
£t
Let —|u¢| — ¢, for 1 <4 <1+ 1, be the contents of the addable nodes of A0 and
let |u¢| + d;, for 1 < j <1, be the contents of the removable nodes of A(*). We may
assume that

Cl>d1>--->Cl>dl>cl+1.

Let €; be the sign of the product of %, where 3 runs over all of the addable

and removable nodes of A(*) such that § # a.

If () = —|uy| — ¢, for some 4, then €, is equal to the sign of
1
1—[—2|ut|—ci—c;.C H di — ¢
oy K — G o 2l — e —dy

—l (—1)liHt

S0 g4 = (7(1)”)14 (31)1 =1. As 2¢(a) — (—1)" = —2Juy| —2¢; £1 < 0 and
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we have e (k) > 0.
If c(a) = |ue| + dj, for some j, then &, is equal to the sign of

ﬁ d; — ¢k, ﬁ2|ut|+dj+dk
k=1 2|u

J
| +d; + ck d; — dy ’
S0 €y = (E_l)lj)il =—1. As 2¢(a) — (=1)" = 2|us| +2d; £1 > 0 and

ki

we have ey (k) > 0 again.
The case when t is odd is handled similarly. In this case, we have

c(@) +¢(B)
1] (@) — ¢(B)

because its sign is equal to (—1)!"! = 1. Let |u¢| + ¢;, for 1 < i < [+ 1, be the
contents of the addable nodes of A(!) and let —|u¢| — d;, for 1 < j < I, be the
contents of the removable nodes of A() such that

>0,
A ©

Cl>d1>--->Cl>dl>cl+1.

If e(e) = |ug| + ¢;, for some i, then &, is equal to the sign of

H2|Ut|+q+0kﬁ c; —dp,
ci — Ck paie 2|u,5|—|—0¢—|-dk7

ki
SO £ = E:Bij = 1. As 2¢(a) — (=1)" > 0 we have ey (k) > 0.
If () = —|u| — d;, for some j, then e, is equal to the sign of
I+1 !
ﬁ cr — d; 1 —2fu| —dj — dy,
bl —2|ut| — dj — C oy dk - dj ’

SO £ = %% = —1. As 2¢(a) — (=1)" < 0 we have ey (k) > 0 again. O

We can now prove a stronger version of Theorem A.

Theorem 5.5. Suppose that R is a commutative ming of in which 2 is invertible
and that Q is u-admissible. Then W, (1) is free as an R-module with basis the
set of r—regular monomials. Consequently, #y . (u) is free of rank r™(2n — 1)!.

Proof. Recall that if R is a ring in which 2 is invertible then %, ,(u) is spanned by
the set of r-regular monomials by Proposition 2.16. For convenience, if S is a ring
and ug € S” then we let #5(ug) be the cyclotomic Nazarov—Wenzl algebra defined
over S with parameters ug.

First, we consider the special case when R = Z, where Z = Z[%, Ui,..., U] and
the u; are indeterminates over Z. Let i = (41, . .., ,), define Q in accordance with
Definition 3.5 and consider the cyclotomic Nazarov—Wenzl algebra #z(1). As R is
not finitely generated over Q we can find r algebraically independent transcendental

real numbers u},...,ul. € R which satisfy the hypotheses of Lemma 5.4. Let
Z' = Z[L,ui,...,u)] and let §: Z — Z’ be the Z-linear map determined by
O(u;) = uf, for 1 < i < r. Then @ is a ring isomorphism. Let u’ = (uf,...,u..)

and Q' = {0(w,) | @ > 0}. Then ' is u'—admissible and 8 induces an isomorphism
of Z-algebras #z(1) = #z (u’), where the inverse map is the homomorphism
induced by 71 : 2’ — Z.
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Now, by Lemma 5.4 and Theorem 5.3(d), #&(u’) is an R—-algebra of dimension
r™(2n — 1)!I. Hence the set of r—-regular monomials is an R-basis of #&(u’) since
there are r™(2n — 1)!! r-regular monomials. In particular, the set of r-regular
monomials is linearly independent over R, and hence linearly independent over Z’.
Therefore, #z/ (1) is free as a Z’-module of rank r™(2n — 1)!. Hence, #z(u) is
free as a Z-module of rank 7 (2n — 1)!I.

Now suppose that R is an arbitrary commutative ring (in which 2 is invertible).
Then we can consider R as a Z—algebra by letting 4; act on R as multiplication
by u;, for 1 < i < r. Since #z(0) is Z—free, the R-algebra #= (1) ® z R is free as an
R-module of rank r™(2n—1)!!. As the generators of #z(1)® z R satisfy the relations
of #; (u) = #r(u) we have a surjective homomorphism %, ,(u) — #z (1) ®z R.
By Proposition 2.16 this map must be an isomorphism, so we are done. O

As an easy application of the Theorem we obtain the following useful fact which
we will use many times below without mention.

Proposition 5.6. Suppose that R is a commutative ring of in which 2 is invertible
and that ) is u—admissible.
a) For 1 < m < n, let #/,(u) be the subalgebra of W; (n) generated by
{SL,E, Xj[1<i<mand1<j<m}. Then #;,(0) = ¥, n(u).
b) The Brauer algebra By, (wo) is isomorphic to the subalgebra of #; . (u) gen-
erated by { S;, E; |1 <i<n}.

6. THE DEGENERATE HECKE ALGEBRAS OF TYPE G(r,1,n)

Suppose R is a commutative ring and let u € R”. Recall from section 2 that
.1 (u) is the degenerate Hecke algebra with parameters u. In this section we give
several results from the representation theory of 7% ,(u) which we will need in our
study of the cyclotomic Nazarov—Wenzl algebras. As the proofs of these results
are very similar to (and easier than) the proofs of the corresponding results for the
Ariki-Koike algebras we are very brief with the details.

The following result is proved by Kleshchev [Kle05]. We use the seminormal
representations of #;. ,(u) to give another proof.

Let Ajf(n) be the set of r—multipartitions of n. We consider A;"(n) as a partially
ordered set under dominance >, where A > p if

s—1 k s—1 k

SO I AT = DO+ Y

t=1 j=1 t=1 j=1
for1<s<randall k>0. If \> p and XA # pu we sometimes write A > pu.

Theorem 6.1. The degenerate Hecke algebra ¢, ,(u) is free as an R-module of
rank r"n!.

Proof. Tt is not difficult to see that for any ring R set
(YFvk vk, | 0<ki<r—1lLwe&,}

spans 7. , (u) as an R-module. So we need to prove that these elements are linearly
independent.

We adopt the notation from the proof of Theorem 5.5. As in the proof of that
result, we first consider the case when R = Z, where Z = Z[%, Uiy ..., Uyp], and we
choose r algebraically independent transcendental real numbers u, ..., u!. which
satisfy the hypotheses of Lemma 5.4. Let 2’ = Z[,u},...,u}]. Then Z % Z' — R
and we can ask whether the degenerate Hecke algebra % (u’), defined over R
and with parameters u’ = (u},...,u..), acts on the seminormal representations of

#r(0'). By definition, if A € A}(n) then E;A(N) = 0, for 1 < i < n. Therefore,
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over R, A()) can be considered as an & (u’)—module by Corollary 2.17. Hence, as
in the proof of Theorem 5.5,

dimp 4 (0') > Y (dimg A(N))* = r"nl.
AT (n)
Consequently, by the opening paragraph of the proof, this set is a basis of & (u’).

As in the proof of Theorem 5.5 it follows that % (1) is free as a Z-module of rank
r™nl. The result for a general ring R now follows by a specialization argument. O

We remark that the definition of the seminormal representations of #. ,,(u) re-
quired that R satisfy assumption (4.12). It is not hard to modify the definition
of the seminormal representations of .7 ,,(u) so that the formulae do not involve
any square roots and so that they work over an arbitrary field (cf. [AK94]). In
particular, this leads to a simplification of the last argument.

Definition 6.2 (Graham and Lehrer [GL96]). Let R be a commutative ring and
A an R-algebra. Fix a partially ordered set A = (A, >) and for each A € A let T((\)
be a finite set. Finally, fix CJ, € A for all A € A and s,t € T()).
Then the triple (A, T, C) is a cell datum for A if:
a) {CA | X €A and s, t € T(N\)} is an R-basis for 4;
b) the R-linear map *: A — A determined by (C)* = O3, for all A € A and
all 5,t € T'(A) is an anti-isomorphism of A4;
¢) forall A € A, s € T(\) and a € A there exist scalars 74, (a) € R such that

aC = Z Teu(a)C2,  (mod AP?Y),
ueT(N)
where AP = R—span{Cl, | p> X and u,0 € T(p) }.

An algebra A is a cellular algebra if it has a cell datum and in this case we call
{CA | s,t € T(\),\ € A} a cellular basis of A.

To show that /7. ,(u) is a cellular algebra we modify the construction of the
Murphy basis of the Ariki-Koike algebras; see [DJM99]. For any multipartition
A= (/\(1)7 A2 ,)\(T)) we define uy = Uq,,1Uqy,2 " - * Ua,_;,r—1, Where uq; = (Y1 —
wir1) (Yo —wip1) - (Yo —uip1) and a; = Z;Zl AUV 1 <i<r—1. Let &) be the

Young subgroup Sya) X Gy@ X -+ X &y of &,. Let z) = ZweGA T,, and define

Mse = Ty untaTyqy € 4., (0),
where s, t are standard A\-tableaux.

Theorem 6.3. The set {mg |5, t € T5(N\) and A € A} (n)} is a cellular basis
of 76 n(u).

Proof. The proof of this result is similar to, but much easier than, the corresponding
result for the cyclotomic Hecke algebras. See [DJM99] for details. g

We next give a formula for the Gram determinant of the cell modules of 777 ,, (u).
This requires some definitions.

Definition 6.4. The parameters u = (u1, ..., u,) are generic for /¢ ,,(u) if when-
ever there exists d € Z such that u; —u; = d - 1g then |d| > n.

The following Lemma is well-known (cf. [JM00, Lemma 3.12]), and is easily
verified by induction on n.

Lemma 6.5. Suppose that the parameters u are generic for . ,(u) and that R
is a field with char R > n. Let A and p be multipartitions of n and suppose that
s € T8\ and t € F(u). Then s = t if and only if cs(k) = ci(k), for
k=1,...,n.
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As in the definition of a cellular basis, if A € A;f(n) then we let %”T‘?n)‘ be the free
R-submodule 7%, ,, with basis { mg | 5,t € 75(u) for u> A }. It follows directly
from Definition 6.2(c) that #>2 is a two-sided ideal of 7, ,,.

rn
Lemma 6.6. Suppose that \ is a multipartition of n and that s5,t € Z,5*4(\). Then

Yimee = cs(k)mse + Z TugMye  (mod %?ﬁ)a

ue ZSt(N)
uP>s

for some Ty € R.

Proof. If r =1 then this is a result of Murphy’s [Mur83]. The general case can be
deduced from this following the argument of [JMO00, Prop. 3.7]. d

We can now follow the arguments of [Mat04] to construct a “seminormal” basis

of J4. .

Definition 6.7. Suppose that A € A}F(n).
a) For each t € 7°()\) let

n Yk — Cu(k)
Fi = II _—
' 11 (k) — cu(k)
k=1 peAt(n)
ue 7t (1)
cu(k)#ci (k)

b) If s, t € 7)) then let for = FamsiFy.

Using the last two results and the definitions it is not hard to show that if s, t and
u are standard tableaux then fs(Fy, = 0, fst; see, for example, [Mat99, Prop. 3.35].
Hence, from Theorem 6.3 and Lemma 6.6 we obtain the following.

Proposition 6.8. Suppose that R is a field with char R > n and that u is generic
for 7. ,(0). Then { for | 5,t € T3 (N\),\ € Af(n)} is a basis of S, ,(u). More-
over, for each standard tableau t there exists a scalar v¢ € R such that

JstSfuv = S Yifsv,
where 5,t € '?Std()‘); u,0 € yStd(M); and A, p € Aj(n)

Notice, in particular, that the Proposition implies that {fs} is also a cellular
basis of J¢. ,(u).

Although we will not pursue this here, we remark that Fy = %f tt and that
these elements give a complete set of pairwise orthogonal primitive idempotents for
;. n(u). This can be proved by repeating the argument of [Mat04, Theorem 2.15]

Suppose that A is a multipartition of n and let S(\) be the associated Specht
module, or cell module, of 2. ,,(u). Thus, S()) is the free R—-module with basis
{ms | s € 75(\)} and where the action of 7%, (u) on S()) is given by

amg = Z Tau (@) My,
weT st ())

where the scalars rq,(a) € R are as in Definition 6.2(c).
It follows directly from Definition 6.2 that S(\) comes equipped with a symmetric
bilinear form (, ) which is determined by

(Mg, M)Myp = MysMyp  (mod f%”r‘?n)‘),

for 5,t,u,0 € 75M()). Let G(A) = det ((ms, my)), for s,t € T54(X), be the Gram
determinant of this form. So G(A) is well-defined up to a unit in R.
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Corollary 6.9. Suppose that R is a field with char R > n and that u is generic for
. n(u). Let X be a multipartition of n. Then

g\ = H Tt

te T atd())

Proof. Fix t € .7%%()\). Then Specht module S()) is isomorphic to the submodule
of A,/ A5} which is spanned by { mg + S5} | s € 754()\) }, where the isomo-
prhism is given by 0:.2., /5> — S(A);ms + A5} — ms. Let fo = 0(fa).
Then { fs | s € 754(\) } is a basis of S(\) and the transistion matrix between the
two bases {ms} and {fs} of S()\) is unitriangular by Lemma 6.6. Consequently,
G(N) = det ((fs, fe)), where s, t € 7°!(X). However, it follows from the multiplica-
tion formulae in Proposition 6.8 that (fs, fi) = ds¢yt; see the proof of [Mat04, The-
orem 2.11] for details. Hence the result. O

Consequently, in order to compute G(A) it is sufficent to determine -y, for all
t € 754(\). Tt is possible to give an explicit closed formula for ¢ (cf. [Mat04,
(2.8)]), however, the following recurrence relation is easier to check and sufficient
for our purposes.

Given two standard A\—tableaux s and t write s >t if 55, > t5, for 1 < k < n. Let
t* be the unique standard A-tableaux such that t* > s for all s € ,?Std(/\). Ifs>t
and s # t then we write s > t.

Lemma 6.10. Suppose that R is generic for 7. ,(u) and that char R > n. Let
be a multipartition of n.

o) v = [ TIG TT T] G—i+us—w).
1<t<ri>1 1<s<t<r  4,5>1
1< <A
b) Suppose that s,t € T34 (\) such that s >t and s = Sit, for some k. Then

_ (es(k)—ci(k)+1)(cs (k) —ci (k) —1)
= (cs(R)—cu(R))? Ts-

Proof. Part (a) follows easily by induction on n. Part (b) follows using arguments
similar to [JM00, Cor. 3.14 and Prop. 3.19] O

We remark that the arguments of [JMO00, 3.30-3.37] can now be adapted to give
a closed formula for G(\). The final result is that

93“1)\
OV | B VA

veAT (n)

where gy, is a product of terms of the form (cp (k) — cp (l))il, where these terms
are determined in exactly the same way as in [JMO00, Defn 3.36]. As we do not need
the precise formula we leave the details to the interested reader.

Theorem 6.11. Suppose that R is a field and thatu € R". Then % ,(u) is (split)
semisimple if and only if char R > n and u is generic for 7 ,(u).

Proof. First, note that because 7. ,,(u) is cellular, it is semisimple if and only if it
is split semisimple; see, for example, [Mat99, Cor 2.21].

Next, suppose that char R > n and that u is generic for 4, ,(u). Then G(A\) # 0
for all A € A (n) by Lemma 6.10. Consequently, for each A € A} (n) the Specht
module S(A) is irreducible. Hence, by [Mat99, Cor 2.21] again, 4, ,,(u) is semisim-
ple.

To prove the converse, let A = ((n), (0),...,(0)) € A} (n) and set my = mpp;

more explicitly,
ks n

ma= > T[] []Ve—w)

wes, t=2 k=1
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It is easy to see that T,m) = m) = m)Ty, for any o € &,,. It also follows from
Lemma 6.6 that Yymy = cp (k)ma = myYy. Hence, J4. ,(w)my54. ,(u) = Rm

and
r n—1

m3 :n!H H(ul—i—d—ut) “my.
t=2 d=0
If char R < n then n! = 0 in R so that Rm, is a nilpotent ideal in J%.,(u), so
;. (1) is not semisimple. On the other hand if u is not generic for 4., (u) then

u; —u; = dlg where d € Z and |d| < n, for some ¢ # j. By renumbering u1, ..., u,,
if necessary, we see that Rm) is a nilpotent ideal. Hence, if either char R < n, or
if u is not generic for /2. ,,(u), then 7. ,(u) is not semisimple. O

7. A CELLULAR BASIS OF #;,(u)

Throughout this section we assume that R is a commutative ring in which 2
is invertible and that € is u—admissible. This section constructs a cellular basis
for #;.,, = W, n(u) using the cellular bases of the algebras 7. ,, oy, for 0 < f < | %],
together with a series of filtrations of %, ,. Our construction of a cellular basis
of #;.,, is modelled on Enyang’s work [Eny04] for the Brauer and BMW algebras.

Before we begin we need to fix some notation. Recall that the set {S1,...,S,-1}
generates a subalgebra of %, which is isomorphic to the group ring of &,,. For
each permutation w € &,, we defined the corresponding braid diagram ~(w) in
section 2; we now set S, = By (). Equivalently, if w = (iy,d1 +1)... (ix, i + 1),
where 1 < 4; < n for all j, then S, =S;, ... S;,. Then { S, | w € &, } is a basis
for the subalgebra of #;.,, generated by {Si,...,Sn_1}.

Next, suppose that f is an integer with 0 < f < | %]. It follows from Theorem 6.1
that we can identity J#7.,,—2y with the subalgebra of /7. ,, generated by Y; and T},
where 1 <i<n—2fand 1< j <n-—2f—1. Similarly, by Proposition 5.6, we can
identify #;.,—oy with the subalgebra of %, , generated by X;, S; and Ej;, where
1<i<n—2fand1<j<n—-2f—1.

Definition 7.1. Suppose 0 < f < |§]. Let & = #; 2y E1W; n—2y be the two-
sided ideal of #;. ,,_2 generated by E;.

Proposition 7.2. Suppose that 0 < f < |%]. Then there is a unique R-algebra
isomorphism €5 : I 2§ = Wy n—25/Es such that

Ef(Ti) =5 +& and {-:f(Yj) =X; + &,
for1<i<n-—2fand1 <j<n-2f.

Proof. We first show that #;.,,_27/Ey is a free R—module of rank r"~2f(n — 2f)!.
It follows from the multiplication formulae for Brauer diagrams that an r-regular
monomial X"‘BVXﬁ in #; n—o2s belongs to £ whenever v has a horizontal edge
(equivalently, v # y(w) for some w € &,,_a25). If v = vy(w), for some w € &,_ay,
then B, = S, and -y contains no horizonal edges, so the definition of regularity (Def-
inition 2.9), forces § = 0. So, by Theorem 5.5, #; ,_2¢/Ey is spanned by the ele-
ments { XS, +&¢ |[0<a; <r, for1 <i<n—2f, and w € &,_5¢ }. Note that
this set contains 7" =2/ (n — 2f)! elements.

To see that the elements at the end of the last paragraph are linearly inde-
pendent we use the seminormal representations from section 4. Using the ar-
guments and the notation from the proof of Theorem 5.5, it is enough to show
that dimg #&(0')/E; > r"~2/(n — 2f)!. Now a seminormal representation A(\)
of #r(u’) is a representation of #&(u’)/&; if and only if £fA(N) = 0, which hap-
pens if and only if A is a multipartition of n — 2f. Therefore, by the arguments
of section 5, dimg #&(u')/Er > r"~2f(n — 2f)!. Hence, by the arguments used
in the proof of Theorem 5.5 (compare, Theorem 6.1), the elements above are a
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basis of #;.,,—2f/Es and, consequently, #;. ,_o¢/E¢ is free as an R-module of rank
r"=2f(n — 2f)! as claimed.

Inspecting the relations of 77 ,_of and #.,—o; shows that there is a unique
algebra homomorphism e : . ,_of — W7 n—2f/E such that e¢(T;) = S; +&¢ and
es(Y;) = X; +&;. To see that 5 is an isomorphism observe that € 5 maps the basis
of J. ,_ay to the basis of #; ,_27/Ef. Hence, it is an isomorphism with inverse
determined by 5;1(X0‘5’w + &) =Y°T,, for w € G,_9¢ and 0 < o; < 1 where
1<i<n-—2f. O

Definition 7.3. Let Ef = E,,_1F,,_3-- -En_or41 and let ”//Tfn = V/mlEf"//ml be
the two-sided ideal of #.,, generated by Ef. If f = | 5] then we set 7., 2y = R
and #,/ 71 = 0.

Note that this gives a filtration of #;. ,, by two-sided ideals:

W = WO, SWE S o w2 swt2 ™ o,

For 0 < f < [%] let 7y "//Tfn —>”//Tfn/7/rf;'1 be the corresponding projection map
of #; ,—bimodules.

For convenience we set N, = {0,1,...,7 — 1} and define Nif) to be the set of
n—tupples kK = (k1,...,k,) such that k; € N, and k; # 0 only for i = n —1,n —

.3 f K __ kn— Ky —: ko, _

3,...,n—2f +1. Thus, if s € NY) then X* = X\" ' X}m3® L X" € W,
Lemma 7.4. Suppose that 0 < f < | 5| and k € N Then EIXrEr Cc Wi

Proof. As E7T! = EfEn,gf,l, this follows because £y = W n—ofEn—of—1Wrn—2f
and every element of %, ,,_oy commutes with Ef X", O

Combining the last two results we have a well-defined R-module homomorphism
of: Ay pof— Wl WL, for each integer f, with 0 < f < |%], given by

rm o

or(h) = Elep(h) + # 0 1

rm o

for h € %,n_Qf.
We will need the following subgroups in order to understand the ideals %fn

Definition 7.5. Suppose that 0 < f < [5]. Let By be the subgroup of &,
generated by {Sn—l, Sn—25p-15n-35n—2, - 7Sn—2f+25n—2f+1Sn—2f+35n—2f+2}-

The symmetric group &,, acts on the set of Brauer diagrams B(n) from the right.
Let ¥ =Yp—10++0Yn_27+1. Then Ef = B, and By is the stablizer in &,, of the
diagram ~y. The group B is isomorphic to the hyperoctahedral group Z/2Z1 &y,
a Coxeter group of type By.

Given an integer f, with 0 < f < [2], let 7 = ((n — 2f), (27)) and define

Dy = { dc6, t7d = (t1,t2) is a row standard 7-tableau and the }

first column of t5 is increasing from top to bottom

The following result is equivalent to [Eny04, Prop. 3.1]. (Enyang considers a
subgroup of &,, which is conjugate to B.)

Lemma 7.6. Suppose that 0 < f < [%]. Then Dy is a complete set of right coset
representatives for G,_op X By in G,,.

The point of introducing the subgroup B is the following.

Lemma 7.7. Suppose that 0 < f < [§], w € &,_of and that b € By. Then
SwEf = EfSw and Ebe = Ef = SbEf.



CYCLOTOMIC NAZAROV-WENZL ALGEBRAS 45

Proof. The first claim is obvious by (2.1)(d)(i). For the second claim it is enough
to consider the case when b is a generator of B . In this case the claim is easily
checked using the tangle relations and the untwisting relations. O

Motivated by the definition of the elements mgs¢ € S ,—2f from the previous
section, and by the work of Enyang [Eny04], we make the following definition.

Definition 7.8. Suppose that 0 < f < [%] and A € A} (n — 2f). Then for each
pair (s,t) of standard A-tableaux define

r AW ACTD)

Mgy = S - || II (Xi —us) Y Sw-Sq-
s=2 i=1 weS
We remark that we will not ever really use this explicit formula for the elements
M. In what follows all that we need is a family of elements { Mg} in #;,, which
are related to some cellular basis of J#. ,_25 as in Lemma 7.9(d) below.
The following result follows easily using the relations of % ,, and the definitions.

Lemma 7.9. Suppose that 0 < f < |2], A € Af(n —2f) and that s,t € T5(N).
Then:
a) Bf My = My ES e wJ,.
b) If s € NY) then My X" = X" M,
¢) If w is a permutation of {n —2f + 1,...,n} then MsSy = SwMsi. In
particular, MgSy = SwMsy if w € By
d) We have o¢(mst) = mp(E Mygy).

The filtration of #; , given by the ideals %fn is still too coarse to be cellular.

Definition 7.10. Suppose that A is a multipartition of n —2f, where 0 < f < [ 5 ].
Define #,5) to be the two-sided ideal of #;.,, generated by #,/ ! and the elements

{E' My | s,t € 7% u) and p € A (n — 2f) with g > \}.
We also set #,5 = DI WEn

=/, where in the sum p € Af(n —2f).
Observe that

wiCcwEr cwEr Cw

r,n
and that #2Z* C #>" whenever A\ > u. Consequently, the ideals {#,2}} give a

rn rn rn

refinement of the filtration of #;.,, by the ideals {#,/,}.

Definition 7.11. Suppose that s € 7*4()\). We define A4(f,)\) to be the R-
submodule of %I’ZA /#.> spanned by the elements

n rn

{ BT Mo X Sa+ 750 | (tr,d) € 5(f,A) },
where §(f,\) = { (t, k,d) | t € 74(\),k € NY) and d € Dy }.

We will see below that Ag(f, A) is a right #;. ,—module and that the spanning
set in the definition is a basis of Ag(f, A). Moreover, there is a natural isomorphism
As(f, N) =2 A(f, \), whenever s,t € T5t4()\),

Before we begin studying the modules Ag(f, A) it is convenient to define a degree
function on %, . Recall from Theorem 5.5 that the set of r-regular monomials is
a basis of . .

Definition 7.12. Suppose that a = Y 74,sX“B,X? € #, ,, where each of the
monomials in the sum is r—regular. Then the degree of a is the integer

n

dega = max { Z(ai + 5)

i=1

rayg 7 0 for some v € B(n) } .
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In particular, deg.S; = deg &; =0, for 1 <4 < n,and deg X; =1, for 1 <j < n.
We note that the proof of [Naz96, Lemma 4.4] implies that

deg(ab) < deg(a) + deg(b), for all a,b€ #; .

Lemma 7.13. Suppose that 1 < j < n and that 1 < k < r. Then EjX]’?Ej =

ijj(-k), where wj(k) is a central element in W, j_1 with deg wj(k) <k.
Proof. We argue by induction on j. If j = 1 then deg wgk) = 0 because wgk) €ER
by relation (2.1)(f). Suppose then that j > 1.

By Lemma 4.15 wj(k) is a central element of #; ;_; in R[Xi,..., X, 1] and

degwj(k) < k. Consequently, if wj(k) = > ,TaX®, for some r, € R, then

wj(»k)E- = >, raX*E; where each of the monomials X*FE}; is r-regular. Hence,

deg(wj(»k)Ej) = deg wj(»k). Therefore, it is enough to prove that deg(wj(»k)Ej) < k. By
Lemma 2.3,

k
w]( )Ej = Eij]'CEj = (_1)kEij+lEj = (‘UkEJ’SJ‘*lXJ]'CHSJ*lEJ
= (—1)kEjEj,1Sij_HSjEjflEj
= (—1)kE1j.Ej,1()(J}:C + X)Ej—lEja

where X € #, ;11 and deg X < k since deg(ab) < deg(a) + deg(b). We have that
deg(EjEj_1XE;_1E;) < deg X <k and that

E;E; A\ XJE; 1E; = (-1)"E;E; 1 X} \E; 1\ E; = (—1)kw§]i)1EjEjflEj
k
= (—1)*wl® B
(k)

By induction degw;~; < k, so this completes the proof of the Lemma. O

Given integers j and k, with 1 < j,k < n, let E;; = B, where v is the Brauer
diagram with horizontal edges {j,k} and {j,k}, and with all other edges being
vertical. Thus, Sy EiSy,-1 = E@yw-1 (i+1)w-1, for all w € &,,. Finally, note that
E; = E; ;1.

Until further notice we fix an integer f, with 0 < f < [%], a multipartition
A € Af(n—2f) and a standard A-tableau s and consider A(f, ) = Ag(f,A). The
next two Lemmas show that A(f,\) is a right #;. ,~submodule of #,5/#,%} and
that the action of #;., on A(f, \) does not depend on s.

If k= (K1,...,kn) € Ngf) we set |k| = kp—1 4+ kn—3 + -+ Kp_ofy1 = deg X7,
Lemma 7.14. Suppose that t € Tt¢(\) and d € Dy. Forl<i<nandl <j<n
there exist scalars aye, bye, Cope € R, which do not depend on s, such that:

a) BIMuSq-Si= Y aveE MpSe (mod #5)),

veT5t(N)
e€Dy

b) BfMySa-Ei= Y boeB/ MewSe (mod #,5),

ve Tt (\)
e€Dy

) BIMuSa-X;= Y cope B/ Moy XPS, (mod #,5)).

(0,0,€)€5(f,N)
lpl<1

Proof. (a) Now, SqS; = Sq(;,i+1) and by Lemma 7.6 we can write d(i,7 + 1) = abe
where a € G,,_a¢, b € By and e € Dy; 50 Sq5; = 5.5,5.. By parts (b) and (c) of
Lemma 7.9, respectively, we have

ETMS, = Efsf(mst)Sa = Efsf(mstTa) (mod "//T'?n)‘),
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since V/Tfj L C V/T‘?n)‘. As mgy is a cellular basis element for S, ,_of, we can write
msiTy, as a linear combination of terms ms, plus an element of %”T?n)‘. Consequently,
(BT Mg+ #;5})Sa can be written in the desired form. Hence, we may now assume
that a = 1.

To complete this case, observe that if v € 7 *'%()\) then, by Lemma 7.9(c) and

Lemma 7.7, Ef M., SyS. = Ef Sy M,,S. = Ef M, S, as required.

(b) We have to consider the product Ef My SqE;. Let j = (i)d~' and k = (i+1)d ™.
Then S E; = E;;Sq so that Ef M, S4E; = EsttEj,de. By part(a) we may
assume that d = 1. We can also assume that j < k since E; = Ej ;. So we need
to show that B/ My Ej + #;5) has the required form. There are three cases to
consider.

(1) First, suppose that j < k <n—2f. Then E; € #; n_2f, so that My E; 1 €
& and B My E; ), € ETE C #, /1! by Lemma 7.4. Hence, Ef M(S4E; € #,{,F1 C
#,5) and part (b) is true when j < k <n —2f.

(2) Next, suppose that 7 <n —2f < k. An easy exercise in multiplying Brauer
diagrams shows that

E'E;, = BT S k1), %f n—k %s even,
’ ETS( k1), if n—kis odd.

So Lemma 7.9(a) implies that EsttSdEi = MstEij,de = EsttSdefl(j,k:tl)da
we again deduce the result from part (a).

(3) Finally, suppose that n —2f < j < k. Then My E;; = E;iMs and a
Brauer diagram calculation shows that £/ Ejr= E'S,,, where w is a permutation
of {n—2f+1,...,n}. Consequently,

EfMyS4E; = EY Mo E; 1Sq = BV E; ;M Sq = EY Sy My Sq = Ef My S, S,

where the last equality follows from Lemma 7.9(c). As S,,Sq = SaSq-1,q We are
done by part (a).

(c) It follows from the skein relations that S¢X; = X(;y4+ B, for some B € %, (wo).
Hence, by parts (a) and (b) it suffices to show that Ef M X; can be written in the
required form, for 1 <i<mn. If i <n —2f then

EI My X+ W5} = Elep(me) X + W5} = Elep(maY;) + #,5),

so the result follows because ms is a cellular basis element of J77. ,_oy. If i > n—2f
then the result is immediate if n — i is odd. If n — i is even then i —1 > n —2f, so
the result follows because E;_1X; = —F,_1X;_1 by (2.1)(h).

This completes the proof of the Lemma. 0

Proposition 7.15. Suppose that (t,k,d) € 6(f,A). For1<i<nandl<j<mn
there exist scalars aype, bope, Cope € R, which do not depend on s, such that:
a) BIMyX"Sq-Si= Y aype B MowX?Se (mod #,5)),

(0,p,)€5(f,X)
lol<|~]

b) BIMX"Sq-Ei= Y. bopeE Moo XPSe (mod #,5)),

(0,p,€)€5(f,X)
lol<|x

C) EsttXHSd : Xj = Z CnpeEstnXpSe (mOd %l?n)\)

(v,p,€)€5(f,2)
lpl<|r|+1

Proof. The case || = 0 is precisely Lemma 7.14. We now assume that |x| > 0 and
argue by induction on |x]|.
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(a) Write S45; = SaSpSe, where a € S,_2f, b € By and e € Dy. As
Ef My X" = Ef X* M, we may assume that a = 1 by repeating the argument from
the proof part (a) of Lemma 7.14. By the right handed version of Lemma 2.3,
XrS, = S’bX"b_1 + X, where X is a linear combination of monomials of the
form zy ...z with z; € {S,E, X |1<l<nand1<m<n} and k < |k|.
For each summand x; ...z, of X we have k < |k| so by induction we can write
(BT My + V%,Dn)‘)xl ...x; in the required form, for [ = 1,. .. k; consequently, by in-
duction, we can write (E/ Mg+ #,5} )21 ... 2.Se in the required form. Hence, we
are reduced to showing that EsttSbX“b_1 S.+#>* can be written in the required

rn

form. Now, EfMyS, = E/SyMy = Ef M by Lemma 7.9(c) and Lemma 7.7.
Therefore, using Lemma 7.7 once again,

Ef M Sy X™ 'S, = BT M XS, = My Bf X" 'S, = + M, Ef X~ 3.,

where 1/ € NY) because b € Bf and E;Xj4+1 = —E;X; by the skein relations.
Hence, EsttSbX"bASe = :l:EsttX",Se and the inductive step of the Proposi-
tion is proved when h = S;.

(b) As in the proof of part (b) of Lemma 7.14, we have EfMyX"S4E; =
EsttX"EMSd, where j = (i)d~! and k = (i + 1)d~!. Further, as E;, = Ey; we
may assume that j < k and, by part (a), we may assume that d = 1. So we need
to show that B/ My X~E; + WT’DTLA has the required form. There are two cases to
consider.

Case bl. k =75+ 1:
We must show that B/ My X ®E; can be written in the required form.

First suppose that j < n—2f. Then we may repeat the argument from the proof
of part (b) of Lemma 7.14 to see that Mg E; € &, so that

EIMyX"E; = E?X"MyFE; € ETX"&; C# 1

Hence, Ef My X"Sq4E; € "//Tf,jl C %Pn)‘ by Lemma 7.4, and the Proposition is true
when j <n — 2f.

Next, suppose that 7 > n — 2f. If k; + k;41 = 0 then X"FE; = E; X" so the
result follows by induction. Suppose then that x; + kj41 > 0.

If j =n—1 (mod 2) then E; is a factor of Ey and x; > 0. By Lemma 7.13

we have that E; X7 E; = ijj(»'{j ). where wj(-”" ) is a central element of #;.;_; with

degw!™ < k;. Write B/ = B E; and X* = X*X[”. Then
Ef My X"E; = B! My X*E; X} Ej = B! My X" Ejw\™ = B/ My X*Ejw!™.
As deg X" = |r| — kj and deg wj(-”j) < K;, the result now follows by writing wﬁﬁj)
as a linear combination of terms of the form z;...z; and applying induction to
each of the products EsttX“ijl e Zm, for 1 < m <1 (compare the proof of
part (a)).
If j =n (mod 2) then Ej 4 is a factor of E/ and kj11 > 0. Write Ef = ETE;
and X* = X*X /1" Then
EIMyX"E; = B! My X"Ej 1 X1 By = B Mo X E; (1 X7 B,
= 2B My X" X7 Ej 1 By = + B/ My X" X ;4155841
= 2B My X"Ej 1 X7 8811, = B/ My X"5;5;11.
Hence, the result follows by part (a).
Case b2. k> j+ 1: )
Since |k| > 0 we can fix [ with k; # 0 (so I =n — 1 (mod 2)). Write Ef = E/E,
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and X* = X*X". Set I' =1if | ¢ {j,k} and I’ = [ +1if I € {j, k}, and put " =’
ifl’'#j+1andl” =kifl’=j+1. Note that I’ ¢ {j,k} and I” ¢ {j,j + 1} since
k> j+ 1. We have

EI M X"E; ), = £BT My X B/ X} S 41,0 B8 41.8)
= + B My X Ey(S (1.0 X0 + X)E;S(41,8)
= 2B Mo X (S0 11, X0+ X)EjS (1.5

where deg X < k;. Hence, by induction and part (a) it suffices to show that
B Mg X"S(j41,1 X[} Ej can be written in the required form. As 1" ¢ {j,j + 1}

B Mo X" S (1.1 X1 By = BT Mot X" 85010 E; X1
Therefore, Ef My X "Ej 1 can be written in the required form by induction.

(c) As in the proof of Lemma 7.14, we may assume that » > 1 and, by the skein
relations, SgX; = X(;)q + B, for some B € %,,(wo). Hence, by parts (a) and (b) it
suffices to show that Ef M, X"-X; can be written in the required form. Ifi < n—2f
then

BT My X X+ W50 = BI X o (me) Xi + #,5) = B/ X o(ma Vi) + 5]

rmn

so the result follows because {ms} is a cellular basis of ;. ,,_af. If i > n—2f and
ki <1 —1then Ef My X"X, is of the desired form. If k; = r — 1 then XX, =XT
can be written as a linear combination of r—regular monomials of degree less than
or equal to k; by the proof of Theorem 5.5. Hence, using parts (a) and (b) and
induction for each of these r—regular monomials, Ef Mg X" X;+#,% can be written
in the required form.

This completes the proof of the Proposition. O

Recall from (2.2) that #*F has a unique anti-automorphism x*: 72 — yaff
which fixes all of the generators of #2f. This involution induces an anti-
isomorphism of #,.,, which we also call x. Thus, 57 = S;, Ef = E;, X = X;
and (ab)* = b*a*, for 1 < i <mn,1 < j <n and all a,b € #,,. Observe that
Sk = Sp-1, for w € G,,, and that M}, = M.

Proposition 7.16. Suppose 0 < f < | 2] and A € A (n —2f). Then #,5}/#,5)
is spanned by the elements

{SEXPEI My X"Sa+ W5} | (t,5,d), (s,p,€) € 5(f,\) }.

Proof. Let W be the R-submodule of #,5}/#,%} spanned by the elements in the
statement of the Proposition. As the gencrators {Ef Mg + #,52} of W5} /w52
are contained in W, and W C V/T')Zn)‘ / %‘if‘, it suffices to show that W is a #,. ,—
bimodule.

First, by Proposition 7.15, W is closed under right multiplication by elements
of #; n. To see that W is also closed under left multiplication by elements of %,
note that (#,5})* = #,5} as the set of generators for #,% is invariant under x

because (Ef My)* = M (Ef)* = ME/ = Ef M. Therefore, if a € #,.,, then
a(S;XPET My X Sy + #5)) = (S;X B! M XPSe + #,5))a*)" e W,

by Proposition 7.15. Hence, W is closed under left multiplication by elements
of Wy . d

Let A = {(£,N[0<f<[2]and A€ Af(n—2f)}. If (f,\) € A and
(s,p,€), (t, 5, d) € 6(f,\) then we define

(f,N) _ g K
Clayimay = S*XPES My X*5S,.
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We can now prove Theorem B from the introduction.

Theorem 7.17. Let R be a commutative ring in which 2 is invertible and let
u € R". Suppose that Q) is u—admissible. Then

€ ={CLN ey | (5:p.€), (4 5,d) € 5(F,N), where (f,)) € A}

is a cellular basis of Wy n(0).

Proof. Applying the definitions it is easy to check that (C((sf)p)\)e)(tm d))* =

((z’lj:)d)(&p@). Furthermore, by Proposition 7.15, for each h € 5 there exist scalars

7 x,q)(h) € R, which do not depend on (s, p, e), such that

(F2) _ (F.0) A
Cimmmay b= D Ty (WO 0 gy (mod #ED).
(t/,k",d")ES(f,N)

To show that € is a cellular basis of %, ,, it remains to check that € is a basis of

Wy Now, Wy = W2, DHL, DD %L,?J is a filtration of #;.,, by two-sided
ideals, and the two-sided ideals #,2* where A € Af(n — 2f), induce a filtration

of W1, /W1 Therefore, ¢ spans #;., by Proposition 7.16. To complete the
proof observe that #5(f,\) = #.744(\), by Lemma 5.1, and #% = r"(2n — 1)!!,
by Corollary 5.2. As #;,, is a free R—module of rank " (2n — 1)!! by Theorem 5.5,
this implies that € is an R-basis of #, ,. Hence, € is a cellular basis of #;.,, as

required. O

The reader may check that the proof of Theorem 7.17 does not rely on the
explicit definition of the elements Mg € #;, ,,(u). The important property of these
elements, as far as the proof of the Theorem is concerned, is that they are related
to a cellular basis of . ,(u) by the formula of Lemma 7.9(d). Consequently, for
each cellular basis 7. ,,(u) the argument of Theorem 7.17 produces a corresponding
cellular basis of %, ,,(u).

8. CLASSIFICATION OF THE IRREDUCIBLE #;. ,-MODULES

This section for fields in which 2 is invertible we classify the irreducible #. ,,(u)-
modules in terms of the irreducible .7, ,,(u)-modules. As the involution * induces a
functorial bijection between left #;. ,—modules and right . ,~modules, we continue
to work with right % ,—modules as in the previous section.

We begin by recalling a useful result of Wenazl’s.

Lemma 8.1 (Wenzl [Wen88, Propositions 2.1(a) and 2.2(a)]).
a) Any monomial B, € By (wo) is either in Bn_1(w) or it can be written in
the form ayaas, where a; € Bp_1(wo) and o € {Ep_1,Sn—1}.
b) En_1%n(wo)En—1 = Brn—2(wo)En—_1.

Lemma 8.2. Suppose that n > 2. Then Sp—1Bn-1(wo)En-1 = Bn-1(wo)En_1.

Proof. If a € %B,_o(wo) then S,_1aE,—1 = aS,_1E,—1 = aE,_1. Suppose
a & Bn_2(wo). By Lemma 8.1, we can write a = ajaas with a; € %p—_a(wp)
and o € {En_Q,Sn_Q}. If «a = FE,_5, then S,_1aF, 1 = a1, 1Fn_oFE,_1a3 =
alsn,gagEn,l. If o« = Sn,Q then SnflaEnfl = als’n,lsn,gEn,lag =
a1E,_2a2F,_1. In all cases we have S,,_1aFE,_1 € Bp_1(wo)En_1.

Ol

Lemma 8.3. Suppose that n > 2. Then for each a € #;.,, there exists h € Wy pn_o
such that degh < dega and E,_1aE,_1 = hE,_1. In particular, E,, 1 Wy nEn_1 =
%7n72En71'
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Proof. We argue by induction on dega. It is enough to consider the case where
a = X*“B, X" is an r-regular monomial in #;.,,. Write X® = X*X "' X% and
XB = XﬁXff’llXﬁn and define k = a1+ ap+ Bn_1+ Bn. If K =0 then the result
follows from Lemma 8.1(b), so we may assume that k > 0. We split the proof into
two cases.

Case 1. B, € #,_1(wo):

First suppose that B, € %,_2(wo). Then we have

En 1 X°B,XPE, | = X®B,E, X' T/t xontbnp, | X0

= (-1t XoB F, 1 Xk | E, 1 XP.
(k)
n—1
element in %, ,_2. If k& < r then degz,u,(f_)1 < k by Lemma 7.13, so the result
follows by induction. Suppose then that k& > r then XF , can be written as a
linear combination of r—regular monomials of degree strictly less than k, so the
result again follows by induction if B, € %, _2(wo).

Next, suppose that B, ¢ %n_s(wo). Then B, = B,zB,s, where
B,Y/’B,YN (S %n,Q(WQ) and z € {En,Q,Sn,Q}. So EnleaByXﬁEnfl =
By XE, (X" Xz X0 X, XPB. .

If 2= E,,_5 then

Bno1 Xy XS By o X X By = B 1 X O By o X B

= 4B, 1 X B X B,
= :l:XgiEl—i_anEnflEn72Enle5i_21+ﬁn
— iX2ﬁ§1+anEn71X5i51+ﬁn

=+X* B, ;.

However, E, 1 XF B, 1 = w,(f_)lEn_l by Lemma 4.15, where w is a central

This completes the proof when z = E,,_,.
Now suppose that z = S,,_5. Using the relations (2.1),
Bt Xy X5 Sy o Xy X By = 2B, Xm0 S, g Xm0 By
= iEn715n72XﬁEnfl
= :tEnflEn72SnlesEnfl'
If £k > r then we can write XS as a linear combination of r—regular monomials each
with degree strictly less than k. So by induction we may assume that k& < r. Then,
by Lemma 2.3, Sn,lX,’;C = X’;,lsn,l + X, where X € #,,, is a linear combination
of terms each of which has total degree in X,, and X,,_; strictly less than k. Hence,
by induction, E,_1E, 2XE, 1 = WE,_1, where h' € #;,_2 and degh’ < k.
Further,
En 1B X} 1Sy 1By 1 =Ep 1By 52X} (En = (—1)"Ey 1By 9 X 2En
= (-D)*E, 1E, oE, 1 XF , = (-1)*XF ,E, ;.
Consequently, En,lXO‘BVXBEn,l = hE, 1, where h € #, ,,_> and degh < dega.
Case 2. B, & Bp—1(wo):
Once again by Lemma 8.1 we can write B, = B, 2B+, where B/, By € %,,_1(wo)
and z € {Sy_1,Fpn_1}.

If z = F,,_1 then the result follows using Case 1 twice, so suppose that z = S;,_1.
Then

En 1 X“B,XPE, 1 = X“Ep 1 X" ' X" By Sy 1By X" X2 B, 1 XP.
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If Bp—1 + Bn = 0 then S,_1B,vE,_1 = hE,_;, for some h € %,_1(wo) by
Lemma 8.2, so the result follows from Case 1. Hence, we may assume that
Bn_1+ Bn > 0. Similarly, we may assume that o, _1 + a, > 0.

Next, suppose that By € &y_2(wo). Then

B, 1X°B,XPE, 1 = +X“E, 1 X" 'Y BB S, 1 X1t g, XP

n—1
Once again, by induction we may assume that 3,1 + 5, < r. Then, by
Lemma 2.3 Sn,ng"’lJrﬁ" = Xff’lﬁﬁnsnfl + X, where deg X < B,_1 + Bn. As
Sn_1E,_1 = E,_1 it is enough to consider En_leﬁera“ B, BW//Xfferﬁ“ E,_1.
As X0 BB X TP e B, (wo) this can be written in the required
form by Case 1.

Finally, suppose that B,» ¢ %,_2(wo). Then either B,» = B.yEn 2By, or
B’Y” = B,y{/ TL—QB’Yé’? where B’Y{,’ B'yé’ S 93,1_2((4)0). If B,y// = B’Y{, n_Qnyé/ then

B X3 X327 By S1 By nszngfi?Xﬁ"E"i
=B, 1 X" "By By S 1 By 2By X E,
=+ By 1 X0 By By S 1 By o X, B 1By
=+ By 1 X0 By By S 1 By o X5 B 1By
= 4B, 1 X " " By By Sy 1B 2B 1 X 5 By

n—1+an n—1+0n
= B, 1 X" By By Sp o By 1 X By

Now deg(X*B. B,y S,—2) < dega since -1 + B3, > 0. Hence, the result now
follows by induction. If B,/ = By Sn,gBWé/ then

B X0 X3n By Sno 1By Sn—a By X1 XPr By
=+ By 1 X0 By By S 1 Sp o X0 B, 1By
= 4B, 1 X0 By By S XS, 1By

By Lemma 2.3 we can write Sn,ng"’lJrﬁ" = Xff]ﬁﬁnan + X, where deg X <
ﬁn—l + /gn NOW7

By Xyt BB XS, 1S, 5B Boy
= By 1By By X)X By 5B 1By
= nlev’B%/Xgi_lﬁﬁ"En72Xgn_1+a"EnleWé’
= n—le/Bv{/Xgi_11+ﬁ"En—QXSZ?Jr%En—le;’
= Bt By By X, By g By 1 By X5

1

As a1 + ap > 0 we can write En_lBW/B%/Xfi‘llJrﬁ"En_gEn_l in the required
form and so completes the proof of the case—and hence the Lemma. O

By iterating the Lemma we obtain the result that we really want.

Corollary 8.4. Suppose f >0, w € &,, and that k,p € Ngf). Then
EfXxrS,X"Ef = hET,
for some h € W} u_ay.

As we now briefly recall, by the general theory of cellular algebras [GL96,Mat99],

every irreducible #;. ,—module arises in a unique way as the simple head of some cell
module. For each (f,\) € A fix (s,p,e) € §(f, \) and let C((tf’,:fi) = C((sf’p)‘)e)({ wd) T
#,5). By Theorem 7.17 the cell modules of #;.,, are the modules A(f,\) which

are the free R-modules with basis {C((tf,:fj) | (t,K,d) € 5(f,A)}. The cell module



CYCLOTOMIC NAZAROV-WENZL ALGEBRAS 53

A(f,A) comes equipped with a natural bilinear form ¢ x which is determined by
the equation

(f:2) (£,2) (f:2) (f:2) (f,:2) A
C(s p.e)(t,k d)O(t’ 1,d")(s,p,e) — (bf )‘( (t,K,d)? C(t’,n’,d’)) ’ C(s,p,e)(s,p,e) (mOd WT‘?”L )
The form ¢¢ is #, ,—invariant in the sense that ¢ x(va,y) = ¢s i (x,ya*), for
z,y € A(f, ) and a € #; . Consequently,

Rad A(f,A) ={z € A(f, ) | ¢psa(z,y) =0 for all y € A(f, ) }

is a #; ,—submodule of A(f,\) and D(f,\) = A(f,\)/Rad A(f, ) is either zero
or absolutely irreducible.

In exactly the same way, for each multipartition A € A;f(n — 2f) the corre-
sponding cell module S(X) for 72,25, the Specht module of section 6, carries a
bilinear form ¢y. The quotient module D(\) = S(A)/ Rad S()) is either zero or an
absolutely irreducible J77. ,,_oy—module.

We can now prove Theorem C.

Theorem 8.5. Suppose that R is a field in which 2 is invertible, that Q is u—
admissible and that wg # 0. Let (f,\) € A;f. Then DN =0 if and only if D # 0.

Proof. It is enough to prove that ¢\ # 0 if and only if ¢ # 0.

First, suppose that ¢y # 0. Recall that the Specht module S(\) has basis
{m¢|te 759\ }. Then ¢y(mi,my) # 0, for some t,o € T54()\); that is,
MstMys & %ﬁb’izf. Let 0 to the zero vector in N, Then

(£:2) (£:2) _ o
Cit 00 Clo o) (spe) = SeXPEI My B Moo XPS,
= S*XP(EY)2 My Mys XS,

Wi dx (M, me)SEXPE Mo X7,
= wquA(mt,mn)C £:2) (mod WDA).

(s,p,€)(s,p,€) T,

Hence, ¢f>\( (tfb)\i)’C((ﬁ(?)l)) = wod))\(mt,mn) # 0, so that ¢ # 0.
Now suppose that d)fA # 0. Then there exist (u,a,u), (v, 5 ,v) € 6(f,\) such
that ¢ (CLP ! ) 7é 0. That is,

u,a,u)’
eIeRN)
0 # ey Cloam (o)
= s;XPEf Mg XS, - S*XPEI My, X?S.

= S'XP M Ef XS, S XPE My, X?S,
= S*XP Mg hMy Ef X?S,,
for some h € #;.,_o5 by Corollary 8.4. Now, Mo EfMyE! C EEF C W1

by Lemma 7.4. Therefore, there is an h' € 4% ,_of such that mgh/my, ;é 0
(mod ,%‘;Dn); 5 f). Consequently, ¢ # 0. This completes the proof of the Theorem.

O

We remark that the irreducible representations of the Ariki-Koike algebras are
indexed by the u—Kleshchev multipartitions; see [Ari01, AMO00]. In the special case
when u; = d; - 1g, for 1 < ¢ < r and where 0 < d; < char R, Kleshchev [Kle05]
has shown that the simple /%, (u)-modules are labelled by a set of multipartitions
which gives the same Kashiwara crystal as the set of u—Kleshchev multipartitions
of n. Hence, in this case, the simple #; ,(u)-modules are labelled by the set
{(f,N)}, where 0 < f <[] and A is a u—Kleshchev multipartition of n —2f. By
modifying the proof of [DM02, Theorem 1.1], or [AMO00, Theorem 1.3], one can
show that under the assumptions of Theorem 8.5 the simple #;.,,(u)-modules are
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always labelled by the u—Kleshchev multipartitions. (Note, however, that we are
not claiming that D>} = 0 for the multipartitions A which Kleshchev [K1e05] uses
to label the irreducible . , (u)-modules.)

We close by classifying the quasi—hereditary cyclotomic Nazarov—Wenzl algebras
with wg # 0; see [CPS88] for the definition of a quasi-hereditary algebra.

Corollary 8.6. Suppose that R is a field in which 2 is invertible, that Q) is u—
admissible and that wy # 0. Then W, n(u) is a quasi-hereditary algebra if and only
if char R > n and u is generic for 7. ,(u) (Definition 6.4).

Proof. By [GL96, (3.10)], a cellular algebra is quasi-hereditary if and only if the
bilinear form on each cell module does not vanish. Therefore, #; , is a quasi-
hereditary algebra if and only if DY #£ 0 for all (f,\) € A} and J4.,,_o7(u)
is quasi-hereditary if and only if D # 0 for all A € Af(n — 2f). Hence, by
Theorem 8.5, #;. »(u) is quasi-hereditary if and only if the algebras 4, ,_2f(u) are

n

all quasi-hereditary, for 0 < f < [5]|. However, the degenerate cyclotomic Hecke
algebras are Frobenius algebras by [Kle05, Cor. 5.7.4], so they are quasi-hereditary
precisely when they are semisimple—since Frobenius algebras have infinite global
dimension when they are not semisimple, whereas quasi—hereditary algebras have
finite global dimension (see [Don98, Prop. A2.3]). Hence the result follows from
Theorem 6.11. O
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