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Correspondence

Zero-Error List Capacities of codewords are equally probable, and define Atre moment of the
Discrete Memoryless Channels list size by
1 0 1 n
I. Emre Telatar,Member, IEEE E[L"] = ] S Piyle)L(y. )"
ceC yeyn

Abstract—We define zero-error list capacities for discrete memoryless Fore > 0 define)M(n, P, p. ) as the maX|mu.m SI,Ze C?f codes of
channels. We find lower bounds to, and a characterization of these blocklengthn such that theosth moment of the list size Is at most
capacities. As is usual for such zero-error problems in information theory, 1 + ¢ when these codes are used over the DMCNow define the

the characterization is not generally a single-letter one. Nonetheless, we zero-error pth-moment list capacitypf a DMC P as
exhibit a class of channels for which a single letter characterization exists.

We also show how the computational cutoff rate relates to the capacities 1 P l
we have defined. Coelp, P) = fimy limsup 2 1o M(m, By o). ()
Index Terms—Acyclic channels, cutoff rate, list decoding, zero-error In the following, we will give lower bounds t@:(p, P) and

list capacity, zero undetected-error capacity. also a non-single-letter characterization of it. As is typical for

such “singular” problems in information theory, no single-letter
|. INTRODUCTION characterization of's¢(p, P) is known. Nonetheless, we will exhibit

. . . . __.anontrivial class of channels for which a single-letter characterization
It is sometimes desirable that the decoder of a communication . - ; .
aossmle. Furthermore, in the special casg 6% ~, a single-letter

system declare not just one, but several estimates of the transmi{?ﬁ o .
. Characterization exists for all channels.

data [1]. For example, the encoder and the decoder may be the inner

code of a more complex transmission system, the structure of the

outer code can then be used to choose among the estimates the inner Il. CHARACTERIZATION OF Cor

code provides. Or, the data source that is driving the transmissiorFor Cy¢(p, P) to be positive, there must be an output which is

system may have redundancy (which for some reason, e.g., dat@y reachable from all inputs. Formally there must exist a triple

considerations, has not been removed). This redundancy can be Usgdr., y) € X x X x Y such that

at a later stage to pick one of the estimates. A decoder that may

produce more than one estimate is calledisa decoder In this P(yler) =0 and P(y|r2) > 0.

correspondence, we will investigate the performance of list decodgfghere is no such triple, whatever the output word, all input words
on discrete memoryless channels undeeeo-error constraint. are possible and the decoder has to declare the entire codébook

~ Suppose we are given a discrete memoryless channel (DMC) Withys no rate larger than zero is possible. If, on the other hand, there
input alphabetX’, output alphabefy, and transition probabilities 5 g,ch a triple therCo, > 0.

{P(y|z), y € Y, = € X'}. The extension of the transition probability Theorem 1: For p >0
matrix to blocks ofn inputs and outputs is denoted Wy", and

by the memoryless property for = (&1, -, x,) € X" and Coelp. P) > max  min I(Q, W)+ p~'D(V|IPIQ) (2)
Y= (Y1, yn) €Y Wo=vo

R " where( ranges over the probability distributions éh Moreover, if

P (yle) = ] Plyilei)- we compute the lower bound fd?", normalize, and pass to the limit
=1
.1 . ,

A block code of lengthn for a DMC with input alphabetY’ is Coelp. P) = lim - MAX e Q. w)
a collectionC C X" of sequences of input letters of length wQ=vaQ
Elements ofC are called codewords. Aero-error list decoderfor +p 'D(V||P"|Q). (3)

a block codeC is a decoder that assigns to every outpuge Y" ] - i
the set of codeword€(y. C) C C that could have produced that The notation < P meansW (y|«) = 0 wheneverP(y|x) = 0,
output with positive probabilityZ(y, C) = {c € C: P™(y|c) > 0. _(WQ) Qer_lote_s th_e output distribution of the chan®El when the
That is, the decoder decides on a list of codewords rather thardnRUt distribution isQ
single codeword. It is clear that if a codewords transmitted and ., i Viy|z)
an outputy is received, the transmitted codewardalways appears DV|IPlQ) = Z Q(@)V(yle) In Pylv)
on the list (hence, the name “zero-error”), and that among the zero- Y o
error schemes this one produces the shortest list for any oytputa” _—
Let L(y, C) = |L(y, C)| be the size of the list. We assume that the I(Q, W)= Z Q(z)W (y|x) In Wiylx)
z,y

(WQ)(y)
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Remark: In the minimization oved” and W in (2), we may add
the constrainf” <« P to the constraint$V < P andW@Q = VQ.
This is because it « P then there are only two possibilities:

1) for somex, y for which Q(x) > 0, V(y|z) > P(y|z) = 0,

and thusD(V||P|Q) = oc;

2) for all z, y, Q(x)P(y|z) = 0 implies Q(x)V (y|x) = 0. In

this case, we can repladé with V' defined as

V() = {V(yh:)., if Q(x)>0

P(y|x), else.
ThenV’' < P and(@Q x V' = Q x V, thus the value of the

objective function and the other constraints are not changed.l_hen by choosing”
The case ofp = 1 is of particular interest, the corresponding '

capacityCo.(1, P) is called thezero-error average list size capacity
Theorem 1 implies

Coe(1, P)> max - min 1(Q, W)+ D(V||P|Q)
WQ=vQ

and
Coe(1, P)= lim 1 max

n—oo N Q

min
V,W: W P"
WQ=vQ

I(Q. W)+D(V|[P"|Q)

recovering the results of [2].

Another special case is obtained by lettindbecome vanishingly
small. The constraint on thgth moment of the list size is then
equivalent to demanding tha&r[L > 1] gets arbitrarily small.
As p — 0, we see that in the minimization (3) needs to be
chosen so as to satisfy (V|| P|@) = 0, equivalentlyV (y|z)Q(z) =
P(y|x)Q(x) for all z € X andy € Y, and we get

Corl07, P) 2 mgx, min, , T(Q. 1)
WQ=PQ
recovering the previously known lower bound fpero-undetected-
error capacity Co.. [2]-[5].
As a further special case, consiger— oo. Let us define

Coe(oc, P) 2 lim Coce(p, P). (4)
p—o0
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and finally noting thaf is concave in its first and convex in its second
argument and thafW: W < P} is a convex set thus concluding

that the maximization and minimization can be interchanged to give

Cor(oo, P)> min  C(W).
Wi WP

We now need to show the converse inequality
Coe(oo, P) < min  C(W).
W WP

To do this, letW™ <« P be such that
c) Wi p ).

=W =W"in (3)
Coe(p, P) < lim m(gtx n T I(Q, W)

+ (np) ' D(WT|P"Q)
Now observe that
n"'D(WPMQ) < max > Wiyle) In (W (yla)/ Ply|x))
=
< 00
and thus
plgrolo Coe(p, P) < nli—I»Iéo m(z}x n T IQ, W) = C(W)

completing the proof. (I
Remark: For a discrete memoryless chan#itlvith input alphabet
X and output alphabgY, for y € Y define

Sy = {x € X: P(y|x) > 0}
and let
o = ugn I;leaa}}( ; Q(x).
r Dy

It is known [6] that if the zero-error feedback capacity;(P) of

the channelP is positive it equaldn (1/7). In [7], it is proved that
In (1/m0) = minw. wep C(W). Furthermore, in [8] it is proved
that if Co(L, P) denotes the zero-error capacity of the chanRel

One might think thaCo¢(co, P) should equal the zero-error capacity/® @ fixedlist size L, then

Cy as defined by Shannon [6] by arguing that demandingstith
power of L(y, C) to be arbitrarily close tol is equivalent to

Llim‘ Co(L, P) =1n(1/m)

demanding thafL(y, C) equall with probability 1. This is not the (Wwithout the positivity condition). We thus see that

case, because of the order we take limits: fqr any Iargg _but finite lim Coe(p, P) = lim Co(L, P) = Cos(P)

we can make theth moment ofL decay tol without requiring that P00 L—oo

the probability of L > 1 equals zero. Surprisingly, one can give ayhere the second equality holds Whene@r}(P) > 0.

single-letter expression fofo¢ (oo, P). We have thus seen théb (o, P) has a single-letter characteriza-
Theorem 2: tion. A more surprising result is that for a special class of DMC'’s one

can obtain a single-letter expression €@ (p, P) for anyp > 0.
Theorem 3: Given a DMC P with input alphabett’ and output

alphabet)’, construct the bipartite grap&(P) with verticest’ U Y

and edges

CO?(OO., P) = Cv(-”/-)

min
W: WP

whereC'(W) = maxq I(Q, W) denotes the ordinary capacity of a
discrete memoryless channir.

Proof: That {(x,y):x € X,y €Y, P(y|z) > 0}.
If G(P) is acyclic then

Coc(p, P) = Eo(p, P)/p

Co¢(oo, P) > min
TE wiwk

1 4
PC(W)

follows from omitting the second term in (2) to obtain

i IQ,w
\ W:H\/l*lc.lgl: wQ (@, W)
VP, WP

where
e > mas
Co¢(co, P) > 111(3}( y 4

Z C‘)(T)P(’!/|7)1 /(1+p)

x

FEo(p, P) =max —1In Z
observing that choosiny = W enlarges the feasible set fo and @ y

thus This result is similar to that of [9] where it is shown that for

the same class of channels the zero-undetected-error capagcitis

Q. w
@ W) equal to the ordinary capacity'.

Coe(oo, P) > max min
Q W:W<P
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Proof: We claim that for such channels Fore > 0, defineM.(n, P, p, €) as the maximum size of codes
V< P,WLPVQ=WQ) = QxV =0xW. with blocklengthn such thatE[LP] < 1+ e Now let
From this claim and the remark following Theorem 1 it follows that Ce(p, P) = lim hgfil’ o M.(n, P, p. ).
max oo 1@, W)+ p ' D(V||P|Q) An equivalent way of thinking about is as follows. Suppose we
VR=wQ have a decoder aided by a genie that answers the questions of the

form “is ¢ the correct codeword?” Le¥(c) be the random variable
whose value is the number of questions the decoder needs to ask the
From [10, Prob. 23, pp. 192, 193] the expression on the right is equgnie until it is answered in the affirmativ€,(p, P) is the highest

to Ey(p, P)/p. Noting thatEs(p, P™) = nEo(p, P) [11, Theorem rate for which thepth moment ofG(¢) can be made arbitrarily close

= ma> i I w
111(3}( min Q,W)+p

W: W

5], the proof follows. to 1 for all codewords:. C'¢(1, P) is known as thecutoff rateof the
It remains to prove the claim: GiveW <« P andV <« P with channelP. It is clear thatC;(p, P) > Coe(p, P).
WQ = V@ note that Theorem 4. ([12]-[17]): Forp > 0
> QW (yle) =D Q)V(yle) () Ce(p, P) =Eo(p)/p
x @ _ . 17 —1 54
and = max min I(Q, W) +p— D(WIIPIQ). (V)
> QW (yle) =3 Q) V(yla). (6)  The formal similarity of (2) and (7) is remarkable.
y y Corollary 1: For the channels described in Theorem 3

Suppose that there exist € X, yo € ), such that Coelp, P) = Ci(p. P).
@eaWoolz 7 Qe Vio oo We will now prove Theorem 1.

Then, to satisfy (5) there must exist # x¢ such that Converse Part of Theorem 1Suppose we are given a codeC
. i X" of rate R and that theoth moment ofL(y, C) is less thanl + ¢
Qﬂflw/yo\xl # le"/yo\zl'

. . clt P (yle)L(y, C)” < 1+«
To satisfy (6), there must exigt # yo such that ICI7E > > Phyle)L(y, C)f <1+

c€C yeyn
Qe Wyilay # @oa Vi oy Now let D = {y € Y": L(y, C) > 0} and choose a distribution
Continuing in this manner, we find a sequeneag yo, 1, 41, --- & on A" with
such thate,, # Tn+1, Yn # Yn+1, QIW,L‘/Y!/H‘T’H # an"ryn\fnv and ]_/|C| if  €C
Qris Wy lonss # Qrus Vi enss - The inequalities imply that at Q) = else.

least one ofi¥, ., andV,, ., and at least one oW,, ., ., and

Vy. |+, MUt be positive. Since < P andW < P, we conclude Fix any two auxiliary channeld” < P" and W < P" with
that P(yn |2) > 0 and P(y,|2n11) > 0. Furthermoregg, a1, «-- W Q = VQ. Let W be the reverse channel
must be all distinct, otherwise, if say, = =.+.. then the sequence W(xly) = Q)W (ylz)/ (WQ)(y).
of nodesen, yn, - -, Tntm Would form a cycle inG(P). Since| X v) = QW )/ (WQ)(w)
is finite, this is a contradiction. O Then,

Example (Binary Erasure Channel)Consider a channel with a In(1+¢)
binary inputX’ = {0, 1} and ternary outpuy = {0, 1, E'} with n{l+e
transition probabilities as below: > In < Z Z Q(2) P (y]) L{y, C )

zEX"™ yeED

1—¢
i E =1In <r§n yezp Q(x)V(y|x) Vile) )
1 1

V(ylx)
B Z Z Q@)Viyle) n Pr(yle)L(y, C)?

zeX"™ yeD
—D(VIP"[Q)+p Y > Q)V(yle) In L(y, C)
TEXT™ yeD

It is instructive to compare the zero-error list capadity, to its D(V Q)+ p Z Z Q)W (y|) In L(y, €)
nonzero-error counterpart. To that end, fog C, let L.(y, ¢, C) be £EXT yeD
the set of codewords i whose likelihood is at least as great as that —D(V||P"|Q) + p(H(Q) — I(Q. W))

of ¢, wheny is received, i.e., ~D(V||P"|Q) — pI(Q, W) + pnR
Le(y, ¢, C) = {k € C: P"(y|k) > P"(yle)}-

,d
|
-
v

The channel is clearly acyclic, and thus
Coe(p, BEC) = Eo(p, BEC)/p=—p~ " In(c+ (1 —¢)/2").

Y

and thus we obtain
Let L.(y, ¢, C) = |L.(y, ¢, C)| be the number of codewords which 1, I . 1
are as likely asc when y is received. We will assume that the n (p7 DVIP"|Q) + I(Q. W)) > R — np ln(1+e)

codewords are equally probable and we will define gtie moment

of the number of codewords as likely as the transmitted codeword BISPV'ng the converse. Note that we have proved more than we
imed. Namely, for any positive sequenpe, },.>: with

n P
Z Z P"(yle)Le(y, e O)F. limsup(l/n) In(l+e,) =0

ceC yeymn n—00

E[L*] =
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and for anyp > 0
limsup (1/n) In M(n, P, p, €,) < Coe(p, P).

In particular, for rates abov€.(p, P) the pth moment of the list
size grows to infinity exponentially in the blocklength (I
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proving the first part of the lemma. To prove the second part,
first observe that sinc@[C1] = T[C2] = Q, T[y] = WQ, and
Tly] = VQ. Thus if VQ # WQ, then no triple(cy, c2, y) satisfies
Tlyle:] = V and T[y|c2] = W and hence

Pr |TIYVIC | =V} =0.

To prove the direct part of Theorem 1, we will need some

preliminaries. Forw = (a1, ---, @) € X" let T[z] denote its type;
T'[«] is a probability distribution ont with

T[z](u) = % [{k: 1 = u}|.

For an input distribution®, let 7 C A™ denote the set of alt
with T'[x] = Q. Foraz € X™ andy € Y" let Tz, y] denote the joint
type ofx andy. T[x, y] is a probability distribution omt’ x Y with

Tle, yl(u, v) =
Note that if T[]

1

Z ks 2 = w. vr = 0V,

S CRIETEs]

= @ thenT[z, y] is necessarily of the form
Tle. y)(u. v) = Q(u)V (v]u)

for some conditional distributiol. If T[x] = @ we let

Tlyle] =V
to meanT [z, y] = Q x V, and say thay has conditional typé”
with respect toz.

Lemma 1: Let V and W be conditional types. LetC:, C>, Y)
be a random variable o™ x X" x Y™ with probability distribution
Pr(Ci=c1,Co=c2, Y =y)
_ |75 |72 P (yler). if et € 75 and ¢z € T

0, else.

Then
Pr{T[Y|C1] =V} < exp[-nD(V||P|Q)] ®)
and
Pr{I[Y|C:] =W |T[Y|Ci] =V}
~ {exp [—nI(Q, W)], fWQ=VQ ©)
0 else

where we use the notation(n) ~ b(n) to mean
lim (1/n) ln a(n) = lim (1/n) ln b(n)

If, on the other handy’'Q = WQ, let fory € Ti?g

Ay) = {2 € T5: Tlyla] = W}
Then
PriTY|Co] = =V} = Pr{Cs € Ay)}

n

The size of A(y) given by
(nT[y](v))!

_1 —
A= nQ(u)W (o]u))!

is independent of; and

lA(y)| ~ [T | exp [-nI(Q, W)]

proving the second part of the lemma. (I
Another result we will need is about the sums of independeit
random variables:
Lemma 2: Givenp > 0,r >0, « > 0. Forn=1,2, -+,

S, =1+ B(my, pn)

let

where B(m, p) is a binomial random variable with parameters

and p, m,, = [exp(nr)], andp, = exp(—n(«o — o(n))) with
lim o(n) = 0. Then
o 1+ 0'(n), if r <a
ESa] < {exp (np(r —a+o'(n))), ifr>a«

whereo’ (n) satisfies lim o (n) = 0. These two inequalities can be
n—oo
summarized as

E[S2] < 1+ 0 (n) + exp (np(r — a+ o' (n))).

Proof: We will consider the two cases indicated in the lemma:

that is, if two codewords are chosen independently and uniformlyl) » < «: Consider the moment generating functionf

from 77

and the first is transmitted, then the conditional type of the

05, (A) = Elexp (ASy)] = ¢’ (1 —I—pn(e —1)".

received sequence with respect to the transmitted codeword equals

V' with probability exp [-n D (V|| P|Q)] and the conditional type of

this received sequence with respect to the other codeword eflals

with conditional probabilityexp [—nI(Q, W)].
Proof: Leta € X™ andb € Y™ be such thaf [z, y] =
Then

QxV.

P (b|a) _ H P(bklflk) _ HP(y|x)nQ(af)\/'(y‘.r)
k=1 z,y
=V"(bla) exp [-nD (V]| P|Q)].
Thus
Pr{T[Y|Ci] =V}

= Y Pr{(ChY)=(a )}
a, b: T[bla]=V

= Y Pr{Ci=a}P"(ba)
a,b: T[bla]=V

<> Pr{Ci = a}V"(bla) exp [-nD(V||P|Q)]
a,b

=exp[-nD(V||P|Q)]

Sincelim m, = occ andlimm,p, = 0, the moment gener-

ating function ofS,, tends to that of a random variable that
takes the valud with probability 1. Thus we conclude that

[18, p. 408]

E[Sf] =1+ 01(n).
with
lim oi(n)=0.

n—oo

2) r > a: Let p, = pne™® whereé, is chosen such that

lim 6, =0 Pn <pn <1 and lim m,p, = oco.
Such a choice always exists; for example, one can take

if r >«
if r=a.

)

som = J 0

()= min {Jo(n)]| + 1/, @ — o(m)},
Let S, = 1+ B(m,,, p,). Clearly,
Sn

MpPn

H%SMSF(Mme
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As n gets largem., p» tends toco and the moment generatingV” (and noting again that there are only polynomially many distinct

function of S, /(mnpn)

(b()\) _ 6/\/("171571) |:1 + pn (e/\/(mnﬁn)

_ 1):| [

tends toe?, that of random variable that takes the valugith
probability 1. We conclude that

E[S7] < E[S7]

(mnpn)"(1+ 02(n))

< exp (np(r —a+ o(n) + 8(n))) exp (02(n))
exp (np(r — a4+ o03(n))),

A

wherelim o2(n) = 0 and oz(n) = 02(n)/(np)+o(n)+6(n)
also satisfiedim oz(n) = 0.

Letting o’ (n) = max {o1(n), o3(n)} completes the proof. O
Direct Part of Theorem 1:Consider an ensemble of codes of
blocklength » with M [exp (nR)] codewords where the

E[L"] <140'(n)+exp {-n mirn[

conditional types) we see that

mm

Voliwh

=1+0'(n)+exp {—n| y
"w rQ= \ Q

+pI(Q, W)] = pR — o ()]}

+r(, L Q. W) = R) = 0"(

n)]}

IIllIl

L, IPVIIPIQ)

Now observe that for allR less than the right-hand side of (2)
the exponential term decays to zero with increasingroving (2).

Applying (2) to P" instead of P we complete the proof of the
theorem.

|

IIl. CONCLUSION

For zero-error list decoding we find achievable rates for which

codewords”; are chosen independently and according to a uniforthe pth moment of the list size remains bounded. We give a single-

distribution over7Z/;, the set of@Q-typical sequences of length We
will upper-boundE[L(y, C)*].

letter lower bound for the capacity and also a non-single-letter
characterization of it. We show that in the limit as tends to

Without loss of generality, suppose the first codeword is transmitfinity, the capacity can be found by a single-letter expression. We

ted. The probability space we have is then

demonstrate that for acyclic channels the capacity has a single-letter

characterization. We also show how the computation cutoff rate is

A" x X X" xY"
with the probability measure
Pr{(cl? T waﬂyv) = (Cl/ Tt CM, y)}
LT P ey, Yk ey O
0, else.

2
From Lemma 1, we know that [2]

Pr(T[Y|Ci] = V] < exp[-nD(V||P|Q)]. 13]

Conditional on T'[Y|C1] V, the probability p(V) that
P"(Y|C2) > 0 is given by (again by Lemma 1, by summing
over W and noting that there are polynomially many distinct [4
conditional types)

p(V) = exp {—n[ min  I(Q, W) — o(n)]}
v Q/LH ’Q

(5]

(6]
(7]

where lim,, ., o(rn) = 0. Fori > 2, let X; be the indicator
random variable of the evertP"(Y|C;) > 0}. Conditional on

TY|Ci] =V, Xo, ---, Xy are independent, identically distributed
0-1 random variables with megmV"). Furthermore, the list sizé& 8]
is given by

(9]

M

L=1+ Z X,
=2 [10]

Using Lemma 2 with [11]

min
W Wp
VQ=wQ

o =

Q. w)
(12]

andr = R, we conclude that [13]

E[L”|T[Y|C\] =V]

<140 (n)—l—exp{—np( [14]

IIllIl
v Q—w Q

Q. W)—R—o'(n))}
(15]

wherelim, .. o (n) = 0. Removing the conditioning by multi- [16]
plying by the probabilityPr {T[Y'|C1] = V} and summing over

related to the quantities investigated in this correspondence.
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A Non-Shannon-Type Conditional Inequality v=0
of Information Quantities I(a, al¢) = H(Xa) )

Zhen Zhang,Senior Member, IEEEand

which is the joint entropy. This means that the functibia, 3|v)
Raymond W. YeungSenior Member, IEEE

covers all the basic Shannon’s information measures. In this corre-
spondence, all logarithms are in bake
It is well known that Shannon’s information measures satisfy the

Abstract—Given n discrete random variablesQ = {Xy, ---, X,.}, L o
associated with any subsetr of {1, 2, ---, n}, there is a joint entropy following .Ihequalltles. ;
H(X.) where Xo = {X;: i € a}. This can be viewed as a function Proposition 1: For any three subsets, 3, and~ of A,,, any set
defined on2{1:2. -} taking values in [0, +oc). We call this function  of » jointly distributed random variableX;, i = 1, ---, n, with

the entropy function of 2. The nonnegativity of the joint entropies implies  finjite entropies

that this function is nonnegative; the nonnegativity of the conditional

joint entropies implies that this function is nondecreasing; and the I(o, Bly) >0 (6)

nonnegativity of the conditional mutual informations implies that this - =

function is two-alternative. These properties are the so-called basic . . L. . ,

information inequalities of Shannon’s information measures. An entropy 1 hese inequalities are called thmasic inequalitiesof Shannon’s
function can be viewed as a2” — 1-dimensional vector where the information measures [4].

coordinates are indexed by the subsets of the grognd s¢tl, 2, -, n}. Let H(a) = I(a, a|¢) be the joint entropy function. For any
As introduced in [4], I',, stands for the cone inIR*" ~! consisting of all  ggt of jointly distributed random variableX;, i = 1, -- -, n, the
vectors which have all these properties. Lel"};, be the set of all2™ — 1- . . ’ . ’ . o
dimensional vectors which correspond to the entropy functions of some ;i’_somated entropied () can be viewed as a function defined on

sets ofn discrete random variables. A fundamental information-theoretic
problem is whether or not T, = T',,. Here T, stands for the closure p
of the setT*. In this correspondence, we show thafl’,, is a convex H:2M [0, ). (7)
cone,T'5 = I'y, T'5 # T's, but T, = T'3. For four random variables,

we have discovered a conditional inequality which is not implied by the The goal of this correspondence is to study this function for all
basic |nformat|0n inequalities of the same set ofia*ndom variables. This possible sets of. random variables with finite entropies.

lends an evidence to the plausible conjecture thal,, # I, for n > 3. All basic Shannon’s information measures can be expressed as

Index Terms—Entropy, I-Measure, information inequalities, mutual linear functions of the joint entropies. Actually, we have
information.

(o, Blv) = H(aUv) + H(BUy) — H(aUBU~) — H(v). (8)
. INTRODUCTION AND SUMMARY The basic inequalities can be interpreted as a set of inequalities for
Let Q, = {X;: i =1, ---, n} ben jointly distributed discrete the entropy function as follows.
random variables with finite entropies. The basic Shannon’s infor- Proposition 2: For any set ofr jointly distributed random vari-
mation measures associated with these random variables includeablesX;,: = 1, - - -, n, with finite entropies, the entropy functidi
joint entropies, all conditional entropies, all mutual informations, anakssociated with these random variables has the following properties.
all (_:ondltlonal mutual mformatlpns involving some of these random 1) For any two subsets and 3 of AV,
variables. For any subset of N;, = {1, ---, n} let
HaUB)+ HlanP) < H(a)+ H(B). 9)
Xo={Xsri €a}. (D) ) ) ] )
Functions having this property are called two-alternative func-
Let X, where¢ is the empty set, be a random variable taking a tions.

fixed value with probabilityl. Define 2) o C 3 implies

+) = I(Xa: X5]X,). ) H(a) < H(P). (10)

Functions satisfying this property are called monotone nonde-
creasing, and

I(a, 8
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