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Abstract

W
E present a study of the CP asymmetry in the B0 → D∗+D∗− decay, using data
produced by the electron-positron asymmetric-energy accelerator KEKB (Tsukuba,

Japan) running at the Υ(4S) resonance. We use the full data sample (as of summer 2008)
of 657×106BB events, which corresponds to an integrated luminosity of 605 fb−1 recorded
with the Belle detector.

From the distributions of the proper-time intervals between a neutral B meson decay
to the D∗+D∗− final state and another flavor-tagged B0 or B0 decay, we measure the CP -
violation parameters A and S. A is a measure of the direct CP violation in the decay
amplitudes while a non-zero S value indicates CP violation in the interference between
the decay and the mixing amplitudes.

At the quark level the B0 → D∗+D∗− decay is a b → ccd transition, where the tree
amplitude is Cabbibo-suppressed. The contribution of penguin amplitudes in this decay
is estimated to be at the percent level [1]. When ignoring penguin corrections, the SM
prediction for the CP parameters are AD∗+D∗− = 0 and SD∗+D∗− = −ηD∗+D∗− sin 2β,
where ηD∗+D∗− is the CP eigenvalue of D∗+D∗− and β = arg[−VcdV ∗cb]/[VtdV ∗tb] is an
observable phase related to the coefficients Vij of the Cabibbo-Kobayashi-Maskawa quark-
mixing matrix. Any large measured deviation with respect to prediction can be a sign of
New Physics.

As theD∗ particle is a vector-meson three different partial waves contribute to the final
states: the S and D correspond to the CP -even state, while the P wave corresponds to a
CP -odd state. To avoid too large a dilution of the CP asymmetry, the two CP components
should be separated on a statistical basis. We measure the CP -odd fraction by performing
a time-integrated angular analysis in the transversity basis and obtain:

R⊥ = 0.125± 0.043(stat)± 0.023(syst),

which is consistent with the prediction from theory as well as the previous measurements.
We have taken into account the CP -odd dilution and the effect of incorrect flavor

assignment to model the decay rates. The proper-time difference of the two B mesons
is obtained using the reconstructed D-meson trajectories and the beam spot profile. A
“null” measurement is performed by fitting the CP asymmetry of the control sample,
B0 → D(∗)+D

(∗)−
s which gives A = −0.02 ± 0.03(stat) and S = −0.07 ± 0.04(stat) and is

consistent with no CP violation. The lifetime fit to the B0 → D∗+D∗− is used to verify
the precision of the vertex resolution function. The measured lifetime is consistent with
the world average value.

Finally, the CP study of the B0 → D∗+D∗− decay gives an evidence of CP violation
with a 3.5σ significance:

S ′D∗+D∗− = −0.96± 0.25(stat)+0.12
−0.16(syst),

AD∗+D∗− = +0.15± 0.13(stat)± 0.04(syst).
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where S ′D∗+D∗− = 1
ηSD∗+D∗− . This result is consistent with the SM prediction for tree

decays.

Keywords: high-energy physics, KEK, Belle, Standard Model, New Physics, B physics,
CP violation, angular analysis.



Résumé

N
OUS présentons l’étude de l’asymétrie CP dans la desintégration B0 → D∗+D∗−, à
partir des données obtenues lors des collisions electron-positron fournies par l’accél-

érateur asymétrique KEKB à Tsukuba au Japon, à l’énergie de la résonance Υ(4S). Nous
avons analysé l’ensemble complet des données enregistrées à l’aide du détecteur BELLE
jusqu’à l’été 2008, constitué de 657× 106 événements BB correspondant à une luminosité
intégrée de 605 fb−1.

A partir des distributions d’intervalles de temps propre entre la désintégration d’un
méson B neutre en D∗+D∗− et celle de l’autre méson identifié comme un B0 ou un B0,
nous avons pu mesurer les paramètres A et S de violation CP pour ce canal. A est une
mesure de la violation de CP directe, alors qu’une valeur non-nulle de S indique une
violation de CP causée par l’interférence entre les amplitudes de désintégration et celui
de mélange des B neutres.

Au niveau des quarks, la désintégration B0 → D∗+D∗− est une transition b → ccd,
pour laquelle l’amplitude du diagramme de Feynman au premier ordre (tree diagram) est
réduite par le mécanisme CKM. La contribution des diagrammes de second ordre (penguin
diagram) est estimée quant à elle à quelques pourcents [1]. Les prédictions du Modèle
Standard pour les paramètres CP , en ignorant les corrections des diagrammes de second
ordre, sont de AD∗+D∗− = 0 et SD∗+D∗− = −ηD∗+D∗− sin 2β, où ηD∗+D∗− est la valeur
propre de CP de D∗+D∗− et β = arg[−VcdV ∗cb]/[VtdV ∗tb] est une phase observable liée
aux éléments Vij de la matrice de Cabibbo-Kobayashi-Maskawa décrivant le mélange des
quarks. Des valeurs mesurées incompatibles avec les prédictions du Modèle Standard se-
raient un signe de “nouvelle physique”.

Comme la particule D∗ est un méson-vecteur, trois ondes partielles différentes contri-
buent à l’état final : les ondes S et D correspondent à un état de CP pair, alors que l’onde
D correspond à un état de CP impair. Pour éviter une trop grande dilution de l’asymétrie
CP , les deux composantes doivent être séparées sur une base statistique. Nous avons me-
suré la fraction d’état propre de CP impair en effectuant une analyse angulaire intégrée
sur le temps, dans la base de transversité, et nous avons obtenu :

R⊥ = 0.125± 0.043(stat)± 0.023(syst),

ce qui est en accord avec les prédictions du Modèle Standard, ainsi qu’avec les résultats
obtenus avec des mesures antérieures.

Nous avons pris en compte la dilution par les états impairs de CP ainsi que les effets
dus à une mauvaise détermination de la saveur pour modéliser les taux de désintégration.
La différence de temps propre entre les deux mésons B a été reconstruite à partir des
trajectoires des mésons D et du profil du point d’interaction. Nous avons effectué une
vérification mesurant l’asymétrie CP d’un échantillon de contrôle B0 → D(∗)+D

(∗)−
s , pour

lequel nous obtenons A = −0.02 ± 0.03(stat) et S = −0.07 ± 0.04(stat) , ce qui est
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compatible avec une asymétrie nulle. L’ajustement du temps de vie dans la désintégration
B0 → D∗+D∗− a été utilisé pour vérifier la précision de la fonction de résolution spatiale
sur les points de desintégration. Le temps de vie mesuré est compatible avec la valeur
moyenne mondiale.

Finalement, l’étude des paramètres CP dans la désintégration B0 → D∗+D∗− donne
une indication de violation CP avec une “significance” de 3.5σ :

S ′D∗+D∗− = −0.96± 0.25(stat)+0.12
−0.16(syst),

AD∗+D∗− = +0.15± 0.13(stat)± 0.04(syst).

où S ′D∗+D∗− = 1
ηSD∗+D∗− . Ces résultats sont compatibles avec les prédictions du Modèle

Standard pour les diagrammes du premier ordre.

Mots-clés : physique des hautes énergies, KEK, Belle, Modèle Standard, Nouvelle Phy-
sique, physique de B, violation de CP , analyse angulaire.
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Introduction

P
HYSICISTS have always been intrigued by symmetries in nature and their relation to
conservation laws. For example, space and time symmetries are responsible for mo-

mentum and energy conservation. However it is often more exciting to discover that a
symmetry of nature is broken. The work presented in this dissertation is a study of the
symmetry between matter and anti-matter called CP symmetry. When this symmetry is
broken it means that matter and anti-matter have a different behavior. It is the viola-
tion of this symmetry during the creation of the universe which makes it possible for large
amounts of matter to exist nowadays 1. Around 10−35 s after the Big Bang the universe was
in a very hot and energetic phase and cosmologists believe that equal numbers of matter
particles and antimatter particles would have been created. When a particle interacts with
its antiparticle they annihilate. At this early stage, when the universe was still very small,
particles and antiparticles would be continuously interacting with each other. The anni-
hilations and recreations from the large amounts of energy, would however always take
place in equal amounts. As the universe cooled down and expanded further the particles
would start decaying instead of interacting. It is at this moment that CP violation must
have taken place. One particle (baryon) out of ∼ 1010 did not annihilate and survived.
The universe which we observe today is just the little surplus of matter which was left
after the Big Bang.

Particle physicists have been able to reproduce some of the decays which took place
at the early age of the universe. By colliding particles with high energy they can study
the interactions which take place after the collision, which resembles the reaction of the
early stage of the universe. By doing this they observed in 1964 the CP -forbidden decay
of a neutral KL meson which decayed into two charged pions. In 1976 Weinberg, Salam
and Glasgow were able to formulate a Quantum Mechanical theory which describes the
particles and the reactions taking place at this subatomic level. They describe three fun-
damental forces: the strong, the electro-magnetic and the weak force as well as the ele-
mentary particles of which everything is made: leptons and quarks. This theory, called the
Standard Model is based on the experiment evidence and theoretical calculations. Also
CP violation is incorporated through a complex phase in the quark transition matrix of
the weak interaction. The model foresaw the existence of neutral weak currents and when
these were discovered at CERN, Weinberg, Salam and Glasgow received the Nobel Prize
in physics.

However there are still some problems and issues in the Standard Model. It bothers
physicists that the fourth fundamental force, gravity, is not taken into account or that there
is a large number of independent parameters and that there exist a hierarchy problem.
But more important for us, the CP violation explained by the Standard Model can only

1Note that matter and antimatter are just arbitrary names, we could also say that everything nowadays
exists of antimatter and all the matter is gone.
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explain the survival of one out of ∼ 1020 baryons instead of one out of ∼ 1010. Particle
physicists are now convinced that there must be a theory beyond the Standard Model.
The experimental results which do not conform with Standard Model predictions are now
referred to as “New Physics”.

We can look for hints of New Physics by measuring accurately the parameters of the
CP -violation theory of the Standard Model. Besides the kaon system we now know that
CP violation also takes place in the B system, where we expect large asymmetries and
where theoretical predictions can be done in a clean or even in a model-independent way.
Two large experiments are built to study B physics, the Belle experiment at the KEKB
accelerator in Japan and the BaBar experiment at the PEP II collider in California. They
are referred to as the B factories due to the large number of e+e− → Υ(4S) → BB
events they have produced. In this work we have studied the CP asymmetry between
the B0 → D∗+D∗− and the B0 → D∗−D∗+ using the Belle detector. This decay can
be produced through a so-called penguin diagram which contains an internal loop and
is therefore an excellent place for new exotic particles to show up in a virtual manner.
A measured asymmetry which has a large deviation with respect to the Standard Model
prediction can be a sign of New Physics.

In the first chapter of this document the Standard Model and the theory of CP vio-
lation is explained, as well as the method to extract the CP -violating parameters. We
give an overview of the current experimental status to compare with the Standard Model
predictions.

In the second chapter the apparatus is described. This includes both the KEKB acceler-
ator producing the e+e− collisions and the Belle detector installed around the interaction
point. We end this chapter by describing some of the analysis tools which are used to
obtain the information necessary to perform a precise study.

The next four chapters will describe in detail our analysis. First the B0 → D∗+D∗−

events are filtered out of a data sample of more than 600 million BB decays. This is done
by imposing selection criteria which disfavor background events. Once we have obtained
a satisfying pure subset of the data sample we can study the properties of our CP -violating
decay mode. The current results on the branching fraction of B0 → D∗+D∗− are largely
dominated by the systematical uncertainty, contrary to the other measurements presented
in this work. We have thus not aimed to perform a measurement of the branching fraction.

The D∗+D∗− state can decay through three different partial waves, which have differ-
ent CP properties. We therefore use an angular analysis in Chapter 4 to disentangle these
states before performing the final asymmetry study.

In Chapter 5 we examine the proper-time difference of the two B mesons in the event
and study the detector resolution model which describes effect on the reconstructed ver-
tices. Next a measurement of the lifetime of the B meson is performed to compare the
result with the precise world average in order to test the accuracy of the resolution model
we used.

Finally the CP asymmetry between the B0 → D∗+D∗− and B0 → D∗−D∗+ is studied.
We present our final result in Chapter 6, together with various checks including a “null”
measurement with a control sample of B0 → D

(∗)+
s D(∗)− decays where no CP violation

is expected. The significance and the systematic uncertainty of the result are discussed as
well.

For completeness, Chapter 7 gives an overview of a cross-check analysis which was
performed on a smaller data sample to compare with earlier results of this decay published
by Belle.



Chapter 1

Theoretical Motivation

We introduce in this chapter the CP operator and its symmetry
violation. The Standard Model of particle physics is described as well
and CP violation is interpreted within this model, which gives rise
to the CKM picture and the unitarity triangle. We start by studying
CP violation in the general neutral meson-antimeson system but then
work towards a more concrete decay which is studied in this work. An
overview of the latest experimental results is given as well.

1.1 Symmetries

1.1.1 Introduction

Physicists have always been interested in investigating symmetries in nature. Noether’s
theorem [2] published in 1918, shows that symmetries lie at the basis of any conserva-
tion law. For example, the conservation of energy is a consequence of the invariance of
physical laws under a time shift. The idea behind the study presented in this thesis work
is the study of the violation of a discrete symmetry called CP . This can be studied by
comparing the properties of decays of a fundamental particle such as its lifetime, mass,
decay products etc with their CP conjugated state. The CP operator is the product of the
parity and the charge-conjugation operator. CP is also closely related to the T operator
which reverses time. The different operators have the following characteristics.

Parity operator

The parity operator reflects the space. Parity holds in particle physics when the mirror
image of a process is indistinguishable from a real process. For example:

(π+ → µ+
R + νL) P−→ (π+ → µ+

L + νR).

Parity conservation implies that nature makes no distinction between right- and left handed
rotations or between opposite sides of a particle. Thus two particles rotating in opposite
direction µL and µR are identical if parity conservation holds. Parity violation was dis-
covered by Chien-Shiung Wu [3] in 1957, using nuclear β decays. The emitted electron
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decays preferably in the direction of the nuclear spin. In the parity-conjugated process the
emitted electron will decay to the opposite direction. The results showed that one of the
two directions is favored which violates the parity symmetry. Until then it was believed
that parity conservation was one of the fundamental geometric conservation laws in na-
ture.

Charge-conjugation operator

The charge-conjugation operator transforms a particle into its anti-particle and vice versa.
For example:

(π+ → µ+
R + νL) C−→ (π− → µ−R + νL).

Charge and Parity operator

The right-handed neutrinos (νR) in the example of parity exchange, or left-handed anti-
neutrinos (νL) in the example of charge exchange, have never been observed in nature.
But the combination of a parity and a charged transformation process have been observed:

(π+ → µ+
R + νL) CP−→ (π− → µ−L + νR).

Also in the β decays, when applying both the P and C operator, everything becomes sym-
metric again. Historically CP symmetry was proposed to restore order after the discovery
of P violation in the β system. CP conservation means that exchanging all particles with
their antiparticles is equivalent to taking the mirror image of all processes.

C, P , T , CP , CT , PT and CPT symmetries are conserved in the strong and electro-
magnetic interactions. CPT is a conserved fundamental symmetry. Therefore the lifetime
and mass of a particle and antiparticle must be equal. No experimental evidence has been
able to disagree with this. However, a CP violation has been observed in the weak decays
of neutral K or B mesons.

In this work CP violation in weak interactions in the B sector is studied by looking at
differences between a decay of a B particle and its anti-particle.

1.1.2 Importance of CP violation on a cosmological scale

We believe that our universe today is made out of matter, as there has been no observation
of antinuclei in cosmic rays or γ rays from pp annihilation in space. If symmetries would
have held throughout the creation of the universe, the pure energy state that the big bang
created would have condensed to equal amounts of matter and antimatter. But as matter
and antimatter annihilate to photons, we would be left with only photons and no more
matter or antimatter. This is definitely not the case. A force must have governed which
violated the symmetry between matter and antimatter. The measured ratio of baryons 1

in the universe with respect to photons from annihilation processes (cosmic microwave
background radiation); this is of the order of 10−10. Which means that one out of 1010

1a baryon is a hadron composed of three quarks, see Section 1.2
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baryons did not annihilate. According to Sakharov [4](1967) the baryon inequality can
be caused if the following three conditions are satisfied:

- there exists a transformation which violates the baryon number conservation.

- the C and CP symmetries need to be violated, such that the partial decay widths
are different.

- the CP violation has to take place outside of thermal equilibrium, such that no
reversing reaction can install the initial state.

or if CPT is violated. There is no experimental evidence so far of CPT violation. Also
baryon number violation has not been observed experimentally. As will be seen in Sec-
tion 1.2, CP violation is incorporated in the theoretical model of particle physics (the
Standard Model) and has experimentally been observed in weak decays. The asymmetry
can be produced outside thermal equilibrium. It seems thus that CP violation could be
a good candidate to explain the matter antimatter asymmetry in the universe. However
both the experimental observation and the theoretical prediction from the Standard Model
can just explain the existence of one galaxy but not the entire universe. This is one of the
reasons why physics beyond the Standard Model is expected.

1.2 The Standard Model of particle physics

The Standard Model (SM), formulated between 1970 and 1973, is a theory that describes
the elementary particles and the fundamental forces which act on them. The theory is
consistent with both quantum mechanics and special relativity. In this section we will give
a brief introduction to the Standard Model. For more detailed explanations, the reader is
referred to [5]. The three fundamental forces described in the SM are the strong, elec-
tromagnetic and weak force. Gravity however falls outside this model. Still, because all
experimental results on these three forces so far have been consistent with the predictions
of the Standard Model, it is a very successful theory. Some issues left which the Standard
Model fails to accommodate are discussed in Section 1.2.2.

1.2.1 Brief overview of the Standard Model

The Standard Model is based on a gauge theory of SU(3)C ⊗ SU(2)L ⊗U(1)Y groups. The
SU(3)C group describes the strong interaction by Quantum Chromo Dynamics (QCD).
The strong force is governed by massless gluons as mediator particles and acts on the color
charge of particles. A gluon itself carries two colors and as there exist three colors in total
(red, blue and green) eight different gluons can exist with different color combinations
(ignoring the color singlet). The SU(2)L and UY fields form together a unified theory of
the electroweak interactions. The electro-magnetic interactions are described by Quan-
tum Electro Dynamics (QED) and mediated through massless photons, acting on electrical
charge. The weak interactions exist through charged current interactions mediated by
the W± boson, while neutral current interactions take place through the Z0 boson. The
weak interaction is the weakest force of the three and acts on the flavor of quarks and
leptons.

Next we will describe the different particles in the Standard Model and their clas-
sification. The elementary particles of nature all have spin 1/2 and are thus fermions.
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Amongst the fermions two different classes are made to distinguish quarks from leptons.
Both quarks and leptons exist in three so-called generations, each corresponding to a dif-
ferent mass scale. For quarks a generation consists of an up-type quark and a down-type
quark. Up-type quarks have electrical charge +2/3 and they can be the up quark (u),
charm quark (c) or top quark(t). The down-type quarks have electrical charge −1/3 and
are respectively the down quark (d), strange quark (s) and bottom quark (b). Table 1.1
summarizes the different quarks and their corresponding masses. For leptons the same
type of classification can be made, according to their mass. Each doublet is made from a
charged lepton and a neutral neutrino as shown in the right side of Table 1.1.

Gen. Quark Mass [MeV/c2] Charge[e] Lepton Mass [MeV/c2] Charge[e]
1 u 1.5 to 3.0 2/3 e 0.511 −1
1 d 3.0 to 7.0 −1/3 νe < 2× 10−6 0
2 c 1250 ± 90 2/3 µ 105.7 −1
2 s 95 ± 25 −1/3 νµ < 0.19 0
3 t (174± 3)× 103 2/3 τ 1777.0 −1
3 b 4200 ± 70 −1/3 ντ < 18.2 0

Table 1.1: Elementary fermions of the Standard Model. The values are taken from [6].

Using these fundamental bricks larger particles can be constructed. Quarks don’t exist
in an isolated state but combine in groups of two or three to form a real physical particle,
called a hadron. Elements containing two quarks, more precisely, one quark and one anti-
quark, are called mesons, such as the K0 meson which exists as a ds combination or the
B0 meson (bd) which will play an important role in this work. Particles containing three
quarks are called baryons, like the proton which contains two up quarks and one down
quark.

The unification of the electro-magnetic and the weak theory to the electroweak theory
is described by the U(1)Q group. The cost of this unification is the introduction of the
Higgs particle, the only particle in the Standard Model which has not yet been observed
in experiments. The presence of a Higgs field causes a spontaneous symmetry breaking
which introduces masses to the W± and Z0 bosons. The masses of fermions are also
created through the spontaneous symmetry breaking, as they interact through the Yukawa
coupling with the Higgs field. This coupling however is not diagonal, meaning that the
mass eigenstates are not the same as the eigenstates in the weak interaction. The link
between these two sets of eigenstates for the quarks will be described in Section 1.4.

1.2.2 Open issues

All experimental results are consistent with the Standard Model. The Standard Model even
predicted the existence of particles which were only discovered later, for example the top
quark, which was discovered in 1995 [7] [8]. Still one particle needs to be discovered, the
Higgs particle. Besides this there are still some open issues, which make physicists believe
that there should be a more complete and general theory behind the Standard Model. The
main problems that are not explained are:

- The large number (19) of independent parameters.
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- The hierarchy problem: the scale at which the parameters are measured experimen-
tally is very different from the scale at which the Lagrangian operates. This can be
due to renormalization problems, which are hard to calculate as the quantum cor-
rections are divergent. Still the large scale difference is a disturbing feature in the
Standard Model.

- It is also not clear from the SM theory why there are three generations of fermions
corresponding to different mass regions.

- In order to explain the imbalance of matter and antimatter in nature CP violation
larger than that of the Standard Model is needed.

- The Standard Model can only explain the survival of one baryon out of 1020 while
the observed quantity of the matter in the universe, requires that one baryon out of
1010 survived instead of having been annihilated.

- There is no explanation in the Standard Model on the presence of dark matter and
dark energy.

- Gravity is not explained by the Standard Model.

Several extensions beyond the Standard Model have been proposed by theorists, such
as the Super Symmetry model (SUSY) or models which suggest the existence of additional
dimensions of space, but none of them have yet been proved experimentally.

Figure 1.1: Running coupling constants of the three forces converging to a single point at
a high energy scale (figure from [6]).

The coupling constants of the three forces seem to converge to a single value as en-
ergy increases (≈ 1016 GeV), leading to the idea of a Grand Unified Theory (GUT), which
unifies the three forces at higher energies. However the point where the coupling con-
stants of the three forces come together is not exactly at one point. This problem can be
solved by SUSY, which relates each fermion (boson) of the Standard Model with a new
super-symmetric boson (fermion). The Super Symmetry model also solves the hierarchy
problem.

The problem with GUT however is that it predicts the existence of a mediator particle
which would cause the proton to decay, something that so far has never been observed.
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1.3 General formalism of CP violation

In the following sections we describe the basic formalism of CP violation, first by studying
the neutral particle-antiparticle system and its time-dependent evolution, from a quantum
mechanics point of view. The mixing, decay mechanism and the possible appearances of
CP violation will be discussed in the next part and then applied to the more specific case
i.e. the neutral Bd system: the relevant system in this thesis. Finally the specific properties
of CP violation in the B0 → D∗+D∗− system will be shown.

1.3.1 The neutral meson-antimeson system

Consider a meson |P 〉 and its antimeson |P 〉 at rest. Both states are eigenstates of the
strong and electromagnetic interactions such that:

(Hs +Hem)|P 〉 = m|P 〉 (Hs +Hem)|P 〉 = m|P 〉.

where m and m are the masses of |P 〉 and |P̄ 〉 respectively. Hem and Hs represent the
Hamiltonians that govern the electromagnetic and strong interactions. The flavor of each
state is well defined:

F |P 〉 = +|P 〉 F |P 〉 = −|P 〉.

Hs and Hem are assumed to be invariant under CPT , which makes m = m. Let both
the meson and the antimeson be connected through the CP operator by the arbitrary CP
phase θCP .

CP |P 〉 = eiθCP |P 〉 CP 2=1=⇒ CP |P 〉 = e−iθCP |P 〉.

When the T operator acts on a particle at rest, it only gives rise to an extra phase, but
doesn’t change the state of the particle:

T |P 〉 = eiθT |P 〉 T |P 〉 = eiθT |P 〉

and 2θCP = θT − θT when CPT |P 〉 = TCP |P 〉. Let |f〉 be any eigenstate of the strong
and electromagnetic interactions with eigenvalue Ef ,

(Hs +Hem)|f〉 = Ef |f〉,

that is accessible as final state in the weak decay of |P 〉 or |P 〉. Assume that only the strong
and electromagnetic interactions are present at t = 0. |P 〉 and |P̄ 〉 are considered stable
under these forces. At t > 0, the weak interaction comes into play. This will allow both
states to mix and eventually decay into a final state |f〉. A state |ψ〉 of this system can be
written in a general way as a linear combination of all possible final states |f〉 and initial
states |P 〉 and |P̄ 〉:

|ψ(t)〉 = a(t)|P 〉+ b(t)|P̄ 〉+
∑
f

cf (t)|f(t)〉, (1.1)

where a(t), b(t) and
∑

f cf (t) are the corresponding probability amplitudes. Because we
have no decay products present at t = 0:

t = 0 : |a(0)|2 + |b(0)|2 = 1 |cf (0)|2 = 0
and :

t > 0 : |a(t)|2 + |b(t)|2 ≤ 1 |cf (t)|2 ≥ 0.
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The general state |ψ〉 can be found by solving the Schrödinger equation:

− i d
dt
|ψ〉 = (Hs +Hem +Hw)|ψ〉,

where Hw is the Hamiltonian function of the weak interaction. Assuming that the weak
interactions between the final states are small compared to the strong and electromagnetic
interactions, one can ignore the term:

〈f |Hw|f ′〉

and use the Wigner-Weiskopf approximation [9]. Terms with a second order Hw com-
ponent as well as terms containing 〈P |Hw|f〉 can be ignored because we assume weak
interactions between the final state and initial state are small. In this way the term con-
taining the cf factor will disappear from the equations as it contains a negligible H2

eff

term, where Heff denotes the effective Hamiltonian. For the detailed calculations we refer
to [10]. The equation describing the meson-antimeson system in the rest frame is now
simplified to a two-state solution:

|ψ(t)〉 = a(t)|P 〉+ b(t)|P̄ 〉. (1.2)

The time-evolution of the probabilities a(t) and b(t) becomes:

i
d

dt

(
a(t)
b(t)

)
= Heff

(
a(t)
b(t)

)
= Λ

(
a(t)
b(t)

)
, (1.3)

where

Λ = M − i

2
Γ =

(
M11 M12

M21 M22

)
− i

2

(
Γ11 Γ12

Γ21 Γ22

)
. (1.4)

The 2X2 matrix M is called the mass matrix. Its elements are:

M11 = m+ 〈P |Hw|P 〉+
∑
f

P
(〈P |Hw|f〉〈f |Hw|P 〉

m− Ef

)
, (1.5)

M22 = m+ 〈P |Hw|P 〉+
∑
f

P
(〈P |Hw|f〉〈f |Hw|P 〉

m− Ef

)
, (1.6)

where m is the mass of |P 〉 and |P̄ 〉 and P denotes the principal part. The elements on the
diagonal of the decay matrix, Γ, are:

Γ11 = 2π
∑
f

|〈P |Hw|f〉|2δ(m0 − Ef ),

Γ22 = 2π
∑
f

|〈P |Hw|f〉|2δ(m0 − Ef ), (1.7)

The off-diagonal elements are given by:

M12 = 〈P |Hw|P 〉+
∑
f

P
(〈P |Hw|f〉〈f |Hw|P 〉

m− Ef

)
,

Γ12 = 2π
∑
f

〈P |Hw|f〉〈f |Hw|P 〉δ(m0 − Ef ). (1.8)
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the factor δ(m0 − Ef ) in the decay matrix elements ensures energy conservation. The
decay states |f〉 represent therefore real physical states. In the mass matrix equation the
sum is taken over all possible |f〉 states, real or virtual.

If Heff is Hermitian and invariant under T , CP and CPT then the following conditions
must be met:

if CPT is conserved then : Λ11 = Λ22

if CP is conserved then : Λ11 = Λ22 and |Λ12| = |Λ21|
if T is conserved then : |Λ12| = |Λ21|

As we assume CPT conservation we can define the elements on the diagonal as follows:
M11 = M22 = M, Λ11 = Λ22 = Λ, Γ11 = Γ22 = Γ.

The eigenvalues of Heff are obtained by solving Eq. (1.3) and using the Ansatz

a(t) = C+e
−iλ+t + C−e

−iλ−t, (1.9)

where λ± are the eigenvalues of Λ which are obtained from the equation:

λ2
± − 2λ±Λ−

(
Λ21Λ12 − Λ2

)
= 0. (1.10)

such that the eigenvalues of Λ are:

λ± = Λ±
√

Λ21Λ12. (1.11)

Consequently we can find:

b(t) =
q

p
(C+e

−iλ+t − C−e−iλ−t), (1.12)

with

q

p
= −

√
Λ21

Λ12
. (1.13)

and |q|2 + |p|2 = 1. The eigenstates of Λ are defined as |P±〉, which are fixed by the
diagonalizing of the effective Hamiltonian:

Heff |P±〉 = λ±|P±〉. (1.14)

|P±〉 are now physical eigenstates which can be related back to |P 〉 and |P̄ 〉 by:

|P±〉 = |p|
(
|P 〉 ± q

p
|P̄ 〉
)
. (1.15)

The mass and decay width of |P±〉 are related to its eigenvalue:

λ± = m± −
i

2
Γ±, (1.16)

where

m± = <λ± (1.17)

Γ± = −2=λ±. (1.18)
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The solution of (1.9) and (1.12) for an initial state (t = 0) which is purely |P 〉 is

a(0) = C+ + C− = 1, (1.19)

b(0) =
q

p
(C+ − C−) = 0, (1.20)

which means that C+ = C− = 1/2.
For the sake of visibility let us define

h±(t) =
1
2
(
e−iλ+t ± e−iλ−t

)
. (1.21)

The time evolution of an initially pure |P 〉 state can be written as:

|P (t)〉 = h+(t)|P 〉+
q

p
h−(t)|P̄ 〉 (1.22)

=
1

2|p|

(
e−iλ+t|P+〉+ e−iλ−t|P−〉

)
. (1.23)

|P (t)〉 is now a superposition of the original |P 〉 and |P̄ 〉 state. An oscillation between the
two neutral states takes place, with a time-dependent probability amplitude of being in
the |P 〉 or |P̄ 〉 state equal to h+(t) or q

ph−(t) respectively. If the initial state would have
been |P̄ 〉 then a(0) = C+ + C− = 0, b(0) = q

p(C+ − C−) = 1 and C+ = −C− = 1/2. The
time-dependent evolution of the antiparticle would then have been:

|P (t)〉 =
p

q
h−(t)|P 〉+ h+(t)|P̄ 〉 (1.24)

=
p

2|p|q

(
e−iλ+t|P+〉 − e−iλ−t|P−〉

)
. (1.25)

1.3.2 CP violation in the oscillation between particle and antiparticle

So far we developed a general solution for the neutral particle-antiparticle system, which
gave rise to an oscillation under the weak force. Next we will show how at this level,
before the decaying process occurs, a possible CP violation can take place.

The probability of obtaining a state |P 〉 at time t when the initial state was |P 〉 is given
by:

|〈P |P (t)〉|2 = |h+(t)|2 =
1
4
(
e−Γ+t + e−Γ−t + 2e−Γt cos(∆mt)

)
. (1.26)

with ∆m = m− −m+ and Γ = Γ++Γ−
2 . Oppositely the probability for an initial particle

|P 〉 to oscillate to a |P̄ 〉 is:

|〈P |P (t)〉|2 = |q
p
h−(t)|2 =

|q|2

4|p|2
(e−Γ+t + e−Γ−t − 2e−Γt cos(∆mt)). (1.27)

Remember that both |P 〉 and |P̄ 〉 are flavor eigenstates and the CP conjugate of each
other. They are however not physical states with a well defined mass or decay width. The
probability of finding the physical state P± at time t, when starting off with a pure |P 〉
state is:

|〈P±|P (t)〉|2 =
1 + | qp |

2

4
e−Γt. (1.28)
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In order to conserve the CP symmetry during the oscillation the following equality
needs to be satisfied:

|〈P |P (t)〉|2 = |〈P |P (t)〉|2 (1.29)

or ∣∣∣q
p
h−(t)

∣∣∣2 =
∣∣∣p
q
h−(t)

∣∣∣2 =⇒
∣∣∣q
p

∣∣∣2 =
∣∣∣p
q

∣∣∣2 =⇒
∣∣∣q
p

∣∣∣ = 1. (1.30)

We can conclude that in order to have CP symmetry conservation in the oscillation of a
neutral particle-antiparticle system, the following condition needs to be met:

|p| = |q|. (1.31)

The violation of this condition is sometimes called indirect CP -violation.

1.3.3 CP violation in the decay

Imagine now a particle |P 〉 decaying to a final state |f〉 and an antiparticle |P̄ 〉 decaying
to |f〉. The two decay amplitudes corresponding to this process are:

Af = 〈f |Heff |P 〉, (1.32)

Af = 〈f |Heff |P 〉. (1.33)

The two conditions to be satisfied in order to conserve CP symmetry in the decay are:

|Af | = |Af |, (1.34)

|Af | = |Af |. (1.35)

If the final state is a CP eigenstate, so that |f〉 = |f〉, the above equations simplify to:

|Af | = |Af |. (1.36)

The violation of this condition is called direct CP -violation.

1.3.4 CP violation in the interplay between oscillation and decay

When combining the oscillation and decay mechanism, a third source of CP violation
can occur due to the interplay. This process occurs when the final state is accessible both
from the particle and antiparticle. This is always the case when the final state is a CP
eigenstate. But also processes like B0 → D±π∓ have a final state accessible by both the
particle B0 and B0. These processes are schematically represented in Figure 1.2. The
different probability amplitudes of the oscillation and decay mechanisms are added on the
figure. The total probability amplitude of obtaining a final state f when the initial state is
|P 〉 is

Pf (t) ∝ Afh+(t) +Af
q

p
h−(t). (1.37)

Similarly, the total probability amplitude to get the final state f at time t from an initial
state |P̄ 〉 at time t = 0 is:

P f (t) ∝ Afh+(t) +Af
p

q
h−(t). (1.38)
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Figure 1.2: Oscillation and decay interference for an initial particle |P 〉 (left) and the CP
conjugated process (right).

The parameter that can be measured is the time-dependent decay-rate Γf (t) = |Pf (t)|2.
CP violation occurs when Γf (t) 6= Γf (t). For the two types of processes described above
the time-dependent decay-rate becomes:

Γ(t) = |Af |2|h+(t)|2 + |Af |2
∣∣∣q
p

∣∣∣2|h−(t)|2 + 2<
(
A∗fAf

q

p
h∗+(t)h−(t)

)
, (1.39)

Γ(t) = |Af |2|h+(t)|2 + |Af |2
∣∣p
q

∣∣2|h−(t)|2 + 2<
(
A
∗
fAf

p

q
h∗+(t)h−(t)

)
. (1.40)

The first term in both equations describes the decay mechanism. When

|Af |2 6= |Af |2, (1.41)

the CP symmetry is broken in the decay amplitude. The second term in Eq. (1.39)
and (1.40) comes from the oscillation between the particle and antiparticle before de-
caying. Here CP violation in the oscillation can occur when∣∣∣q

p

∣∣∣ 6= 1, (1.42)

as said before.
The third term describes the interplay between the decay and the oscillation. Even

when there is no CP violation in the oscillation or the decay, there can still be a difference
in the total decay rate, Γ(t) 6= Γ(t). To see this the third term is further developed.

<
(
A∗fAf

q

p
h∗+(t)h−(t)

)
= <

(
A∗fAf

q

p

)
<
(
h∗+(t)h−(t)

)
− Im

(
A∗fAf

q

p

)
Im
(
h∗+(t)h−(t)

)
, (1.43)

<
(
A
∗
fAf

p

q
h∗+(t)h−(t)

)
= <

(
A∗fAf

q

p

∗)
<
(
h∗+(t)h−(t)

)
+ Im

(
A∗fAf

p

q

)
Im
(
h∗+(t)h−(t)

)
. (1.44)

It can be seen from these equations that even when there is no direct CP violation
Im(A∗fAf

q
p

)
can be different from zero, which implies a difference in the decay rates

between the CP conjugated processes. This third type of CP violation is often referred to
as mixing-induced CP violation.
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1.4 CP violation in the Standard Model

So far we have described the CP violation mechanism from a quantum mechanical point
of view. The relevant force for CP violation is the weak interaction, which can occur
through a neutral current, with a Z boson or through the charged current, with a W±

mediator. It is in the latter case that CP violation can occur.
The weak charged current can change an up-type (left) quark (U) to a down-type (left)

quark (D). These transitions are governed by nine coupling constants V , with different
strengths. The corresponding Feynman diagram as well as its CP conjugate are shown in
Figure 1.3. It is the complex nature of the coupling VUD that gives rise to CP violation.

Figure 1.3: Charged-current quark-level interaction process D→ U W− and its CP conju-
gate in the Standard Model.

The Lagrangian describing these charged-current interactions can be written as

L =
−g√

2
(VijULiγµDLjW

†
µ + V ∗ijDLiγ

µULjWµ), (1.45)

and the CP -conjugated Lagrangian is:

LCP =
−g√

2
(VijDLiγ

µULjWµ + V ∗ijULiγ
µDLjW

†
µ). (1.46)

In order to have CP conservation L needs to be equal to LCP , or V ∗ij = Vij .
To generate CP violation there needs to be at least one phase in the V matrix [11]. A

general unitary matrix has N2 independent parameters. We have the freedom to rephase
2N − 1 quark fields which makes the number of independent parameters of an N × N
unitary quark-mixing matrix:

N2 − (2N − 1) =
1
2
N(N − 1)︸ ︷︷ ︸

Euler angles

+
1
2

(N − 1)(N − 2)︸ ︷︷ ︸
Complex phases

= (N − 1)2.

In order to accommodate CP violation in the Standard Model at least three generations
of quarks are needed, as this will give one complex phase in the V matrix. A more detailed
calculation of the quark-field rephrasing can be found in [10].
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1.4.1 CKM matrix and unitarity triangle

The 2 × 2 quark-mixing matrix originally proposed by Cabibbo was extended in 1973 by
Kobayashi and Maskawa to a 3×3 matrix known today as the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [12, 13].

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (1.47)

This matrix is usually parametrized in a way to incorporate the constraints of unitary. This
can be done by rephasing invariance, i.e. the possibility to change the overall phase of
any row or any column of the CKM matrix, without changing the physics contained in that
matrix. The CKM matrix can be parametrized by three rotation angles and one phase, as
explained in the previous paragraph. However the most commonly used parametrization
is the Wolfenstein parametrization [14]. Experimental results showed that the elements of
the matrix could be grouped according to their size. Wolfenstein realized this by noticing
that most bottom quarks decay into a charm quark which means that |Vcb| � |Vub|. He
then defined the parameter λ = Vus and rewrote the CKM matrix using λ as an expansion
parameter, while holding approximately the unitarity: Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

 ≈
 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 . (1.48)

The value for λ is small, λ ≈ 0.22. Experiment showed that |Vcb| ≈ |Vus|2 which
makes A ≈ 1. And because |Vub|

|Vcb| ≈ λ/2, ρ and η should be smaller than one. In this
parametrization the unitarity relations are satisfied up to order λ3. The higher-order terms
of the CKM matrix up to O(λ5) are: −1

8λ
4 0 0

A2λ5(1
2 − ρ− iη) −1

8λ
4(1 + 4A2) 0

1
2Aλ

5(ρ+ iη) Aλ4(1
2 − ρ− iη) −1

2A
2λ4

 . (1.49)

While λ and A are relatively well known: λ = 0.2205±0.0018 and A = 0.824±0.075, large
uncertainties remain on the ρ and η values. It is the term iη that gives rise to the complex
phase and induces CP violation when different from 0.

The unitarity of the CKM matrix allows us to write nine independent equations of the
forms

∑
k = VikV

∗
jk = δij and

∑
k = V ∗ikVjk = δij . Six of these nine relationships express

the normalization of the columns and rows of the matrix, while six others represent the
orthogonality and are written explicitly as follows:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 , (1.50a)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 , (1.50b)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (1.50c)

V ∗udVcd + V ∗usVcs + V ∗ubVcb = 0 , (1.50d)

V ∗cdVtd + V ∗csVts + V ∗cbVtb = 0 , (1.50e)

V ∗udVtd + V ∗usVts + V ∗ubVtb = 0 . (1.50f)

Each of these equations can be represented as a triangle in the complex plane. The
triangle used most often corresponds to: VudV ∗ub + VcdV

∗
cb + VtdV

∗
tb = 0 (Eq. (1.50c)) and



16 CHAPTER 1. THEORETICAL MOTIVATION

is referred to as “the unitarity triangle”. In terms of the Wolfenstein parametrization this
equation in leading order is given by:

[(ρ+ iη) + (−1) + (1− ρ− iη)]Aλ3 +O(λ4) = 0. (1.51)

We introduce the generalized Wolfenstein’s parameters:

ρ = ρ
(

1− 1
2
λ2
)
, η = η

(
1− 1

2
λ2
)
, (1.52)

so we write:

[(ρ+ iη) + (−1) + (1− ρ− iη)]Aλ3 +O(λ4) = 0. (1.53)

Figure 1.4: Rescaled unitarity triangle in the (ρ, η) plane.

In Figure 1.4 the rescaled unitarity triangle is shown in the complex plane, which can
be obtained by dividing Eq. (1.50c) by VcdV ∗cb, so that one of the sides is aligned on the
real axis with a length of one. The lengths of the other two sides are:

Rb =
∣∣∣∣VudV ∗ubVcdV

∗
cb

∣∣∣∣ =
(
1− λ2

2
) 1
λ

∣∣∣∣VubVcb

∣∣∣∣ , (1.54)

Rt =
∣∣∣∣VtdV ∗tbVcdV

∗
cb

∣∣∣∣ =
1
λ

∣∣∣∣VtdVcb
∣∣∣∣ . (1.55)

The angles of the unitarity triangle are defined as follows:

α = φ2 = arg
(
−
VtdV

∗
tb

VudV
∗
ub

)
, (1.56)

β = φ1 = arg
(
−
VcdV

∗
cb

VtdV
∗
tb

)
, (1.57)

γ = φ3 = arg
(
−
VudV

∗
ub

VcdV
∗
cb

)
. (1.58)

where the φ1,2,3 notation is mostly used in Asia while the European and American experi-
ments mainly work with the α, β, γ notation.
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The sum of the three angles yields π, which means that the angles are linearly depen-
dent on each other. Using the Wolfenstein parametrization it becomes clear that these
phases induce CP violation as they depend on the parameter iη:∣∣∣∣VtdV ∗tbVcdV

∗
cb

∣∣∣∣ e−iβ = Rte
−iβ ≈ 1− ρ− iη, (1.59)

|
VudV

∗
ub

VcdV
∗
cb

|e−iγ = Rte
−iγ ≈ ρ− iη. (1.60)

Finally some useful relationships between the angles of the triangle and the CKM matrix:

β ≈ − arg(Vtd), (1.61)

γ ≈ − arg(Vub). (1.62)

As said before, the main experimental uncertainties are not on λ or on A but on the ρ
and η parameters. Measuring more precisely the angles of the unitarity triangle is the main
goal of CP violation experiments. By trying to over constrain the unitarity triangle one
could, possibly, find inconsistencies which would mean a sign of the existence of physics
beyond the Standard Model. In the next section the latest experimental results on the
angles and sides of the unitarity triangle are summarized.

1.4.2 Experimental results of the Unitarity Triangle

ρ
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dm∆ & sm∆

ubV
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 < 0βsol. w/ cos2
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excluded at C
L > 0.95

Summer 2007

CKM
f i t t e r

Figure 1.5: CKM unitarity triangle with the experimental results as of summer 2007.
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Many experiments have measured the elements of the CKM matrix. The CKM fitter
collaboration [15] collects the measurements and displays them on the (ρ, η) plane, as
shown in Figure 1.5. The main measurements which constrain the triangle are briefly
summarized below.

εK :
This was the first measurement of CP violation, performed in the kaon system. This
parameter is defined by εK = A(KL→ππ)I=0

A(KS→ππ)I=0
and it was measured by observing the CP -

violating decay KL → ππ, which happened at a level of 0.1%. The most precise result
yields εK ≈ 2× 10−3 and is shown in the figure by the light green “boomerang” belt.

α angle:
The angle at the top of the triangle is experimentally challenging to measure as penguin
diagrams enter the scene. This angle is theoretically determined by − VtdV

∗
tb

VudV
∗
ub

and can ex-
perimentally be measured by looking at the CP asymmetries in b → uud transition, of
which the best known decay is B0 → π+π−. Penguin contributions however contaminate
the measurement of α. Solutions have been proposed, for example, by constraining the
penguin contributions using isospin relations [16]. Measurements of α produce four al-
lowed regions in the ρ, η plane, shown as blue arc-shaped areas.

β angle:
This angle currently constrains most the undetermined top of the triangle. It is extensively
measured in the B-factories at SLAC (BaBar) and KEK (Belle). The phase β, or better
sin 2β, arises from the phase which is induced from the interference of the mixing be-
tween the B0 and B0 particles. The most famous “golden channel” is B0 → J/ψKS . Also
the analysis described in this work aims to measure this angle. Because sin 2β is measured
instead of β, there are four possibilities for β, two are shown by the lightblue lines and
two more by the white-grey lines.

γ angle:
The γ angle is defined by −VudV

∗
ub

VcdV
∗
cb

and remains one of the least known parameters of the

CKM matrix. The angle can be determined, for example, by measuring B+ → K+D0

simultaneously with B+ → K+D0. The first decay is color-allowed and its decay ampli-
tude is proportional to |Vcb|. The second decay is color-suppressed, the decay amplitude
is proportional to |Vub|eiγ and thus γ can be determined by : A(B+→K+D0)

A(B+→K+D0)
= e2iγ , which

gives a theoretically very clean measurement. In practice however it is more challenging
as the color-suppressed decay amplitude is very small. The picture above shows how the
γ measurement constrains the top of the triangle to the gray wedges coming from the
bottom left of the triangle.

Left side, Rb:
The length Rb is determined theoretically by |Vub|

|Vcb| . By measuring decay rates of b → u

and b → c transitions, the corresponding CKM amplitude can be obtained. The deter-
mination of Vcb can be done through inclusive and exclusive semi-leptonic decays, for
example B0 → D+lνl. The theoretical calculations of the decay amplitude however con-
tain hadronic form factors which are challenging to calculate, as will be explained in
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Section 1.6. Still the experimental results of inclusive and exclusive decays agree [11]:

|Vcb| = (42.0± 0.7)× 10−3. (1.63)

Both experimentally and theoretically the extraction of Vub is a lot more difficult. The
results of the inclusive and exclusive measurements have a 1σ discrepancy:

exclusive measurement : |Vub| =(3.8± 0.6)×10−3,

inclusive measurement : |Vub| =(4.4± 0.3)×10−3.

Combining the |Vcb| with both |Vub| measurements allows us to extract a value for Rb:

exclusive measurement : Rb =0.39± 0.06,
inclusive measurement : Rb =0.45± 0.03.

which still causes one of the main “tensions” in the CKM picture and is therefore not in-
cluded in Figure 1.5.

Right side, Rt:
This length is determined by |Vtd|

|Vcb| , where the experimental results of Vcb have already been

described above. |Vtd| can be measured through the mass-difference in the B0 − B0 sys-
tem: ∆Md ∝ |VtdV ∗tb|2. We can further improve this result by simultaneously measuring
∆Ms ∝ |VtsV ∗tb|2, where ∆Ms is the mass difference between the two weak-eigenstates.
The ratio yields:

∆Ms

∆Md
∝ MBs

MBd

ξ2 |Vts|2

|Vtd|2
, (1.64)

where ξ2 has to be obtained from challenging lattice QCD calculations [17]. .

1.5 CP violation in the B0 system

As mentioned before CP violation has only been measured in the kaon system and in the
B system. As the measurement of CP violation in this thesis is made in the B0 system, we
will apply the theory described in the previous section to the case where the initial particle
is a B0 or a B0.

1.5.1 B0 - B0 mixing

The flavor eigenstates of the B0 system are exactly B0 and B0 equivalent to |P 〉 and |P̄ 〉 in
the previous equations. The mixing between the two particles is caused by the off-diagonal
terms of the mass and decay matrix. In Eq. (1.7) we specified that the final states need to
be real, which excludes almost all effects from New Physics to the decay width Γ12. The
off-diagonal mass elements, however, are summed over all virtual and real states, meaning
that intermediate states need to be counted for as well, which leaves more possibilities for
New Physics to appear. The lowest order quark transitions in the B0 system take place
through box diagrams, shown in Figure 1.6.

In the box a virtual u, c or t (anti-)quark can occur, with a probability depending on its
mass and its corresponding coupling constants, which makes having a virtual top quark in
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Figure 1.6: B0 mixing diagrams.

the box the most probable. With the use of the formulas described in Section 1.3.1 we can
calculate the terms of the mass and decay matrix in the B0 system. The exact calculation
of the element M12 is rather challenging due to hadronic effects [10]

M12 =
G2
Fm

2
W

4π2
〈B0|Heff |B0〉, (1.65)

but when ignoring any QCD corrections, the relation can be simplified to:

M12 ∝ (V ∗tdVtb)
2ei(π−θCP ). (1.66)

As M12 is a complex number it can be rewritten as:

M12 = eiφM |M12|, (1.67)

where the phase φM is:

φM = 2 arg(V ∗tdVtb) + π − θCP , (1.68)

φM
SM= 2β + π − θCP , (1.69)

and where β is one of the angles of the unitarity triangle. Without losing generality, let’s
define θCP = π so that the phase of the off-diagonal element of the mass matrix for the
B0 system gets simplified to:

φM = arg(M12) = 2 arg(V ∗tdVtb)
SM= 2β. (1.70)

Again, this equality only holds when hadronic effects are ignored.
The off-diagonal element of the decay matrix, Γ12, is given by

Γ12 =
∑
f

〈f |T |B0〉〈f |T |B0〉, (1.71)

where the physical states f have to be accessible to both B0 and B0. The value of Γ12 is
dominated by the mass available in the decays of both B0 mesons, i.e, ≈ m2

b and because
M12 ∝ m2

t [18] one finds that:

|Γ12|
|M12|

∼
m2
b

m2
t

∼ 4× 10−3. (1.72)
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and thus |Γ12| � |M12| in the B0 system. The CP parameter for the oscillation becomes:

q

p
= −

√
Λ21

Λ12

|Γ12|�|M12|≈ −
(
M∗12

|M12|

)
. (1.73)

This means that |q| ≈ |p| and that CP violation in the B0 − B0 oscillation is very small.
This however does not mean that the oscillation period itself is small. Im( Γ12

M12
) is of the

order of O(10−4) [10], we can therefore say that:

q

p
≈ e−i(2β−φCP). (1.74)

The weak eigenstates with definite masses and decay widths of the B0 system are:

|B±〉 = p|B0〉 ± q|B0〉. (1.75)

The corresponding masses are: m± = M ∓ |M12|. The two B weak-eigenstates are there-
fore referred to as the heavy and light particle:

|B−〉 = |BH〉 |B+〉 = |BL〉.

The average mass and decay width of the B0 system as well as the mass and width differ-
ence between the BH and BL particle are given by the following relationships:

M =
MH +ML

2
= M11, Γ =

ΓH + ΓL
2

= Γ11, (1.76)

∆m = MH −ML > 0, ∆Γ = ΓL − ΓH . (1.77)

The experimental results are [19]:

∆m = 0.507± 0.004 ps−1,

τ = 1/Γ = 1.530± 0.009 ps,
∆Γ
Γ

=
(
40.9+8.9

−9.9

)
× 10−4,

where the latter is obtained using the first two experimental measurements and theoretical
calculations (see [19]). As can be seen from these results, the difference in the two masses
is very small. Directly measuring the two masses is experimentally still too challenging,
but the mass difference can be obtained by measuring interference effects. The decay
width difference in the Bd system is estimated using experimental results and theoretical
calculations. This difference is O(10−15) and is therefore neglected in further calculations.
As we assume ∆Γ = 0, we will in the next chapters refer to Γ just as Γ or 1

τB0
.

Like in the previous section we can now determine the time-dependent decay rates for
an initially (t = 0) pure B0 or B0 respectively:

|B0〉 = h+(t)|B0〉+
q

p
h−(t)|B0〉 (1.78)

=
1
2

√
1 +

∣∣∣∣qp
∣∣∣∣2(e−iλH t|BH〉+ e−iλLt|BL〉

)
, (1.79)

|B0〉 =
p

q
h−(t)|B0〉+ h+(t)|B0〉 (1.80)

=
p

2|p|q

(
e−iλLt|BL〉 − e−iλH t|BH〉

)
, (1.81)
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where h± = 1
2(e−iλ+t± e−iλ−t) and λ± = M L

H
− i

2Γ L
H

. With the parameters defined in this
section we can simplify the following relationships:

h±(t) = ±eiMte−Γt/2
[

cosh
∆Γt

4
cos

∆mt
2

+ sinh
∆Γt

4
sin

∆mt
2
]

≈ ±eiMte−Γt/2 cos
∆mt

2
, (1.82)

|h±|2 =
e−Γt

2
[

cosh
∆Γt

2
± cos ∆mt

]
≈ e−Γt

2
[
1± cos ∆mt

]
, (1.83)

h∗+(t)h−(t) =
e−Γt

2
[
− sinh

∆Γt
2

+ i sin ∆mt
]

≈ e−Γt

2
i sin ∆mt. (1.84)

where we have applied the ∆Γ = 0 approximation. These relationships will be used in the
next section to determine the time-dependent decay rates.

1.5.2 B0 decay to a CP eigenstate.

When time-dependent decay rates for a B system are studied, a separation is made be-
tween four types of decays depending on the final state.

• the final state is a unique CP eigenstate, for example J/ψKS .

• the final state is a mixture of CP eigenstates, like D∗+D∗−.

• flavor specific final states like l+νX−.

• flavor non-specific final states like D−π+ and D+π−.

In this analysis CP violation in B → D∗+D∗− is studied. The final state, D∗+D∗−,
is a mixed CP eigenstate and thus falls under the second type. We will apply now the
general theory seen in the previous sections to the case where the final state is a CP
eigenstate. The process is as follows, we can start with a B0 state which can decay to the
CP final state or oscillate to the B0 which in its turn can decay to the same CP final state.
Figure 1.7 shows a schematic view of the oscillation and decay process. There are now
only two (instead of four) decay amplitudes to be defined as f = f :

Af = Af = 〈fCP|Heff |B0〉,

Af = Af = 〈fCP|Heff |B0〉.

Because |f〉 is a CP eigenstate we have:

|f〉 = (CP )|f〉 = η|f〉, (1.85)

where η is the CP eigenstate of f . We can write the decay amplitude as a product of its
weak phase and an effective operator O [20] such that:

Af = eiφD〈f |O|B0〉 Af = e−iφD〈f |O†|B0〉, (1.86)

⇒ Af = ηei(φD−θCP )〈f |O†|B0〉 = ηei(2φD−θCP )Af , (1.87)
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Figure 1.7: Oscillation and decay interference for an initial B0 to a CP eigenstate (left)
and the CP conjugated process (right).

such that the ratio of the amplitudes is given by:

Af
Af

= ηei(2φD−θCP ). (1.88)

At time t = 0 we start with a B0 particle that decays to the CP eigenstate at t > 0. The
decay rate can be written as:

Rf = |〈f |Heff |B0(t)〉|2

=
∣∣∣h+(t)〈f |Heff |B0〉+

q

p
h−(t)〈f |Heff |B0〉

∣∣∣2
= Nf |Af |2

{
|h+(t)|2 +

∣∣∣∣qp
∣∣∣∣2 ∣∣∣∣AfAf

∣∣∣∣2 |h−|2 + 2<
[q
p

Af
Af

h∗+(t)h−(t)
]}
. (1.89)

where Nf is a normalization factor. For the CP conjugated decay we would have:

Rf = |〈f |Heff |B0(t)〉|2

=
∣∣∣∣pqh−(t)〈f |Heff |B0〉+ h+(t)〈f |Heff |B0〉

∣∣∣∣2
= Nf |Af |2

∣∣∣∣pq
∣∣∣∣2 {|h−(t)|2 +

∣∣∣∣qp
∣∣∣∣2 ∣∣∣∣AfAf

∣∣∣∣2 |h+|2 + 2<
[q
p

Af
Af

h+(t)h∗−(t)
]}
. (1.90)

The key observables for the study of CP violation can be given by the complex quantity:

λf =
q

p

Af
Af

. (1.91)

When the modulus of λf is not equal to unity, CP violation occurred in the oscillation or
in the decay:

|λf | =
∣∣∣∣qp
∣∣∣∣ ∣∣∣∣AfAf

∣∣∣∣ ≈ ∣∣∣∣AfAf
∣∣∣∣ . (1.92)

where the last approximation holds in the B0−B0 system. When the imaginary part of λf
differs from zero, CP violation in the interference between the oscillation and the decay
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takes place. Using the equations (1.84) and setting
∣∣∣ qp ∣∣∣ = 1, we can simplify the previous

equations to:

Rf = Nf |Af |2
e−Γt

2

{
1 + |λf |2 + (1− |λf |2) cos ∆mt− 2=(λf ) sin ∆mt

}
, (1.93)

Rf = Nf |Af |2
e−Γt

2

{
1 + |λf |2 − (1− |λf |2) cos ∆mt+ 2=(λf ) sin ∆mt

}
. (1.94)

Thus, by measuring the decay rates of an initially pure B0 or B0 state we can measure CP
violation, as the last and second-to-last terms in the previous equation have an opposite
sign. We can therefore write:

(−)

R f ∝ e−Γt

2

{
1±

(1− |λf |2

1 + |λf |2
)

cos ∆mt±
−2=(λf )
1 + |λf |2

sin ∆mt
}
,

∝ e−Γt

2

{
1∓ (Adir

CP cos ∆mt+ Smix−ind
CP sin ∆mt)

}
. (1.95)

where the + sign in the top equation (− sign in the bottom equation) should be used when
the initial state is B0 and the − sign in the top equation (+ sign in the bottom equation)
when the initial state is B0. The two new variables introduced are the two independent
CP violating parameters, defined as:

Adir
CP ≡

|λf |2 − 1
|λf |2 + 1

Smix−ind
CP ≡

2=λf
|λf |2 + 1

, (1.96)

There is actually still a third CP parameter which has not entered in our formulas due to
the ∆Γ = 0 approximation. This variable is:

A∆Γ ≡
2<λf
|λf |2 + 1

, (1.97)

while we assume A∆Γ = 0. The three parameters are related in the following way:

|A∆Γ|2 + |Adir
CP |2 + |Smix−ind

CP |2 = 1. (1.98)

We finally define the time-dependent CP asymmetry as:

ACP (t) =
Γ[B0(t)→ f ]− Γ[B0(t)→ f ]

Γ[B0(t)→ f ] + Γ[B0(t)→ f ]

=
Rf −Rf
Rf +Rf

. (1.99)

when applying the equations for the decay rates we obtain:

ACP (t) = Adir
CP cos(∆mt) + Smix−ind

CP sin(∆mt), (1.100)

which is correct up to the approximation |p| = |q| and ∆Γ = 0. We can conclude that
in the neutral B0 system we can measure the direct and mixing-induced CP parameters
from the time-dependent CP asymmetry for decays to a CP eigenstate.
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1.6 Hadronic effects

So far we have ignored the strong interactions but as the decay which is studied in this
analysis, B → D∗+D∗−, has a hadronic final state, these complex strong interactions
between quarks will come into play. Figure 1.8 shows an artistic example of what lies
behind the clean weak interactions, once gluons enter the scene.

Figure 1.8: Illustration of possible strong interactions in a weak decay.

To understand the complex effects of the strong interaction on the CP measurement in
B → D∗+D∗−, we will first look at a simpler example, with less hadronic effects B → lνl
(see Figure 1.9). The transition amplitude for this leptonic decay is:

Tfi =
g2

8
Vub[ulγα(1− γ5)vν ]

[ gαβ
k2 −M2

W

]
〈0|uγβ(1− γ5)b|B−〉, (1.101)

where the factor [ulγα(1−γ5)vν ] contains the Dirac spinors and 〈0|uγβ(1−γ5)b|B−〉 repre-
sents the hadronic matrix element. The transferred momentum k of the W boson is equal
to M2

B. The mass of the B meson is roughly 40 times smaller than the mass of the W ,
which allows us to simplify the above equation using:

k2 = M2
B �M2

W , (1.102)[ gαβ
k2 −M2

W

]
−→

[ gαβ
−M2

W

]
≡
( 8GF√

2g2

)
gαβ, (1.103)

where the momentum dependence is neglected and GF is the Fermi constant. The transi-
tion amplitude becomes:

Tfi =
(8GF√

2

)
Vub[ulγα(1− γ5)vν ]〈0|uγβ(1− γ5)b|B−〉, (1.104)

and the W boson is “integrated out” of the equation. The only hadronic part left is the
hadronic matrix element, 〈0|uγα(1 − γ5)b|B−〉. As B− is a pseudo-scalar meson we can
write that:

〈0|uγαb|B−〉 = 0, (1.105)

〈0|uγαγ5)b|B−〉 = ifBqα, (1.106)
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where fB is the B-meson decay constant and q is the four-momentum of the B−. fB is
an important hadronic parameter which can be calculated from QCD. From this example
it can be understood that for a fully hadronic decay a lot more parameters will be needed
to describe the hadronic behaviors. For non-leptonic decays theorists use the low-energy
effective Hamiltonian, which are expressed using the Operator Product Expansion (OPE).
The transition amplitude is written as:

〈f |Heff |i〉 =
(GF√

2

)
VCKM

∑
k

Ck(µ)〈f |Qk(µ)|i〉. (1.107)

VCKM represent the CKM factor and µ is the renormalization scale. The operator product
expansion allows separation of the short-distance from the long-distance contributions.
The factors Ck govern the short-distance physics. They are called the Wilson coefficients
and can be calculated in a perturbative manner.

Figure 1.9: Possible strong interactions in B → lνl decays.

The hadronic matrix element 〈f |Qk(µ)|i〉 represents the long-distance physics, and is
a non-perturbative term, which makes calculating it very difficult so that large uncertain-
ties remain. The Qk are local operators, which are generated though the electroweak
interaction and QCD and govern “effectively” the considered decay.

Finally the hadronic matrix element, 〈f |Ok(µ)|i〉 can be factorized, as was shown for
the leptonic case, but now using a decay constant and a form factor. These calculations
bear still large theoretical uncertainties, as no non-perturbative method is established yet.
So far data have shown large non-factorisable corrections, which means that we cannot
ignore these effects.

1.7 The B0 → D∗+D∗− decay

Now that we have the tools from the theory of the weak and strong interactions, we can
apply them on the B0 → D∗+D∗− decay. The lowest-order Feynman diagrams are shown
in Figure 1.10. The tree diagram on the left is governed by a V ∗cb and a Vcd transition. The
loop diagram on the right is called a penguin diagram and the quark q in the loop can
be an up, charm or top quark. The corresponding CKM factor is V ∗qbVqd where q = u, c or
t. We will now calculate the time-dependent decay rates RD∗+D∗−(t) and RD∗+D∗−(t) in
more detail. The total decay amplitude from the tree (AT ) and penguin (AP ) diagrams,
can be written as:

AD∗+D∗−(t) = λ(d)
c (AcT +AcP ) + λ(d)

u AuP + λ
(d)
t AtP , (1.108)
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Figure 1.10: Lowest-order Feynman diagrams for the B0 → D∗+D∗− decay. Left: the tree
diagram. Right: the penguin diagrams.

with λ(d)
j = VjdV

∗
jb. Using the CKM unitarity constraint from Eq. (1.50c)

λ(d)
u + λ(d)

c + λ
(d)
t = 0, (1.109)

we can eliminate λ(d)
t and obtain:

AD∗+D∗−(t) = λ(d)
c (AcT +AcP −AtP )

[
1 +

λ
(d)
u

λ
(d)
c

AuP −AtP
AcT +AcP −AtP

]
. (1.110)

Let us define aeiθ as:

aeiθ =
AuP −AtP

AcT +AcP −AtP
. (1.111)

Using:

λ
(d)
u

λ
(d)
c

=
VudV

∗
ub

VcdV
∗
cb

=
(1− λ2/2)Aλ3(ρ+ iη)

−λAλ2
= −(1− λ2/2)

√
ρ2 + η2eiγ , (1.112)

the decay amplitude can be rewritten as:

AD∗+D∗−(t) = −λ3A(AcT +AcP −AtP )[1− (1− λ2/2)aeiθ
√
ρ2 + η2eiγ ]. (1.113)

With the same reasoning the CP -conjugated decay amplitude can be found:

AD∗+D∗−(t) = λ(d)∗
c (AcT +A

c
P −A

t
P )
[
1 +

λ
(d)∗
u

λ
(d)∗
c

A
u
P −A

t
P

A
c
T +A

c
P −A

t
P

]
. (1.114)

Remember from Eq. (1.88): Af = ηAfe
−iθCP . The phase φD is left as it is included in the

CKM factors λ. This allows us to write:

AD∗+D∗−(t) = λ(d)∗
c ηe−iθCP (AcT +AcP −AtP )

[
1 +

λ
(d)∗
u

λ
(d)∗
c

ηe−iθCP (AuP −AtP )
ηe−iθCP (AcT +AcP −AtP )

]
= ηe−iθCP λ(d)∗

c (AcT +AcP −AtP )
[
1 +

λ
(d)∗
u

λ
(d)∗
c

aeiθ
]
. (1.115)

Using:

λ
(d)∗
u

λ
(d)∗
c

=
V ∗udVub
V ∗cdVcb

=
(1− λ2/2)Aλ3(ρ− iη)

−λAλ2
= −(1− λ2/2)

√
ρ2 + η2e−iγ , (1.116)
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such that:

AD∗+D∗−(t) = −ηe−iθCP λ3A(AcT +AcP −AtP )[1− (1− λ2/2)
√
ρ2 + η2e−iγae−iθ].(1.117)

The factor introduced in the previous section is:

λf =
q

p

A

A
, (1.118)

with q
p = e−i(2β−θCP ) if we assume no CP violation in the mixing and β is an angle of the

unitary triangle. We then have:

λD∗+D∗− = e−i(2β−θCP )AD∗+D∗−

AD∗+D∗−

= ηe−i(2β−θCP )e−iθCP
[1− (1− λ2/2)

√
ρ2 + η2e−iγaeiθ]

[1− (1− λ2/2)
√
ρ2 + η2e+iγaeiθ]

= ηe−i2β
1− (1− λ2/2)aeiθ

√
ρ2 + η2e−iγ

1− (1− λ2/2)aeiθ
√
ρ2 + η2e+iγ

. (1.119)

Until this point no approximations have been made (besides the Wolfenstein parametriza-
tion which is correct to the order of O(10−3)). A clean measurement of the angle β would
be possible if the fraction in the last equation would become close to one, which can hap-
pen for example when aeiθ is small. To calculate this term the difficult QCD effects need
to be taken into account. However the Standard Model predicts that the fraction of pen-
guin diagrams with respect to tree diagrams (“P/T” ratio) is only of the order of a few
percent [21, 1]. In the limit where aeiθ is negligible the CP -violating parameter becomes:

λD∗+D∗− = ηe−i2β. (1.120)

Therefore in the absence of extra weak phases coming from the penguin decays the Stan-
dard Model prediction is:

Adir
CP ≡

|λ|2 − 1
|λ|2 + 1

= 0, (1.121)

Smix−ind
CP ≡ 2=λ

|λ|2 + 1
= −η sin 2β, (1.122)

and thus no direct-CP violation is expected in theB → D∗+D∗− decays while the indirect-
CP violating parameter offers a clean measurement of sin 2β. The time-dependent decay
rates of an initially pure B0 state which decays to D∗+D∗− becomes:

RD∗+D∗−(t) ∝ e−Γt

2
(1 + η sin 2β sin ∆mt) (1.123)

and for an initially pure B0:

RD∗+D∗−(t) ∝ e−Γt

2
(1− η sin 2β sin ∆mt). (1.124)

The time-dependent CP -asymmetry becomes:

ACP = −η sin 2β sin(∆mt) (1.125)
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The reasoning in this section is very similar to that of the “golden channel” B0 →
J/ψKS , where the final state is a CP eigenstate as well. In the J/ψKS analysis one of the
CKM amplitudes is dominant, which will make the hadronic phases and the other CKM
phases cancel out. The B → D∗+D∗− decay is not referred to as the “golden channel”
for two reasons from the theoretical side (there are also more challenges to face from the
experimental side namely the signal reconstruction). First of all the dominating amplitude
in B → D∗+D∗−, VcdV ∗cb is of the order of λ3, while the B0 → J/ψKS channel is color
suppressed but its mixing parameters, VcsV ∗cb are of the order of λ2 in the tree diagram,
which results in a larger branching fraction. The second reason is that the approximation
we made, aeiφ = 0, ignores the few percent of penguin diagrams that are predicted. The
accuracy of the approximations made in B0 → J/ψKS are only of the order of O(10−3).

If we assume that the Standard Model penguin diagrams are negligible then the mea-
surement of sin 2β is an excellent probe for New Physics. The loops diagrams are prime
candidates to host New Physics particles. As the tree diagram is already CKM suppressed
(compared to for example J/ψKS), any effect on the penguin diagrams can be poten-
tially significant, which makes this decay a very good probe for searches of physics beyond
the Standard Model. However also in the tree diagram new physics can enter and af-
fect the decay amplitudes. The expressions will become more complicated when extra
particles can enter the scene. When this complication is ignored while the penguin con-
tributions are present, a shift in the measured sin 2β will be observed. The size of this
shift depends on the “P/T” ratio as well as the relative weak phases which enter due to
penguin diagrams [22] or new physics effects in the decay amplitudes. The latter can
even give rise to a shift of β of ∆β = 0.6 in models with enhanced chromomagnetic
dipole operators or in Super Symmetry models without R-parity [23]. Also the theoretical
prediction of |λD∗+D∗− | would be different from one such that direct CP violation can
exist. Large uncertainties would enter in the theoretical equations due to the low-energy
hadronic effects, which will translate into a large uncertainty for sin 2β. These theoreti-
cal uncertainties could be constrained by comparing data from different channels to the
hadronic models. The proper-time differences could be measured simultaneously for the
B0 → D∗+D∗− channel and the B0

s → D∗+s D∗−s channel. These two decays are related
through the U-spin symmetry [24] such that the CP violating effect should be similar in
both decays. However the Belle experiment cannot probe the B0

s → D∗+s D∗−s decays, but
the new generation experiment, LHCb will have access to both the Bs and the B0 decay
such that a simultaneous measurement is possible.

To summarize, the B → D∗+D∗− allows us to extract sin 2β, the amplitude of the
mixing-induced CP violation, from measuring the difference in decay rates between an
initial B0 particle and an initial B0 particle. There is no direct CP violation expected.
These predictions only hold if the penguin diagrams are negligible with respect to the
tree diagrams. However if this assumption is incorrect, due to incorrect Standard Model
predictions or more importantly due to New Physics entering in the loops, the calculations
need to incorporate hadronic effects as well as effects from the new phases. The hadronic
effects are theoretically very challenging to compute and have still large uncertainties.

1.8 Determining the CP eigenvalue

In the previous equations the CP eigenvalue of D∗+D∗− has been symbolized by η. We
will see in this section that η can be ±1 and how this dilutes the measurement of sin 2β.

The D∗+ and D∗− are vector mesons, with spin (JP = 1−) while the B meson is a spin
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0 particle. Due to the conservation of the total spin, the final state can exist with different
relative orbital momenta. Three angular states exist: an S, P or D wave corresponding to
the orbital angular momentum l = 0, 1 or 2. The CP eigenvalue of D∗+D∗− is given by
the following relationship:

CP |D∗+D∗−〉 = (−1)l|D∗+D∗−〉, (1.126)

which means that it can either be +1 (CP even) when l = 0, 2 or −1 (CP odd) when
l = 1. The final state is therefore an admixture of CP even and CP odd states. As η has
an opposite sign for the two CP states, it will “dilute” the overall CP asymmetry. The
dilution factor D < 1, coming from the cancellation of the two different CP components
enters in the asymmetry rate in the following way:

a(t) =
RD∗+D∗− −RD∗+D∗−
RD∗+D∗− +RD∗+D∗−

= D sin 2β sin ∆mt, (1.127)

where the dilution factor is given by:

D =
ΓCP ev − ΓCP odd

Γtot
. (1.128)

When CP odd and CP even states can be disentangled, a more precise measurement of
the CP violating parameters is possible. To extract the different angular momenta, we
can look at the direction of the decay products of D∗+D∗−: the D mesons and slow pions.
The direction of their momenta gives us insight into their partial wave distribution.

This formalism can be developed in the helicity framework, where three amplitudes,
H0, H+ and H− are defined corresponding to the helicity of the two D∗ mesons. The helic-
ity is defined as λ = ~s ·~p/(|~s||~p|) and holds the value λ = −1, 0,+1. The helicity framework
is popular for theoretical calculations as it gives a straightforward procedure to determine
the longitudinal rate. However in practice a different approach is used by working with
the transversity basis. The transversity formalism offers a convenient method to determine
the CP -odd fraction in the data sample because each decay amplitude contributes to only
one CP eigenstate. A0 and A‖ are CP even states while A⊥ is the CP -odd state. The
following relationships show how the transverse amplitudes are constructed:

A0 = H0, A‖ =
1√
2

(H+ +H−), A⊥ =
1√
2

(H+ −H−). (1.129)

At time t = 0 there is no CP violation possible, we have:

A0 = A0, A‖ = A‖, A⊥ = A⊥. (1.130)

While time elapses CP -even and CP -odd states evolve. The three polarization states are
normalized such that:

Γ(t) ∝ |A0|2 + |A‖|2 + |A⊥|2. (1.131)

Let us define the final states which are in a CP even state as D∗+D∗−ev and the CP
odd state as D∗+D∗−odd. The decay amplitudes described by Eq. (1.94) now become:

RD∗+D∗−ev
(t) = ND∗+D∗−ev

|AD∗+D∗−ev
|2e−Γt{1− sin 2β sin ∆mt}, (1.132)

RD∗+D∗−odd
(t) = ND∗+D∗−odd

|AD∗+D∗−odd
|2e−Γt{1 + sin 2β sin ∆mt}, (1.133)
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and for the situation where the initial particle was B0 we get:

RD∗+D∗−ev
(t) = ND∗+D∗−ev

|AD∗+D∗−ev
|2e−Γt{1 + sin 2β sin ∆mt}, (1.134)

RD∗+D∗−odd
(t) = ND∗+D∗−odd

|AD∗+D∗−odd
|2e−Γt{1− sin 2β sin ∆mt}. (1.135)

Note that the only difference between the even and odd equations is the sign multiplying
sin 2β.

Finally an overview of the different relationships between transversity amplitudes, he-
licity amplitudes and partial wave decomposition is given in Table 1.2 and illustrated in
Figure 1.11.

Wave Transversity Helicity CP

S 1√
3
(
√

2A‖ −A0) 1√
3
(H+ −H0 +H−) even

P A⊥ 1√
2
(H+ −H−) odd

D 1√
3
(A‖ +

√
2A0) 1√

6
(H+ + 2H0 +H−) even

Table 1.2: Relationships between the wave decomposition, the transversity and the helicity
framework.

Figure 1.11: The three possible angular states of the B0 → D∗+D∗− decay are presented
on the x axis and visualized in each of the three bases (top: partial wave basis, mid-
dle: helicity basis, bottom: transversity basis). The partial wave basis shows the angular
distribution of the D∗+, the two others show the angular distribution of the slow π+.

1.8.1 Transversity basis and transversity angles

In the transversity basis the direction of the momenta of the daughter particles of D∗+D∗−

is used to define three independent physical angles. The transversity amplitudes are de-
fined by the direction of the polarization of the two D∗ mesons in a way that:

- The x axis is defined along the D∗+ momentum in the B0 meson rest frame.
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- The xy plane is constructed with this x-axis and the momenta of the D∗− daughters
seen in the D∗+ rest frame, which defines the y axis. The sign of the y axis is such
that the projection of the slow pion of the D∗− on the y axis is positive.

- The z axis is such that the basis becomes a right-handed Cartesian system.

An illustration is shown in Figure 1.12.
In this basis the decay amplitudes are defined as spin projections for one vector particle

parallel or perpendicular to the plane of the decay of the other. The direction of the
different polarization amplitudes is thus given by:

A0 ε̂D∗− ‖ x̂ ε̂D∗+ ‖ x̂
A‖ ε̂D∗− ‖ ŷ ε̂D∗+ ‖ ŷ
A⊥ ε̂D∗− ‖ ŷ ε̂D∗+ ‖ ẑ,

where ˆepsilon is the polarization vector of the D∗+ or D∗−.
There are three independent angles relevant to this analysis, θtr, θ1 and φtr, which can

be defined in the transversity basis: θtr, θ1 and φtr.

- θtr is defined as the angle between the z axis and the momentum vector of the slow
pion from the D∗+ decay in the D∗+ rest frame.

- θ1 is the angle between the x axis and the momentum of the slow pion from the D∗−

in the D∗− rest-frame.

- The angle φtr is the angle between the x-axis and the momentum vector of the slow
pion from the D∗+ projected onto the xy plane in the D∗+ rest frame.

1.8.2 Extraction of the angular state

The three different polarization states can be distinguished due to their different cos θtr
and cos θ1 probability distributions. The angular dependence of the decay can be written
as follows [25]

1
Γ
d3Γ(B → D∗+D∗−)
d cos θtrd cos θ1dφtr

=
9

16π
1

|A0|2 + |A⊥|2 + |A‖|2
(1.136){

2 cos2 θ1 sin2 θtr cos2 φtr|A0|2

+ sin2 θ1 cos2 θtr|A⊥|2

+ sin2 θ1 sin2 θtr sin2 φtr|A‖|2

− sin2 θ1 sin 2θtr sinφtr Im(A∗‖A⊥)

− 1√
2

sin 2θ1 sin2 θtr sin 2φtr Re(A∗0A‖)

+
1√
2

sin 2θ1 sin 2θtr cosφtr Im(A∗0A⊥)
}
.

The CP -conjugated equation is similar to this one but with the A terms replaced with
A. When integrating over φtr, the interferences between different polarization states dis-
appear:

1
Γ
d2Γ(

(−)

B→ D∗+D∗−)
d cos θtrd cos θ1

=
9
64

∑
i=0,‖,⊥

|
(−)

Ai |2Hi(cos θtr, cos θ1). (1.137)
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Figure 1.12: Transversity basis and angles for the B0 → D∗+D∗−.
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where the angular terms are

H0(cos θtr, cos θ1) = 2(1− cos 2θtr)(1 + cos 2θ1),
H‖(cos θtr, cos θ1) = (1− cos 2θtr)(1− cos 2θ1),
H⊥(cos θtr, cos θ1) = 2(1 + cos 2θtr)(1− cos 2θ1). (1.138)

From these equations it is seen that the three helicity states can be disentangled, by
the different shape of the cos θtr and cos θ1 distribution depending on the transversity.
However to obtain the dilution factor for the CP fit, D, it is sufficient to obtain the fraction
of the CP -odd component defined as:

R⊥ =
|A⊥|2

|A0|2 + |A⊥|2 + |A‖|2
. (1.139)

By integrating equation (1.137) over θ1, one obtains an equation where the CP -odd com-
ponent can be extracted by a one-parameter fit over θtr:

1
Γ
dΓ(B → D∗+D∗−)

d cos θtr
=

3
4

(1−R⊥) sin2 θtr +
3
2
R⊥ cos2 θtr. (1.140)

Thus using the transversity basis allows us to define a variable cos θtr of which its
distribution reveals the CP -odd fraction in the data sample. The theoretical prediction of
the CP odd fraction in the data sample is 11% [1].



Chapter 2

The Belle experiment at KEKB

We introduce in this chapter the Belle experiment at the
asymmetric-energy accelerator KEKB in Tsukuba, Japan. The
special features of the detector are presented as well as the data-
acquisition. Finally some analysis tools such as the flavor tag-
ging, luminosity measurement and Monte Carlo techniques are
developed.

T
HE practical aspects of measuring mixing and CP -violation phenomena will be ex-
plained in this chapter. The challenges involved in the experimental setup can be

divided into three groups: obtaining optimal initial conditions for the B0B0 state, mea-
suring the time-evolution process and detecting the final states. The latter involves deter-
mining the flavor of the B-mesons which can be obtained with a “tagging” technique (see
Section 2.7.4). The B0B0 pair is produced through the Υ(4S) resonance. The asymmetric
accelerator accounts for a boost of the system which allows us to measure the proper time
difference between the neutral B-mesons.

2.1 The Υ(4S) production

The first observation of the Υ(1S) meson was made in 1977 by the CFS Collaboration [26].
Experiments at the CESR and DORIS machines confirmed the existence of this bound bb
state with JPC = 1−− and measured even higher excited states. The e+e− hadronic
cross-section was further explored as a function of the center-of-mass (CM) energy, in
particular by the CLEO experiment. The result is shown in Figure 2.1; the first three peaks
correspond to the Υ(1S), Υ(2S) and Υ(3S) excited states and are very narrow. Their
measured width is merely dominated by the energy resolution of the detector.

The Υ(4S) state has an energy just 20 MeV above the threshold for BB production
and has a 10.58 GeV/c2 mass. At higher energies the Υ(5S) shows up. The Υ(4S) decays
more than 96% of the time into a BB state, which is either a B0B

0 (49.1 ± 0.7%) or a
B+B− (50.9 ± 0.7%) pair. The B+B− couple does not mix but can be used to test direct
CP violation. Due to this almost exclusive decay to neutral and charged BB decays,
the Υ(4S) makes a very practical state for CP -violation studies in the B-system. Many
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Figure 2.1: e+e− hadronic cross-section as a function of the CM energy, measured at
CLEO and CUSB, illustrating the different Υ resonances. The gray band symbolizes the qq
continuum background. The insert on the top right shows the cross-section for higher CM
energies, where the Υ(5S) resonance appears. The figures are taken from [27] and [28].
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experiments dedicated to CP violation have used this excited state, amongst those CLEO
and the two B-factories Belle and BaBar; the first two experiments are still running. BaBar
stopped taking data in the spring of this year, 2008.

Figure 2.1 shows also that the e+e− annihilation does not only create the excited Υ(4S)
state around 10.58 GeV but also non-resonant contributions which are referred to as “con-
tinuum”. It consists of lighter pairs of the u, c, d or s quarks. The continuum production
cross-section accounts for about three quarters of the total electron-positron cross-section
at the Υ(4S) resonance. In Chapter 3 we will explain how selection criteria are used to
discriminate these continuum events from the BB decays.

2.2 The KEKB asymmetric-energy accelerator

Since 1980 the experiments ARGUS, using the accelerator DORIS-II at DESY (Germany)
and CLEO, using the accelerator CESR at Cornell (United States) have produced many
B0B

0 and B+B− pairs. They discovered the mixing between the B0 and anti-B0 mesons
and were able to measure the absolute values of elements of the CKM matrix.

These two experiments were not able, however, to measure any CP violation in the
B system, therefore two new experiments were built: Belle at KEK (Japan) and BaBar at
SLAC (United States), using the KEK-B and PEP-II accelerator facilities. These accelerators
have electron-positron beams with an asymmetric energy so that the Υ(4S) is produced in
a boosted system. The B mesons will thus have a measurable decay length.

Figure 2.2: Schematic view of the KEKB and
the Linac accelerator.

The construction of the KEKB collider
took place from 1994 to 1998. The two
beams are stored in a 3 km long ring and
are fed by a linear accelerator, Linac, as
shown in Figure 2.2. The “High Energy
Ring “ (HER) contains the accelerated elec-
trons while the “Low Energy Ring” (LER)
stores the positrons. A detailed descrip-
tion of the KEKB accelerator can be found
in [29]. The center-of-mass energy (

√
s) of

the two beams corresponds to the mass of
the Υ(4S) particle:
√
s = 2

√
EHERELER = 10.58 GeV.

In order to accommodate for the boosted
production of the Υ(4S), the energy of the
LER beam is 3.5 GeV while the HER beam’s
energy is 8.0 GeV. The created boost is:

βγ =
EHER − ELER√

s
= 0.425.

This is also the boost of the B mesons
(since they are produced almost at rest in
the Υ(4S) frame), and hence the B mesons
fly on average 0.2 mm before decaying.

The design current is 1.1 A in the HER
and 2.6 A in the LER. A bunch contains
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around 1010 particles and has a length σz = 4.0 mm. When the machine runs at its full
capacity it hosts 5000 bunches per ring, corresponding to a bunch crossing rate of 2.1 ns.

Figure 2.3: Schematic view [30] of the beam line and magnets around the interaction
point.

The performance of the accelerator is measured by its delivered luminosity, L, which
is defined as:

R = L× σ,

where R is the rate of e+e− collisions and σ the total e+e− cross section. The luminosity
measurement is described in Section 2.7.2. The peak luminosity is the maximum luminos-
ity at the start of a fill. The specific luminosity refers to the luminosity per bunch divided
by the product of bunch currents. Due to the exponential decrease of luminosity of the
beams in time, they are only stored for a duration of eight hours, while the Belle detector
takes data. After that the beams are dumped and HER and LER are refilled.

The design luminosity of 1034 cm−2s−1 was reached in May 2003 and since 2004 the
machine has been operating in a “continuous” injection mode. Since then the luminosity
has continued rising and in November 2006 a peak luminosity of 1.7 × 1034 cm−2s−1 was
reached.

At the interaction point (IP), the two beams collide with an angle of ±11 mrad in
order to reduce beam-interference background and to simplify the magnet construction.
A schematic view of the magnets and beam line near the interaction point is shown in
Figure 2.3. In January 2007 crab-cavities were installed to tilt the head-to-tail of the bunch
just before the IP to increase the luminosity. This has increased the specific luminosity but
the peak luminosity hasn’t broken any previous records yet (see Figure 2.4).

The total integrated luminosity delivered by the KEKB accelerator reached 836 fb−1 on
May 27th, 2008. The top plot in Figure 2.5 shows how the daily luminosity increased over
the years, while the bottom plot shows the integrated luminosity as well as the different
energy regions which were scanned. Finally Table 2.1 illustrates yet another example of
the excellent performance of the accelerator, which has largely surpassed its design goals.



2.2. THE KEKB ASYMMETRIC-ENERGY ACCELERATOR 39

Figure 2.4: Left: bunch-crossing scheme, the top configuration shows the classical ap-
proach with the 22 mrad crossing angle, while the bottom plot of the figure shows how the
crab cavities have tilted the bunches. Right: The specific luminosity with respect to the
beam current. The light blue dots show the performance in the classical approach, the red
when the crab cavities are installed.

Figure 2.5: Daily (top) and total integrated luminosity (bottom) recorded by Belle since
the beginning of data-taking.
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Circumference 3016 m

Design Record

Peak luminosity 1.0 1.712 1034 cm−2 s−1∫
Lum / day ∼ 0.6 1.23 fb−1

Design 19/05/2008

Bunch spacing 0.59 2.1 m
Number of bunches/ring 5000 1584

RF frequency ∼ 509 ∼ 509 MHz

LER HER LER HER

Bunch current 1.0 0.6 mA
Beam current 2.6 1.1 1.6 0.9 A

Particles/bunch 3.3 1.4 1010

Table 2.1: Design and actual machine parameters of KEKB [31].

2.3 The Belle detector

The next step after the creation of the initial B0B
0 state is the accurate measurement

of the decay time and decay particles of both B mesons. In the study presented in this
dissertation we reconstruct the decay of a neutral B meson to D∗+D∗−. This B meson
is referred to as the BCP , while the other B meson in the event is called the Btag. The
reconstruction of the decay particles allows us to identify the BCP meson. Its flavor can
be determined by the tagging method, explained in Section 2.7.4. The apparatus used to
measure the properties of the decay particles is the Belle detector. We will first give an
overview of the design of the detector, followed by a description of the techniques used to
extract the relevant information of the measured data.

The detector is constructed around the interaction point of the accelerator to measure
the particles which are created from the collision of the electron and positron beams.
Most particles have a very short lifetime and decay before they can be detected. Only
the lighter, final decay particles which live long enough such as protons, kaons, pions,
electrons, neutrons, gammas and muons can leave a signal in the detector.

The detector’s acceptance covers as much as 93% of the total solid angle. It is built in
a typical “multi-layer” full-featured detector. Each subdetector has its own specialty but
only by combining the different inputs can one obtain a meaningful physics event.

Let us define the detector coordinate-system as illustrated in Figure 2.6.

- The x axis is the radial horizontal axis from the center of the accelerator outwards.

- The y axis is the vertical axis.

- The z axis points anti-symmetric to the positron beam.

The three axes form a right-handed coordinate system. The origin is defined in the crossing
point of the beams. Often cylindrical coordinates will be used to incorporate the detector’s
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Figure 2.6: Design of the Belle detector.

symmetries. The radial distance is defined as r =
√
x2 + y2. It is useful to define two

angles: the polar angle, θ, which is the angle measured with respect to the z axis and the
azimuthal angle φ, measured with respect to the x axis. The detector clock is synchronized
with that of the KEKB accelerator which is determined by the RF radio frequency. This
also corresponds to the design bunch crossing which take place every 2 ns.

The layout of the Belle detector is schematically shown in Figure 2.7. The trajectories
of the charged particles are bent due to the 1.5 T magnetic field provided by the super-
conducting solenoid which is placed outside most of the subdetectors. The curvature is
proportional to the particle’s momentum. The track position along the particle’s flight is
measured by the Silicon Vertex Detector (SVD) and the Central Drift Chamber (CDC),
the two innermost subdetectors. The sensitive elements of the SVD start as close as 2.0 cm
from the interaction point and are therefore also used to determine the decay vertex posi-
tions. Due to the large particle flux and the high vertex resolution required (∼ 50µm in z),
the SVD is constructed with silicon sensors. The CDC measures, in addition to the charged
track’s position, the particle’s energy loss which is used to identify pions, kaons and elec-
trons. Two more detectors have as their main purpose particle identification (PID), the
Aerogel Cherenkov Counter (ACC) and Time-of-Flight detector (TOF) subdetector. The
ACC measures the Cherenkov light emitted by charged particles. Combined with the mea-
sured momentum it gives access to the mass of the particle and allows us to distinguish
kaons from pions. The TOF measures the time between the interaction and the moment it
detects the particle.

Around these light inner-detectors the Electromagnetic calorimeter (ECL) is installed,
which has the purpose of measuring the energy of electrons and photons by making them
interact with the dense detector medium where they deposit their energy in the form of
a shower. The size and width of the shower is a measure of the energy of the particle.
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Figure 2.7: Side view of the Belle detector with its subdetectors.

Because the ECL is sensitive to electrons but hardly sensitive to hadrons, we can identify
particles which are measured by the ECL and which left a signal in the tracking detectors
as electrons. Photons can be separated from electrons by requiring signals in the ECL with
no associated track measurement. Finally, outside the magnetic coil the KLM detector is
installed, which detects KL particles. The KL particles decay into pions in this outer de-
tector due to its long lifetime. Also muon tracks are measured after having traversed all
the other subdetectors.

In the next section a more technical overview of each subdetector will be given but for
a full and detailed description we refer to [32, 33] and [34]. The pictures on the following
pages are taken from [32], unless stated otherwise.

2.3.1 The beam pipe

The vacuum around the beams is assured by the beam pipe. The two separate vacuum
pipes around the LER and HER beams merge together at the level of the detector. The z
vertex-position resolution of tracks, measured by the SVD detector, is limited by the multi-
ple Coulomb scattering in the beam pipe wall. Therefore the beam pipe’s material had to
be reduced to a minimum. Furthermore the vertex resolution is inversely proportional to
the distance between the first detection layers of the SVD and the interaction point. The
need for a thin and small beam pipe radius is complicated by the beam-induced heating
which can rise to a few hundred Watts. Therefore the beam pipe is made of a double-wall
beryllium cylinder with an inner radius of just 2.0 cm. Helium gas is flushed in the gap
(2.5 mm) between the two layers for cooling. A cross section view of the beam pipe is
shown in Figure 2.8. During the detector upgrade in 2003 the inner radius of the beam
pipe was reduced to 1.5 cm.
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Figure 2.8: Cross-section view of the beam pipe before the detector upgrade.

2.3.2 The silicon vertex detector (SVD)

The Silicon Vertex Detector is an essential subdetector for time-dependent CP studies. Its
key purpose is to provide a good measurement of the separation between the B0 and the
B

0 decay vertices. The required z-position resolution is ≈ 100µm. The SVD contributes
also to the overall tracking performance. Because most of the particles of interest have a
momentum lower than 1 GeV, the resolution is dominated mainly by Coulomb scattering
in the material on the particle’s trajectory. The detector is therefore built of light materials
and its readout electronics are kept outside the tracking volume. The detector’s material
also has to be resistant to the high radiation dose coming from the beam background.
The structure of the vertex detector contains several layers of silicon sensors placed in a
cylindrical configuration around the beam pipe. The first layer is as close as possible to
the interaction point to improve the vertex resolution.

Double-Sided Silicon Detectors (DSSD) of n-type silicon are found to correspond best
to the above mentioned criteria. A charged particle which traverses the depleted pn junc-
tion of the detector creates holes (e+) and electrons along its trajectory (see Figure 2.9).
These holes originate from the liberated valence electrons which go to the conduction band
and leave behind a vacuum position. The electrons (holes) will migrate to the nearby p+

(n−) strip on the surface of the silicon layer. The induced current is then read out by the
front-end electronics.

The silicon detectors, produced by Hamamatsu Photonics K.K.(Japan), were originally
designed for the DELPHI micro-vertex detector at CERN [35]. The sensor’s dimensions are
57.5 × 33.5 mm2. The silicon modules contain 640 p+ strips, parallel to the beam axis for
the measurement of the azimuthal φ angle and 640 n− strips, perpendicular to the beam
axis for the tracks z-position measurement. The p+ and n− pitch-strip distance is 24µm
and 42µm respectively.

The SVD detector was upgraded in 2003 and has since been referred to as the SVD2
detector [36] (and the previous version is now called SVD1 [37]). The main difference
is the installation of an additional layer in the SVD2 detector which reduces the inner-
most radius from 30 mm to 20 mm. To make this change possible the beam pipe radius
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Figure 2.9: Illustration of a particle detection in a semiconductor.
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Figure 2.10: Design of the SVD1 subdetector.
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Figure 2.11: Design of the SVD2 subdetector.

had to be reduced from 20 mm to 15 mm. The design of both SVD versions is shown in
Figure 2.10 and Figure 2.11. Due to the extra detection layer in the SVD2 detector, the
angular coverage was enlarged from 23o < θ < 139o (86% of the total solid angle) for
SVD1 to 17o < θ < 150o (92% of the total solid angle) for SVD2. The SVD1 layers are
built of 8, 10 or 14 ladders which are equipped with two or four DSSDs. The total number
of readout channels is 81920 for SVD1 and 110592 for SVD2 corresponding to 102 DSSDs
(SVD1) and 138 DSSDs (SVD2). The resolution on the impact parameter measured by the
SVD1 detector is shown in Figure 2.12. The SVD upgrade increased the vertex resolution
by 25% (Rφ resolution becomes 12µm, z resolution becomes 19µm) and made it possible
to reconstruct charged tracks using only SVD hits. The dead time is reduced due to the
revised readout electronics and the radiation hardness is improved. Figure 2.13 shows the
hits and tracks from a hadronic event in the SVD2 detector.

2.3.3 The central drift chamber (CDC)

The CDC detector measures the bended tracks of the charged particles which are used
to determine precisely the corresponding momentum. The momentum resolution re-
quirement for the physics analysis is: σpt/pt ≈ 0.5%

√
1 + p2

t for charged particles with
pt < 100 MeV/c in the polar region of 17o ≤ θ ≤ 150o (pt expressed in GeV units). The
CDC is immersed in the uniform magnetic field which points in the z direction. When a
charged particle moves through this magnetic field it follows a helix path along the field
lines. The helix can be decoupled into a circular motion in one plane and a constant move-
ment in the plane perpendicular to the circular plane. From this information the particle’s
momentum and the closest approach to the interaction point can be determined [38].

The design of the CDC detector is shown in the top plot of Figure 2.14. This small-
cell drift chamber covers the region of 17o ≤ θ ≤ 150o (corresponding to the coverage of
the SVD2 detector) and consists of 50 anode sense-wire layers (for a total of 8400 read-
out channels) and three cathode strip-layers (corresponding to 1792 readout channels).
The bottom plots of Figure 2.14 show the internal cell configuration. The detector is fur-
thermore filled with a light mixture of helium and ethane gas. When a charged particle
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Figure 2.12: Resolution on the impact parameter in xy (left) and z (right) measured by
the SVD1 detector.

Figure 2.13: A hadronic event recorded in the SVD2 detector (front view).
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Figure 2.14: Top: general CDC detector layout. Bottom: wire arrangement in the CDC
detector.
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traverses the detector an electron on the outer layer of the gas atom can be kicked out due
to the Coulomb interaction. These freed electrons are accelerated by the electrical field
induced by the anode and cathode wire, in the direction of the closest anode wire. While
being accelerated towards the wire, the electron in its turn will liberate more electrons.
The induction of these accumulated charges provoke an electrical pulse.

The CDC detector also got upgraded during the summer of 2003. Due to the larger
outer dimensions of the SVD2 detector the CDC’s inner radius had to be increased. This
is done by removing three inner layers of and replacing them by two layers of smaller
so-called small-cell CDC (sCDC) modules, such that the inner radius became 140 mm. The
measurements provided by the CDC detector are also linked to the SVD hits in order to
improve the overall resolution.

Both the pulse height and drift time are measured. The pulse height is related to the
energy deposited through the ionization of the gas. The distance of the particle to the
wire can be obtained by the drift time. From the measured energy deposition and distance
to the wire we can calculate the energy loss dE/dx, which is a vital component for the
particle identification. Figure 2.15 shows the distribution of dE/dx versus momentum.
The separation between the different particles can clearly be seen. For kaons and pions
with a momentum between 0.4 and 0.6 GeV/c a 3σ separation can be obtained.

Figure 2.15: Particle identification from the CDC dE/dx measurement.

2.3.4 The aerogel Cherenkov counter (ACC)

The purpose of the aerogel Cherenkov counter is to enhance the particle identification
by distinguishing pions from kaons, which is vital for many B physics measurements.
The detector consists of an array of silica aerogel threshold Cherenkov-counters and ex-
tends the momentum coverage beyond the reach of the CDC dE/dx measurement (see
Section 2.3.3) and the time-of-flight measurement (see Section 2.3.5).
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Figure 2.16: Design of the ACC detector (transverse cross section).

The principle of the particle identification method is based on the Cherenkov light
emittance by particles traveling faster than the speed of light in that medium. Depending
on the refractive index of the medium, the speed of light becomes

vlight in medium = c/n,

so when a particle’s velocity v satisfies the following relationship:

n > c/v =
√

1 + (mc/p)2

and a cone of light is emitted with an angle inversely proportional to its velocity. By
choosing the appropriate refractive index, there will be a range of velocities for which
pions emit Cherenkov radiation but kaons don’t. The ACC allows particle identification for
momenta between 1.2 to 3.5 GeV/c.

The detector is built of 960 aerogel counter modules in the barrel part, segmented in
60 cells in the φ direction and 228 modules in the forward end-cap which are arranged in
five concentric layers, as shown in Figure 2.16. A typical counter module consists of five
silica aerogel tiles inside a 0.2 mm thick aluminum box. Each tile has a different refractive
index, between 1.01 and 1.03, depending on its polar angle. The produced Cherenkov
light is then read out by one or two fine mesh-type photomultiplier tubes attached directly
to the box, as shown in Figure 2.17. The total number of readout channels in the barrel
part is 1560. The end-cap adds another 228 channels.

For particles up to 4 GeV, the kaon identification efficiency is 80% or more while the
pion fake rate remains below 10%. Below the pion threshold of 1 GeV electron identifica-
tion is possible as well.

2.3.5 The time-of-flight counter (TOF)

Particle identification with a time-of-flight detector is very efficient. It adds a third piece
of information to the PID, namely in the energy regions where both the ACC and the CDD
are less effective, i.e, below 1.2 GeV, which encloses 90% of the particles produced at the
Υ(4S) resonance. In this range, the PID efficiency can be guaranteed as the flight length



50 CHAPTER 2. THE BELLE EXPERIMENT AT KEKB

Figure 2.17: Design of an ACC barrel module (left) and end-cap module (right).

is 1.2 m and a time resolution is 100 ps. The flight time, T , for a particle of mass m which
travels a length L is given by

T =
L

c

√
1 +

(mc
p

)2
.

The TOF measures the time the particle takes to travel from the interaction point to the
TOF barrel. When combining the momentum measurement from the CDC with the mea-
sured velocity of the TOF, we can calculate the corresponding mass of the particle and
identify it. The mass distribution calculated from TOF measurements is shown in Fig-
ure 2.19 and a clear separation between kaons, pions and protons can be seen.

Figure 2.18: Configuration of the TOF module.

Due to its excellent time resolution the TOF detector also provides fast timing signals
for the trigger. Simulation studies indicated however that to keep the fast trigger rate
below 70 kHz in any beam background conditions, the TOF counters should be augmented
by thin trigger scintillation counters (TSC).

The TOF counter and the TSC consists of fast scintillators and photomultiplier tubes,
mounted directly on the scintillators. One module has two TOF counters and one TCS.
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The 4.0 cm thick TOF counter is read out by two photomultipliers and the 0.5 cm thick
TCS is read out by one photomultiplier. The configuration of a TOF module is shown in
Figure 2.18. In the barrel region there are 64 TOF modules, which covers the polar region
of 33o < θ < 121o. The TOF hit efficiency is 95% for single-end hits and 88% for both-end
hits in e+e− → µ+µ− events. For more information on the TOF system, see Ref. [39].

Figure 2.19: Particle identification using TOF measurements. The mass distribution shows
a clear distinction between pions, kaons and protons.

When combining the information from the TOF measurement with the ACC and CDC
information on dE/dx a 3σ separation between charged kaons and pions is obtained for a
momentum range up to 3.5 GeV/c

2.3.6 The electromagnetic calorimeter (ECL)

The ECL’s first purpose is the detection of photons from π0 decays and radiative B mesons,
with a high efficiency and a good resolution in energy and position over a large energy
range. Most photons are the end products of cascade decays and have thus a relatively
low energy which asks for an excellent ECL performance below 500 MeV. On the other
hand, photons from decays such as B → K∗γ or B → π0π0 produce merely photons with
an energy above 4 GeV. Figure 2.20 shows the relative energy and position resolution for
photons measured by the ECL. A good resolution is also needed to separate those photons
from the low energy background photons. For the detection of high momentum neutral
pions, the energies of the two decay photons as well as their opening angle need to be
measured accurately. This requires a fine-grained segmentation in the calorimeter.

The second purpose is providing information for the electron identification by testing if
a signal in the ECL can be associated with a track with consistent energy and momentum.

The energy of the incident particle is measured by the shower it deposits in the CsI (Tl)
crystals, through Bremsstrahlung and pair creation. The shape and total energy of electron
showers differ greatly from hadronic showers. The latter only deposits a small amount of
its total energy. The crystals are arranged in such a way that they all point roughly to the
interaction point. The ECL design, shown in Figure 2.21, consists of 8736 tower-shaped
crystals of which 6623 are in the barrel and the rest in the two end-caps. Each crystal has
a depth of 30 cm, corresponding to 16.2 radiation lengths and a surface of 5× 5 cm2. The
crystal is then read out by a pair of silicon PIN 1 photodiodes mounted at the rear end of
the crystal. A total solid angle of 12o < θ < 155o is covered, which corresponds to 92% of
the full solid angle.

1positive-intrinsic-negative
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Figure 2.20: Relative energy resolution (left) and position resolution (right) for photons
measured in the ECL detector.

Figure 2.21: Configuration of the ECL detector.
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2.3.7 The extreme forward calorimeter (EFC)

Figure 2.22: Configuration of the extreme forward calorimeter.

The EFC detector is used to extend the polar angle coverage of the ECL in the forward
(6.4o < θ < 11.5o) and backward (163.3o < θ < 171.2o) direction. The detection of
photons and electrons is based on the same principle as in the ECL. The EFC detector is
installed around the beam pipe close to the IP and is subject to large radiation. Radiation
hard BGO crystals (bismuth germanate Bi4Ge3O12) are chosen as the scintillating material,
corresponding to 12 (11) radiation lengths in the forward (backward) direction. The
produced scintillating light is captured by photodiodes. The 160 crystals are segmented
in 32 (5) sections in φ (θ) as shown in Figure 2.22. The EFC has an energy resolution
of 7.3% at 8 GeV and 5.8% at 3.5 GeV. The EFC also has the function to mask the beam
background for the CDC detector. Finally this detector plays an important role in the
measurement of the delivered luminosity to Belle, as explained in Section 2.7.2.

2.3.8 The KL and muon detector (KLM)

The KLM detector is the only Belle subdetector placed outside the magnet solenoid [40].
Its purpose is to detect KL and muon particles. The KL particle has a long lifetime and
decays at the height of the KLM detector. The total material aKL particle encounters while
traversing the detector until it hits the KLM, corresponds to approximately one interaction
length. The KLM detector therefore has to be denser in material. This is accounted for
by iron plates which add 3.8 interaction lengths. The KL particle traversing these iron
plates will produce a shower of hadrons, producing a cluster of hits in the KLM. When
a cluster cannot be associated with a charged track, we identify it as a KL. Muons can
be discriminated from KL first, due to a different signal shape in the KLM detector, i.e, a
line instead of a shower and second, because a muon particle leaves a track in the inner
detectors. KL and muons are detected with a high efficiency over a broad momentum
range greater than 600 MeV/c. For muons with a momentum larger than 1 GeV/c the
detection efficiency is above 90% with a fake rate around 2%, due to non-interacting
charged pions and kaons.
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Figure 2.23: Configuration of the KLM detector (left) and its super-layers (right).

As shown in Figure 2.23 the detector consists of alternating layers of 15 Resistive Plate
Counters (RPC) and 14 layers of 4.7 cm thick iron plates. In the end-cap region there
are only 14 RPCs. The layers are then grouped in a so-called super layer, which consists
of two RPC planes sandwiched between cathode strips that provide φ and θ information.
The shower produced by the KL allows us to measure the direction from the IP but the
resolution on the energy deposition doesn’t allow for an accurate energy determination.
The position resolution for KL mesons is 30 mrad in both angular directions. The time
resolution is around a few nanoseconds. The iron plate is also used as return yoke for
the magnetic field produced by the superconducting solenoid. The KLM detector covers a
polar angle region of 20o < θ < 155o.

2.4 The trigger system

A trigger system decides if an event, recorded by the detector, should be saved by the
data acquisition system. Most events recorded however are undesired, such as cosmic ray
events, interactions in the beam pipe, synchrotron radiations or interactions between the
beam and residual gas in the vacuum chamber. The production rate of these background
events heavily depends on the beam quality. This calls for a trigger which is robust to un-
expectedly high beam background rates. The trigger looks for typical signatures in the sub-
detectors which hint to an interesting event. During normal operation (L = 1034 cm−2s−1)
the total rate of events is around 220 Hz which contains roughly 100 Hz of physically in-
teresting events. Among the processes that are useful for physics analysis are the Bhabha
and γγ processes but their rates are very large. The corresponding triggers need to be
prescaled by 100, which is possible due to the distinct signal signature these events leave
in the detector.
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Figure 2.24: A schematic representation of the Belle trigger system.

The Belle trigger has an efficiency for hadronic events of more than 99.5%. It con-
sists of a level-1 hardware-trigger, a level-3 software-trigger implemented in an online
computer farm and a level-4 trigger which runs in the off-line Belle computing system as
shown in Figure 2.24. The latter performs a more complex background reduction by fully
reconstructing the event. In the next sections the different functions and designs of each
subtrigger will be briefly explained.

2.4.1 The level-1 trigger

A central trigger-system, called Global Decision Logic (GDL), collects the trigger signals
from each subdetector and issues the level-1 decision. An illustration is shown in Fig-
ure 2.25. The subtriggers arrive at the GDL 1.85µs after the beam crossing, and the
trigger decision is issued by the GLD 2.2µs after the beam crossing. The CDC and TOF
trigger on charged particles. The ECL trigger decision is based on the deposited energy
and the number and timing of ECL cluster hits. The EFC subdetector triggers on Bhabha
and two-photon events. Finally the KLM detector trigger provides a signal when muons
are detected. In total 48 trigger signals are received by the GDL. For the hadronic trigger
there are five main strategies:

- The two-track trigger requires two tracks with r − φ measurements and one mea-
surement of a hit in the z-direction. The opening angle needs to be larger than 135o.
Finally there needs to be hits in the TOF and ECL clusters.

- The three-track trigger is similar to the two-track trigger but requires three or more
r − φ CDC triggers. There exists more trigger types depending on the number of
tracks.
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Figure 2.25: L1 trigger system layout.

- The isolated cluster counting trigger asks for four or more isolated ECL clusters to
avoid Bhabha events.

- The total energy trigger requires the total sum of energy deposited in ECL to be
larger than 1 GeV. It is vetoed by the Bhabha events detected in the ECL and cosmic
triggers.

- Combined trigger: this is a combination of the track, energy and cluster triggers.

When using the overlap of these triggers an efficiency of more than 99% is obtained for
BB events. The individual trigger efficiency is between 90% and 97% for BB. A detailed
description of the Level-1 trigger can be found [41].

2.4.2 The level-3 and level-4 trigger

The purpose of the level-3 (L3) trigger is to reduce the number of events which passed the
L1, first by verifying again the L1 conditions (except Bhabha and random trigger events)
and then by performing a fast track reconstruction and discarding tracks for which the
difference in the z direction is less than 5 cm from the IP. While the L3 keeps an efficiency
of around 99% for τ and hadronic events, the data size is reduced by a factor of two.

The level-4 (L4) [42] trigger performs a full reconstruction using a fast tracker and
rejecting tracks which do not point to the IP. The L4 trigger does not discard events as
they remain in the raw data but reduces CPU time for DST production as explained in
paragraph 2.6. The L4 trigger rejects around 78% of events for the DST production while
keeping almost 100% of the BB events. Only the first experiments are processed using the
level-4 trigger.
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2.5 The data acquisition system (DAQ)

Figure 2.26: Data acquisition system.

The DAQ system needs to record events which passed the L1 to L3 requirements with
a rate less than 500 Hz, while keeping the dead time below 10%. Therefore a distributed
parallel-system has been set up, which is segmented into seven subsystems to handle the
data from each of the subdetectors. A schematic overview of the DAQ system is shown
in Figure 2.26. The data of most subsystems enter the DAQ system in the form of an
electric signal. This then gets converted by a charge-to-time (Q-to-T) converter and then
by a time-to-digital converter (TDC). The KLM signal’s pulse shape does not provide useful
information and thus no Q-to-T conversion is needed as shown in the scheme. For the SVD
detector the signal is read out by flash analogue-to-digital converters (FADC) instead of
TDC.

The readout timing is controlled by the sequence controller (SEQ) which gives a stop
signal to the TDCs when the final trigger signal from the GDL is received. The signals
from the subsystems are then transferred and combined by an event builder which records
single events. The parallel data streams are converted from a “detector-by-detector” type
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of information to an “event-by-event” data stream. The output is then sent to an online
computer farm where the data is passed through the level-3 trigger filtering-system and
combined to an offline event-format. The quality of the data is monitored by the DQM,
an online data quality monitor, in the online farm. The data is then sent to the mass
storage system of the KEK computing center via optical fibers and stored on tape. A typical
hadronic BB or qq event has a data size of about 30 kB corresponding to a maximum data
transfer rate of 15 MB/s.

2.6 The data processing

The data accepted by the L4 trigger are converted from raw data to fully reconstructed
events and then stored on the data summary tapes (DST). At this stage the three momenta
are calculated to create physics objects. The charged tracks are reconstructed from the
signals of the CDC. They are then extrapolated outwards to the ACC, TOF, ECL and KLM
detector or inwards to the SVD detector, to search for any matching signals. When signals
are recorded in the KLM and ECL detector but there is no association possible to any
CDC tracks, the particle will be considered as a neutral particle. Next the four-vectors are
calculated as well as the PID likelihoods. Furthermore a series of flags and variables are
determined which can be used for further analysis. All this information is stored in the
DSTs using the PANTHER data format [43].

Events are further classified in so-called skims. These are subsamples of the total data
set and are submitted to a handful of loose selection criteria in order to enhance the
fraction of certain physics events. Most analysis, including this one, is performed on the
HadronB(J) data skim which contains a larger fraction of standard hadron events [44].
The software for simulation and reconstruction of data as well as the analysis code is run
in a C++ framework called the Belle Analysis Framework or BASF [45].

2.7 Tools for analyzes

2.7.1 The Monte Carlo generation

An important tool for analyzes is the Monte Carlo (MC) program. It generates physics
events and simulates the detector response, which allows us to study the detector effects
on our measurements. This is of vital importance for physics studies because, due to
the complexity of the detector response and the large number of physics processes that
comes into play when an event traverses the detector, it is impossible to disentangle the
underlying physics event analytically.

Throughout this analysis we will use Monte Carlo samples many times: to define the
selection cuts, to parametrize the detector response on certain variables or to compare data
with MC distributions that contain considerably more events so that statistical fluctuations
are reduced.

The production of MC data takes place in two stages: the generation of physics and
the simulation of the detector response. In the first step particles are generated from the
e+e− collision to the subsequent decays of very short-lived daughters. The EvtGen [46]
package used for this purpose is an event generator written by the BABAR collaboration.
The EvtGen module contains particle properties and event production rates as well as
the relevant angular distributions for many decays. This information is collected from
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several experiments in the form of world averages. Also relevant properties from the
KEKB accelerator are incorporated, such as the electron and positron beam energies.

The second step is the simulation of the detector response by taking into account the
detailed detector geometry, the response and inefficiencies. A BASF module called GSIM
simulates the detector response using the CERN GEANT3 package [47]. The interactions
between the final state particles and the detector are simulated and events are then re-
constructed in the same way as the data events are. The produced Mini-DST (MDST)
files [48] contain extra generation information, such as flags to identify the originally gen-
erated process. Background events are added by taking random trigger events with their
corresponding noise hits. Finally evolutions in subdetectors, dead channels or the change
in the size or position of the interaction region in time are also incorporated.

2.7.2 The determination of collected luminosity

The determination of the luminosity is done on two levels. The first one is referred to
as online luminosity and is measured during data taking. It uses high statistics and pro-
vides a quick evaluation of the achieved luminosity. This essential feedback is necessary
to optimize the beam parameters during operation. The second one is called the offline
luminosity and is processed from the fully reconstructed DST files. It is dominated by
the systematical error on the integrated luminosity. The offline luminosity is used for
the normalization of experimental data for physics analysis and for collider performance
optimization. The luminosity is a property independent of the physical processes but com-
pletely determined by the quality of the colliding beams. In e+e− colliders the online
luminosity is mostly measured by determining the rate of e+e− → e+e−(γ) (Bhabha scat-
tering) or e+e− → e+e−γ interactions (single Bremsstrahlung (SB)), as for these QED
processes the cross sections can be calculated with a high precision (better than 1%). The
photon in the Bhabha scattering gives rise to a radiation correction which limits the abso-
lute accuracy of the luminosity measurement.

The outgoing Bhabha particles are produced under a very low angle, which the main
detector does not cover [49]. This is the reason why the extra EFC detector was installed.
The luminosity is determined by counting events where the scattered electron and positron
simultaneously hit the forward and backward end-caps of the ECL. The Bhabha rate de-
tected with the EFC is between 60 and 240 Hz.

Single Bremsstrahlung interactions are characterized by a sharp angular distribution
of the radiated photon, in the direction of the incoming e±. This is measured by a zero
degree luminosity monitor (ZDLM) [50], a device built just for this purpose.

For offline luminosity measurements a more complicated analysis is performed. Mea-
surements of Bhabha events are taken over the whole phase-space, using not only the
information from the ECL. MC techniques are used to estimate the detector coverage and
experimental efficiency as well as the theoretical uncertainty on the physics model. The
accuracy of the offline luminosity is around 1.4%. A more detailed explanation of these
measurements is found in [51] and [52].

Finally we need to determine the number of bb events in the sample. The hadronic
events produced at the Υ(4S) resonance are either a continuum qq event or a bb event, but
the sum of both has to coincide with the total number of hadronic events collected. The
number of continuum events can be estimated with the data samples collected below the
Υ(4S) production energy, where no bb events are produced. However the cross-section of
the continuum production is proportional to 1/

√
s on the CM energy. The correct relation-
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ship is thus more complicated:

N bb
Υ =

1

εbbΥ
×
(
Nhad,meas

Υ −Nhad,meas
cont × LΥ

Lcont
× E2

cont

E2
Υ

× εΥ
εcont

)
, (2.1)

where LΥ is the luminosity at the Υ(4S) resonance and Lcont that of the continuum. E
is the CM energy at which events are produced, the off-resonance energy is denoted with
Econt and at the energy of the Υ(4S) resonance is denoted withEΥ(4S). N bb

Υ is the produced
number of bb events at the Υ(4S) resonance. Nhad,meas

Υ and Nhad,meas
cont are the number of

hadrons in the on and off resonance respectively and ε is the reconstruction efficiency
of the continuum background on- and off-resonance (εΥ and εcont) or the reconstruction
efficiency of the bb events at the Υ(4S) resonance (εbbΥ).

2.7.3 Reconstruction of the decay length

As explained in Chapter 1, we can measure the CP asymmetry in this study by comparing
the decay rate as a function of the decay length of theB0 → D∗+D∗− with the decay rate of
the B0 → D∗−D∗+. It is therefore required that we can correctly identify the decay length
as well as its flavor, which of course cannot be obtained from the final state as it is a CP
eigenstate and accessible by bothB mesons. In the decay chain Υ(4S)→ B0B

0 → fCP ftag

one of the two B mesons decays at time tCP to D∗+D∗− and is called BCP , while the other
B meson, called Btag, decays at time ttag to a final state ftag, which can be a flavor-specific
decay. The wave function of the B0B

0 pair is [53],

|ψ〉 =
1√
2

[|B0〉1 ⊗ |B
0〉2 − |B

0〉1 ⊗ |B0〉2], (2.2)

such that the two B mesons keep opposite flavors at anytime until one of them decays. If
the Btag meson decays first to a flavor-specific decay, we can fix unambiguously the flavor
of the BCP meson at the time ttag. This feature is specific for the B factories as the B0B

0

pair are fully flavor entangled, as they both arise from the Υ(4S) state. An illustration of
the decay length reconstruction is shown in Figure 2.27

Figure 2.27: Illustration of the decay length and flavor reconstruction.
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It is technically not possible to reconstruct the decay point of the Υ(4S). We can
therefore not measure the absolute flight distance or flight time of the BCP . However as
the two B mesons are produced in a boosted system, we can measure the positions of the
decay of both mesons and relate them to the proper-time difference between the BCP and
the Btag. And as said before we can only determine the flavor of BCP at the moment Btag

decays. The CP asymmetries in Belle are therefore determined from the asymmetries in
the proper-time difference between B0 and B

0 tagged events. Because the proper time
has an exponential form, the proper-time difference has still the same form and we can
extract the lifetime from the proper-time difference distribution as well. This principle also
holds when the Btag decays after the BCP ; we will then measure a negative proper-time
difference.

2.7.4 The flavor tagging

The procedure of determining the flavor of the tagging B is called flavor tagging. Even for
flavor specific decays i.e, decays where the flavor of the B decay can unambiguously be
determined from the flavor of its decay products, there is only a fraction, ε which is called
the tagging efficiency, which will correctly be tagged.

There are different tagging categories where the flavor of the accompanying B can be
determined. We can look at the electric charge of:

- the high momentum lepton in B0 → Xl+ν decays;

- kaons, as most of them originate from B0 → K+X through the cascade b→ c→ s;

- intermediate momentum leptons from b→ c→ sl−ν;

- slow pions from B0 → D∗−X,D∗− → D
0
π−;

- high-momentum pions from B0 → D(∗)π+X;

or at the strangeness of Λ baryons from the cascade decays b→ c→ s.
Sometimes no flavor can be obtained due to inefficiency in the particle detection and

identification or when flavor-nonspecific decay processes took place (eg. D
0
π0, D

0 →
K0π0) or for processes which have very little information on the b flavor, for example,
b→ cud,K

0
X, for which the charged particles in the final state are all pions.

Incorrect assignments are caused by particle misidentification or from smaller physical
processes that give a flavor estimate opposite to the dominate process, such as the charged
kaon from c decay in b→ ccs processes or from b→ c→ l leptons.

The fraction of B mesons which are incorrectly tagged is called the wrong tag fraction,
w. The CP asymmetry measurement is diluted by a tagging dilution-factor (1− 2w). The
effective flavor tagging efficiency on the direct CP -violating parameter is εeff = ε(1−2w)2.
The average tagging efficiency at Belle is εeff = 28.8± 0.6%. Due to the dependency of the
tagging quality on the decay of the Btag, events receive a quality flag, r ranging from zero,
meaning no flavor information: (w ∼= 0.5) to unity for unambiguous flavor assignment
(w ∼= 0). The tag flavor and the wrong tag fractions for each of the seven r-bins are
computed using multi-dimensional likelihoods built from MC events [54, 55]. There exist
different sets of parameters for data and MC and for SVD1 and SVD2 settings. Table 2.2
shows the parameters for the SVD2 data.
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r-bin range in r w ∆w
1 0− 0.1 0.5 0.0
2 0.1− 0.25 0.429± 0.005 −0.039± 0.006
3 0.25− 0.5 0.327± 0.006 −0.036± 0.006
4 0.5− 0.625 0.223+0.011

−0.006 0.018± 0.007
5 0.625− 0.75 0.161+0.010

−0.006 0.002± 0.006
6 0.75− 0.875 0.105± 0.007 −0.027± 0.006
7 0.875− 1 0.019± 0.005 0.001± 0.004

Table 2.2: Range of the different r bins with the corresponding wrong tag fraction param-
eters. The values are taken for the SVD2 data events.

The PDF of the proper-time difference for events where the BCP is tagged as a B0 or
B

0 now becomes diluted due to the wrong-tag fraction:

Psig(Btag
meas = B0) = (1− wB0)Psig(Btag

true = B0) + w
B

0Psig(Btag
true = B

0),

Psig(Btag
meas = B

0) = wB0Psig(Btag
true = B0) + (1− w

B
0)Psig(Btag

true = B
0). (2.3)

where “true” means the actual flavor and “meas” means the flavor determined by the
tagging algorithm. We then can define w =

wB0+w
B

0

2 and ∆w = (wB0 − w
B

0). The proper
time equation of (1.95) is now modified to incorporate the wrong-tag fraction and uses
the proper-time difference between the B0 and B

0 tagged events instead of the absolute
proper time:

Psig(q,∆t) =
e−|∆t|/τ

4τ

(
1− q∆w + q(1− 2w)(S sin(∆m∆t) +A cos(∆m∆t))

)
(2.4)

where q = +1 when the tagging B meson is identified as a B0 and q = −1 when Btag =
B

0. This makes Psig(Btag
meas = B0) = Psig(q = +1,∆t) and Psig(Btag

meas = B
0) = Psig(q =

−1,∆t)

2.7.5 The detector resolution

A precise determination of ∆t, the time between the decay of the two B mesons is yet
another essential part in the CP analysis. As said before the difference in decay time of
the two B mesons at Belle is measured by their displaced vertex in the z direction. To
extract the true ∆t from the measured ∆z it is not enough to just apply the boost factor.
The measurement of ∆z is deteriorated by the detector resolution. A clear understanding
of the detector response is indispensable as the detector resolution is of the same order as
the average ∆z at KEKB.

The detector resolution-function is determined with a large sample of decays such as,
B

0 → D+π−, D∗+π−, D∗+ρ−, J/ψK0
S , J/ψK

∗0
, B− → D0π− and J/ψK− where J/ψ →

l+l−(l = e, µ) and D∗+ → D0π+. More information on the selection and reconstruction
requirements can be found in [56].

The resolution function R smears the true ∆t distribution as follows:

P(∆t) =
∫ +∞

−∞
P(∆t′)R(∆t−∆t′)d(∆t′). (2.5)

The resolution function R is a convolution of four different contributions:
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- the detector resolution RCP of the CP -side B-vertex,

- the detector resolution Rtag of the tag-side B-vertex,

- a smearing due to the inclusion of tracks which do not originate from the B decay,
RNP is mostly caused by charm and KS decays,

- the kinematic approximation that the B mesons are at rest in the cms: Rkin.

There is also a small number of events which have a very broad ∆t distribution. These
outlier events are described by a wide Gaussian function Pol(∆t).

A detailed description of the determination of each function will be further explained in
Chapter 5.2. The general function used to describe the detector response might not always
describe the resolution for the decay analyzed in this work. We will have to determine
ourselves some parameters of the resolution function.
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Chapter 3

Signal reconstruction and
background study

In this Chapter we describe how theB0 → D∗+D∗− events are re-
constructed from the Belle data sample. We present the selection
procedure, reconstruction performance and background study. Fi-
nally the signal yield on the full Belle data sample is extracted.

T
HE B0 → D∗+D∗− decays are filtered out of the large DST files collected by the Belle
detector using a set of selection criteria. Signal Monte Carlo (MC) events are used

to study the selection cuts needed to enhance the purity of B0 → D∗+D∗− events. While
studying the selection criteria we only base ourselves on the MC samples. This so-called
blind analysis method protects against biased results when obtaining selection cuts from
a small data sample which is subject to large fluctuations. The goal of this chapter is to
apply selection criteria to reject background and to obtain a good reconstruction efficiency
such that a large number of signal events can be reconstructed on the data. Furthermore
generic MC samples and off-resonance data sets are used to study the background behavior
and to optimize the modeling of the signal events in the data. As mentioned in the intro-
duction, obtaining a precise measurement of the branching fraction is not an objective of
this analysis. Already in the previous analysis on 140 fb−1 the uncertainty of the result of
the branching fraction was dominated not by statistics but by the systematic uncertainty
which is mainly due to the tracking efficiency. Therefore even with more statistics, we will
not enhance the total uncertainty on the branching fraction significantly. Therefore there
is also no systematic study performed in this chapter.

3.1 Decay channels

In this analysis not all the D∗+D∗− subdecays are reconstructed. Decays that have a very
small contribution to the total yield are ignored. Also decays which would imply lot of
combinatorial background are rejected. We have used the decay channels which were
taken in the previous analysis. Only the D+ → KSK

+ decay is discarded because of its
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very low signal-to-background ratio.
We reconstruct D∗+D∗− decays in the following combinations:

D∗+D∗− → (D0π+)(D0
π−)

D∗+D∗− → (D0π+)(D−π0)
D∗+D∗− → (D+π0)(D0

π−).

The pions from theD∗ decays are referred to as slow pions because of their low momentum
(< 200 MeV in the CM of the B0B0 system). Table 3.1 shows the D0 and D+ reconstructed
decays as well as their branching fractions. The KS decays are reconstructed in the π+π−

mode. Unless specified otherwise charged-conjugated decays are implied throughout.

D0 decay modes B (%) D+ decay modes B (%)
1 D0 → K−π+ 3.8± 0.1 1 D+ → K−π+π+ 9.5± 0.3
2 D0 → K−π+π0 14.1± 0.5 2 D+ → KSπ

+ 1.5± 0.1
3 D0 → K−π+π+π− 7.7± 0.3 3 D+ → KSπ

+π0 7.0± 0.5
4 D0 → KSπ

+π− 2.9± 0.2 4 D+ → K+K−π+ 1.00± 0.04
5 D0 → KSπ

+π−π0 5.3± 0.6
6 D0 → K+K− 0.38± 0.01

Table 3.1: Reconstructed D0 and D+ decays with their branching fractions (B).

Figure 3.1 shows the event-display of a B0 → D∗+D∗− candidate as recorded in the
detector. This particular example will be reconstructed through the D∗+ → D0π+ where
D0 → K−π+π0 and D∗− → D0π− where D0 → K+π−. The figure is taken from [57].

3.2 Monte Carlo and data samples

The reconstructed data events which passed the selection criteria can be divided into four
groups.

- Reconstructed signal events: these are B0 → D∗+D∗− events which are recon-
structed through the chosen subdecays.

- Combinatorial background events: these events come merely from BB events, other
than B0 → D∗+D∗− which passed through the selection criteria. There is also a
small fraction of wrongly reconstructed B0 → D∗+D∗− signal events, which can
contribute to the combinatorial background. For example when a pion is identified
as a kaon, the B0 mass distribution will not peak around the B-mass. Depending on
what we want to measure these events can still be useful (see Section 3.4).

- Peaking background events: these are background events which have a similar signal
signature to the B0 → D∗+D∗− when they are wrongly reconstructed and are thus
a sub-category of the combinatorial background events. However these events show
up with a signal-like distribution. This contribution will be studied in Section 3.6.

- Continuum background events: these are events coming from the qq (q = u, c, d
or s) continuum background under the Υ(4S) resonance peak (see Section 2.1).
They contain no useful information for this analysis and the selection criteria should
discard these events as much as possible.
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Figure 3.1: Event display of a B0 → D∗+D∗− candidate as recorded in the detector. The
curves with number symbolize the reconstructed tracks.
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The selection criteria are chosen such that the purity S/(S + B) is maximized. We use
different Monte Carlo samples to study the effect of the selection criteria on the signal and
background events.

In this study we use in total four types of data or MC samples.

- Signal MC: these are events generated by ourselves using EvtGen [46]. The samples
contain only B0 → D∗+D∗− signal events. The subdecays are also limited to the
ones we reconstruct.

- Generic on-resonance MC: there are two generic on-resonance samples: one contains
all the Υ(4S) → B0B0 decay modes (also referred to as the mixed generic sample)
and one which contains all the Υ(4S)→ B+B− modes (or charged generic sample).
This sample is ideal to study background contributions.

- On-resonance data: this is the data set used for this analysis. It contains 605 fb−1

taken at the Υ(4S) resonance.

- Off-resonance data: as mentioned in Section 2.2 around 10% of data are taken below
the Υ(4S) resonance and contain thus exclusively continuum background.

In the next sections we will describe each of these samples in more detail.

3.2.1 Signal MC

Three samples of 530k MC events are generated, each with a different polarization. The
generated Υ(4S)-meson decays exclusively in a B0B0 pair. The neutral B-mesons are
allowed to oscillate in time. The generated B0 and B0 mesons are then each required
to decay to a D∗+D∗− state with 50% probability and with 50% probability they decay
inclusively. Events where both B0 and B0 or neither B-meson decays to a D∗+D∗− state
are rejected.

The generated events are then simulated through the detector as if they were collected
over time with the corresponding detector and accelerator settings. The simulation was
done using the GSIM package which calls the GEANT3 module.

3.2.2 Generic MC

There are two generic MC samples, one contains the generated Υ(4S) → B+B− decays
while the other contains Υ(4S) → B0B0 decays where the B0B0 pair undergoes coher-
ent mixing. The generic B0B0 sample contains a number of B0B0 events equivalent to
1103 fb−1 and for the B+B− sample it is equivalent to 1185 fb−1. The generic MC files
also contain a number of flags which make it possible to still retrieve information on the
generation, such as which subdecay was generated.

3.2.3 On-resonance data

These are the data collected at the Υ(4S) resonance. This analysis is performed on 605 fb−1

which corresponds to (657± 9)× 106 BB events. The data is grouped in so-called “exper-
iments”. Table 3.2 summarizes the collected on- and off-resonance luminosity per experi-
ment. The even experiment numbers are used for calibrations. The experiments before 7
only correspond to less than 1 fb−1 in total but is of bad quality, which is the reason they
are not used for analysis. There is no experiment 29, to accentuate the transition from the
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SVD1 to SVD2 data. Experiment 53 is also taken out of the table as it was performed on
the Υ(5S) resonance.

SVD 1 data SVD 2 data

Exp On-reson. (fb−1) Off-reson. (fb−1) Exp On-reson. (fb−1) Off-reson. (fb−1)
7 5.9 0.6 31 17.8 2.4
9 4.4 0 33 17.6 2.7
11 8.1 1.2 35 16.7 1.9
13 10.7 1.2 37 61.7 6.1
15 12.7 1.4 39 43.6 6.3
17 11.2 0.9 41 59.9 5.7
19 25.0 3.6 43 57.0 6.5
21 4.4 0. 45 13.0 2.3
23 6.3 1.4 47 37.6 3.4
25 25.8 1.7 49 27.3 2.6
27 25.4 3.7 51 38.9 4.8

55 73.5 7.8
Total 139.9 15.7 464.7 52.6

Table 3.2: Collected on- and off-resonance luminosity per experiment.

3.2.4 Off-resonance data

The off-resonance samples contain 68 fb−1 of real data, collected 60 MeV below the Υ(4S)
resonance. As qq (q = u, c, d or s) events are produced at any CM-energy in e+e− colli-
sions, they are also present in the on-resonance data. The off-resonance data contains only
continuum events and offers therefore the opportunity to study exclusively the continuum
background under the Υ(4S) resonance.

3.3 Selection criteria

The selection criteria are applied to the data and MC samples to enhance the B0 →
D∗+D∗− signal with respect to the other channels or continuum background. These crite-
ria are first applied to the final-state daughter-particles which are in our case kaons and
pions. The four-momentum of the candidate kaons and pions are then combined to form
possible D mesons. More quality and selection requirements are applied to the D candi-
dates before they are combined with the slow pion information to form D∗ particles and
finally B mesons. Furthermore filters are applied based on the event shape variables to
separate BB events from continuum background events. Most selection criteria applied in
this analysis are standard cuts, which are used in similar analyses [58, 59]. The following
sections will discuss in more detail the chosen filters.

3.3.1 Track and event selection

- Tracks of charged particles are reconstructed requiring the transverse distance dr
between the track and the interaction point (IP) to be less than 2.0 cm while the
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absolute value of the longitudinal distance, (dz) has to be smaller than 4.0 cm. The
interaction point is the reconstructed three-dimensional Gaussian profile where the
interaction between the electron and positron took place. A more detailed descrip-
tion of the interaction point is given in Section 5.1.

- In the center-of-mass system (CM) of the electron positron system, the qq events
tend to consist of two back-to-back jets while the final particles emerging from a
BB event are more isotropically distributed as both B mesons are almost produced
at rest in the CM system. Fox-Wolfram moments [60] are used to characterize the
event shape. We require the ratio of the second to the zeroth order Fox-Wolfram
moments to be less than 0.4. The continuum background in this analysis is not the
main source of background, as will be shown in Section 3.6.2.1. The cut is chosen
such to keep most of the signal while rejecting some continuum background.

3.3.2 Particle identification for final state particles

- Charged kaons are separated from charged pions using a likelihood ratio constructed
from ACC information, CDC dE/dx and TOF measurements. Charged 2-prong (3-
or 4-prong) tracks are reconstructed as kaons when LK/π = L(K±)/(L(K±) +
L(π±)) > 0.1(0.6) and as pions when LK/π < 0.9.

- No particle identification is required for the slow pions.

- Neutral pions are reconstructed from two photons with energies above 30 MeV and
with a total CM momentum pγγ larger than 0.1 GeV/c. The reconstructed invariant
mass is required to be in the range 119 MeV/c2 < Mγγ < 146 MeV/c2 as the mass
of the neutral pion is Mπ0 = 135 MeV/c2.

- Neutral kaons are reconstructed via the decay K0
S → π+π−. The π+π− invariant

mass is required to be within ±9 MeV/c2(≈ ±3σ) of the K0 mass. Cuts are applied
to the displacement of the π+π− vertex to the IP [61], this standard Belle algorithm
for K0

S reconstruction is referred to as the “GoodKs”-algorithm.

3.3.3 D-meson selection

Different D-meson subdecays have different invariant mass resolutions depending on the
number and charges of the decay daughters. Neutral pions and kaons have a worse reso-
lution as they leave no signal behind in the accurate tracking devices of the detector.

Figures 3.2 and 3.3 show the reconstructed D-mass distributions for each decay ob-
tained on the signal MC sample. The events in the plots are required to be linked to the MC
truth, meaning that the B meson and all its daughter particles are correctly reconstructed.

The signal events in the distributions are modeled with a double Gaussian. Table 3.3
shows the widths and fraction of both Gaussians for each decay mode.

The invariant mass of the D candidates is required to be within ±6σ(±3σ) of the
nominal value for 2-prong (3- or 4-prong) decays, where σ is the width of the narrowest
Gaussian of the channel dependent D mass resolution obtained from signal MC samples.
This width ranges from 3.61 MeV/c2 to 11.0 MeV/c2.

In Figure 3.4 the mass difference between the D∗+ and D0 (top) or the D∗+ and
D+ (bottom) is shown. These distributions contain only correct combinations in MC sig-
nal samples and are fitted with a double Gaussian function. The results are displayed
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Figure 3.2: Fitted distributions of the reconstructed D0 mass minus 1.8645 GeV/c2, for
correct combinations in the MC signal samples.

Figure 3.3: Fitted distributions of the reconstructed D+ mass minus 1.8694 GeV/c2, for
correct combinations in the MC signal samples.
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decay mode σ1 (MeV/c2) f σ2 (MeV/c2)
D0 → K−π+ 4.1± 0.1 0.84± 0.02 12.4± 1.4
D0 → K−π+π0 7.9± 0.3 0.57± 0.02 21.8± 0.8
D0 → Kπ+π+π− 3.61± 0.1 0.74± 0.03 10.7± 0.7
D0 → KSπ

+π− 4.1± 0.3 0.81± 0.06 12.0± 0.3
D0 → KSπ

+π−π0 6.4± 0.4 0.60± 0.05 21.6± 1.7
D0 → K+K− 4.0± 0.2 0.77± 0.03 31.9± 3.1
D+ → K+π+π− 3.7± 0.2 0.82± 0.03 12.3± 1.8
D+ → KSπ

+ 3.9± 0.3 0.64± 0.07 35.2± 7.2
D+ → KSπ

+π0 11.0± 0.9 0.72± 0.06 32.1± 5.6
D+ → K+K−π+ 3.74± 0.4 0.84± 0.08 12.6± 2.8

Table 3.3: Width of the narrow (σ1) and wide (σ2) Gaussians and the fraction (f) of the
narrow Gaussian of the fitted D0 or D+ mass distributions of signal MC truth.

in Table 3.4. The mass difference, ∆M = |M(D∗) − M(D)| is required to be within
±3 (2.25) MeV/c2 of the nominal value for the D0 (D+) channel, which corresponds to
a mass range of ∼ 3.5(2.0)σ where σ the width is of the larger Gaussian. The cuts are
chosen such to remove wrongly reconstructed events as well as background events and is
tighter for the D∗+−D+ channel to discard the relatively larger background contributions
from the slow neutral pions.

Figure 3.4: Fitted distributions of the reconstructed D∗ − D mass difference (minus its
expected value) for correct combinations in MC signal samples. Top: D∗+ → D0π+.
Bottom: D∗+ → D+π0.
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D∗+ decay mode σ1 (MeV/c2) f σ2 (MeV/c2)
D∗+ → D0π+ 0.266± 0.005 0.65± 0.01 0.849± 0.030
D∗+ → D+π0 0.625± 0.040 0.53± 0.05 1.595± 0.094

Table 3.4: Width of the narrow (σ1) and wide (σ2) Gaussians and the fraction (f) of the
narrow Gaussian of the fitted D∗ - D mass difference distributions of correct combinations
in MC signal samples.

3.3.4 Kinematics fits

Vertex-constrained fits increase the quality of the tracks. Indeed requiring daughter par-
ticles to originate from the same point in space puts additional constraints on the tracks.
The track’s position and the corresponding momentum and mass is recalculated using this
extra piece of information. Furthermore a mass-constrained fit can be applied which re-
quires the daughter particles’ momenta to be such that the invariant mass of the mother
particle corresponds to its nominal value. The kinematic fits are only performed after
having put constraints on the D mass region, as explained in the previous paragraph.

- The two photons which form a neutral pion candidate are required to emerge from
the same point, assumed to be the IP. The photon directions are obtained from the
ECL clusters and the IP.

- The charged pions forming a K0
S candidate are subjected to a mass fit and a vertex

fit.

- The daughter particles of the D meson are constrained with a vertex fit and by a
mass-constrained fit.

- The slow pion track has a much worse resolution due to the multiple scattering
effect. To correct this we use the fact that its track has to originate from the D∗

decay vertex. The latter is obtained from the intersection of the IP and the D track’s
extrapolation to the IP. After that the slow pion is refitted to this point and the D∗

mass is recalculated using a new slow pion momentum.

Events for which the (mass-)vertex fit didn’t converge are discarded. The four-momenta of
theD∗ and B mesons are recalculated using the refitted daughter particles’ four-momenta.

3.3.5 B-meson selection

Because of energy conservation the total energy of the two beams has to be equal to
the total energy of the BB pair. We can therefore reconstruct the B-meson’s mass by
combining the beam energy in the CM system ECM

beam, with the momentum of the B-

meson: Mbc =
√

(ECM
beam)2 − (pCM

B )2, which is called the beam-constrained mass. An-
other independent variable which is used to identify the B meson is the energy difference
∆E ≡ ECM

B −ECM
beam, where ECM

B and pCM
B are the CM energy and momentum of theB can-

didate. The momentum of the B meson is computed from the measured momenta of the
daughter particles. The B0 energy however is obtained from the momenta and the masses
of the daughter particles. The masses are not directly measured, but assumed based on
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the particle identification. The cut on the beam-constrained mass and energy-difference
is:

5.2 GeV/c2 < Mbc < 5.3 GeV/c2,

−0.2 GeV < ∆E < 0.2 GeV. (3.1)

Furthermore we define two regions where we look for signal events:

1. The small signal region: 5.27 GeV/c2 < Mbc < 5.3 GeV/c2 and −0.04 GeV < ∆E <
0.04 GeV

2. The large signal region: 5.23 GeV/c2 < Mbc < 5.3 GeV/c2 and −0.14 GeV < ∆E <
0.14 GeV.

In Section 3.6 we will show that the definition of the large signal region is such that the
tails of the contamination of mis-identification of hadrons are not contained in the large
signal region.

3.3.6 Best candidate

We reconstruct 2290612 B0 candidates in the MC signal sample, of which 46094 events
have all the tracks and daughter tracks correctly identified and reconstructed (we call
this MC truth). After applying these selection cuts, 55758 B0 candidates are left of which
36183 are in the small signal region. 66.5% ( or 43.4% in the small signal region) are true
B0 → D∗+D∗− decays. As we know that there is just one B0 → D∗+D∗− decay per event,
we accept only the B candidate with the smallest value of the quantity

χ2
mass(D,D∗) =

2∑
i=1

(
∆Mi −∆MPDG

σ∆Mi

)2

+
2∑
i=1

(
MDi −MPDG

Di

σMDi

)2

, (3.2)

where σMDi
is the width of the narrow Gaussian of the channel-by-channel D mass distri-

bution and σ∆Mi is the width of the wide Gaussian of the D∗ −D mass distribution. The
PDG superscript refers to the nominal value of the particle according to the Particle Data
Group world average [6].

After applying the best-candidate selection 27610 (35423) reconstructed B0 events are
left, of which 77.5% (60.8%) are true generated B0 decays in the small (large) signal
region. The other events are combinatorial background. In Section 3.4 it will be shown
that events which cannot be associated with MC truth could still have to be considered
as correct signal events, for example when they contain two correctly reconstructed D
mesons. There are 24726± 157 such events in the signal MC sample, which make the final
purity in the signal MC of 89.5%.

3.3.7 Reconstruction efficiency

The reconstruction efficiency (εrec) is a measure of the performance of the selection and
reconstruction procedure. This information is crucial when determining the branching
fraction from the yield measurement, which is not done in this analysis. However the
relative differences in the reconstruction efficiency between data with different polariza-
tions need to be known for the measurement of the CP -odd fraction, which is presented
in the next chapter. The reconstruction efficiency for the generated decay channels can be
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obtained from the signal MC as we know exactly how many events were generated. The
reconstruction efficiency of a decay is defined as:

εrec =
number of reconstructed events

number of generated events
.

The reconstruction efficiency may depend on the subdecay, i.e. on the decay modes of
the two D mesons. Therefore the efficiency defined above is merely an average over all
subdecays, i, weighted by their branching fraction Bi:

εrec =
∑

i Biεrec,i∑
i Bi

=
number of reconstructed events

number of generated events
,

The number of reconstructed events is extracted from a two-dimensional maximum
likelihood fit of the beam constrained mass and energy-difference distributions. Figure 3.5
shows the distribution of Mbc and ∆E for the signal MC sample. The red box shows the
small signal region.

The Mbc distribution is described with a Gaussian function for the signal events and
an ARGUS, threshold function [62] for the combinatorial background. We use a double
Gaussian probability density function for the signal events in the ∆E distribution and
a linear function to describe the background events. The two-dimensional probability
density functions for signal events become:

P(Mbc,∆E) = G(Mbc, µ, σ)×
(
fG(∆E,µ1, σ1) + (1− f)G(∆E,µ2, σ2)

)
, (3.3)

where G is a Gaussian function and f is the fraction of the narrow Gaussian function. The
background PDF is:

P(Mbc,∆E) = ARGUS(Mbc, s)× P1(∆E, a), (3.4)

where the slope of the threshold function is s and P1 is a first order polynomial with a
slope a.

The fit for signal MC events is performed on all the B0 candidates, but for visualization
purposes the result of the fit will always be shown projected on one of the two variables.
The other variable will be required to be in the small signal region, as shown in Figure 3.6.
The fitted number of signal events and background events (in the large signal region) are
summarized in Table 3.5 and 3.6. The purity is defined as S

S+B in the small signal region.

events quantity
signal (S) 28038± 190
background (B) 8019± 101
purity 94.5%

Table 3.5: Fitted signal and background yields in the signal MC sample.

We calculated the reconstruction efficiency for each polarization separately. The result
is shown in Table 3.7. A0 and A‖ are the transversity amplitudes corresponding to the CP -
even state. A⊥ corresponds to the l = 1 angular momentum state, which is the CP -odd
state. These polarization-dependent reconstruction efficiencies will be used in the angular
analysis (see Section 4.1.2).
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Figure 3.5: Mbc −∆E distribution of signal MC.

Figure 3.6: Projections of fitted ∆E and Mbc distribution of signal MC.

∆E Mbc

µ1 −0.78± 0.06 MeV µ 5.2792 GeV/c2

σ1 7.02± 0.07 MeV σ 2.81± 0.01 MeV/c2

f 0.71± 0.01
µ2 −6.25± 0.49 MeV
σ2 28.18± 0.46 MeV

Table 3.6: Fitted signal parameters of the 2D fit of ∆E and Mbc on signal MC.
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A0 A⊥ A‖
generated events 526712 528306 513769

reconstructed events 9103 ± 99.7 9707 ± 94.8 9192 ± 99.1
ε (%) 1.73 ± 0.02 1.84 ± 0.02 1.79 ± 0.02

Table 3.7: Reconstruction efficiency for each polarization extracted from the signal MC.

3.4 Study of combinatorial background in signal MC

Some combinatorial background events in the signal MC can still have a signal-like shape
in the CP fit. Combinatorial background events arise from wrongly identified particles or
mistakes in the track reconstruction. In the CP analysis a fit is performed to the difference
in vertex positions of the B meson which decays to theD∗+D∗− mode and the other B me-
son in the event. The CP -side vertex is defined as the intersection of the beam profile and
the tracks from the two D mesons. Therefore a signal event in which the two D-mesons
are correctly reconstructed, but in which a mistake happens with the reconstruction of the
slow pion, will still behave like a signal event in the distribution of the difference in vertex
position. We want to check if these events show up as signal or as background events in
the Mbc and ∆E distribution.

To investigate this we studied the ∆E, Mbc and the proper-time resolution shapes for
events with badly reconstructed slow pions but still correctly reconstructed D mesons.
Events where both D mesons are correctly reconstructed should be considered as signal
events in the CP fit. Signal events with only one D correctly reconstructed will probably
still have a signal behavior in ∆t, although the vertex resolution might be of a worse
quality. Finally a check is performed to see how many signal events have both D badly
reconstructed.

Figure 3.7 shows the Mbc and ∆E distribution for signal-MC events which have both
D mesons correctly reconstructed. The fit shown in these figures is a projection of a
two-dimensional fit and the results are summarized in the left part of Table 3.8. We
also fitted the proper-time resolution; this is the distribution of the difference between
the generated and reconstructed vertex position. This distribution is fitted with a double
Gaussian function and we added the widths and the fraction of the narrow Gaussian to the
table. From the Mbc and ∆E distributions it can be seen that all events are modeled by
the signal shape and there is no combinatorial background. This means that even though
a slow pion might be poorly reconstructed, these events are considered as signal as they
have a signal-like behavior in Mbc and ∆E. In the CP fit these events will be treated like
signal events, which is correct as they will show indeed a signal-like behavior in ∆t.

The Mbc and ∆E distribution for signal-MC events which have only one D meson
correctly reconstructed is shown in Figure 3.8. The narrow Gaussian distribution that de-
scribes the signal shape in ∆E has a width which is comparable to the width of the wide
Gaussian in the signal MC (see Section 3.3.7). This means that most of the events in the
Gaussian shape will be correctly taken as signal events. The problem is the combinatorial
background events in the small signal region. These events will be considered as back-
ground events in the Mbc and ∆E fit but will show up as signal in the ∆t distribution,
even though the resolution is slightly deteriorated. Luckily the fraction of events behaving
like this (1.27%) is small and will represent few events in the final yield.

Finally the fraction of signal-MC events with both D-mesons wrongly reconstructed
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two true one true two wrong
D mesons D mesons D mesons

signal events 24726 ± 157 3977 ± 81 155 ± 20
background events 163 ± 15 5316 ± 88 1084 ± 36

∆E
µmain (MeV) −0.7 ± 0.1 −4.3 ± 0.8 −26.4 ± 1.0
σmain (MeV) 6.9 ± 0.1 32.2 ± 0.8 49.7 ± 7.7

frac 0.77 ± 0.01 0.92 ± 0.01 0.78
µtail (MeV) −4.4 ± 0.3 −79.0 ± 0.3 −8.0
σtail (MeV) 22.8 ± 0.3 19.3 ± 2.1 15.9 ± 5.7
bkg slope −2.16 ± 0.77 −3.00 ± 0.11 −2.77 ± 0.23
Mbc

µ (GeV/c2) 5.2792 5.2787 5.2801
σ (MeV/c2) 2.8 ± 0.1 4.0 ± 0.1 4.3 ± 0.4
argus slope 78.2 ± 11.0 78.2 ± 11.0 96.2 ± 4.1

∆t
σmain (ps) 0.30 ± 0.01 0.34 ± 0.01 0.38 ± 0.03

frac 0.77 ± 0.01 0.68 ± 0.02 0.54 ± 0.07
σtail (ps) 0.86 ± 0.02 1.08 ± 0.04 1.11 ± 0.11

Table 3.8: Parameters of ∆E, Mbc and the proper-time resolution for correctly or wrongly
reconstructed D mesons in signal MC.

can be neglected. The fit of these events in the Mbc and ∆E distribution shows that they
represent∼ 0.5% of the total signal events in the signal MC, as demonstrated in Figure 3.9.

Figure 3.7: ∆E and Mbc distributions for signal MC events with both D mesons correctly
reconstructed.
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Figure 3.8: ∆E and Mbc distributions for signal MC events with only one D meson cor-
rectly reconstructed.

Figure 3.9: ∆E and Mbc distributions for signal MC events with two badly reconstructed
D mesons.
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3.5 Generic MC study

The generic MC sample is mainly used for background studies. It contains almost all
physical processes that take place at the BB resonance, including the B0 → D∗+D∗−

decays. This sample can also be used to study the selection criteria or to determine the
signal shape. This will give us complimentary information on the signal shape. The signal
MC however has the advantage that only the signal decays of interest to us are generated,
which allows us to create much larger statistics. The other difference is that the signal-
MC sample contains only the D-meson subdecays which we wanted to reconstruct in the
first place, while the generic-MC events are generated inclusively. Even with the smaller
statistics it is still useful to study the signal events in the generic MC, as it compares better
to the situation on the data.

Figure 3.10: ∆E distribution of the B0B0 generic MC events when Mbc > 5.23 GeV/c2

and Mbc > 5.27 GeV/c2.

The ∆E distribution of the generic B0 B0 events for where Mbc > 5.23 GeV/c2 and
Mbc > 5.27 GeV/c2 is shown in Figure 3.10. One notices that the background shape
around ±180 MeV does not correspond to the background model we used to describe the
signal MC or data. These bumps come from hadron mis-identification. The energy of the
particles is calculated from its measured momentum and its mass which is assigned accord-
ing to the particle’s identification. As the energy of the B-meson is the sum of the energies
of the daughter particles, there can be an energy surplus of ∆E 'M±K −Mπ± ' 353 MeV
when a pion is taken as a kaon in for example the B0 → D+

SD
− decays. The behavior we

see of the background near the border of the large signal region is merely due to the tails
of the distribution. The bump on the left side of the ∆E spectrum is caused by the oppo-
site effect, when a kaon is wrongly identified as a pion. Also on the data this effect can be
seen outside the large signal region. The reason why this effect is barely noticeable on the
signal MC is because only B0 → D∗+D∗− decays were generated. The large signal region
is chosen such that these bumps are not interfering when determining the data yield. This
is also done in the analysis performed by the Babar collaboration [63]. Furthermore we
can see from the distribution of ∆E that the background should be described by a higher
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generic MC signal MC
∆E

µmain (MeV) −1.98 ± 0.32 −0.78 ± 0.06
σmain (MeV) 6.29 ± 0.35 7.02 ± 0.07

frac 0.60 ± 0.03 0.71 ± 0.01
µtail (MeV) −6.20 ± 1.89 −6.25 ± 0.49
σtail (MeV) 29.4 ± 2.02 28.18 ± 0.46
bkg slope −3.47 ± 0.36 −2.85 ± 0.09
Mbc

µ (GeV/c2) 5.2803 5.2792
σ (MeV/c2) 2.98 ± 0.08 2.81 ± 0.01
argus slope 88.3 ± 6.3 124.4 ± 1.6

Table 3.9: Parameters of the fitted ∆E and Mbc shape for the signal events in the generic
MC and the signal MC.

order polynomial, instead of a first-order polynomial as is done in the signal MC. We will
therefore model the generic MC and data background contribution with a second order
polynomial.

The generic-MC samples also contain information on the originally generated event.
We can therefore ask to see only these reconstructed events which are generated B0 →
D∗+D∗− decays, but still without any requirement on the D(∗) decays. Figure 3.11 shows
the fitted Mbc and ∆E distributions in the small signal region for such events. The two-
dimensional fit was performed on the large signal region, i.e. 5.23 GeV/c2 < Mbc <
5.3 GeV/c2 and −0.14 GeV < ∆E < 0.14 GeV. The fit parameters are summarized in
Table 3.9.

When comparing the distribution and fit parameters of this generic MC sample, which
contains only events which are generated B0 → D∗+D∗− decays, with that of the signal
MC sample, it is seen that there is more combinatorial background in the generic sample
and that the width of the wider Gaussian is a bit smaller in the signal MC and contributes
less to the total signal yield. The reason for this is the extra, dirtier decay channels of theD
mesons which are contained in the generic-MC sample. The decay channels of the D me-
son, which are generated in the signal MC, are only those we decided to reconstruct, while
in Figure 3.11 we only required the B0 to decay to D∗+D∗− without any requirements on
the decay channels of the D mesons. The extra decays in this generic MC sample contain
more often π0 particles which contribute to the wider Gaussian in the ∆E distribution. As
we know that the events in the generic distributions all come from B0 → D∗+D∗− decays,
this shape parametrization is more realistic to describe the distribution of the signal events
in the data. We will therefore use this function to determine the fraction, mean and width
of the large Gaussian in the ∆E distribution when determining the final signal yield on the
data. The fitted number of signal events in the generic MC are summarized in Table 3.10.
We will show in Section 3.7 that this number of signal events corresponds to the number
of signal events in the data, when scaled to the corresponding luminosity.

signal events 1143.5± 38.3
background events 1001.1± 36.2

Table 3.10: Fitted signal and background events in the generic B0 B0 events .
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Figure 3.11: Projections of the fitted Mbc and ∆E distribution of the B0 → D∗+D∗−

events in the generic MC sample.

3.6 Background study

The background is studied to verify if there are any peaking background events. These
are background events that are wrongly reconstructed but have a ∆E or Mbc distribution
similar to that of signal. The peaking background from BB events is studied using the
generic MC samples. Furthermore the background is studied to understand the nature of
the events in the sideband region and under the signal peak in the data.

3.6.1 Peaking background

Peaking background events are caused by events that look similar in the detector to the
B0 → D∗+D∗− decays. For example when a Ds → KKπ decay is reconstructed as a
D → Kππ its behavior in Mbc will be like a signal event. Its ∆E value however will be
shifted, as the wrong mass is taken. Previous analysis from Belle and Babar have searched
for peaking background events in the data samples. A summary of their conclusions is:

- Belle (152× 106BB events): No significant peaking background is observed [58].

- Babar (383 × 106BB events): There is (1.8 ± 1.8)% of peaking background in Mbc

coming from the B+ → D
∗0
D∗+ decay [63].

3.6.1.1 generic B+ B− events

The sample of reconstructed generic B+ B− events corresponds to 1185 fb−1. This means
that the sample contains 1.959 times the number of B+B− events on the data. The ∆E
and Mbc distributions are shown in Figure 3.12. They are separately fitted with the same
PDFs as will be used on the data or signal MC to allow a different yield in both distributions
which might be due to peaking background. As we don’t expect many signal-like events,
the shape of the signal PDF is fixed. The parameters that remain free are the background
shape and the number of signal and background events. The fit was performed twice, once
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while requiring the other variable to be within the small signal region and once requiring it
to be in the large signal region. The fitted number of signal events is shown in Table 3.11.
From the fit and the statistical errors on the obtained signal events we can conclude that
we have no significant peaking background in the charged B decays.

Figure 3.12: ∆E and Mbc distributions of the generic B+ B− events in the large (top) and
small (bottom) signal region.

3.6.1.2 generic B0 B0 events

The sample of generic B0 B0 events contains 1103 fb−1 events or 1.825 times the number
of B0B0 interactions in the data sample. To study peaking background contributions in
this sample we need to take out the actual B0 → D∗+D∗− decays. This is possible by using
the information on the generated decay. The resulting ∆E and Mbc distributions on the
large and small signal region are shown in Figure 3.13. Like the charged generic sample,
these distributions are fitted separately with the shape of the signal distribution fixed from
the signal MC. The result is shown in Table 3.12.
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large signal region small signal region
Mbc: 47.5± 36.8 11.5± 19.1
∆E : −28.8± 26.5 24.8± 14.5

Table 3.11: Fitted signal events in the generic B+ B− events.

large signal region small signal region
Mbc 142.8± 61.7 70.1± 32.7
∆E 55.7± 47.3 31.1± 24.1

Table 3.12: Fitted signal events in the generic B0 B0 event sample.

From the figures and the fit result it seems that there is no significant peaking back-
ground in the ∆E distribution. However the result on the Mbc distribution cannot be
neglected as it represents already 70.1±32.7

1060 = 6.6 ± 2.8% of the signal events in the small
signal region obtained from a one-dimensional fit on the Mbc distribution, where 1060 is
the number of the true signal evens in the small signal region. This effect is reduced when
obtaining the yield on the data sample as a two-dimensional fit is used.

Different checks are carried out to see if these 70±33 peaking background events could
be identified. The events are therefore separated between D∗+D∗− → (D0π+)(D0

π−)
decays and D∗+D∗− → (D0π+)(D−π0) or D∗+D∗− → (D+π0)(D0

π−) channels. The
result of the fit over these two samples in the small signal region is shown in Table 3.13.

It seems that the peaking background is merely caused by reconstruction of the
D∗+D∗− → (D0π+)(D−π0) or D∗+D∗− → (D+π0)(D0

π−) channels. Each D± channel
is therefore investigated one by one. Every subdecay contributed a little bit to the total
peaking background and no decay contributed in a significantly larger amount.

More tests are done to check if the peaking background is caused by a Ds modes. The
D

(∗)
s D(∗) control sample and the signal MC sample are used to investigate Ds → KKπ and

Ds → KSK which are reconstructed as Ds → Kππ and Ds → KSπ respectively. However
the level of contamination of Ds particles in the sample cannot explain the 6.6 ± 2.8%
peaking background. In the next section it will show that this peaking background is
probably overestimated and will be taken into account in the systematic error.

3.6.2 Background level

From similar studies at Belle we expect the background composition on the data to be
roughly distributed as follows:

D0D0 D+D0 and D0D−

Mbc 20.6± 21.3 54.8± 25.6
∆E 41.9± 17.3 −3.2± 19.1

Table 3.13: Fitted signal events in the small signal region for separate decays, in the
generic B0 B0 event sample.
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Figure 3.13: ∆E and Mbc distributions of the generic B0 B0 event sample in the large
(top) and small (bottom) signal regions. The true B0 → D∗+D∗− signal has been re-
moved.
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1. Continuum background: 50%;

2. Background from B0B0: 30%;

3. Background from B+B−: 20%.

3.6.2.1 Continuum background

Figure 3.14: ∆E and Mbc distribution of the on-resonance data overlaid with the distri-
bution of the off-resonance data normalized to the same luminosity.

The continuum background was studied on the off-resonance data sample of 68 fb−1 which
corresponds approximately to 10% of the continuum background under the Υ(4S) reso-
nance. We scaled the off-resonance data sample to 605 fb−1, to visualize the contribution
to the data background. The statistical errors in each bin become large, but it is still
possible to check if this background accounts roughly for half of the data background.
Figure 3.14 shows the data distribution in the small signal region in ∆E and Mbc overlaid
with the scaled continuum background. The scaled continuum contribution to the back-
ground has the expected level.

3.6.2.2 Generic B0 B0 and B+ B− events

The generic B0 B0 and B+ B− events are scaled and superimposed on the data distribu-
tions of ∆E and Mbc and the signal B → D∗+D∗− is taken out. Even though the number
of signal events in the generic B0B0 sample corresponds to the fitted number of signal
events in the data when scaled to equal luminosity, the background level seems to be
overestimated. The black dots on the histogram in Figure 3.15 represent the data distribu-
tions of Mbc and ∆E in the small signal region. We will describe in the next section how
exactly the data events are obtained. The green histogram represents the scaled generic
B+ B− events and the yellow one the scaled generic B0 B0 events where the signal has
been removed. Each of these background components should roughly accommodate for
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a third of the data background. However, the plots show that the generic background is
overestimated, by a factor of two for the charged generic MC and around a factor of four
for the B0 B0 background. To further investigate this we looked at the mass distributions
of D∗ and D0 particles in the sideband region Mbc < 5.27 GeV/c2 (see Figure 3.16), to
see if this extra background arises at the level of the D or D∗ reconstruction. Both D and
D∗ mesons show a surplus in the generic MC with respect to the data background. This
means that there might be a mistake in the branching fractions used to generate these
events. However no other analysis noticed this.

Figure 3.15: ∆E and Mbc data distributions of the on-resonance overlaid with the generic
MC distributions normalized to the same luminosity.

Finally, Figure 3.17 summarizes the different contributions from the off-resonance, the
B+B− and B0 B0 samples. The signal peak from the B0 B0 sample is now visible as well.
The sum of the three background contributions is almost twice as large as the background
level in the data. Different tests on this overestimation of the background in the generic
MC samples, such as dividing the sample channel by channel, didn’t lead to any trivial
explanation. This means that the 6.6±2.8% peaking background events of Section 3.6.1.2
is probably overestimated as well. We decided therefore to keep the peaking background
level estimate as 6.6± 2.8% of the signal and to add this effect to the systematic error for
the main results of this analysis instead of adding a peaking background contribution to
the pdf of the Mbc distribution. With this conservative approach the peaking background
contribution is probably overestimated, but as will be seen in Chapter 4 and 6 this does
not give rise to an obvious overestimation of the systematic error.

3.7 Data

3.7.1 Skim

To study the on-resonance data sample of experiments 7-55, we use the events from the
HadronB(J) skim. However, performing the reconstruction and applying selection criteria
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Figure 3.16: D∗+−D0 +1.864 GeV and D0 mass distributions in the data sideband region
overlaid with the generic B0 B0 and B+ B− events normalized to the same luminosity.

Figure 3.17: ∆E and Mbc data distributions superimposed with the sum of the different
contributions estimated from the off-resonance data and generic MC.
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on this sample still requires too much CPU time. Hence we need to pre-filter this sample
further. This is done by applying a second skim, which enhances B → D∗+D∗− proportion
in the sample by applying very loose cuts, which should barely discard any signal events.

The list of cuts used for this skim is shown in Table 3.14. This skim rejects approxi-
mately 99.8% of the data events from the HadronB(J) sample while keeping almost all the
B0 → D∗+D∗− events.

transverse distance (track w.r.t IP): dr < 2.0 cm
longitudinal distance (track w.r.t IP): |dz| < 4.0 cm
K identification L(K±)/(L(K±) + L(π±)) > 0.1
π identification L(K±)/(L(K±) + L(π±)) < 0.9
π0 selection Eγ > 0.03 GeV
KS selection goodKs [61]
D-mass window ±70 MeV/c2

D∗-D mass window ±25 MeV/c2

B window Mbc > 5.19 GeV/c2

|∆E| < 200 MeV

Table 3.14: Selection criteria applied to the HadronB(J) skim.

3.7.2 Event reconstruction

The data which passed the skim criteria are reconstructed using the exact same reconstruc-
tion method as performed on the signal MC (see Section 3.3). Before the best candidate
selection is applied there are on average 1.6 B0 candidates per event. When the best can-
didate selection is applied we obtain 937 events in the small signal region for experiments
7-55.

3.8 Final signal yield in the data

The two-dimensional ∆E and Mbc distribution is shown in Figure 3.18. The signal
yield on the total data set is obtained in the same way as explained for the signal MC,
i.e. by fitting the reconstructed ∆E and Mbc distributions in a two-dimensional plane.
The signal and background contributions are modeled by the functions given by Equa-
tions (3.3) and (3.4). The fraction and shape of the second Gaussian in the PDF of the
∆E distribution of the signal events are taken from the generic MC sample. The study in
the previous section also showed that the ∆E background shape should be modeled with
a second order polynomial:

P(Mbc,∆E) = ARGUS(Mbc, s)× P2(∆E, a, b), (3.5)

with P2 = N(a(∆E)2 + b(∆E)), where N is the normalization factor and the parameter s
in the ARGUS function denotes its slope.

The ∆E and Mbc data distributions are fitted in the same way, with a two-dimensional
unbinned maximum likelihood. The shape, number of signal events and number of back-
ground events are left floating during the fit, but due to the small statistics we fix the
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Figure 3.18: ∆E and Mbc data distribution in the two-dimensional plane.

fraction and shape of the second Gaussian in ∆E. The plots in Figure 3.19 show the pro-
jections on the small signal region of the fitted distributions as well as the background
contributions in red. The parameters of the fit are summarized in Table 3.15. In a sample
of 657 million BB events we reconstruct 554 ± 30 signal events. When requiring only
events in the small signal region, we lose 7.3% signal events by cutting ∆E < 40 MeV.
The Mbc > 5.27 GeV/c2 cut removes only background events. From the 937 events in the
small signal region, 513 ± 28 are signal events, which gives a signal purity in the small
region of:

S
S + B

=
513± 28

937
= 55± 3.0%.

The one-dimensional fits gave also compatible results.

∆E Mbc

µ1 −3.37± 0.57 MeV µ 5.2807 GeV/c2

σ1 6.89± 0.47 MeV σ 2.70± 0.14 MeV/c2

f 0.60∗

µ2 −6.20∗ MeV
σ2 29.4∗ MeV
a −1.66± 0.16 s 41.0± 2.3
b 2.26± 2.27

Table 3.15: Fitted parameters of the 2D fit of the ∆E and Mbc data distribution. The
parameters with a ∗ are fixed to the signal MC values.
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Figure 3.19: Top : Two-dimensional ∆E and Mbc data distributions. Bottom left: projec-
tion on ∆E. Bottom right: projection on Mbc.
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Finally we can estimate the branching fraction, using the following formula:

B(B0 → D∗+D∗−) =
Ndata

sig

Ngen MC
sig

× L
gen MC

Ldata
B(gen.MC)

=
554± 30
1243± 52

× 1103 fb−1

656 fb−1
× 1.10× 10−3

= (8.17± 0.24)× 10−4, (3.6)

where Ngen MC
sig = 1242.9± 38.2 is obtained from a two-dimensional fit on the total generic

MC sample. This result is consistent with the world average [6] of B(B0 → D∗+D∗−) =
(8.2± 0.9)× 10−4 .

3.9 Discussion

An analysis of the B0 → D∗+D∗− decay has also been performed by the BaBar collabo-
ration [63, 64, 65]. The Babar analyses show a higher reconstruction efficiency than the
Belle analysis. The latest BaBar analysis [65] is performed on 467 × 106 BB̄ events and
yields 934 ± 10 signal events, which corresponds to a reconstruction efficiency which is
more than a factor two higher than the one in this analysis. This effect is also seen in
other analyses where slow pions enter the scene.

Table 3.16 shows the number of signal events reconstructed by BaBar and Belle in dif-
ferent double charm analyses. Figure 3.20 then represents the ratio of the BaBar and the
Belle reconstruction efficiencies for these analyses. In the lastest B0 → D∗+D∗− analy-
sis [65] a more sophisticated track finding algorithm is used, which improved their track-
ing efficiency with another 10 to 20% for the reconstruction of D∗+D∗− particles. From
Figure 3.20 it can be seen that the BaBar performance relatively to the Belle performance
increases when more slow particles enter the scene. The D∗+D∗−K0

S reconstruction is
added not because it has more slow charged pions but adding an the extra particle to the
reconstruction is again more challenging for the Belle experiment.

BaBar Belle
Decay mode Data sample events Data sample events

1 B0 → D∗+D∗−K0
S 230× 106BB̄ 201± 17 [66] 449× 106BB̄ 131± 14 [67]

2 B0 → D∗+D∗− 467× 106BB̄ 934± 40 [65] 657× 106BB̄ 554± 30
3 B0 → D∗+D∗− 383× 106BB̄ 617± 33 [63] 657× 106BB̄ 554± 30
4 B0 → D∗+D− 467× 106BB̄ 724± 37 [65] 152× 106BB̄ 155± 17 [68]
5 B0 → D+D− 467× 106BB̄ 152± 17 [65] 537× 106BB̄ 150± 15 [59]

Table 3.16: Luminosity and reconstructed signal events in different double charm analyses
at BaBar and Belle.

The reason for the better reconstruction performance of low momentum particles at
BaBar is the different configuration of the BaBar’s innermost silicon detector (SVT). The
BaBar SVT detector consists of five layers of double-sided silicon strip sensors [69], while
the Belle innermost detector only has four layers of silicon. In the track finding algorithm
of Belle, one searches first for correlated hits in the CDC detector to make a track candi-
date. In a second step SVD hits are associated to the CDC track; this improves the track
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Figure 3.20: Ratio of the reconstruction efficiencies at BaBar and Belle for different double
charm analyses, numbers extracted from Table 3.16.

resolution but not the track finding efficiency. Therefore low momentum charged particles
which leave most of their tracks in the SVD detector and which are largely affected by
multiple scattering are very difficult to find in the Belle detector.

Figure 3.21 shows the tracking efficiency for charged pions at Belle as a function of
the momentum of the pion. The tracking algorithm of the BaBar experiment for low
momentum tracks has an efficiency of 75% for particles with a momentum p > 100 MeV/c
and 90% for p > 200 MeV/c [70], which is clearly better than the Belle performance in
that region.

Figure 3.21: The tracking efficiency for charged pions at Belle as a function of the mo-
mentum (GeV/c) of the charged particle.
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Chapter 4

Angular analysis

This chapter describes the model used to parametrize the angular dis-
tributions of the B0 → D∗+D∗− decays in the transversity frame as
well as the background events. A fast simulation is used to perform
a linearity test and to estimate the error distribution. Finally, the
extracted CP -odd fraction is presented followed by the results of a
systematic study.

T
HE decay studied in this analysis consists of a spinless B-meson which decays in two
D∗ vector mesons. Because the D∗ is a spin-1 particle (JP = 1−), the final states

can exist with three different orbital angular momenta corresponding to l = 0, 1 or 2.
As explained in Chapter 1 the CP eigenvalue depends on the orbital angular momen-
tum in the following way: CP = (−1)l. This means that two different CP eigenstates
can exist depending on whether the orbital angular momentum is odd or even. The in-
direct CP -violating parameter of the CP -odd and CP -even states have an opposite sign,
therefore these states need to be disentangled to prevent a dilution effect. In Section 1.8
we described how the directions of the D∗ daughter particles can be used to separate
the CP -odd from the CP -even contributions. This is done by working with the so-called
transversity basis [71, 22].

The procedure of extracting the CP -odd fraction will be explained in the first section.
Different fitting strategies are proposed and their performance is tested with fast MC sam-
ples. It should be pointed out that in the measurements of the CP -odd fraction, the errors
are dominated by statistics, not systematics. Next a full MC sample is used to model the
angular distributions of the three polarization states and to study the effect of the detector
resolution. The shape of the background will be studied by looking at the sideband regions
of the data. A fast MC is used to determine any possible bias in the fitting procedure and
to study statistical fluctuations. Finally we measure the CP -odd fraction on the total data
set. A study of the systematic error will be presented as well.
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variable P0 P⊥ P‖
θtr 1− cos2 θtr cos2 θtr 1− cos2 θtr
θ1 cos2 θ1 1− cos2 θ1 1− cos2 θ1

Table 4.1: Theoretical shapes of the cos θtr and cos θ1 distributions for the three polariza-
tion states.

4.1 Determining the angular model

4.1.1 Performance of the one-angle versus two-angle model

As a reminder we show the theoretical shapes of the θtr and θ1 distributions for the three
polarization states in Table 4.1. From Eq. (1.137) it is seen that we can extract two inde-
pendent polarization fractions, R⊥ and R0, by fitting the θtr and θ1 angular distribution.
The one-angle transversity distribution of θtr can be modeled with Eq. (1.140) R⊥. A fast
MC is used to test the performance of the two strategies: using two independent angles to
extract R⊥ and R0, or only fitting one distribution to obtain just a value for R⊥.

Different MC files are generated, each time using a different polarization fraction and
number of events. The angular distributions are generated according to the theoretical
expression (see Eq (1.138)) and no background contribution is added. Next the differ-
ent fast MC samples are fitted with both the single-angle method and the double-angle
method. The result is summarized in Table 4.2 and shows that when the angular shapes
follow the theoretical distribution no method seems to offer a significantly better accuracy
on the fitted CP -odd fraction.

Events Generation One-angle fit Two-angle fit
R⊥ R0 R⊥ R⊥ R0

100k 0.40 0.10 0.400± 0.002 0.400± 0.002 0.097± 0.002
100 0.43 0.17 0.416± 0.030 0.413± 0.031 0.202± 0.027
500 0.50 0.30 0.553± 0.079 0.570± 0.085 0.163± 0.060

Table 4.2: Generated and fitted parameters in the fast MC study using the one- or two-
angle method.

When using only the cos θtr distribution to extract the CP -odd fraction there is no dis-
tinction made between the distributions corresponding to the A0 and the A‖ amplitudes.
Theoretically this approach is correct as they have the same shape, but in practice a non-
uniform reconstruction acceptance can distort the A0 and the A‖ distribution. This will be
shown in Section 4.1.2. To parametrize the combined CP -even distribution the relative
contribution of A0 and A‖ needs to be known.

The previous Belle analysis on the SVD1 data [58] used both the θtr and the θ1 distri-
butions to extract R⊥ and R0. The parametrization of the efficiency in the θtr and the θ1

plane is not a trivial procedure. In the previous analysis the shape was determined from
a binned two-dimensional histogram, which didn’t allow an unbinned maximum likeli-
hood procedure to extract R⊥ and R0. The latest Babar analysis [63] used the one-angle
method where the CP -even distribution is constructed from the distributions correspond-
ing to the A0 and A‖ amplitudes, summed in equal portions. They have taken the error on
this assumption into account in the systematic uncertainty.
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We preferred to perform a one-angle fit on the θtr distribution to obtain only the CP -
odd fraction, as done in the Babar analysis. Instead of adding the angular distributions
corresponding to A0 and A‖ with equal weights we use the R0 fraction determined by the
previous Belle analysis. The error on this assumption will also be taken into account in the
systematic error. This is justified as the systematic error is expected to be small.

For completeness we will study in this chapter the distributions of both the θtr and θ1

angles, even though the CP -odd fraction will only be extracted from the θtr distribution.

4.1.2 Signal probability density function

In theory cos θtr and cos θ1 are distributed like 1− cos2 θ or cos2 θ depending on the polar-
ization state of the two D∗ particles, but as mentioned before in reality these distributions
are affected by the reconstruction performance and angular resolution. The reconstruc-
tion efficiency depends on the kinematics of the particle, i.e, the reconstruction of low-
momentum particles is more challenging and will often result in a worse performance. To
illustrate this effect a signal MC sample is generated without any polarization. The shape
in cos θtr and cos θ1 should be completely flat if the reconstruction efficiency is indepen-
dent of the angles. But Figure 4.1 shows clearly that this is not the case. It can be seen
that the reconstruction efficiency is lower for events with cos θ1 ∼ −1 as they correspond
to events with a slow pions decaying in the opposite direction of the momentum of the
boostedD∗ mother particle, in the CM system of the otherD∗, which means that they have
a relatively lower momentum than the pions decaying in the direction of their mother D∗.
In the cos θtr distribution we observe the expected symmetrical shape around cos θtr ∼ 0,
as this angle is defined between the decay direction of the slow pion and the z-axis of the
transversity basis, which is perpendicular to boost of the D∗.
To take into account the reconstruction efficiency dependence when defining the proba-
bility density function of the cos θtr and cos θ1 distributions, three signal MC samples are
generated (corresponding to experiments 07 - 49), each with one of the three polarizations
of D∗+ and D∗−. The distribution of cos θtr and cos θ1 are then fitted with a fourth-order
polynomial function.

P(cos θ) = N
[
1 + a cos θ + b cos2 θ + c cos3 θ + d cos4 θ

]
, (4.1)

where N is a normalization factor. Because of the symmetry in cos θtr, this distribution is
modeled with an even function i.e, a and c are set to zero. The fitted parameters are a, b, c
and d, are summarized in Table 4.3 and the fitted distributions are shown in Figure 4.2

a b c d χ2/ndf

A0 cos θtr −0.70± 0.03 −0.19± 0.04 1.27
cos θ1 0.95± 0.53 45.81± 5.00 6.73± 1.20 −7.80± 2.14 0.92

A⊥ cos θtr 8.39± 0.67 1.69± 0.49 1.34
cos θ1 0.07± 0.03 −1.00± 0.02 −0.07± 0.04 0.04± 0.02 0.80

A‖ cos θtr −0.69± 0.04 −0.02± 0.04 1.27
cos θ1 0.12± 0.03 −1.02± 0.02 −0.13± 0.03 0.05± 0.02 0.85

Table 4.3: Parameters of the cos θtr and the cos θ1 distributions for different polarizations
obtained from the fit on the signal MC.
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cosθtr

cosθ1

cosθ

Figure 4.1: cos θtr (top) and cos θ1 (bottom) distributions for a signal MC sample gener-
ated without any polarization.
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Figure 4.2: cos θtr and cos θ1 distributions for signal MC files with different polarizations.
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As only R⊥ will be extracted from the cos θtr distribution we need to define the shape of
the CP -even events using the A0 and A‖ distributions. The PDF of the CP -even events in
cos θtr is modeled by adding the PDFs of the A0 and A‖ components as follows:

Peven(cos θtr) =
R0

R0 +R‖
P0(cos θtr) +

R‖

R0 +R‖
P‖(cos θtr), (4.2)

where P0(cos θtr) is the shape of the A0 component and P‖ is the shape of the A‖ com-
ponent, as obtained from the signal MC. The fraction of A0 in the Pev(cos θtr) function is
taken from the previous analysis [58], i.e,

R0 = 0.57± 0.08,
R‖ = 1−R0 −R⊥,

= 1− (0.57± 0.08)− (0.19± 0.08),
= 0.24± 0.11,

R0

R0 +R‖
= 0.70± 0.10, (4.3)

where the error on R0
R0+R‖

is conservatively calculated assuming no correlation between
R0 and R‖.

Not only the shape of the cos θtr and cos θ1 distributions are affected by the kinematics
of the daughter particle, but also the absolute reconstruction efficiency
(= number of reconstructed events

number of generated events ) depends on the polarization. These dependencies are mea-
sured in Section 3.3.7. The relative efficiency reads:

ε0 = 96.8± 1.1%,
ε⊥ = 102.9± 1.0%,
ε‖ = 100.2± 1.1%. (4.4)

Taking into account the relative reconstruction efficiency, the PDF of the CP -even events
reads:

Pev(cos θtr) =
R0

R0 +R‖
ε0P0(cos θtr) +

R‖

R0 +R‖
ε‖P‖(cos θtr). (4.5)

The relative reconstruction efficiency for the CP -even events, εev and the normalization
factor, Neff , are defined as:

εev =
R0

R0 +R‖
ε0 +

R‖

R0 +R‖
ε‖ (4.6)

Neff = R⊥ε⊥ + (1−R⊥)εev. (4.7)

The total signal probability density function becomes:

Psig(cos θtr) =
1
Neff

[
R⊥ε⊥P⊥(cos θtr) + (1−R⊥)εevPev(cos θtr)

]
. (4.8)

With this function we will model the signal events on the data sample.
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4.1.3 Background probability density function

The shape of the angular distribution of the background events can be determined before-
hand from the sideband regions (Mbc < 5.27 GeV/c2 and |∆E| > 40 MeV) of the data
if we assume that there is no peaking background i.e, that the behavior of background
events in the sideband regions is the same as under the signal peak. The distributions are
shown and fitted for information purposes only as the background shape will be extracted
together with the CP -odd component in the final angular fit.

Figure 4.3: cos θtr and cos θ1 distributions for the sideband regions of the data.

As shown in Figure 4.3, the cos θtr distribution of the sideband regions is fitted with a
second-order polynomial while cos θ1 is allowed to be an asymmetric third-order polyno-
mial.

Pbkg(cos θtr) = (1 + bbkg cos2 θtr), (4.9)

Pbkg(cos θ1) = (1 + abkg cos θ1 + bbkg cos2 θ1 + cbkg cos3 θ1). (4.10)

The fit on the sideband regions gives the following parameters:

cos θtr cos θ1

abkg −0.11± 0.04
bbkg −0.02± 0.03 −0.11± 0.03
cbkg 0.33± 0.06

χ2/ndf 1.76 0.97

Table 4.4: Fitted parameters of the cos θtr and cos θ1 distributions for events in the side-
band regions.

4.1.4 Background shape on the generic MC

Using the generic MC sample (as in Section 3.5) the shape of the background events under
the signal peak can be studied. The black dots in Figure 4.4 represent the distribution of
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cos θtr of the generic B0B0 events in the small signal region. The distribution of the
generic B0B0 background events under the signal peak are shown in yellow. The generic
B+B− event samples only contain background events and are represented by the green
distribution. As can be seen from the figure, both the generated B0B0 background as well
as the B+B− have a flat behavior under the signal peak.

Figure 4.4: cos θtr distribution of the generic B0B0 events superimposed on the generic
B0B0 and B+B− background events.

4.1.5 Total probability density function

The total probability density function used to extract the CP -odd fraction of the data
can be chosen to model the distribution of cos θtr alone. This PDF will then consists of
the signal probability density function, Psig, obtained from the signal MC parametrization
described by Eq. (4.8) and Pbkg, the background second-order polynomial function as
shown in Eq. (4.9). The signal fraction, fsig can be determined event-by-event from the
Mbc and ∆E distribution. Another method is fitting the Mbc (and/or ∆E) distribution
together with the cos θtr distribution, the signal fraction is then obtained during the fit.
This method was used in the latest BaBar analysis. [63].

To study the performance of the fitting procedures a fast MC study is used, where
to save computer processing power, we simulate only the distributions of the relevant
parameters rather than simulating particle decays in the detector and the full detector
response. We call such a simulation a fast MC. This technique will be used again to test
the accuracy of other methods used in this analysis. The next paragraphs will explain the
technical differences between the two fitting methods as well as the result from the fast
MC.
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4.1.5.1 Two dimensional binned fit on cos θtr and Mbc

The two-dimensional PDF of cos θtr and Mbc has the following form:

Ptot(Mbc, cos θtr) = fsigPsig(Mbc)× Psig(cos θtr)
+ (1− fsig)Pbkg(Mbc)× Pbkg(cos θtr),

(4.11)

where Psig(cos θtr) is defined in Eq. (4.8) and Pbkg(cos θtr) in Eq. (4.9). As usual the func-
tions described above are normalized over the area where they are fitted over. The PDF
we use to describe the Mbc distribution is the same as the one described in the previous
chapter.

Psig(Mbc) = G(Mbc, µ, σ),
Pbkg(Mbc) = ARGUS(Mbc, s),

(4.12)

The free parameters in the fit are the parameters describing the shape of the Mbc distri-
bution (the mean and width of the Gaussian and the slope s, of the ARGUS function), the
signal fraction, the background shape, bbkg of cos θtr and of course the CP -odd fraction
R⊥. We chose to perform the two-dimensional fit on cos θtr and Mbc instead of ∆E to
conform with the method described in [63]. Finally a three-dimensional fit could also
have been performed, using the cos θtr, Mbc and ∆E distribution. However performing
a three-dimensional unbinned maximum likelihood is a procedure which becomes quite
challenging, we will only investigate this solution if the performance of the other methods
is unsatisfactory.

4.1.5.2 One dimensional unbinned ML fit on cos θtr using an event-by-event signal
fraction from the two-dimensional Mbc and ∆E fit

While in the first method the signal fraction is determined during the fit, here we use the
known shape of the Mbc and ∆E distribution which is obtained in the previous chapter.
Even though the shape is not fitted again, the signal fraction is still calculated on an event-
by-event basis depending on the value of Mbc and ∆E of each event. We use both Mbc

and ∆E to determine the signal fraction of the event.
The signal fraction is thus for each event defined as:

fsig(Mbc,∆E) =
Psig(Mbc,∆E)

Psig(Mbc,∆E) + Pbkg(Mbc,∆E)
, (4.13)

where Psig(Mbc,∆E) and Pbkg(Mbc,∆E) are the fitted two-dimensional PDFs evaluated
at the value of the event considered. The total probability density function reads:

Ptot(cos θtr) = fsigPsig(cos θtr) + (1− fsig)Pbkg(cos θtr), (4.14)

where Psig(cos θtr) is defined in Eq. (4.8) and Pbkg(cos θtr) in Eq. (4.9). Also here the
background shape (bbkg) is left as a free parameter during the fit and is not fixed from
the sideband regions. The other parameter that is left free during the fit is the CP -odd
fraction, R⊥.

Both fitting methods keep into account the relative differences of the reconstruction
efficiency for each of the three polarizations by multiplying each function with its appro-
priate factor, given by Eq. (4.4).
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4.1.5.3 Determining the preferred method using a fast MC

Different files are generated containing a large number of events using a fast MC tech-
nique. Each event is generated with a Mbc, ∆E and cos θtr value. Each file contains a
different CP -odd fraction. The parameters that are kept constant in the different files are:

• the fraction R0
R0+R‖

which is fixed to the value obtained in the previous analysis
shown in Eq. (4.3);

• the reconstruction efficiency for each polarization is generated according to Eq. (4.4);

• the background is generated according to the Pbkg described in Eq. (4.9) with b =
−0.01;

• the signal and background distributions of Mbc and ∆E are generated according to
the distribution obtained on the data (see Section 3.7).

The generated files are fitted with both methods. To reduce the CPU time events
are generated in the region |∆E| < 40 MeV. In the one-dimensional fit we require also
Mbc > 5.27 GeV/c2 as the calculation of the event-by-event signal fraction using the ∆E
and Mbc distribution still takes a lot of CPU time, as the files contain a large number of
events. The two-dimensional fit is executed faster so that the Mbc > 5.2 GeV/c2 constraint
is tight enough. The different cuts on Mbc should not affect the precision on the fitted R⊥
value as it does not cut away signal events. The background shape however will be less
precise in the one-dimensional fit than in the two-dimensional fit. The tight cuts on ∆E
and Mbc are not applied on the data when performing the final fit, as the data sample is
small enough.

generated two dimensional fit one dimensional fit
sig-ev bkg-ev R⊥ (%)gen R⊥ (%) abkg R⊥ (%) abkg

50k 125k 13.8 13.11± 0.40 −0.016± 0.022 13.26± 0.42 −0.038± 0.097
50k 125k 30.0 38.47± 7.20 −0.015± 0.007 −− −−
50k 1250k 4.0 3.71± 0.47 −0.015± 0.007 3.51± 0.47 −0.024± 0.022
50k 1250k 13.8 13.34± 0.50 −0.016± 0.007 13.45± 0.51 −0.027± 0.022
50k 1250k 30.0 −− −− 29.57± 0.56 −0.014± 0.022
50k 11250k 13.8 −− −− 13.30± 0.84 −0.016± 0.006

Table 4.5: Fitted CP -odd and background shape parameter with the one-dimensional and
two-dimensional methods.

Table 4.5 shows the fit results for both methods on the different MC files (− denotes
that this test is not performed). The result shows that the statistical errors of R⊥ are not
significantly smaller for any of the two methods. Therefore there is no statistical reason to
decide on the best procedure. As in the one-dimensional unbinned maximum likelihood
fit both the Mbc and ∆E information is used to determine the signal fraction, we have
chosen this method to fit the data.

4.2 Fast MC and linearity test

To ascertain the accuracy of the fitting procedure a fast MC study is performed. This study
is used for two different reasons. The first reason is the study of statistical fluctuations.
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We generate many MC samples each containing the same number of signal events as in
the data and with the same CP -odd fraction. When fitting these files one by one we
can obtain the residual, pull and error distributions which give us information on how to
interpret the result of the data. Secondly a linearity test can be performed. This is done
by generating samples while varying the CP -odd fraction. Fitting these events will allow
us to study a possible bias in the fitting procedure. The fast MC events are generated with
the following characteristics:

- The ∆E and Mbc values of an event are generated according to the distribution
obtained from the final fit of the data in the large signal region.

- The angular distribution of signal events is generated with the shape defined from
the signal MC (see Section 3.8) such that detector smearing and reconstruction effi-
ciency effects are taken into account.

- The angular distribution of background events is generated according to the shape
of the data distribution in the sideband regions.

To study the residual, pull and error distributions of the fit, 1000 samples are generated
with a CP -odd fraction of R⊥ = 0.12. Each file is fitted and the difference between the
generated R⊥ value and the fitted one is shown as a residual distribution in the left plot of
Figure 4.5. This distribution should be centered around zero and the width is a measure
of the statistical error to be expected on the fit parameter. When fitting this distribution
with a Gaussian function we obtain the following result:

residual
mean 0.001± 0.001
σ 0.043± 0.001.

The distribution is indeed centered at zero within errors. The expected statistical error is
0.043± 0.001.

Figure 4.5: Left: the residual distribution of the toy MC. Right: the pull distribution.
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The right plot of Figure 4.5 shows the pull distribution of the 1000 fitted samples. We

define the pull as Rgen
⊥ −R

fit
⊥

error , where the error is that returned by the fit and Rgen
⊥ = 0.12

(note that the more conventional definition has an opposite sign as what we have used).
The pull distribution is fitted with a Gaussian function. When there is no bias in the fitting
procedure and the statistical errors are Gaussian distributed, the width of the distribution
should be one and the mean value should be at zero. The obtained result is:

pull
mean 0.052± 0.028
σ 1.000± 0.021

which is compatible with the expectations.
Finally we can study the error distribution, which is obtained from the statistical errors

of the fitted results for each of the 1000 files. Figure 4.6 shows the error distribution fitted
with a Gaussian function. The fit result reads:

error
mean 0.0428± 0.0001
σ 0.0019± 0.0001

which means that the expected statistical error on the data is 0.0428 ± 0.0001. The error
estimations also correspond to the width of the residual distributions, which means that
the errors are correctly estimated.

Figure 4.6: Error distribution of the fitted fast MC samples.

We can compare this result with the extrapolation of the statistical error of the CP -odd
fraction of the previous analysis (RSVD1

⊥ = 0.19± 0.08) which was performed on 152× 106

BB events. Without taking into account the dependence on the central value or any other
possible changes in the reconstruction, we get:

√
152× 106 × 0.08√

656× 106
= 0.038. (4.15)

The result of this rough test is close to the prediction of the more elaborate fast MC study.
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A linearity test is performed to study the possible bias in the fitting procedure. For this
study 1000 new files are generated, each containing the same number of signal events
as on the data. The first 50 generated files have a CP -odd fraction of R⊥ = 0, but after
every 50 generated files R⊥ is increased with 0.05, such that the last 50 files are generated
with R⊥ = 0.95. The files are then fitted one by one using the same procedure as on the
data. The result is shown in Figure 4.7. The y value of each point in the figure represents
the mean of the distribution of the fitted results of the 50 files corresponding to a same
CP -odd fraction. The (vertical) error bars are too small to show up in the figure, but are
obtained from the width of the distribution of these 50 files. The points in Figure 4.7 are
then fitted with a first-order polynomial represented by the black line. For comparison
a line with a slope equal to one and no offset is added in red to illustrate the situation
without any bias. Visually one can already notice that the difference between the red and
black line is very small. The result of the fit is shown in Table 4.6. The parameters are in
close agreement with a situation with only a small bias. This effect is taken into account
in the systematic uncertainty.

linearity test
offset −0.004± 0.002
slope 1.019± 0.005

Table 4.6: Fitted parameters of the linearity test.

Figure 4.7: Linearity plot of R⊥.

4.3 Extraction of the CP -odd fraction of the total data set

The extraction of the CP -odd fraction of the total data sample (experiments 07–55) is
performed with an unbinned maximum likelihood fit on the cos θtr distribution, using an
event-by-event signal fraction. The shape of the Mbc and ∆E distribution is obtained from
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the final fit of the yield on the data (see Chapter 3.8). The background shape, bbkg and R⊥
are the two free parameters to be determined. The fit is performed over the large signal
region and the result of the fit is shown in Figure 4.8. For visualization purposes only
events in the small signal region (5.27 GeV/c2 < Mbc < 5.3 GeV/c2 and |∆E| < 40 MeV )
are plotted. The solid line represents the total fitted function, the dotted gray line shows
the background contribution. The CP -even and CP -odd contributions are indicated above
the background with the dot-dashed blue and dotted red lines respectively.

Figure 4.8: Fitted cos θtr distribution in the small signal region.

The fit gave the following result:

R⊥ = 0.125± 0.043, (4.16)

bbkg = −0.020± 0.044. (4.17)

(4.18)

The extracted background shape is in agreement with the shape of the events in the side-
band regions (see Section 4.1.3) and the generic MC shapes. The statistical errors are
compatible with the expectation of the fast MC.

4.4 Systematic study

Systematic errors are biases in measurements which lead to measured values being sys-
tematically too high or too low. A systematic error is any biasing effect in the environment,
methods of observation, or instruments used, which introduces an error in an experiment
and is such that it always affects the results of an experiment in the same direction. The
systematic error of the CP -odd fraction in this analysis is estimated by the deviation of the
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R⊥ measurement when varying the fixed parameters of the PDF within their one standard
deviation error. The different deviations are then summed in quadrature to obtain the
total systematic uncertainty on the CP -odd fraction of the data.

Table 4.7 shows the different sources of systematic errors on the polarization fraction.
The systematic error due to the signal purity is obtained by changing the obtained signal
yield by one sigma (see Chapter 3). Due to the different normalizations of the CP -odd
and CP -even distribution, adding or removing one sigma to the signal yield should have
the opposite effect on the fitted CP -odd fraction because the background shape is almost
flat. This is what is observed, the averaged absolute value of the deviation reads 0.003.
The reconstruction efficiency of the events with a perpendicular polarization is varied with
one sigma and the deviation reads 0.003. The linearity test for the polarization fit is used
to include a systematic error due to any bias in the fitting procedure. We refer to the work
presented in Section 4.2. For R⊥ = 0.125 the linearity fit showed that a 0.002 deviation
is obtained. Finally when adding or subtracting one standard deviation of the fraction of
R0/(R0 + R‖) = 0.7037 ± 0.1207, a deviation of 0.009 is obtained. In the next chapter it
will be shown that to perform a lifetime or CP fit on the data, tighter cuts on the recon-
structed vertices are necessary. An overview of these vertex cuts is given in Section 5.1.
When performing the angular analysis on the data sample which is subjected to the tighter
vertex requirements a CP -odd fraction difference of 0.013 is obtained. Finally a peaking
background contribution of 6.6% is added to the signal PDF to which conservatively a CP -
odd behavior is given. The one-sided difference in central value is −0.016 but for elegance
we will treat this as a symmetric, two-sided error.

The total systematic error for the polarization fraction yields: 0.023. As the shape of the
background distribution is fitted during the polarization fit, no more contribution to the
systematic error has to be included: the uncertainty in the background shape is included
in the statistical error.

source deviation
signal purity 0.0027
ε⊥ 0.0031
fit bias 0.0016
R0/(R0 +R‖) 0.0086
vertex cuts 0.0132
peaking background 0.0160
total 0.0228

Table 4.7: Different sources of the systematic uncertainties in the angular analysis.

4.5 Conclusion

We have measured the CP -odd fraction of the B0 → D∗+D∗− decay in the Belle data
sample of 657× 106BB events and found:

R⊥ = 0.125± 0.043(stat)± 0.023(syst).

This result is consistent with the previous Belle result [58] as well as the BaBar result [63].
Figure 4.9 shows the BaBar result as of Spring 2008, the preliminary Belle result (as
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shown at conferences during Spring 2008), and the average result obtained by the HFAG
group [72]. The BaBar measurement is performed on 617 ± 33 signal events. It can be
seen that both results are well compatible with each other.

Figure 4.9: The BaBar and Belle preliminary results of the CP -odd fraction as of Spring
2008. The bottom line shows the average of both results.



Chapter 5

Lifetime measurement from the
proper-time distribution

In this chapter we perform a fit to the proper-time difference of the neu-
tral B meson decaying in the D∗+D∗− mode and the other B meson in
the event. By comparing the extracted B0 lifetime to the precise world
average we can test the accuracy of the resolution function and the back-
ground model.

W
E study in this chapter the proper-time distribution of the B0 meson and extract its
lifetime, τB0 . The proper time is obtained from the difference in z position of the

vertex of the B meson which decays to D∗+D∗− and the other B meson in the event. The
difference in vertex positions is then converted to a proper-time difference according to:

∆t ' (zCP − ztag)
βγc

, (5.1)

where βγ the boost is of the Υ(4S) system, zCP is the z coordinate of the vertex of the
B meson reconstructed through D∗+D∗−, and ztag refers to the other B meson called
the Btag meson. We will in the next chapters often refer to this proper-time difference
as just the proper-time. Note that ∆t can be positive or negative. The |∆t| distribution
can then be fitted with an exponential function to obtain the lifetime. The average ∆z
at KEKB is cτB(βγ)Υ ' 200µm, where τB is the B-meson lifetime. However, the recon-
structed z coordinate of the vertex is smeared by the detector resolution, the kinematic
approximations and the non-primary vertices. To extract the true ∆t distribution from the
measured ∆z we need to unfold the vertex detector resolution and (possible) biases in the
measurement of ∆z. The precise determination of the resolution function, R, is essential
as the vertex resolution is of the same order as the average ∆z. The PDF function which
describes the proper-time distribution of the signal events is obtained from a convolution
of the theoretical ∆t distribution with the resolution function:

P(∆t) =
e−|∆t|/τB0

2τB0

⊗R. (5.2)

We also show the determination of a background model for the ∆t distribution using the
events in the sideband region.
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The lifetime of the B meson is already well established by previous measurements and
the world average value, obtained by HFAG, reads τB0 = 1.530 ± 0.009 ps [72]. Due to
the smaller statistics we cannot obtain an equally precise measurement, which is therefore
also not the goal of this chapter. But by comparing the measured lifetime with the world
average value we can test if the model for the resolution function and the background
shape describes accurately our data. This is an important check as both functions will be
used in the CP analysis as well.

The parameters in the resolution function are determined using a high-statistics sam-
ple of semi-leptonic and hadronic b → c decays [56]. These parameters are referred to
as the “standard” Belle resolution parameters and are used in many analyses. However
the topology of the B0 → D∗+D∗− decay contains not only more charged tracks on av-
erage per event than the modes used to determine the standard resolution parameters
but in the B0 → D∗+D∗− vertex reconstruction there are no tracks used which originates
directly from the B decay vertex, as the D0 particles have a non-negligible lifetime. In
Section 5.3.2 and Section 5.5, it will be shown that these standard parameters are not
appropriate to describe the proper-time resolution of this analysis. We will therefore use
a control sample to determine the main resolution parameters ourselves. Using these, we
will then perform a fit to the proper-time distribution of the B0 → D∗+D∗− data to obtain
a measurement of the B0 lifetime. As the lifetime measurement itself is not a main result
in this analysis, there is no systematic study performed.

5.1 Vertex reconstruction

We will describe in this section how the vertex positions of the BCP and Btag are obtained.
Each of the three (four) detection layers in the SVD1 (SVD2) detector can provide useful
information about the tracks used to determine the vertex position. Reconstructed tracks
which are associated to measurements in many layers are therefore more accurate than
tracks obtained from only a few hits in the silicon layers. The tracks used to determine
the vertex position are subject to more stringent requirements than the selection criteria
of Chapter 3. Due to limited angular coverage, detector noise, and mistakes in the pattern
recognition we cannot require all tracks to have a large minimal number of associated
SVD hits as that would reduce the statistics too much. Even the standard criteria used
in Belle analyses have been shown to be too strict for an analysis with as many charged
tracks as this one. A precise study was performed in the B0 → D+D− analysis [73] and
showed that due to the many charged tracks in the final state, it is possible to loosen the
requirements on the SVD hits. We therefore require the same criteria as have been proved
to be optimal in the B0 → D+D− analysis. At least one of the D mesons decays must have
two tracks or more with more than one SVD hit in the rφ view and more than two SVD
hits in the rz view.

The vertex position of the BCP meson is determined from the IP profile and the recon-
structed D meson tracks. No information from the slow pions or D∗ meson is used. This
is possible because the two D mesons originate at the B decay point. The slow pion tracks
are generally of a poor quality due to worse performance of the tracking efficiency for low
momentum particles.

The two reconstructedD meson tracks are fitted to a common vertex, which is obtained
by finding the minimum of the χ2 function, where χ2 =

∑
∆xTV −1∆x. ∆x denotes the

difference between the updated and original parameters describing the particle track and
V is the covariance matrix. The sum in the previous equation is taken over the two D
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mesons.

Figure 5.1: Schematic view of the IP-profile with the tracks of a B0 (right) and an B0

decay (left).

The obtained vertex position is further constraint by fitting it to the interaction re-
gion, where the bunches from the LER and HER cross each other. Figure 5.1 shows a
schematic view of the interaction point (IP) profile, which can be parametrized by a three-
dimensional Gaussian. Fitting the obtained B vertex to the IP profile improves the z reso-
lution of the vertex from 182µm to 148µm. The IP profile is determined for every 10000
collected events, by extrapolating all the tracks in an hadronic event to a common region.
In the x and y direction the obtained region is fitted with a double Gaussian while in the
z direction a single Gaussian distribution is used. The beam-monitor detector from the ac-
celerator gives additional information on the bunches. The resolution of the IP profile in y
is fully determined by the accelerator information which has an accuracy of approximately
2µm while the vertex fit only gives an accuracy of 70µm in y. However in the z direc-
tion the vertex-fit gives a much better resolution than the beam-monitor. The obtained IP
profile has typically the following dimensions: σx = 100µm, σy = 5µm and σz = 3 cm.
This profile is furthermore smeared in the rφ plane to incorporate the transverse decay
length of the B meson. The smearing is 21µm, corresponding to the width of the trans-
verse proper-time distribution when it is approximated with a Gaussian distribution. For
single-track vertices of the Btag, it is found that when fitting the track to this IP profile a
bias in the z position of the vertex is obtained. A study [74] showed that when replacing
the IP profile by an “IP tube” this bias disappears. The IP tube is a virtual straight tube in
the z direction which contains the IP profile. The IP tube has thus the same dimensions as
the IP profile except in z where there is no boundary.

The fit of the vertices to the IP tube gives an additional term ∆rTV −1
IP ∆r to the χ2

function, where ∆r is the distance between the vertex and the IP tube and VIP is the
covariance matrix describing the IP tube. The quality of the fit can be measured by the
obtained reduced χ2 value (χ2/ndf). Events with a poor fit quality are discarded from
the lifetime and CP analysis. We therefore obtain the variable χ2

w/oIP/ndf , which is the
χ2 calculated without the term related to the IP constraint, such that events with vertices
that are close to the interaction region don’t get enhanced. We require that events need to
have a vertex fit with χ2/ndf < 250. Events for which the fit did not converge, where no
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minimum is obtained, are discarded as well.
The decay vertex of the Btag is determined from all the tracks which are not assigned

to the BCP decay. As for the CP side, tracks of bad quality are discarded and further
requirements on the SVD hits per track are applied as well. The remaining tracks are
fitted to a common vertex using the IP tube constraint. If the reduced χ2 of the associated
vertex fit exceeds 20, the track with the largest χ2 contribution is removed and the vertex
is refitted. If the track to be removed is a high-momentum lepton then it is nevertheless
kept as it is likely to come from primary semi-leptonic B decays and the track with the
second larges χ2 is removed instead. This procedure is repeated until χ2/ndf < 20 or only
one track is left.

The fitting range of the proper-time is |∆t| < 70 ps, which corresponds to approxi-
mately 45 times the B lifetime, such that it does not discard important events. The fitting
functions described in this and the following chapter are then all normalized to one over
the fitting range : ∫ T

−T

dP
dt

(∆t) = 1,

where T = 70 ps.
The distributions of the vertex resolutions obtained in this analysis are shown for the

signal MC in Figure 5.2 and for the data in the small signal region in Figure 5.3, separately
for events recorded with the SVD1 and SVD2 detector configuration. A better vertex reso-
lution is obtained for SVD2 as compared to SVD1, both on data and on MC. Furthermore
the width of the distributions of the tag-side vertex resolution is larger than for the CP
side. The shape of the MC distributions agrees well with the ones observed in data. The
CP side vertex resolution is on average ∼ 75µm and the average reconstruction efficiency
is approximately ∼ 95%. For the tag side the average reconstruction efficiency is ∼ 93%
and the vertex resolution is ∼ 140µm.

The extra requirements on the events reduce the number of signal events in the data
by 7.6% (from 554 ± 30 signal events to 511 ± 28 signal events) while the background
decreases by approximately 20% in the large signal region.

5.2 Resolution function parameters

As explained in Section 2.7.5 the proper-time resolution function of the signal events,
R(∆t), includes effects arising from the detector resolution (both for the CP side and tag
side), the kinematic approximation and the parametrization of the smearing of the vertex
due to non primary vertices (these are vertices obtained from tracks which are not coming
directly from charged decay particles of the B meson):

Rsig(∆t) =
∫ ∫ ∫ ∞

−∞
RCPdet (∆t−∆t′)Rtag

det(∆t
′ −∆t′′)

Rnp(∆t′′ −∆t′′′)Rkin(∆t)d∆t′d∆t′′d∆t′′′. (5.3)

In the next paragraphs we will explain in more detail each of the contributions to the
resolution as they play an important role in the accuracy of the lifetime and CP fit. In total
27 free parameters need to be defined to accurately describe this resolution function. The
standard Belle resolution parameters are obtained by a study group and not by ourselves.
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Figure 5.2: CP -side (left) and tag-side (right) vertex resolution, σCP,tag
z , for true signal

decays in MC samples, generated with SVD1 and SVD2 configurations.

Figure 5.3: CP -side (left) and tag-side (right) vertex resolution, σCP,tag
z , for SVD1 and

SVD2 data in the small signal region.
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We will briefly describe how these parameters are determined. For a detailed description
of this study we refer to [56].

The following B decays are reconstructed: B0 → J/ψK0
S, B0 → J/ψK

∗0, B0 →
D(∗)+π− , B0 → D∗+ρ−, B− → J/ψK−, B− → D0π− and B0 → D∗+`−ν, where J/ψ →
`+`− (` = e, µ) and D∗+ → D0π+. The functional forms of Rsig are determined from
a detailed MC simulation study. The obtained parameters have then been checked by
performing lifetime fits on control samples.

A different set of parameters is also obtained for MC events. Both for the data and
the MC parameters a distinction is made between SVD1 and SVD2 data. The overall res-
olution is estimated as the rms of the resolution function for data events and corresponds
approximately to 1.4 ps.

5.2.1 The kinematic correction

As said before we obtain the proper-time difference ∆t from the difference in decay dis-
tances of the two B mesons and the boost of the Υ(4S) system. However by doing this we
ignore the fact that the B mesons still has a small non-zero momentum in the center-of-
mass system of the Υ(4S). The relationship between the boost of the BCP meson in the
lab frame, (βγ)CP , and the boost of the Υ(4S) particle, (βγ)Υ, is given by:

(βγ)CP =
(βγ)ΥE

cms
B + γΥp

cms
B cos θcms

B

mB

= (βγ)Υ

(Ecms
B

mB
+
pcms
B cos θcms

B

βΥmB

)
≡ (βγ)Υ(ak + ck). (5.4)

The same reasoning can be applied to the associated B meson. We obtain:

(βγ)tag = (βγ)Υ

(Ecms
B

mB
−
pcms
B cos θcms

B

βΥmB

)
≡ (βγ)Υ(ak − ck), (5.5)

where Ecms
B ≈ 5.292 GeV , pcms

B ≈ 0.340 GeV/c and cos θcms
B are the energy, the momentum

and the angle with respect to the beam direction for the BCP meson in the Υ(4S) rest
frame and mB is the mass of the neutral B meson. The velocity of the Υ(4S) is βΥ =
0.391 c. The proper-time difference should be:

∆ttrue = zCP /c(βγ)CP − ztag/c(βγ)tag,

where we call ∆ttrue the true the proper-time difference, which is actually only correct
when the transverse momentum of the B mesons is neglected. However the proper-time
difference used in this analysis (∆t) has a much larger approximation:

∆t = ∆z/c(βγ)Υ

= (ak + ck)ttrue
CP − (ak − ck)ttrue

tag

= ak∆ttrue + ck(tCP + ttag)

which gives a difference of:

∆t−∆ttrue = (ak − 1)∆ttrue + ck(tCP + ttag)
ak'1,ck'0.165 cos θ

=⇒ ' 0.165 cos θcms
B (tCP + ttag).

(5.6)
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This smearing effect can be analytically calculated once the angle θ of the B mesons is
known. The kinematic correction therefore does not give rise to additional resolution
parameters.

5.2.2 The detector resolution function

The detector resolution function, Rdet describes the effect of the detector response on the
reconstructed vertex. The function consists of two parts:

Rdet = RCPdet ⊗R
tag
det, (5.7)

where the first (second) term is the detector resolution of the CP -side (tag-side) B vertex.
Both sides are parametrized with the same functional form, but with different parameters
for the CP side and the tag side. A study of the high statistics MC sample described in
Section 5.2 is used to obtain the parameters of the detector resolution function. In the
MC simulation the short-lived (τ < 10−9 s) secondary particles are forced to decay with
zero lifetime at the B meson decay point, such that the smearing effect from non-primary
particles is excluded. The residual vertex distribution i.e, the distribution of the differ-
ence between the reconstructed and the generated vertex positions is studied to define
the shape of the detector resolution function. The residual distributions of the fully recon-
structed BCP and the associated Btag meson are defined as:

δzCP ≡ zrec
CP − z

gen
CP ,

δztag ≡ zrec
tag − z

gen
tag .

A study [75, 76] showed that the residual distributions are best parametrized with a dou-
ble Gaussian function centered at zero and with an event-by-event width proportional to
the error estimate of the vertex z-coordinate, σvtx. Furthermore a dependence on ξ2 is
observed, where ξ2 is a χ2-like measure of the quality of the vertex fit. A MC study had
shown that the fit χ2 is correlated with the B decay length due to the tight IP constraint
in the transverse plane. To avoid this correlation, the variable ξ2 is introduced, which uses
the z information only. This goodness-of-fit is defined as the reduced χ2 (χ2 divided by
the number of degrees of freedom) projected onto the beam direction:

ξ ≡ (1/2n)
n∑
1

[(ziafter − zibefore)/ε
i
before]

2, (5.8)

where n is the number of tracks used in the fit (and 2n the number of degrees of freedom),
zibefore and ziafter are the z positions of each track at the closest approach to the origin,
before and after the vertex fit respectively, εibefore is the error of zibefore. The shape of the
residual reads:

Rdet(δz) = (1− ftail)G(δz, 0, (smain + ξstail)σvtx)
+ ftail G(δz, 0, stlml(smain + ξstail)σvtx), (5.9)

where G(x, µ, σ) is a Gaussian distribution of the variable x, with mean µ and width σ
and σvtx is the vertex resolution of the BCP or Btag for RCP or Rtag respectively. The
four parameters that determine this distribution are marked in red. Both the BCP vertex
and the tag-side vertex are fitted with this distribution. However for events where the
Btag is only reconstructed with one track no ξ dependence can be obtained as there is no
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goodness of fit defined for a single-track vertex. The single-track vertex is defined by the
interaction point between the IP tube and the track. The detector resolution function for
such events is given by Eq. (5.9) where ξ is set to zero. The standard detector resolution
parameters for the BCP vertex of the data and MC events are summarized in Table 5.1.

SVD1
parameter data MC

smain 0.91+0.46
−0.80 1.09

stail 2.37+0.43
−0.39 × 10−2 1.36 × 10−2

ftail 0.0 4.47 × 10−4

stlml 1.0 6.65

SVD2
parameter data MC

smain 0.66+0.45
−0.09 0.69

stail 3.50−0.85
−0.60 × 10−2 2.95 × 10−2

ftail 1.02+0.04
−0.05 × 10−1 9.98 × 10−2

stlml 4.75+0.49
−1.03 5.57

Table 5.1: Standard ICHEP06 detector resolution parameters for the BCP vertex of SVD1
and SVD2 data and MC.

Figure 5.4: Btag vertex residual distribution obtained in B0 → D∗+D∗− MC events with
the standard tag-side detector resolution function superimposed.

There are no analysis-specific constraints applied to the reconstruction of the tag-side
B-vertex, therefore the standard parametrization of Rtag should be adequate to describe
the tag-side vertex resolution in this analysis as well. Figure 5.4 shows the standard resolu-
tion function for the Btag vertex, drawn over its residual distribution and it looks satisfac-
tory. As shown in Figure 5.5, the tag-side resolution is worse than the CP-side resolution,
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which means that the tag-side is the limiting factor on the quality of the total detector
resolution.

Figure 5.5: Tag-side (red) and CP -side (blue) vertex resolution distribution.

There still exist a very long tail in the residual and proper-time distributions that cannot
be described by the detector resolution function. An additional outlier term is introduced
to parametrize these events. Due to the very large width (∼ 40 ps) this function is not
convoluted with the lifetime distribution or other resolution components, but it is kept as
an independent term, defined as:

Pol(∆t) = G(∆t, 0, σol). (5.10)

The fraction of outlier events, fol, is obtained separately for one-track vertices and multi-
track vertices.

The resolution function of the vertex position in this B → D∗+D∗− analysis can be
different from the standard parametrization described in this section due to the large
tracks multiplicity. Therefore it is not a priori obvious if the standard parametrization for
the CP side can be used throughout this analysis. In principle, determining the resolution
parameters ourselves from the residual distribution would be possible but the obtained
parameters would be less precise than the standard ones. In the B → D+D− analysis [59]
the detector resolution parameters for the CP side were obtained specifically for that
analysis. Due to the large resemblance between the vertex construction of that analysis
and ours, a study is performed on the SVD1 cross-check analysis, using their obtained
parameters to describe the resolution (see Chapter 7). But again larger uncertainties
remain on the D+D− parameters than on the standard ones. Another option, which we
chose for this analysis, is to use a control mode leaving a similar signature in the detector
as the B → D∗+D∗− modes, but with a larger branching fraction such as to obtain the
resolution parameters with a smaller uncertainty. This is described in Section 5.5.
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Figure 5.6: Fitted proper-time distribution of the generated signal MC.

5.2.3 The effect of non-primary decay vertices

When tracks that don’t belong to the primary decay-vertex of the associated B meson are
used to determine its decay vertex, an additional smearing is obtained. For the study of this
effect two MC samples were used, a special sample where all short-lived secondary parti-
cles are forced to decay with zero lifetime at the B decay points, and a normal MC sample.
The resolution function with which the proper-time distribution needs to be convoluted
is found to be best described by a prompt component and a component that accounts for
smearing due to charm and strange decays. The latter is studied using the difference in
ztag between the two MC samples. The resolution function reads

Rnp(∆ztag) = fδδ
Dirac(∆ztag) + (1− fδ)[fpEnp(∆ztag; τnp

p ) + (1− fp)Enp(−∆ztag; τnp
n )],

where the parameters are indicated in red and Enp is:

Enp(x; τ) =
{

1
τ e
−x/τ if x ≥ 0,

0 if x < 0
.

The variable fp is the fraction of the positive (negative) exponential part. The slope of the
exponential is parametrized as:

τ
np)
p(n) = τ0

p(n) + τ1
p(n)(s

0 + s1ξztag)σztag/(βγc)Υ. (5.11)

The six parameters fδ, fp, τ
0
p , τ

1
p , τ

0
n and τ1

n and the two scale factors s0 and s1 are obtained
in the study presented in [75]. These standard parameters will be used throughout this
analysis, which is justified as Rnp is specific to the tag-side vertex only.

5.3 Proper-time fit on signal MC

5.3.1 Signal MC at generation level

The signal MC sample described in Section 3.2.1 is generated with aB0 lifetime of 1.534 ps−1.
In Figure 5.6 the true proper-time distribution, ∆t = tCPgen − t

tag
gen is shown using the gener-

ator information of the reconstructed events. This is therefore not affected by the detector
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Figure 5.7: Fitted proper-time distribution of the generated and reconstructed signal MC.

response. However the kinematic approximation is still used. The distribution is therefore
modeled with:

P(∆t) =
e−|∆t|/τB0

2τB0

⊗Rk. (5.12)

The fitted lifetime τB0 obtained from the true generated proper-time distribution of the
reconstructed signal MC events is:

τMC,true
B0 = 1.552± 0.012 ps.

5.3.2 Signal MC at reconstruction level

The reconstructed proper-time distribution of selected signal MC events is affected by
the smearing which is illustrated in Figure 5.7. As described in the previous section, the
theoretical function now needs to be convoluted with the resolution function R in order
to model correctly ∆t = tCP − ttag. The PDF of the signal events is:

P(∆t)sig = (1− fol)
[e−|∆t|/τB0

2τB0

⊗R
]

+ folPol, (5.13)

where Pol describes the outlier events. As the distribution only contains true signal events,
there is no need to include a background component in the fit. The proper-time distribu-
tion of the reconstructed signal MC truth events is fitted using the standard resolution
parameters for MC events and shown in Figure 5.8. Throughout this chapter we will
present the fitted ∆t distributions in a linear and log scale, where the latter accentuates
the distributions of the tails where only a few events are present. The fitted lifetime of the
signal MC reads:

τMC,rec
B0 = 1.69± 0.02 ps.

The standard parameters for the signal MC do not seem to adequately describe the reso-
lution of the BCP vertex distribution obtained from D∗+D∗− decays. We therefore fitted
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simultaneously the main parameter, smain, of the detector resolution of the CP side with
the B0 lifetime. We chose to leave this parameter floating as it is the most significant
parameter in RCP , which is the function responsible for the largest error on the vertex
position. The result is summarized in Table 5.2. The fitted resolution parameter is larger
than the resolution parameter in the standard settings. The overestimated lifetime now
shifts more towards the generated value, but it still seems too high. This procedure is
repeated separately for SVD1 signal MC and SVD2 signal MC. But no satisfactory result is
obtained, as shown in Table 5.2.

Figure 5.8: Fitted proper-time distribution of the reconstructed signal MC using the stan-
dard resolution function.

Parameter fitted value
smain(SVD1) 1.70 ± 0.21
smain(SVD2) 1.51 ± 0.17
τB0(SVD1 + SVD2) 1.61 ± 0.02 ps
τB0(SVD1) 1.652 ± 0.036 ps
τB0(SVD2) 1.589 ± 0.028 ps

Table 5.2: Measured lifetime of reconstructed signal MC events when leaving the main
resolution parameter free.

The standard resolution parameters on MC level do not seem to model the detector
effect for B → D∗+D∗− decays very well. However there exist different sets of resolution
parameters for the MC as for the data. Therefor we cannot draw any conclusions yet on
the quality of the detector parametrization for data events.
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5.4 Background probability density function

The proper-time distribution of the data events will be modeled with a signal PDF and a
background PDF:

P(∆t) = (1− fol)(fsigPsig(∆t) + (1− fsig)Pbkg(∆t)) + folPol, (5.14)

where fsig is the signal purity. Pbkg(∆t) is the background probability density function
which consists of a physics-like part convoluted with a resolution-like function:

Pbkg(∆t) =
∫ +∞

−∞
Ptrue

bkg (∆t′)Rbkg(∆t−∆t′)d∆t′. (5.15)

The physics part of the background function consists of a prompt component and a lifetime
component with a lifetime τbkg. The prompt component models the ∆t shape for qq events
where q is an u, d, c or s quark. In these events all tracks originate from the same point
leading to a Dirac delta function. The second part of the physics component describes the
B0B0 combinatorial background events whose proper-time distribution can be modeled
by an exponential behavior with a τbkg lifetime.

Ptrue
bkg (∆t) = (1− fδ)

e−∆t/τbkg

2τbkg
+ fδδ(∆t− µδ). (5.16)

The resolution function is again parametrized with a Gaussian function depending on the
vertex resolution:

Rbkg =
[
(1.0− f tail

bkg)G(∆t, µbkg, s
main
bkg σvtx)

+ f tail
bkgG(∆t, µbkg, s

tail
bkgs

main
bkg σvtx)

]
. (5.17)

The parameters that need to be determined are, fδ, µδ, τbkg, f tail
bkg, µbkg, stail

bkg and smain
bkg .

We assume that the background events in the sideband region have a similar shape as the
background events under the signal peak. This assumption will be taken into account in
the study of the systematic error (see Chapter 6). The background parameters are thus
obtained by fitting the sideband region of the data sample, which contains data events with
Mbc < 5.27 GeV/c2. A Gaussian function with a large width is again added to describe
outliers events.

The proper-time distribution of data events in the sideband region is shown in Fig-
ure 5.9. The solid line shows the fitted background PDF, while the blue line is the con-
tribution from the δ-function and the green line is the background lifetime function. The
obtained values for the parameters are shown in Table 5.3. With these parameters the
background PDF is constructed to fit the background events in our data sample.

Other models of the background shape are examined as well. A simpler model contains
less parameters: only one Gaussian function is used to describe the resolution of the
background shape, furthermore µδ is fixed to zero. Visually this function is found to
describe the distribution less accurately than the function described above. The next model
tested contains a separation between events where the tag-side vertex is composed of a
single track or several tracks. Due to the correlation between the parameters, the relative
statistical errors become large, therefore this last model is discarded as well.



124 CHAPTER 5. LIFETIME MEASUREMENT FROM THE PROPER-TIME DISTRIBUTION

Figure 5.9: Fitted proper-time distribution of the events in the sideband region.

parameter fitted value
τbkg 1.10 ± 0.07 ps
µδ 0.11 ± 0.07 ps
fδ 0.37 ± 0.04
µbkg −0.16 ± 0.04 ps
f tail

bkg 0.11 ± 0.01
smain

bkg 1.72 ± 0.06
smtail

bkg 6.71 ± 0.37

Table 5.3: Fitted background parameters from events in the sideband region.
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5.5 Control sample

A control sample is often used to study fitting procedures and resolutions on data events
with decays that are similar to the decay under study but which have a larger branching
fraction. Fit biases or problems in the resolution functions are often not visible from a fit
on the data distribution due to low statistics.

The reconstructed decay modes chosen for the control sample in this analysis are:

- B0 → D+
s D
−

- B0 → D∗+s D−

- B0 → D+
s D
∗−

- B0 → D∗+s D∗−

and we further reconstruct D∗s → Dsγ and D+
s → K0

SK
+, D+

s → K+K−π+ and D+
s →

K+π−π+.
We will perform two studies using the control sample. First the lifetime of the B0 is

measured in order to check if the standard resolution parameters properly describe the
data. If not, the main resolution parameter can be obtained from the control sample. The
second check is performing a CP fit on the control sample, which will be shown in the
next chapter.

The selection cuts applied to define the control sample are similar to those used in the
B0 → D∗+D∗− analysis. We obtain 9667.8 ± 113.2 signal events, which is a factor of 20
more than the signal events in B0 → D∗+D∗−. The purity in the small signal region is
82%. The fitted Mbc distribution is shown in Figure 5.10. In this plot the ∆E distribution
is required to be in the small signal region.

The proper-time distribution of the control sample is obtained with the same procedure
as described in Section 5.1: the vertex position of the BCP meson is obtained from the
intersection point of the IP-tube and the tracks of both D-mesons and the vertex position
of the Btag meson is obtained from the intersection point of the remaining tracks in the
event.

The background shape is determined with events from the sideband region of ∆E and
Mbc, using the model described in Section 5.4. The obtained parameters are summarized
in Table 5.4. For comparison the background parameters of the proper-time distribution of
B0 → D∗+D∗− are shown in the table as well, to illustrate the large resemblance between
the two samples. The obtained ∆t shape of the background events is shown in Figure 5.11,
superimposed on the proper-time distribution of the events in the sideband region.

parameter B → D
(∗)+
s D(∗)− B → D∗+D∗−

1 τbkg (ps) 1.42 ± 0.03 1.10 ± 0.07
2 µδ (ps) 0.07 ± 0.03 0.11 ± 0.07
3 fδ 0.31 ± 0.02 0.37 ± 0.04
4 µbkg (ps) −0.12 ± 0.02 −0.16 ± 0.04
5 f tail

bkg 0.06 ± 0.01 0.11 ± 0.01
6 smain

bkg 1.68 ± 0.03 1.72 ± 0.06
7 stailbkg 8.02 ± 0.32 6.71 ± 0.37

Table 5.4: Fitted background parameters of events in the sideband region of the control
sample (left) and, for comparison, of the B → D∗+D∗− sample (right).

The lifetime is extracted from the proper-time fit of the total control sample in an
analogue way as will be done for the B → D∗+D∗− events. The fit is performed on the
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Figure 5.10: The Mbc projection of the fitted distribution of the control sample.

Figure 5.11: Fitted proper-time distribution of the events in the sideband region of the
control sample. The prompt- and lifetime-component of the background PDF are added in
blue and green respectively.



5.5. CONTROL SAMPLE 127

events in the large signal region and the purity is calculated on an event-by-event basis.
The resolution parameters for the signal events are the standard parameters. The fitted
lifetime of the control sample reads:

τdata
B0 (B0 → D(∗)+

s D(∗)−) = 1.71± 0.02 ps.

The world average value for the B0 lifetime is 1.53 ± 0.01 ps, which means that when
using the standard resolution parameters the fitted lifetime is more than eight standard
deviations away from the expectation. A similar trend is observed on the signal MC for
the B → D∗+D∗− events. g

Due to the high statistics of the control sample we can determine the dominating
resolution parameter ourselves. Therefore we fit the proper-time distribution again while
leaving free the parameter, smain, which is the main scaling factor of the width of the
Gaussian function of the detector resolution (see Eq. (5.9)). The fitted distribution is
shown in Figure 5.12 and the fitted parameters are

τdata
B0 (B0 → D(∗)+

s D(∗)−) = 1.58± 0.03 ps,

SVD1 : smain (data,B0 → D(∗)+
s D(∗)−) = 1.81± 0.26,

SVD2 : smain (data,B0 → D(∗)+
s D(∗)−) = 1.92± 0.20.

The value of the lifetime is now satisfactory as it is less than two standard deviations away

Figure 5.12: Fitted proper-time distribution of the control sample leaving the main reso-
lution parameter free. The dotted line represents the background contribution.

from the world average. Like in the signal MC, the main resolution parameters are shifted
to a higher value compared to the standard parameters.

This study on the control sample showed that the standard resolution parameters don’t
describe the vertex resolution when long-lived tracks are used, very precisely. The main
detector resolution parameter will therefore be replaced by the obtained resolution pa-
rameter of the control sample, i.e, smain (SVD1) = 1.81 and smain (SVD2) = 1.92.

If the standard parametrization does not describe the resolution on the vertex of the
data events, the MC events in theB → D∗+D∗− analysis will probably not be appropriately
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described as well, which might explain the problematic results of the lifetime on the signal
MC. We can scale the main detector resolution parameter to the same factor as obtained
on the data. This gives us the following result for the MC:

smain (data,B0 → D∗+D∗−) = smain (data,B0 → D(∗)+
s D(∗)−), (5.18)

smain (MC,B0 → D∗+D∗−) =
smain (MC, standard)
smain (data, standard)

smain (data,B0 → D(∗)+
s D(∗)−).

(5.19)

An overview of the values of smain is given in Table 5.5. We can refit the proper-time dis-

smain

settings SVD1 SVD2
data standard 0.919+0.46

−0.80 0.66+0.45
−0.09

data B0 → D
(∗)+
s D(∗)− 1.81± 0.26 1.92± 0.20

data B0 → D∗+D∗− 1.81± 0.26 1.92± 0.20
MC standard 1.087 0.690
MC B0 → D∗+D∗− 2.165 2.022

Table 5.5: Main detector resolution parameter, smain, for data and MC in the different
samples.

tribution of the signal MC with the standard resolution parameters but replacing the main
parameter, smain (MC) by the scaled main resolution parameter. The obtained lifetime on
the signal MC now gives the satisfactory result of:

τMC
B0 = 1.55± 0.02 ps. (5.20)

The fitted distribution is shown in Figure 5.13, however the improvement of the fit is not
visible by eye.

5.6 Lifetime fit on the total data sample

The probability density function used to fit the data sample consists of a signal part and a
background part, described already in the previous sections. The signal ratio is determined
from the two dimensional fit of ∆E and Mbc, obtained in Section 3.8 and is calculated
event-by-event.

The proper-time distribution of the data events in the B → D∗+D∗− analysis should be
fitted with the main resolution parameter, smain, set to the obtained result from the control
sample while the other parameters are still set to the standard ones for data events.

In Figure 5.14 the proper-time distribution is shown together with the fit using smain

from the control sample (red line). The fit is performed on the large signal region, but for
visualization purposes the plot shows the result in the small signal region. The extracted
lifetime in the B → D∗+D∗− sample reads:

τdata
B0 = 1.49± 0.10 ps. (5.21)

which is within the statistical uncertainty, consistent with the world average.
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Figure 5.13: Fitted proper-time distribution of the signal MC sample using the standard
resolution parameters but for the main detector resolution the scaled parameters are used.

For information we also present the extracted lifetime if we use only the standard
parameters. The green curve in Figure 5.14 shows again the proper-time distribution to-
gether with the fit using only standard resolution parameters. Visually we cannot observe
a large difference, however the measured lifetime using the standard parameters becomes:

τdata
B0 = 1.62± 0.10 ps. (5.22)

Due to the large statistical error it is not obvious how well the data are described using
the standard parameters, however the result using standard resolution parameters has a
central value slightly further away from the world average than when using the parameters
of the control sample.

We can therefore conclude that the background shape of the proper-time distribution
and the resolution parameters are well defined with the use of the control sample. The
fitted lifetime of the B0 in the B0 → D∗+D∗− mode is

τB0 = 1.49± 0.10 ps, (5.23)

which is within errors compatible with the world average. We can therefore use the proper-
time model in the CP analysis.
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Figure 5.14: Fitted proper-time distribution of the data events of B → D∗+D∗−, using all
the standard resolution parameters (green) or using the main detector resolution parame-
ter from the control sample (red). The dotted line represents the background contribution.



Chapter 6

Measurement of the CP asymmetry

In this chapter the main measurement of the analysis will be done
by performing a fit on the proper-time distribution of the B0 and
the B0 tagged events to extract the CP violating parameters. Dif-
ferent studies are performed on the fitting procedure’s accuracy,
using an extensive fast MC sample and the signal MC sample. Fi-
nally a consistency check is performed on the control sample and
the systematic study is presented as well.

W
E will remind the reader briefly in this chapter how we can theoretically extract the
CP -violating parameters from the proper-time distribution, as discussed in Chap-

ter 1. However, in practice we will also have to incorporate the effect of incorrect flavor
assignment as well as the CP -odd dilution. The next sections will show different tests per-
formed on fast-toy MC samples and the signal MC sample to study the possible effects of a
bias in the fitting procedure and to estimate the statistical uncertainty on the CP -violating
parameters. Also the CP asymmetry of the control sample is extracted as a final check of
the fitting procedure. We then perform the CP fit on the total data set for the D∗+D∗−

reconstructed B modes, which is the main goal of this analysis. A study of the likelihood
function will tell us the significance of the obtained CP asymmetry. Finally a systematic
study will be performed to estimate the uncertainty of our measurement.

6.1 The probability density function

The term in the theoretical PDF of ∆t for signal events, that contains the CP -violation pa-
rameters has opposite signs for B0-tagged and B0-tagged events, so a distinction between
the two CP conjugated processes can be made. The decay-time distribution for B0-tagged
and B0-tagged events is described in Chapter 1 and Chapter 2 as:

Psig(∆t) =
e−|∆t|/τB0

4τB0

(1 + q(S sin(∆m∆t) +A cos(∆m∆t))), (6.1)

where q = +1(−1) when the other B meson in the event decays as a B0 (B0) and ∆t =
tCP − ttag is the proper-time difference between the two decays. τB0 is the neutral B
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lifetime, ∆m the mass difference between the two B0 mass eigenstates. S and A are the
CP -violating parameters

S =
2=(λ)
|λ|2 + 1

, A =
|λ|2 − 1
|λ|2 + 1

,

where λ is a complex parameter depending on the B0−B0 mixing as well as on the decay
amplitudes for both B0 and B0 to the CP eigenstate, as explained in Chapter 1.

This theoretical PDF is shown for different values of S and A in Figure 6.1. In case of
no direct CP violation (A = 0), the two distributions corresponding to B0-tagged events
or B0-tagged events are symmetric one with respect to the other, as shown in the top
left plot of Figure 6.1. When there is no mixing-induced CP violation (S = 0) the two
curves are symmetric around ∆t = 0, as shown in the top right plot. Notice that no time-
dependent CP analysis is needed to extract the direct CP violating parameter A. Merely
counting the number of tagged B0 and tagged B0 events is sufficient.

Figure 6.1: Proper-time PDF for B0- and B0-tagged events without any detector smearing,
tagging or polarization dilution for different values of the CP -violating parameters.
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We define the raw CP asymmetry in each ∆t bin as a = (N+ − N−)/(N+ + N−), where
N+(N−) is the number of observed candidates with q = +1(−1), such that:

a = S sin(∆m∆t) +A cos(∆m∆t), (6.2)

when no smearing, tagging or polarization dilution is taking into account. The CP -
violating parameters can be read directly from the asymmetry plot. The value of the
PDF at ∆t = 0 shows A and at ∆t ∼ π shows S as illustrated in Figure 6.2.

Figure 6.2: CP asymmetry PDF without any detector smearing, tagging or polarization
dilution for different values of the CP -violating parameters.

Due to imperfections in the flavor tagging, an average wrong tag fraction, w, is intro-
duced and a quantity ∆w is used to describe the difference in wrong tag fraction for a
B0 and a B0 event, as explained in Section 2.7.4. The values of w(r) and ∆w(r), which
depend on the quality of the flavor tagging (grouped in r-bins), are obtained by the flavor
tagging work group [77] and using a procedure described in Chapter 2. When incorporat-
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ing the incorrect flavor assignment the PDF becomes

Psig(∆t) =
e−|∆t|/τB0

4τB0

[
1− q∆w + q(1− 2w)

(
S sin(∆m∆t) +A cos(∆m∆t)

)]
.

The standard model prediction in absence of penguins is A = 0 and S = −η sin 2β, where
η is the CP eigenstate of D∗+D∗−. Notice that when no flavor tag is available (q = 0), the
above equation becomes equal to Eq. (5.1), which describes the lifetime distribution.

The parameter η is +1 for CP -even events and −1 for CP -odd events. The probability
of an D∗+D∗− state being CP -even or CP -odd is determined with an angular analysis
(see Chapter 4) and needs to be taken into account in the CP fit to avoid a dilution
of the measurement of sin 2β. This CP -odd probability is calculated on an event-by-
event basis, using its cos θtr value and the known overall cos θtr shape, obtained from
the angular analysis. For CP -odd events we switch the sign in the sin(∆m∆t), such that a
measurement of sin 2β can be performed. We can therefore not use the factor S anymore
but use

S ′ = S/η SM= − sin 2β. (6.3)

Including this property in the previous equation, the signal probability density function
becomes:

Psig(∆t) =
e−|∆t|/τB0

4τB0

[
1− q∆w + q(1− 2w)(

(1− 2fodd(cos θtr))S ′ sin(∆m∆t) +A cos(∆m∆t)
)]
, (6.4)

where fodd(cos θtr) is

fodd(cos θtr) =
R⊥ε⊥P⊥(cos θtr)

R⊥ε⊥P⊥(cos θtr) + (1.0−R⊥)εevPev(cos θtr)
. (6.5)

The parameters εev and ε⊥ are the relative reconstruction efficiencies defined in Sec-
tion 3.3.7 and P⊥(cos θtr) (Pev(cos θtr) is the shape of the CP -odd (CP -even) distribution
defined in Section 4.1.2. In Eq. (6.5) the normalization factor is not written for visualiza-
tion purposes, but the functions are normalized over the fitted area.

Notice the difference between fodd(cos θtr), the event-by-event probability of being a
CP -odd event and R⊥, which is an overall parameter extracted from the angular analysis
and is the average CP-odd fraction of the data sample, i.e. R⊥ = 0.125 ± 0.043 (stat) ±
0.023 (syst).

The signal probability density function is convoluted with the detector resolution func-
tion described in Section 5.2. As in the lifetime fit the main resolution parameter is ex-
tracted from a control sample and a wide Gaussian is added to model outlier events.

The total probability density function consists of a signal PDF and a background PDF,
with an event-by-event signal fraction which is determined from a three-dimensional dis-
tribution of ∆E, Mbc and cos θtr. The fit will be performed on the large signal box while
we will show the results in the small signal box for a better visualization. The function de-
scribing the background events is the same as the one used in the lifetime fit and consists
of a physics part convoluted with a resolution function (see Section 5.4). The total PDF of
the proper-time distribution of the CP fit now reads:

P(∆t;A,S ′) = (1− fol)
(
fsigPsig(∆t;A,S ′)⊗R+ (1− fsig)Pbkg(∆t)

)
+ folPol, (6.6)

where Pol is the PDF of the outlier events. The free parameters of the fit are A and S ′.
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6.2 Fast MC studies

A fast MC study is used to survey the statistical properties of the CP -violating parameters
when extracted from the proper-time difference, as is done for the study of the CP -odd
fraction (see Section 4.2). We inspect if the fitting procedure shows any bias and estimate
the size of the statistical errors of the extracted parameters.

6.2.1 Generation

The generated samples are aimed to be as realistic as possible. The different features that
are included in the fast MC are summarized here.

We generate three types of events: the signal events, the background events and the
outlier events.

The ∆E and Mbc values

- The ∆E and Mbc values are generated in a signal region of |∆E| < 60 MeV and
Mbc > 5.25 GeV/c2.

- The values of the signal events and the background events of ∆E and Mbc are gen-
erated according to the observed distribution in the data (see Chapter 3).

- The signal purity is the same as on the data.

- A fraction of the events, fol, is generated as outlier events. The ∆E and Mbc values
of these outlier events are generated as if they are background events.

The proper-time distribution smeared with the detector resolution

- The function of the proper-time distribution of the signal events is an exponential
decay distribution with a lifetime of τ = 1.53 ps. This distribution is convoluted with
the resolution function. The kinematic approximation depends on the cos θB. The
detector resolution function and the smearing due to non-primary vertices depend
on the vertex resolution, the number of tracks used to determine the vertex and the
χ2 distribution of the vertex fit and on the detector configuration.

- Because of the dependency of the proper-time resolutions on the detector settings,
we generate for each event an experiment number. The probability of each experi-
ment number is proportional to the luminosity of data taken per experiment.

- The distribution of the vertex resolution, the χ2 distribution of the vertex fit, the
number of degrees of freedom of the vertex fit and the number of tracks per ver-
tex for the tag side are generated according to their distributions in the data. We
generate just one or two tracks for the tag-side vertex, for the single- or multi-track
vertex resolution parameters. The fraction of one-track vertices is taken from the
data. The vertex resolution distribution of the data is obtained by fitting this with a
pseudo-threshold function. The reduced χ-distribution is fitted with three exponen-
tial functions and the signal events in this fast MC are generated according to this
function.
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- The exponential function describing the proper-time distributions for signal events
is convoluted with the resolution function, taking into account dependencies stated
above. The smearing is done using the “standard” detector resolution parameters for
data events; and depending on the generated experiment number, the parameters
for SVD1 or SVD2 data are used.

- The values of the proper-time of the signal events are generated according to this
function convoluted with the detector resolution.

- The proper-time value of the background events is generated according to the PDF
described in Section 5.4.

- The proper-time values of the outlier events are generated according to a wide Gaus-
sian centered at zero. The width , σol and fol, are taken from the detector resolution
parameters.

The polarization

- The cos θtr value of the signal events are generated according to the cos θtr distribu-
tion of the signal events in the data, meaning with a probability R⊥ to be CP -odd.

- The cos θtr value of the background events and outlier events is generated according
to the distribution of the background events obtained from the data 4.1.3.

The flavor of the Btag

To determine the function according to which the flavor is generated we need to generate
an r bin, w(r) and ∆w(r) value.

- The r-bin value for signal events is generated according to the distribution obtained
from the signal MC. For background events the distribution is obtained from the data
events in the sideband region.

- A value for the wrong tag fraction w(r) and ∆w(r) is generated according to the
generated r-bin. The wrong tag fraction and ∆w(r) per r bin are set to the standard
values.

- The value of the flavor of the Btag is set to +1 with a probability (P) depending on:
cos θtr, ∆t, w(r) and ∆w(r) and to −1 with 1− P. This probability reads:

P = ∆w + (1− 2w)
(

(1− 2fodd(cos θtr))S ′ sin(∆m∆t) +A cos(∆m∆t)
)]
, (6.7)

where ∆m = 0.507ps−1 and S′ = − sin 2β (instead of S = −η sin 2β) .

- The flavor value of the Btag of the background and outlier events is generated with
equal probability of being +1 or −1.

In this section of the fast MC study we will refer to S ′ as just S for simplicity. We gener-
ated 6400 different toy-MC samples each containing 500 signal events, which corresponds
roughly to the number of B0 → D∗+D∗− signal events we have in the data sample. The
generated CP variables S and A are changed in each sample in steps of 0.025 between
[−1, 1], such as to fill a two-dimensional grid, as illustrated in Figure 6.3. These samples
are then fitted one by one according to the procedure described in Section 6.1.
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Figure 6.3: Generated S and A values in the fast MC.

6.2.2 Residual, error and pull distributions

6.2.2.1 The residual distribution

Figure 6.4 shows the residual distributions for both fitted CP parameters. We define the
residual distribution as the difference between the generated and the fitted value (which
is the opposite of what is used in most analysis). When the fitting procedure does not
contain a bias, the residual distribution should be centered around zero. The width of
the distribution is the measure of the statistical accuracy of the fitted parameters. The
residual distributions are fitted with a Gaussian function and the results are summarized
in Table 6.1. Besides the visual appearance of the residual distribution also the results of
the fit show no bias for any of the two parameters.

Figure 6.4: Distributions of Sgen − Sfit(left) and Agen −Afit(right).



138 CHAPTER 6. MEASUREMENT OF THE CP ASYMMETRY

Sgen − Sfit Agen −Afit

mean −0.001± 0.003 −0.004± 0.002
σ 0.263± 0.003 0.153± 0.002

Table 6.1: Parameters of the Gaussian fit of Sgen − Sfit and Agen −Afit.

6.2.2.2 The error distributions

One of the main reasons to perform a fast MC is to study the error distribution. In Fig-
ure 6.5 the symmetric errors of the fitted S and A values are shown, while in Figure 6.6
the asymmetric errors are shown. The symmetric errors are obtained by the “Migrad” al-
gorithm of the Minuit program [78], while the asymmetric errors are calculated with the
“Minos” algorithm of Minuit.

Figure 6.5: Symmetric errors on S(left) and A(right) as returned by the fit.

For both CP -violating parameters the distributions show tails at lower values which is
due to the dependence of the error on the central value. The closer the absolute value of
the CP -violating parameters approaches 1, the smaller the error on the fit is, as illustrated
in Figure 6.7. This is because the fitted parameter reaches the physical limit, the area
where the PDF is no longer defined. The figures also show that the error on the S param-
eter is on average larger than the error on the A parameter. This is a known phenomena
which is partially caused by the uncertainty on the dilution due to polarization, which only
weakens the precision of S but has no influence on A.

In order to estimate the statistical errors on the CP parameters of the data we create
2500 extra samples, each containing 500 signal events, but now both the generated CP -
violating parameters are fixed to their Standard Model values, i.e. S = −0.7 and A = 0.
The symmetric errors of the fits are shown in Figure 6.8. Both distributions are then
fitted with a Gaussian function and the parameters of the fit are summarized in Table 6.2.
The error distribution is not necessarily a Gaussian distribution. The fit was just used
to estimate in an easy way the average error, however visually it is seen that the error
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Figure 6.6: Asymmetric errors on S(left) and A(right) as returned by the fit.

Figure 6.7: Error on S (blue) and A (red) as returned by the fit as a function of the fitted
central value.
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distribution is very similar to a Gaussian distribution. We also verified that these estimated
errors of S and A correspond to the width of the residual distributions, which means that
the errors are correctly estimated.

error on S error on A
mean 0.2632± 0.0004 0.1552± 0.0001
σ 0.022± 0.004 0.006± 0.001

Table 6.2: Parameters of the Gaussian fit of the error distribution of the generated Stan-
dard Model CP -violating parameters.

The expected errors of the Standard Model CP -violating parameters are σS = 0.263
and σA = 0.155 where the statistical uncertainty is dependent only on the generated
signal events in the samples. These results also correspond approximately to the naive
extrapolation based on the results of the previous Belle analysis on SVD1 data [58], which
is:

ASVD1 = −0.26± 0.26 (stat),
SSVD1 = −0.75± 0.56 (stat).

Without taking into account the dependence of the error on the central value, or any
possible changes in the reconstruction software, the extrapolation of the statistical error
reads:

√
152× 106 × 0.26√

656× 106
= 0.13,

√
152× 106 × 0.56√

656× 106
= 0.27,

as the statistical error is inversely proportional to the square root of the number of BB
events.

6.2.2.3 The pull distribution

We defined the pull of a measurement of S as:

Pull(S) =
Sgen − Sfit

error onSfit
,

and of course the same definition holds for the A parameter. In this definition the pull has
the opposite sign as what is usually used. Figures 6.9 and 6.10 show the pull distributions
for S and A computed with the symmetric and asymmetric errors, respectively.

When the errors and the residuals are Gaussianly distributed the pull as well should
be a Gaussian function, centered at 0 when no bias occurs in the fitting process and with a
width of σ = 1 when the errors are properly estimated. The distributions are therefore fit-
ted with a Gaussian function and the parameters from the fit are summarized in Table 6.3.
The mean of the distribution is each time compatible with zero, indicating no or a very
small bias. The widths of the distributions are compatible with one, indicating that the
error and residual distributions are properly estimated.
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Figure 6.8: Symmetric errors of S(left) andA(right) as returned by the fit of the generated
Standard Model CP -violating parameters.

Figure 6.9: Pull distributions of S(left) and A(right) with symmetric errors.

pull S pull A
symmetric error

mean −0.01± 0.01 −0.02± 0.01
σ 1.02± 0.01 1.02± 0.01

χ2/ndf 1.19 0.78
asymmetric error

mean −0.01± 0.01 −0.03± 0.01
σ 1.00± 0.01 1.00± 0.01

χ2/ndf 0.94 1.05

Table 6.3: Parameters of the Gaussian fit of the pull distributions of the generated Standard
Model CP -violating parameters.
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Figure 6.10: Pull distributions of S(left) and A(right) with asymmetric errors.

6.2.3 Correlation

The fast MC sample, which is generated with the Standard Model values for the CP -
violating parameters, is also used to check if there is any correlation between the fitted S
value and the fitted A value. In theory those are two independent variables and no cor-
relation should be observed. Figure 6.11 shows a scatter plot of the fitted CP -parameters
and indeed no correlation is observed.

Figure 6.11: The fitted S and A values of the generated Standard Model CP -violating
parameters.
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linearity Stoy linearity Atoy

constant 0.0007± 0.0043 0.0057± 0.0022
slope 1.034± 0.007 0.995± 0.003

Table 6.4: Parameters of the fit of the linearity plot.

6.2.4 Linearity test

We perform a test to check if there exist any linear effect between the residual distribution
and the CP parameter. For the linearity test on S we generate 4410 samples each contain-
ing 500 signal events. The generated CP parameter is changed after each 210 generated
files, the first 210 files are generated with S = −1, the last 210 with S = +1, while A = 0
is kept as a constant. A similar procedure is applied to generate 4410 files where A varies
between −1 and +1 while S is kept constant to zero. The CP parameters of the 4410 files
are then fitted one by one, with the same function as will be used for the data fit. The
distribution of the fitted parameters, grouped per generated CP parameter are fitted with
a Gaussian function. The mean of the distribution of these 210 events, corresponding to
the same generated CP parameter, is then plotted in the linearity plot in Figure 6.12. The
error bars are the errors as returned by the fit on the mean of the distribution.

The obtained data points are then fitted with a first-order polynomial to see if there
is any bias. The result of the fits are summarized in Table 6.4 and drawn in black on
the plot. For visualization purposes a red reference line with slope 1.0 and constant 0.0
is shown as well, which corresponds to the situation with no bias. The fit results show
barely any bias for A and a small deviation for the S parameter as the slopes of both fits
are close to 1.0. This deviation will be taken into account in the systematic study but is
negligible compared to, for example, systematic errors induced by the resolution on the
vertex position.

Figure 6.12: Constructed linearity plots for S (left) and A (right), the error bars represent
the error on the fitted mean of the distribution.
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6.3 CP measurement on signal MC sample

We also perform the CP fit on the signal MC sample for which the detector effects on
the measurements are taken into account in the most detailed way. We used 13 statisti-
cally independent samples, which each contain 500 signal-MC events. As signal MC only
contains the signal events we have added background events from the toy MC from the
previous section, with a similar purity as on the data. The signal events are generated with
the Standard Model CP -violating parameters, i.e. AMC = 0.0 and S ′MC = −0.7 and with
the same CP -odd fraction as on the data. These samples are reconstructed after passing
through GEANT, and fitted with the same CP -fit code as will be used on data. We em-
ploy the “standard” resolution parameters for MC events except that the main resolution
parameter is set to the scaled MC resolution parameter obtained from the control sample
(see Section 5.5). In the next paragraphs we will study the same distributions as exam-
ined in the previous section: the residual distribution, the error and pull distribution. The
signal MC files are fitted with Eq. (6.6), where free parameters of the fit are A and S ′. In
this section we will use the notation S when we actually refer to S ′. This means that this
fitted parameter corresponds to a situation with only CP -even events.

Figure 6.13 shows the 13 fitted values of the CP -violating parameters. This distribu-
tion is again fitted with a Gaussian function and the result is summarized in Table 6.5. We
obtain a mean of the distribution which is very close to the generated result.

The (symmetric) error distributions are shown in the plots in Figure 6.14. The distri-
bution is fitted with a Gaussian function and the results are summarized in Table 6.6. The
mean of the distribution corresponds well to the mean of the error distribution of the large
sample of fast MC events.

Figure 6.13: Distributions of S(left) and A(right) as returned by the fit of the signal MC
samples.
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fitted SMC fitted AMC

mean −0.696± 0.056 −0.035± 0.037
σ 0.202± 0.039 0.135± 0.026

Table 6.5: Parameters of the Gaussian fit of S(left) and A(right) as returned by the fit of
the signal MC samples.

Figure 6.14: Symmetric errors on S(left) and A(right) as returned by the fit on the signal
MC samples.

errors SMC errors AMC

mean 0.267± 0.005 0.146± 0.001
σ 0.018± 0.002 0.003± 0.001

Table 6.6: Parameters of the Gaussian fit of the error distribution of the CP -violating
parameters of the signal MC samples.

pull SMC pull AMC

mean −0.012± 0.231 −0.267± 0.236
σ 0.830± 0.165 0.848± 0.170

Table 6.7: Parameters of the Gaussian fit of the pull distribution of the CP -violating pa-
rameters of the signal MC samples.
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Figure 6.15: Fitted S(left) and A(right) pull distributions.

Finally, the pull distributions are shown in Figure 6.15. They are again fitted with a
Gaussian function of which the mean should be close to zero and the width close to one.
The mean and width of the fitted Gaussian is summarized in Table 6.7.

We can conclude that, even with the small number of signal-MC samples simulated
with the detailed detector response taken into account, the results of the error and the
pull distribution are very satisfactory.

6.4 CP measurement on the control sample

As explained in the previous chapter the control sample of B0 → D
(∗)+
s D(∗)− decays leaves

a similar signal in the detector as the B0 → D∗+D∗− decay but it has the advantage that
due to the larger branching fraction we reconstruct around 20 times more signal events.

The Feynman diagrams of the control channels are identical to those ofB0 → D∗+D∗−,
except that the down anti-quark is replaced with a strange anti-quark. The CKM matrix
elements corresponding to this transition are V ∗cbVcs for the tree diagram and V ∗tbVts, V ∗cbVcs
and V ∗ubVus for the penguin diagrams. As the final state is not accessible from B0 and
B0 decays there is no mixing-induced CP violation possible in this decay. The decay
amplitudes Af and Af , where Af (Af ) represents the decay amplitude of a B0 (B0)
particle and f and f are the final states, have the same absolute value. The amplitudes
Af and Af are negligible as they occur only through higher-order diagrams. Therefore no
direct CP violation is expected in the control sample either.

We will use this high statistics data sample to perform a last consistency check. The
same PDF is used as the one that will be used to describe the proper-time difference
in the B0 → D∗+D∗− fit, although no angular analysis or separation into CP -even or
CP -odd states is required. We use the standard resolution parameters except for the
main resolution parameter which is obtained from the lifetime measurement of the control
sample (see Section 5.5). The signal fraction is calculated on an event-by-event basis from
the ∆E and Mbc distribution. The fitted distribution is shown in Figure 6.16, where the
top plot shows the events which are tagged as B0 and the bottom plot the events tagged



CP MEASUREMENT ON THE DATA SAMPLE 147

Figure 6.16: Left: The fitted proper-time distribution of well-tagged B0 events (top) and
B0 events (bottom) of the control sample. Right: The raw proper-time asymmetry distri-
bution.

as B0. The result of the CP measurement on the control sample is:

S(B → D(∗)
s D(∗)) = −0.07± 0.04,

A(B → D(∗)
s D(∗)) = −0.02± 0.03,

which is within one standard deviation the expected result for A and within two standard
deviations the expected result for S.

6.5 CP measurement on the data sample

The data sample is the same one from which the lifetime measurement was performed
i.e, subject to the more stringent requirements on the vertices. The PDF used to describe
the data is explained in Section 6.1. The CP -violation parameters for B0 → D∗+D∗− are
extracted from an unbinned maximum likelihood fit of the proper-time difference using
Eq. (6.6) and reads

S ′(B → D∗+D∗−) = −0.96± 0.25,
A(B → D∗+D∗−) = 0.15± 0.13,

where the errors are statistical only. The parameter S ′ again is defined as if all events
are CP even, such that there is no dilution of the eigenvalue and S ′ corresponds, in the
Standard Model and in absence of penguin diagrams to S ′ = − sin 2β. The statistical
correlation of the two measurements is 10.7%. The result is still in the physical region as√
S ′2 +A2 = 0.97 ± 0.25 < 1. The statistical errors are close to the prediction from the

fast MC study.
Figure 6.17 shows the fitted proper-time distribution of well-tagged B0 → D∗+D∗−

candidates (r ≥ 0.5) for q = +1 (right) and q = −1 (left). The dotted area is the back-
ground contribution while the thick curves are the sum of signal and background PDF.
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Figure 6.17: The fitted proper-time distribution of well-tagged B0 events (left) and B0

events (right) of the data.

For visualization we also show the result superimposed on the same plot (see left plot in
Figure 6.18) with an average background contribution.

We define the raw asymmetry in each ∆t bin as a = (N+ − N−)/(N+ + N−), where
N+(N−) is the number of observed candidates with q = +1(−1), such that:

a = −∆w + (1− 2w)
(

(1− 2Rodd)S ′ sin(∆m∆t) +A cos(∆m∆t)
)
. (6.8)

The diluted CP -violating parameters can be read directly from the plot. The value of the
PDF at ∆t = 0 shows −∆w+ (1− 2w)A and at ∆t∆m = π/2, or roughly at ∆t = π shows
−q∆w + q(1 − 2w)

(
(1 − 2Rodd)S ′

)
. The raw fitted asymmetry is shown in the right plot

of Figure 6.18.
We check the consistency of this result by fitting separately the SVD1 and SVD2 data,

which provides a comparison with the results from the previous analysis. We obtain the
following results for the fit on SVD1 data only:

S ′(B → D∗+D∗−) = −0.76± 0.54,
A(B → D∗+D∗−) = −0.20± 0.33,

which are compatible with the previous Belle analysis:

S ′(B → D∗+D∗−) = −0.75± 0.56,
A(B → D∗+D∗−) = −0.26± 0.26.

The fit on SVD2 data only gives:

S ′(B → D∗+D∗−) = −1.05± 0.29,
A(B → D∗+D∗−) = +0.24± 0.15.
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Figure 6.18: Left: the fitted proper-time distribution of well-tagged B0 → D∗+D∗− can-
didates (r ≥ 0.5) for q = +1 and q = −1. The gray curve is the background contribution
while the thick curves are the sum of signal and background. Right: fitted raw CP asym-
metry of the same candidates.

6.6 CP -violation significance

We calculate the significance of CP violation of our measurement in this section. The
fitted CP -violation parameters are obtained from a maximum likelihood method where
the likelihood function is defined as:

L(A,S ′) =
N∏
i=1

P(∆ti;A,S ′),

where the product is taken over all the measurements of ∆t. The obtained fit results
correspond to the values of A and S ′ which maximize lnL. For large samples, or for
samples where the error distribution is Gaussian (which is approximately the case in this
analysis, see Section 6.2.2.2), L has a Gaussian form and lnL is parabolic. The numerically
equivalent of a s-standard deviation error can be obtained from the contour of L(A,S ′)
for a certain A,S ′ such that:

lnL(A,S ′) = lnLmax − s2/2,

where Lmax is the value of lnL at the solution point.
The plots in Figure 6.19 show 2(lnL(A,S ′) − lnLmax) in one dimension around its

minimum, while fixing the other CP -violating parameter to its solution point, such that
the vertical axis gives directly a measure of the number of standard deviations away from
the minimum solution.

Figure 6.20 shows contours of the likelihood function. This two-dimensional function
takes into account the correlations between the two parameters being plotted. The con-
tours in the figure are plotted around the solution point (green) and then for the four
first standard deviations away. The situation of no CP violation is marked with the red
dot. To calculate the significance (S) of the measured CP violation we have to assume
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Figure 6.19: Likelihood scan as a function of A (left) and S ′ (right).

Figure 6.20: 1σ, 2σ, 3σ and 4σ contours of the likelihood function. The green dot rep-
resents the point of maximum likelihood, the red dot represents the situation of no CP
violation.
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that the likelihood profile follows a χ2 distribution with 2 degrees of freedom (A and S)
constraint. We obtain an evidence for CP violation with a significance of 3.5.

6.7 Systematic study

The same method is used to estimate the systematic uncertainty of the CP -violating pa-
rameters, as described in the angular analysis (see Section 4.4): the fixed parameters
are varied within their standard deviation and the different resulting deviations on the
measured parameters are added in quadrature to obtain the total systematic error. Due
to the complexity of the time-dependent PDF the effect of changing a parameter on the
CP -violation parameters can be asymmetric, or different for A and S ′. The results are
summarized in Table 6.7.

source A S ′
signal purity ±0.002 ±0.004
standard resolution function ±0.004 +0.000 −0.102
resolution from control sample ±0.002 ±0.030
background shape ±0.000 ±0.006
CP -odd fraction R⊥ ±0.004 ±0.109
fit bias ±0.010 ±0.031
∆m, τB0 ±0.002 ±0.004
flavour tagging ±0.011 ±0.020
vertex cuts ±0.003 ±0.028
∆t fit range ±0.010 ±0.004
peaking background ±0.010 +0.000 −0.027
tag side interference ± 0.034 ±0.007
total ±0.040 +0.123 −0.162

Table 6.8: Systematic errors on the CP -violating parameters for B0 → D∗+D∗− decays.

The first source examined is the signal yield. Varying this value also changes the com-
position of the cos θtr distribution. Therefore both the yield and R⊥ are varied in a cor-
related way. The number of signal events is varied by ±1 standard deviation and R⊥
by ±0.0031. The contribution of the resolution function is estimated by simultaneously
varying all the standard parameters in a correlated manner by ±1σ while the main reso-
lution parameter, obtained from the control sample, is kept as a constant. Next the main
resolution parameter is varied while the standard parameters are kept constant.

The parameters describing the background shape are varied by one standard deviation.
The largest contribution comes from the R⊥ fraction which only affects S ′D∗+D∗− . Varying
the resolution parameters moves SD∗+D∗− further away from zero. The results from the
linearity study with the fast MC are also taken into account, the bias of the CP violating
parameters at the measured values being included in the table. The two constants in
Eq. (6.4), ∆m and τB0 are varied around their world averages [72].

Systematic errors due to wrong tag fractions are estimated by varying the parameters
w(r) and ∆w(r) in each r region by their ±1σ errors. The vertex quality cut is changed
to ξ2 < 125 and the effect is added in the table. The ∆t fit range is been changed from
|∆t| < 70 ps to |∆t| < 10 ps. A peaking background contribution is added with no CP
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violation. Finally a tag side interference uncertainty is added. The different sources are
added in quadrature to yield ±0.04 for A and +0.12

−0.16 for S ′.

6.8 Discussion and conclusion

We can conclude that the measured CP -violation parameters in the B0 → D∗+D∗− decay
are:

AD∗+D∗− = 0.15± 0.13(stat)± 0.04(syst),
S ′D∗+D∗− = −0.96± 0.25(stat)+0.12

−0.16(syst),

using 657× 106BB events. Evidence of CP violation is obtained with a 3.5σ significance.
These measurements are consistent with and supersede the previous Belle result [58].
Figure 6.21 show the results of the CP violating parameters measured by BaBar (as of
Spring 2008) and Belle (the preliminary result as shown at conferences during Spring
2008). For the direct CP violation the notation C = −A is used. The BaBar result is
obtained using 617± 33 signal events. As can be seen from the figures both measurements
are compatible with each other. The smaller systematic error of BaBar with respect to our
final result is partially due to their analysis method. BaBar performed a three dimensional
fit of the proper-time difference, Mbc and cos θtr distribution, such that the systematic
errors due to the signal purity and the CP -odd fraction are accounted for in the statistical
error. The bottom line shows the average result provided by the HFAG group [72].

Figure 6.21: The BaBar and Belle preliminary results of the CP -violating parameters, S ′
(left) and C = −A (right) as of Spring 2008. The bottom line shows the average of both
results.



Chapter 7

Repetition of analysis on SVD1 data

An analysis of the first 140 fb−1 of data is repeated in this chapter;
from the extraction of the yield to the CP -odd fraction and the CP
fit of the proper-time distribution. The aim is to employ as much as
possible the same procedure as in the previous Belle analysis so that a
comparison of the results can be made.

T
HE first step of this analysis was to reproduce the previous Belle result ofB0 → D∗+D∗−

on the first 140 fb−1 data sample [58], which corresponds to the data taken with the
SVD1 detector configuration. The cross-check presented in this chapter does not intend
to show a more precise measurement on the SVD1 data, but is performed to reassure that
our procedure is correct and consistent.

As this was the first work performed for this analysis, we have taken the opportunity
to study certain aspects of the analysis in more detail, while on other occasions we have
simplified the procedure not to get overwhelmed with technical issues. The previous anal-
ysis was documented in [57]. No matter how complete that note is, there are always some
details that are not mentioned. It can also be that older software is not available anymore
so that reproducing exactly the previous analysis today becomes unrealistic. A result that
is fairly close to the previous result will therefore be accepted. We will also not perform
any systematics study on these results, the errors quoted in this chapter are statistical only.

This chapter is organized in the same way as the main analysis. The first section will
describe the decay channels which are reconstructed and the selection cuts applied to
the data. A comparison with the previous analysis will be made for the reconstruction
efficiency and the yield. In the next section we repeat the angular analysis on SVD1 data
with the procedure employed in the previous analysis. The proper-time distribution and
the resolution function is studied in more detail. Finally in the last section a repetition of
the CP fit on SVD1 data is performed.
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7.1 Signal reconstruction and yield

7.1.1 Selection and reconstruction efficiency

The analysis is repeated using the selection cuts and fitting procedures which are as close
as possible to those of the previous analysis. The cuts are analogue but not completely
identical to the criteria used for the analysis in the full data set.

Because this check was performed at an early stage of our analysis, only a subset of the
subdecays used in the previous analysis are reconstructed, namely those that do not suffer
from too much background (see Table 7.2). Therefore, if we are able to reproduce the
efficiency of the previous analysis, we expect to extract only a fraction of the total signal
previously observed in the SVD1 data set, estimated to be 85%.

Table 7.1 summarizes the selection criteria applied in the previous analysis and the
ones used now for the cross-check analysis. The variables that are used to select the signal
events have been described in Section 3.3. The wink symbol (

√
) means that the same cut

is used as in the previous analysis. For comparison we also included the selection criteria
of the final analysis.

The generated signal MC samples are obtained using the procedure described in Sec-
tion 3.2.1 with the difference that the B0 meson decays only to D∗+D∗− (and nothing
else) while the B0 decays inclusively. Other technicalities that were used in the previous
analysis and are therefore also repeated here include:

- the generated events have no polarization;

- the generated D∗ mass has a width of 0.01 MeV;

- each decay mode is generated and reconstructed separately, avoiding possible cross
feed;

- the number of reconstructed events are counted in the region |∆E| < 0.1 GeV and
Mbc < 5.27 GeV/c2.

These four features are not implemented in the final analysis, in order to obtain a more
realistic reconstruction efficiency.

The ratio of the obtained reconstruction efficiency with respect to the reconstruction
efficiency of the previous analysis is shown in Table 7.2, for the different sub modes ac-
companying the D0 → K+π− decay. We can conclude that when applying selection cri-
teria which barely differ from the previous analysis, we obtain the same reconstruction
efficiency on the signal MC.

7.1.2 Data yield

For the cross-check analysis we directly used existing skims, which were made for the
previous analysis. The selection criteria for these skims are similar to those described in
Section 3.7.1.

In the previous analysis 129.5+12.9
−12.0 signal events were found in experiments 07−27. We

know now that the reconstruction efficiency in this cross-check analysis is similar to that
of the previous analysis, but we only expect to find 85% of the events, due to the smaller
number of selected decay channels. We should therefore find 129.5 × 0.85 = 110 events.
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previous analysis cross-check analysis final analysis
dr < 0.4 cm if no SVD hits dr < 2.0 cm1 dr < 2.0 cm 1

|dz| < 4.0 cm if no SVD hits |dz| < 4.0 cm 1 |dz| < 4.0 cm 1

dr < 6.0 cm if SVD hits dr < 2.0 cm 1 dr < 2.0 cm 1

|dz| < 5.0 cm if SVD hits |dz| < 4.0 cm 1 |dz| < 4.0 cm 1

R− 2 < 0.4
√ √

Kaon id. for 2 prong LK/π > 0.1
√ √

Kaon id. for 3 or 4 prong LK/π > 0.2 > 0.1 1 > 0.6
Pion id. LK/π < 0.9

√ √

no πslow-id.
√ √

π0: 119 MeV/c2 < Mγγ < 146 MeV/c2 √ √

π0: Eγ > 0.03 GeV
√ √

pπ0 > 0.1 GeV/c
√ √

KS → π+π− : goodKs [61]
√ √

MV-fit of all D candidates V fit for D’s, MV fit for ∆E2 MV-fit of all
πslow recalculated with IP constraint

√ √

πslow recalculated with associated B vertex - 3 - 3

2-prong: D mass within 6σ of nom. value
√ √

3- or 4-prong: D mass within 3σ
√ √

M(D∗)−M(D0) < 3 MeV/c2 √ √

M(D∗)−M(D+) < 2.25 MeV/c2 √ √

D0,+: χ2
vertex < 40

√ √

χ2
mass(D,D∗) < 5 Not 4 Not 4

Best candidate based on χ2
mass(D,D∗)

√ √

small signal region: | ∆E |< 40 MeV < 30 MeV < 40 MeV
large signal region: | ∆E |< 200 MeV < 100 MeV < 200 MeV
small signal region: Mbc < 5.27 GeV/c2 √ √

large signal region: Mbc < 5.2 GeV/c2 √ √

1 : To unify the cuts.
2 : To avoid tails that appear when applying a MV fit to the D mesons. As it is only a small effect
the MV-fit is anyhow applied in the full analysis.
3 : For simplicity (this cut is not used in the full analysis either as it is not a standard cut)
4 : To avoid a cut on a variable which is used to choose the best candidate.

Table 7.1: Selection criteria used in the previous Belle analysis, in the cross-check analysis
and in the final analysis. The differences are explained or justified in the footnotes.

The statistical error on this expectation is the standard deviation of a binomial distribution
with probability of p = 85% and N = 130 events:

σ =
√
Np(1− p) =

√
130× 0.85× (1− 0.85) = 4. (7.1)

We thus expect to find 110± 4 signal events in the SVD1 data sample.
Figure 7.1 shows the scatter plot of ∆E versus Mbc. A two-dimensional maximum like-

lihood fit is performed on this data with the same PDF as described in Eq. (3.3) and (3.4).
The mean and width of ∆E and Mbc are fixed to the corresponding value from the signal
MC, as well as the fraction between the two Gaussian functions used to describe the ∆E
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efficiency ratio (%)
1 D0 → K−π+ 99.4 ± 3.2
2 D0 → K−π+π0 108.8 ± 3.3
3 D0 → K−π+π+π− 96.7 ± 4.0
4 D0 → KSπ

+π− 83.2 ± 4.9
5 D0 → K+K− 89.4 ± 10.5
1 D+ → K−π+π+ 103.8 ± 5.4

Table 7.2: Ratio of reconstruction efficiencies of this cross-check analysis with respect to
the previous analysis.

distribution. The parameters extracted from the signal MC, which are used to fit the signal
shape of the data are summarized in Table 7.3. Note that more parameters are fixed than
in the full analysis as we have smaller statistics in SVD1 data. A different fitting region of
|∆E| is used in the cross-check analysis compared to the previous analysis or the analysis
on the full data set, i.e. −100 MeV < ∆E < 100 MeV. From this fit we obtain 106.6± 12.0
signal events, in good agreement with expectations. The sliced projections in the small
signal region on each of the variables is shown in Figure 7.2.

Figure 7.1: ∆E −Mbc distribution of SVD1 data.

7.2 Angular analysis

In the previous analysis of SVD1 data, a two-dimensional binned fit of the distribution
of cos θtr and cos θ1 was performed . In order to do this the correlation between the two
angles, the reconstruction efficiency and the background shape need to be intensively
studied. However the purpose of repeating this analysis is to briefly check that the central
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Figure 7.2: Projections of the fitted ∆E and Mbc distribution of SVD1 data.

∆E Mbc

µmain −0.3± 0.1 MeV µ 5.2795 GeV/c2

σmain 6.4± 0.1 MeV σ 2.81± 0.03 MeV/c2

f 0.68± 0.01
µtail −4.2± 0.6 MeV
σtail 20.9± 0.9 MeV

Table 7.3: The fitted signal parameters of the 2D fit of ∆E and Mbc on signal MC.
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value of R⊥ and R0 can be reproduced, rather than optimizing the statistical error. There-
fore a similar but simpler method is chosen: fitting both angles simultaneously but not in
two dimensions.

Because the angular distributions of cos θtr and cos θ1 are used we can extract R⊥ and
R0. The three polarizations are modeled separately using the shapes determined from
the signal MC as has been done for the full analysis (see Section 4.1.2). However now
we do not need to define a CP -even shape. The angular distributions are then fitted
simultaneously but each one-dimensionally. During the simultaneous fit R⊥ and R0 are
common parameters. The signal PDF of each of the two angles reads:

Ptr
sig(cos θtr) = R0Ptr

0 (cos θtr) +R⊥Ptr
⊥ (cos θtr)

+(1−R0 −R⊥)Ptr
‖ (cos θtr), (7.2)

P1
sig(cos θ1) = R0P1

0 (cos θ1) +R⊥P1
⊥(cos θ1)

+(1−R0 −R⊥)P1
‖ (cos θ1), (7.3)

where P0, P⊥ and P‖ are the probability density function of cos θtr or cos θ1. As in the
previous analysis, the shape of the background events is not left as a free parameter in the
fit but is determined beforehand. This is done by fitting the data in the sideband region
(Mbc < 5.27 GeV/c2) with a constant for cos θtr and a linear function for cos θ1 . The fit
parameters are summarized in Table 7.4 and the fitted cos θtr and cos θ1 distributions are
shown in Figure 7.3

cos θtr cos θ1
slope 0.12± 0.06
χ2 0.51 0.79

Table 7.4: Fitted parameters of the cos θtr and cos θ1 distributions of the SVD1 data side-
band region.

The total probability density function is constructed from the signal and background
PDFs:

Ptot = fsigPsig + (1− fsig)Pbkg. (7.4)

In this cross-check analysis fsig is kept as a constant corresponding to the average signal
fraction in the small signal region of the SVD1 data. This fraction is obtained from the
yield fit on the SVD1 data, shown in Section 7.1. The previous analysis however, used
an event-by-event signal fraction. The fit in this analysis is performed on the small signal
region, which is justified because the background shape is determined beforehand from
the data of the sideband regions.

The fitted angular distributions of the SVD1 data are shown in Figure 7.4 and to be
compared with those published in the previous analysis shown in Figure 7.5. The fitted
R0 and R⊥ fractions are:

R⊥ = 0.27± 0.10,
R0 = 0.54± 0.10,

while the previous analysis obtained:

R⊥ = 0.19± 0.08,
R0 = 0.57± 0.08,



7.3. LIFETIME MEASUREMENT 159

Figure 7.3: Fitted cos θtr (top) and cos θ1 (bottom ) distributions of the sideband region of
SVD1 data.

However, we cannot interpret this one sigma deviation as usual as the results are obtained
from the same data set, which means that the results are correlated. Still considering the
fact that this analysis is done with a simplified fitting method and that different software
versions are used, we conclude that the result is satisfying enough.

7.3 Lifetime measurement

Neither the resolution parameters nor the relevant software versions used in the previous
analysis are still available. Therefore the cross-check of the lifetime is performed with
the software version available at the time of this test (ICHEP04). Note that for the total
analysis even more recent software and resolution parameters are used (ICHEP06). In this
cross-check analysis, the BCP vertex is reconstructed from the two D mesons, as in the
full analysis. However the IP tube constraint is only implemented in the very last software
version. To be compatible with the previous analysis we use the IP profile as a constraint
instead of the IP tube. The vertex of the tag-side is obtained in the same way as explained
in the full analysis. The data are again subject to more stringent conditions on the vertex
quality. We require ∆t < 70 ps and χ2/ndf < 100, which leaves us with 108 ± 14 signal
events.
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Figure 7.4: Fitted cos θtr and cos θ1 distributions of the SVD1 data. The red, blue and green
curves represent the contributions of the A0, A⊥ and A‖ signal amplitudes, shown above
the background level.

Figure 7.5: Fitted cos θtr and cos θ1 distribution of the SVD1 data in the previous analysis.
The red, blue and green curves represent the contributions of the A0, A⊥ and A‖ signal
amplitudes, shown above the background level.
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Figure 7.6: Fitted true proper-time distribution of the signal MC.

7.3.1 Signal MC

Figure 7.6 shows the true proper-time distribution of the signal MC. When fitting this
distribution with just an exponential function, we obtain the following lifetime:

τgen = 1.532± 0.009 ps, (7.5)

which corresponds to the generated lifetime of 1.53 ps.
The reconstructed proper-time distribution of the signal MC events is shown in Fig-

ure 7.7. This distribution is fitted with an exponential function convoluted with the res-
olution function, and a wide Gaussian is added to model outlier events. The form of the
PDF for the signal MC events is identical to the one employed in the full analysis. The
resolution parameters are set to the “standard” ones and the extracted lifetime is

τMC,stand = 1.60± 0.02 ps, (7.6)

Because this result is more than three sigma away from the true value some effort is put
into looking at these resolution parameters.

Only the D mesons and the beam profile are used to obtain the BCP vertex, therefore
there is a large resemblance with the vertex properties of the B0 → D+D− study. In the
latest B → D+D− analysis from Belle [59], the resolution parameters are determined
specifically for that decay mode by fitting the residual distribution. Due to the similarity of
the two analyses, we also studied the proper-time fit of the signal MC using the resolution
parameters of the B → D+D− analysis, in order to understand the size of the impact of
these parameters on the extracted lifetime value. The result, using the parameters from
the B → D+D− analysis is

τMC,D+D− = 1.51± 0.02 ps (7.7)

and the fitted distribution is shown in Figure 7.8.
Because of a rather large dependence on the resolution parameters, we studied the

resolution distribution in more detail by looking, for example, at the vertex residual distri-
bution of the BCP meson (see left plot of Figure 7.9). This distribution is constructed from
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Figure 7.7: Fitted proper-time distribution of the signal MC using the standard resolution
function.

Figure 7.8: Fitted proper-time distribution of the signal MC using the resolution parame-
ters of the B → D+D− analysis.
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the difference between the true and reconstructed proper times, i.e. ∆t = tCPgen − tCPrec . In
this plot we have merely superimposed the resolution function on this distribution using
the standard parameters. In the right plot of Figure 7.9 the resolution distribution is fitted
with the detector resolution function which is explained in Section 5.2:

Rdet(∆t) = (1− ftail)G(∆t, (smain + ξstail)σvtx)
+ ftailG(∆t, stlml(smain + ξstail)σvtx). (7.8)

The parameters in red are obtained from the fit. The results of the fit are summarized in
the first column of Table 7.5. For comparison the standard parameters for SVD1 and the
parameters from the B → D+D− analysis are also displayed in the same table.

Figure 7.9: Vertex residual distribution with standard resolution function (left) and fitted
resolution function (right).

B0 → D∗+D∗− Standard B0 → D+D−

smain 1.07± 0.01 1.036 1.16± 0.02
stail 0.13± 0.01 0.07 0.19± 0.02
ftail 0.05± 0.01 0 0.07± 0.01
stlml 2.92± 0.13 0 3.54± 0.17

Table 7.5: Detector resolution parameters obtained from the residual distribution (left),
the standard parameters for SVD1 MC (center) and the parameters obtained from the
B → D+D− analysis (right).

When now fitting the signal MC proper-time distribution with the resolution parame-
ters obtained from the residual distribution we obtain a lifetime of

τMC,stand = 1.56± 0.02 ps, (7.9)

The reason why this does not give exactly the generated lifetime is (besides fluctuations
from the simulation) also due to the fact that only the detector resolution parameters
have been tuned by ourselves. The other parameters of the resolution function are still the
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standard ones. In the previous analysis the standard resolution parameters were used but
scale factors were obtained from similar analyses (eg. B0 → D∗+D−) and from a control
sample, however the exact value of these parameters is not stated in the Belle note.

Figure 7.10: Fitted proper-time distribution of the signal MC using the resolution param-
eters obtained from the residual distribution.

7.3.2 Proper-time distribution for background events

The probability function used to describe background events in SVD1 data is obtained
by fitting events in the sideband region, i.e, Mbc < 5.27 GeV/c2. The function used to
parametrize these background events is a simplified version of what is described in the
previous analysis, where a distinction was made between one-track and multi-track ver-
tices. However here we use

P(∆t) =
(

(1− fδ)
1

2τbkg
e−∆t/τbkg + fδδ(∆t)

)
⊗ G(µ, σbkg). (7.10)

The red parameters are obtained by fitting the sideband events. The results are shown in
Table 7.6 and the fitted distributions are shown in Figure 7.11.

fδ 0.30± 0.18
τbkg 1.38± 0.18 ps
µbkg −0.05± 0.05 ps
σbkg 0.72± 0.19 ps

Table 7.6: Fitted parameters of the sideband events of SVD1 data.

7.3.3 Lifetime fit

The lifetime of the B0 meson is now fitted using only SVD1 data. This is not a new
measurement so we can use it to study the effect of the resolution parameters on the
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Figure 7.11: Fitted proper-time distribution of the sideband events of SVD1 data.

data. Figures 7.12, 7.13 and 7.14 show the fitted lifetime distribution using the standard
resolution parameters, our own obtained resolution parameters and the parameters from
the B → D+D− analysis, respectively.

In the Belle note of the previous B → D∗+D∗− analysis, a lifetime of τSVD1−old =
1.7± 0.2 ps is measured.

The measured B lifetimes for the three different settings are shown in Table 7.7. The
variations between the results are well below one standard deviation. The result is compat-
ible with the value τSVD1−old = 1.7± 0.2 ps obtained in the previous analysis. Remarkably
we obtain a smaller statistical error than in the previous analysis. This is probably due
to improvements in the reconstruction algorithms of the general Belle software since the
time of the previous analysis.

Standard B → D+D− B → D∗+D∗−

τSVD1 1.68± 0.14 ps 1.60± 0.16 ps 1.64± 0.15 ps

Table 7.7: Fitted lifetime in SVD1 data using different resolution parameters.

7.4 CP measurement

The repetition of the CP fit is performed in a much simpler way than what is done in the
full analysis or than what was done in the previous analysis. We rely on many software
functions of the Belle software library such as the tagging algorithm and the algorithm
which determines the tag vertex. The software versions used in the previous analysis are
not available anymore which makes a detailed comparison study even more challenging
for this CP measurement.

More effort is spent on testing the software packages, the normalization procedure
and plotting of the fitted PDF on the data. A fast MC is used to check that the basic fitting
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Figure 7.12: Fitted proper-time distribution using standard resolution parameters, on
SVD1 data.

Figure 7.13: Fitted proper-time distribution using our own obtained resolution parame-
ters, on SVD1 data.
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Figure 7.14: Fitted proper-time distribution using the resolution parameters from the B →
D+D− analysis, on SVD1 data.

procedure is correct. However this is not intended to be used for a linearity test or for
statistical examinations of the error distribution because the model used is too simplified.

Fast MC samples are generated with a proper-time distribution according to:

P(∆t) =
e−|∆t|/τ

4τ
[
1±

(
S ′ sin(∆m∆t) +A cos(∆m∆t)

)]
⊗R,

where R is the standard resolution function and S ′ = S/η SM= − sin 2β. A wrong tag
fraction of w = 0.23 is taken into account but the dependence on r is ignored. Background
events are generated according to the function described in Eq. (7.10). The signal fraction
(f) is not calculated on an event-by-event basis but a constant ratio is used. The MC
samples are generated with a high statistics of 20000 events per sample in the small signal
region. The generated data are then fitted with the following function:

P(∆t) = f
e−|∆t|/τ

4τ

[
1 + q(1− 2w)

(
(1− 2R⊥)S ′ sin(∆m∆t) +A cos(∆m∆t)

)]
+ (1− f)Pbkg(∆t), (7.11)

where R⊥, w and f are now average values. The CP -odd and the signal fraction are set
to be the observed result of the SVD1 analysis. Figure 7.15 shows an example of a fitted
fast MC sample generated with A = 0.3 and S ′ = 0.6. The fit gave the following result:

A = 0.29± 0.02,
S ′ = 0.58± 0.03.

Many different settings for the CP -violating parameters are generated and fitted. Each
time the results are found to be compatible with the generated values.

A study is also performed on 780 signal MC events in the small signal region, using the
fully reconstructed MC sample for the signal events, which contains the detector response.
The generated CP -violation parameters are set to the Standard Model predictions, i.e.
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Figure 7.15: CP fit of the toy MC, the green line shows the background contribution over
the background events, the red, blue and black line represent the B0, B0 and total PDF,
plotted over the corresponding distributions, respectively.

A = 0.00 and S = −0.72. Background events are generated with the fast MC according to
the shape of the proper-time distribution in the sideband region. The proper-time is again
fitted with the PDF described in Eq. (7.11) and the results are

A signal MC = −0.03± 0.10,
S ′ signal MC = −0.80± 0.13.

The fitted proper-time distribution is shown in Figure 7.16. The results are very close to
the generated values which shows that the fitting procedure in this simplified model is
satisfactory. Finally the CP fit is performed on the data. In the previous analysis the CP
fit was performed on 129 signal events and the model included event-by-event CP -odd
fractions and signal fractions. All these differences will result in a larger statistical error
on the CP parameters, which is fine as it is not our aim to improve the accuracy of the
result. Figure 7.17 shows the fitted SVD1 data of the cross-check analysis. The result is

A = −0.46± 0.33,
S ′ = −0.66± 0.74,

which is compatible with the Standard Model prediction. The result of the previous anal-
ysis is

A = −0.26± 0.26,
S ′ = −0.75± 0.56.

Given the different fitting functions and software used, and the different values for theCP -
odd fraction, we still obtain a satisfactory result for the cross check of the CP parameters:
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Figure 7.16: Fitted proper-time distribution of tagged B0 events (red) and B0 events
(green) of the signal sample for SVD1 configuration. The square symbols show the back-
ground events.

the direct CP -violation parameter within one standard deviation from each other and the
indirect CP -violation parameter very close to each other. Note however that the result of
the CP fit on SVD1 data only in the main analysis is closer to the previous Belle result than
the result presented in this Chapter. This can be due to larger overlap of decay channels
reconstructed, or due to the larger resemblance of the PDFs of the proper-time.

We can conclude that we have obtained the same reconstruction efficiency and yield
in this cross-check analysis with respect to the previous analysis. The comparison of the
CP -odd fraction, lifetime measurement and CP -violation parameters are consistent as
well.
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Figure 7.17: Fitted proper-time distribution of tagged B0 events (red) and B0 events
(green) of the SVD1 data.



Conclusion

I
N this dissertation we have presented a study of the CP asymmetry in the B0 →
D∗+D∗− decay, based on a data sample of 657 × 106BB events recorded with the

Belle detector. The decays are produced by the Υ(4S) resonance at the electron-positron
asymmetric-energy accelerator KEKB at Tsukuba, Japan.

We enhanced the fraction of B0 → D∗+D∗− events in the sample by applying selec-
tion criteria and extract 554 ± 30 signal events, with a purity of 55%, from an unbinned
two-dimensional maximum likelihood fit of the beam-constrained mass and energy of the
reconstructed B0.

As the final state consists of two vector mesons the CP eigenvalue can be +1 when
the decay proceeds through the CP -even S and D waves or −1 for the CP -odd P wave.
This superposition dilutes the measurement of the CP asymmetry. Therefore we have
performed a time-integrated angular analysis in the transversity basis and obtained a CP -
odd fraction of:

R⊥ = 0.125± 0.043(stat)± 0.023(syst),

which is consistent with the prediction from theory as well as the previous measurements.
The time-dependent decay rates of a neutral B meson to a CP eigenstate is given by

P(∆t) =
e−|∆t|/τB0

4τB0

{
1 + q

[
S sin(∆m∆t) +A cos(∆m∆t)

]}
,

where q = +1(−1) when the other B meson in the event decays, as a B0 (B0) and
∆t = tCP − ttag is the proper time difference between the two decays. τB0 is the neutral B
lifetime, ∆m the mass difference between the two B0 mass eigenstates and S and A are
the CP -violating parameters:

S =
2Im(λ)
|λ|2 + 1

, A =
|λ|2 − 1
|λ|2 + 1

,

where λ is a complex parameter depending on the B0−B0 mixing as well as on the decay
amplitudes for both B0 and B0 to the CP eigenstate.

At the quark level the B0 → D∗+D∗− decay is a b → ccd transition, where the tree
amplitude is CKM-suppressed. The contribution of penguin diagrams in this decay is es-
timated to be at the percent level [1]. When ignoring penguin corrections, the Standard
Model prediction for the CP parameters isAD∗+D∗− = 0 and SD∗+D∗− = −ηD∗+D∗− sin 2β,
where β = arg[−VcdV ∗cb]/[VtdV ∗tb] an angle of the unitarity triangle and η is the CP eigen-
value of the D∗+D∗− eigenstate. Any large measured deviation with respect to the predic-
tion can be a sign of New Physics.
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The B0-meson decay-vertices are obtained using the reconstructed D-meson trajec-
tories and the beam spot profile. The model of the time-dependent decay rate is mod-
ified to incorporate the effect of incorrect flavor assignment, the CP -odd dilution and
the background. We performed various cross-checks such as a fit to the CP asymme-
try of the control sample, B0 → D(∗)+D

(∗)−
s which gives A = −0.02 ± 0.03(stat) and

S = −0.07 ± 0.04(stat) and is consistent with no CP asymmetry. The lifetime fit to the
B0 → D∗+D∗− is consistent with the world average value. Finally, a repetition of the
analysis on the first 152 × 106 BB events was performed and the results are within the
uncertainty consistent with the previous Belle analysis.

The result of the maximum unbinned likelihood fit of the CP -violating parameters in
the B0 → D∗+D∗− channel on the full data set available by the summer of 2008 is:

S ′D∗+D∗− = −0.96± 0.25(stat)+0.12
−0.16(syst),

AD∗+D∗− = +0.15± 0.13(stat)± 0.04(syst),

where S ′D∗+D∗− = 1
ηSD∗+D∗− . This result corresponds to an evidence of CP violation

with a 3.5σ significance. These measurements are consistent with and more precise than
the previous results. They are also in agreement with the Standard Model prediction for
tree decays. To extract a conclusion on the existence of New Physics, the statistical error
on the CP violating parameters needs to be reduced. Therefore an experiment which
provides even more luminosity is needed. This could be achieved with the new generation
experiment at KEK, which will collect larger statistics: the super-Belle experiment. Fur-
thermore the theoretical understanding of the large-distance QCD effects of the final state
hadrons needs to be improved in order to distinguish New Physics effects from final state
effects. This problem however can be addressed by measuring proper-time differences
in the Bs → D∗+s D∗−s decay simultaneously with the B0 → D∗+D∗− decay as they are
related through the U-spin symmetry such that the CP violating effect should be similar
in both decays. We wait therefore for the LHCb experiment which, contrary to Belle, can
probe both the Bs as well as the B0 decays.
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