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ABSTRACT
This paper presents a model for estimation of average travel time on signalized urban lane using cumulative plots. The plots are generated based on the availability of data: a) case-D, for detector data only; b) case-DS, for detector data and signal timings; and c) case-DSS, for detector data, signal timings and saturation flow rate. The performance of the model for different degrees of saturation and different detector detection intervals is consistent for case-DSS and case-DS whereas, for case-D the performance is inconsistent. The sensitivity analysis of the model for case-D indicates that it is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.   
Keywords:  MACROBUTTON 

 MACROBUTTON Urban travel time, Cumulative plots, Lane travel time, Stop-line detectors
INTRODUCTION
In urban networks, detectors are generally used for signal control. If the data is also used for travel time estimation and fed back to the traffic management and control systems then, it will contribute to effective and efficient management of the network.
Earlier research on travel time estimation models via detectors on signalised urban links are based on developing the regression relationship between detector counts, occupancy and mean intersection delay using traffic simulation modelling [1-3] or real data [4]. Sisiopiku and Rouphail [5] provide a review of the use of detector output for travel time estimation. The regression analysis models provide a statistical relationship between input (occupancy, flow, green split) and output (travel time) without explicitly addressing the traffic processes that determine the travel time. These models are often site specific and require calibration of parameters for real application. The regression analysis is observed for detectors far from the stop-line and therefore cannot be applied for stop-line detectors. 
The proposed model integrates stop-line loop detector data with signal controller data and considers saturation flow rate. Stop-line loop detectors are detectors at the stop-line near to the intersection (FIGURE 1) and generally provide aggregated counts during detector detection interval. Signal controller provides signal timings such as signal phase plan and start and end time of each phase. Saturation flow rate is a parameter specific to each site under study. It is determined for each lane at the intersection and depends on factors such as road geometry and traffic stream characteristics. 

The model can estimate the performance of the system and Level of Service for different intersections. It can also be applied for ITS applications such as Advanced Traveller Information Systems and Public Transport Priority Systems. 

This paper is structured as follows: first the development of the model is discussed followed by its testing on a controlled environment and finally, the results from its sensitivity analysis are presented. 
MODEL
In this paper the travel time on a link between two consecutive intersections is defined as the time needed to travel from the entrance of the upstream intersection (upstream end) to the entrance of the downstream intersection (downstream end). The classical analytical principle for travel time estimation defines, total travel time (FIGURE 1) for all the N number of vehicles, that arrive during ∆t time interval at the upstream end, as area (A) between cumulative plots at the upstream end (CPUS(t)) and at the downstream end (CPDS(t)). Average travel time per vehicle is the ratio between total travel time and number of vehicles arrived. 
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FIGURE 1 Illustration of analytical methodology for travel time estimation.

Based on the above principle, in this research analytical modelling is performed to accurately estimate cumulative plots. For real application there are certain issues to be addressed such as, issue due to a) aggregated detector counts from stop-line detector; b) error in cumulative plots due to mid-block sources and sinks (e.g. parking), and detector counting error; c) unknown real turning proportions. Real turning proportions are required to estimate i) the proportion of the flow to the study link from shared-use lane at upstream intersection and ii) the cumulative plot for each lane of the multi-lane link. The complicated real world problem with multi-lane link and shared-use lanes can be fragmented into the simplified problem of estimation of travel time on each lane, where the CPDS(t) is estimated by the detector at the downstream end of the lane and CPUS(t) is estimated by integrating the flow from different lanes at upstream intersections.
This paper addresses the first issue, where aggregated counts from the stop-line detectors are known and fluctuations in the flow due to signals are unknown. For this we make a hypothesis that if a) stop-line detectors are present on all the lanes that contribute to cumulative plots; b) detectors are perfect and mid-block source and sinks are absent; c) real turning proportions are known, then the integration of detector data with signal controller data may provide accurate cumulative plots. The aggregated counts defined here, are the respective counts for the study lane as obtained by appropriate scaling of the actual detector counts with known turning proportions. 
To generalise the model, cumulative plots at the location of the detector are estimated for the three cases depending on the availability of the data a) Case-D: Only detector data is available; b) Case-DS: Detector data and signal controller data is available and c) Case-DSS: Detector data, signal controller data and saturation flow rate is available. The slope of the plot defines the flow pattern at the respective entrance of the intersection.

We define Nd and q as the counts and flow, respectively during the detection interval of DI seconds. 

Case-D: The flow pattern (FIGURE 2a) is assumed to be uniform throughout the detection interval (eqn (1)). The assumption is reasonable for shorter detection intervals and in the absence of any further information can be applied for larger detection intervals.
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FIGURE 2 Flow pattern for (a) case-D and (b) case-DS.
Case-DS: A stepwise flow pattern is defined (eqn (2)) where it is uniform only during the signal green period within the detection interval and during signal red period there is no flow (FIGURE 2b).This captures the fluctuations in the flow pattern even for larger detection intervals. Flow patterns during each green period of the detection interval are parallel to each other. 
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We define gd,i as the i-th green period during the detection interval. 

In FIGURE 2b, two green periods are present during the detection interval and the counts are distributed to each green interval in proportion to the corresponding green time. The count, Ni, during each i-th green period (gd,i) in the detection interval is assumed to be in proportion to gd,i (eqn (3)). 
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Case-DSS: For realistic representation of the cumulative plots, saturation flow rate is considered and the counts during the green interval are segregated into counts from the saturation flow pattern and counts from the demand pattern. We define the demand, which is the cumulative plot (CPdemand) at the location of the stop-line detector assuming point (vertical) queue at intersection. It can also be defined as the expected cumulative plot at the location of stop-line detector if there is no restriction, at the intersection, on the flow of the vehicles.
At a signalised intersection (during the green phase) the vehicles from the queue are effectively discharged at saturation flow. Thereafter, the flow pattern follows the demand pattern. If demand and saturation flows are known, then accurate and realistic flow pattern considering saturation flow and non-saturation flow can be estimated. 

For simplicity, we focus on green (g) for a complete signal cycle instead of gd,I (i-th green period during the detection interval). The g can extend in more than one detection interval. For instance, in FIGURE 2b, the first green g has the component gd,1 during the indicated detection interval. The count, Ng, during a g is obtained by respectively adding the counts from all its components, if split in more than one detection interval. Out of Ng vehicles, ns vehicles enter the intersection at saturation flow pattern and the remaining (Ng - ns) follow the demand pattern. The maximum number of vehicles which can depart during g is Nmax(=s*g), where s is saturation flow rate (vehicles/second). 

For a link between two consecutive intersections as shown in FIGURE 1, the demand pattern, for the detector at the downstream end of the link, can be deduced from CPUS(t). However, for a network there can be certain links where the CPUS(t) is unknown such as at the entrance of the network, here demand can be assumed. Therefore, the following two cases of assumed and deduced demand patterns are considered to estimate cumulative plots for case-DSS.

(a) Assumed demand pattern: The detector counts represent demand for under-saturation and saturation situations. However, for over-saturation situation, the counts are upper bounded by capacity and that is less than true demand. Therefore, demand estimated in this case is termed as “assumed demand”.

The demand flow pattern can be assumed to follow a uniform pattern (deterministic) or can be assumed to be distributed according to some probability distribution (stochastic). To simplify the analysis it is assumed that demand is uniform during the signal cycle. As shown in FIGURE 3, Ng numbers of vehicles are counted during the green phase that represents the uniform demand for the signal cycle. By superimposing saturation flow pattern (during the green phase) on the uniform demand pattern the following relationship can be geometrically obtained:
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FIGURE 3 Assumed demand: Geometrical relationship between ns and Ng assuming uniform demand pattern during the current signal cycle.

The saturation flow starts at the beginning of the green period and lasts for ns/s time units. Therefore, the flow pattern is defined as follows:
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where: t is the time since the start of the green within the green period.
Eqn (4)  provides the ratio of the counts in saturation flow rate (ns) to the total counts during a green interval (Ng). For under-saturation and saturation situations, the ratio Ng/Nmax represents degree of saturation (X) and ns/Ng is the proportion of demand in saturation flow rate. For a given degree of saturation, the higher the green split (g/c) the lower the ns/Ng ratio; and for near to saturation situations the ratio is close to one. This is as expected, because as the demand approaches capacity almost all the vehicles are at saturation flow rate. 

(b) Deduced demand pattern: In this case, we are interested in estimating CPDS(t), given CPUS(t). The demand can be deduced from the upstream cumulative plot. We name this demand the “deduced demand” and it is the horizontal shift of the CPUS by free-flow travel time (ttfreeflow) of the link i.e., CPUS(t-ttfreeflow), assuming no platoon dispersion. The assumption for no platoon dispersion is made for simplicity. It is found (presented in next section) that the model performs reasonably well with this assumption. For more accurate estimation a platoon dispersion model can be adopted to estimate the demand. 
The flow is defined as zero for red intervals. For green intervals, if CPdemand is greater than the cumulative counts (CPDS(t)) then the flow is at saturation flow rate otherwise the flow pattern is same as demand pattern (see eqn (6)). 
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In Figure 4, the known parameters are: the upstream cumulative plot, CPUS(t); reference position (position a in the figure) for the CPDS(t); signal timings at downstream intersection; and counts from the downstream end of the link (Ng). Flow pattern at downstream intersection for the current detection interval is unknown. This is obtained by no flow during red period (a to b) and during green period, the flow is at saturation flow until CPdemand(t) is greater than CPDS(t) (b to c) and thereafter flow follows the demand pattern (c to d). 
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Figure 4: Illustration of estimation of CPDS(t) for case-DSS with demand deduced from CPUS(t).

It is to be noted that the flow pattern is estimated for each detection interval (case-D and case-DS) or for each signal cycle (case-DSS) and the polyline for the cumulative plots are generated by cumulating the profiles from each estimation interval taking into account the residual queue from the last interval. 
MODEL TESTING
The model is tested using a microscopic traffic simulator, AIMSUN [6] on a single lane link between two consecutive signalized intersections. In the current analysis, flow from three different directions at upstream intersection and a through movement at downstream intersection is considered. Scenarios for different degrees of saturation in the range of 0.5 to 1.2 at downstream intersection are simulated. The performance of the model, defined in terms of accuracy (%) (eqn (7)), is evaluated for different detection intervals from 10 to 360 seconds. 
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Where, N is the total number of time intervals. Actuali  and estimatedi are the average actual travel time and average estimated travel time for each time interval, respectively.

The results presented here are from simulation with signal cycle time of 120 seconds and green split of 0.5 at both upstream and downstream intersection. Average travel time for 6 minutes is estimated from simulation of one hour for each scenarios mentioned above. 

For over-saturation situations if links are short then the queues are likely to extend to the upstream end of the link. Such situation will affect the saturation flow rate at the upstream intersection and therefore for case-DSS, the saturation flow rate has to be appropriately corrected. It should not affect the estimation for case-D and case-DS. The aim of the current analysis for case-DSS is to test the methodology for a given saturation flow rate and therefore a constant saturation flow rate is considered with length of the study link of around 1 km. It makes sure that queue on the study link does not extend to the upstream end of the link.
FIGURE 5 represents the graphs for detection intervals versus accuracy for the three cases. Each point on the graph represents the average of the accuracies obtained from different degree of saturation for a given detection interval. As expected, short detection intervals have higher accuracy levels irrespective of the cases and for detection intervals less than 30 seconds the estimation is very accurate. Detection interval is not critical if signal timings are available. Comparable accuracy can be obtained from a) detector data from larger detection intervals with signal timings and b) detector data from shorter detection intervals without signal timings. If detection interval is short, then signal timings and saturation flow rate are not required. For case-D, the performance is not consistent for different detection intervals and in this example the accuracy drops significantly to 80% when detection interval is close to integral multiple of signal cycle for instance 120, 240 and 360. This inconsistency in the performance for case-D is analysed in the next section. 
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FIGURE 5 Comparative overview of the performance of the three cases as detection interval versus accuracy graphs.
SENSITIVITY ANALYSIS: CASE-D
The cumulative plots generated for case-DSS are realistic and accurate (FIGURE 6), whereas for case-D they are simplest but with inconsistency in the performance for travel time estimation. Therefore the sensitivity analysis for case-D and case-DS is performed, considering case-DSS as a reference, and with a goal to determine a) the parameters which contribute to the inconsistency and b) the values of the parameters for which the model is most accurate and reliable. 
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FIGURE 6 Illustration of the cumulative plot for different cases and individual vehicle identification. 

Following parameters are considered for the analysis:

a) Detection Interval: defined by variables (*c, where ( is a rational number and c is signal cycle time. 

b) Signal green time: defined by variable g. It can be shown that as the green split (g/c) increases case-D and case-DS approaches case-DSS.
c) Sequence of signal phases in the detection interval defined by variables α*c (0 ≤ α ≤ 1) which is the time from the start of the detection interval to the start of the green period within the detection interval or in other words it is the offset of the green with respect to detection interval.  
For a given detection interval and signal timings there can be different patterns of signal timings within the detection interval. FIGURE 7a represents different patterns of signal timings within a detection interval. These patterns determine the shape of the cumulative plot for case-DSS. For consecutive detection intervals these patterns will change from one detection interval to another, except for detection interval which is integral multiple of signal cycle. However, for fixed signal cycle with rational value of (, the pattern will repeat itself after certain time. For instance, in FIGURE 7b where ( = 1.5 third pattern is similar to first pattern. 
To make the analysis valid for any cycle time the above defined variables are normalised with signal cycle time (c).

d) Degree of saturation (X): The degree of saturation determines the proportion of counts in the saturation flow rate and hence the shape of plots for case-DSS.
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FIGURE 7 Illustration of (a) several patterns of signal timings within a detection interval; and (b) patterns for consecutive detection intervals with ( = 1.5 .
In the previous section, the performance was evaluated by comparing the estimated and actual travel time using traffic simulation on a network. In this section for sensitivity analysis, we evaluate the deviation of cumulative plot for case-D from that of case-DSS (assuming uniform demand) and estimate the corresponding accuracy in the travel time estimation by simple geometry. To explain the methodology for sensitivity analysis we consider an example (FIGURE 8). For travel time estimation one is interested in the between the cumulative plot for CPUS and CPDS. The shape of the plot is defined by the parameters: (, g/c, α and X. In the figure, the performance for CPUS, is evaluated for a scenario where ((α + g/c ≤1) and (1 +α + g/c < β≤2) and (X <1)). 
The accuracy for a combination of the parameters is defined as follows (eqn (8)):
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where: AreaCase-DSS  and AreaCase-D are the areas under the plots for case-DSS and case-D, respectively as presented in the figure. 
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FIGURE 8 Example for evaluation of case-D with case-DSS as reference. 
The analysis is performed for 0<( ≤ 2; 0.5 ≤ g/c ≤ 0.9; 0 ≤ α ≤ 1 and 0.5 ≤ X ≤ 1.2. The performance of the model is defined in terms of accuracy (%) and standard deviation ((2). The accuracy and standard deviation presented for a parameter (say () is the 5th percentile and standard deviation of the accuracies (eqn (8)) obtained from different scenarios considering all possible combinations with other parameters (g/c, α and X), respectively. So, accuracy is the minimum accuracy for 95% of the scenarios and standard deviation is an indicator for the relative reliability of the model. Higher (2 indicates lower reliability and vice versa.  
A) Sensitivity with respect to (: 

The model is highly sensitive to detection interval and ( is identified as a critical parameter. FIGURE 9a and FIGURE 9b represent graphs for accuracy and (2 versus (, respectively. The accuracy decreases from more than 95% to less than 85% with increase of ( from 0 to 1, respectively and thereafter it increases(> 90%)  till ( = 1.5 and decreases again to less than 85% for ( close to 2. On the contrary, (2 monotonically increases for 0<( <1 and 1.5<( <2 and decreases for 1.5<( <2 (FIGURE 9b). This indicates that the model is least reliable when ( is close to an integer (1 and 2) and for 1≤( ≤ 2 the model is most accurate and reliable when  ( is close to 1.5.  

B) Sensitivity with respect to g/c: 

FIGURE 9 c and d represent graphs for accuracy and (2 versus g/c, respectively, for (  equal to 1, 1.5 and 2. The graphs for (  equal to 1 and 2 are the same. Accuracy increases and (2 decreases (reliability increases) with increase of g/c. For high g/c (> 0.85) the model is relatively insensitive to ( and accuracy is more than 95% (FIGURE 9c). Whereas, for lower g/c (<0.4) the model is highly sensitive to (. Relatively higher value of (2 (FIGURE 9d) for  ( equal 1 and 2 is consistent with the results of the sensitivity analysis for ( i.e., the model is least reliable for integer values of (  and most reliable for ( around 1.5. 
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FIGURE 9 Results of the sensitivity analysis for case-D with case-DSS as reference.
C) Sensitivity with respect to α: 
FIGURE 9 e and f represent graphs for accuracy and (2 versus α, respectively, for (  equal to 1, 1.5 and 2. For (  equal 1.5 (FIGURE 9e), the accuracy is generally more than 90% whereas, for (  equal 1 and 2, there is a significant fluctuation in the accuracy from less than 75% (for α around 0.85) to more than 90% (for α around 0.3).  As said earlier, for consecutive detection intervals with fixed signal timings the pattern of signal timings (α) within a detection interval is constant for integral values of ( . The sensitivity of the model to α for integral values of ( , makes it unreliable for such values of (. However, if tuned properly by choosing an appropriate α (e.g. α = 0.3) it can give good estimations. 
D) Sensitivity with respect to X: 
FIGURE 9 g and h represent graphs for accuracy and (2 versus X, respectively, for (  equal to 1, 1.5 and 2. Relatively the model is less sensitive with respect to X and the accuracy increases by 2% for increase in X from 0.5 to 1. The relatively higher value of (2 (FIGURE 9h) for (  equal to 1 and 2 is due to low reliability of the model for integer (.

SENSITIVITY ANALYSIS: CASE-DS 
The difference between case-DSS and case-DS is that case-DSS considers saturation flow rate, and its flow profile depends on demand pattern, green split and degree of saturation.  Similarly to the sensitivity analysis for case-D, the sensitivity analysis for case-DS is performed considering case-DSS as reference and the results are presented in FIGURE 10. It is found that the accuracy for case-DS is generally higher than 94% ((2 < 2%) and is slightly sensitive to the parameters.

 Similarly to case-D, for 1≤ (≤ 2 the highest accuracy and reliability are for ( close to 1.5 (FIGURE 10 a and b). For 0.1≤ g/c ≤ 0.5 the accuracy drops from more than 99% to 96% and for 0.5≤ g/c ≤ 0.9 the accuracy increases back to 99%.  The model is almost insensitive to α and there is slight decrease in accuracy and reliability for 0.75≤α≤0.85. Accuracy and reliability of the model actually increases with the increase in the degree of saturation (FIGURE 10 g, h). For X ≥1, all the counts are in saturation flow and case-DS is same as case-DSS (100% accuracy). 
As the accuracies are generally more than 94% with (2 less than 2%, it is reasonable to conclude that case-DS is generally consistent with case-DSS and even in the absence of saturation flow rate information one could obtain travel time with reasonable accuracy by integrating detector data with signal controller data.  
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FIGURE 10 Results of the sensitivity analysis for case-DS with case-DSS as reference.

EXPLANATION for the FINDINGS
The reason for low reliability at integral values of ( and high accuracy for ( around 1.5 can be explained with a help of an example. Let us consider (=1.5 (Figure 11a) with different patterns of signal timings (α=0, g/c, 0.5*(1-g/c), (1-0.5*g/c)) and compare deviation of the areas for travel time estimation from flow profiles under case-D and case-DS. Then, for case-D, there is always a counter balance for under-estimation or over-estimation of area, which explains the improvement in accuracy. However, for (=1 (Figure 11b), with α=0 and α= g/c there is either underestimation or overestimation with no counter balance area (lowest accuracy) and for α = 0.5*(1-g/c) and (1-0.5*g/c) there is a perfect balance of areas (highest accuracy). Therefore, for integral values of (, the estimation can range from perfect to worst which accounts for its low reliability. 

In the above qualitative comparison we have considered case-DS as a reference instead of case-DSS due to simplicity in illustration of flow profiles. Consideration of flow profiles for case-DSS will not affect the above qualitative comparison. 
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Figure 11: Deviation in area for travel time estimation of case-D from case-DS under different values of α and for (a) β=1.5 and (b) β=1 (assuming area to the right of cumulative plot is of interest).

CONCLUSION
It is shown that if a) stop-line detectors are present on all the lanes that contribute to cumulative plots; b) detectors are perfect and mid-block source and sinks are absent; c) real turning proportions are known, then the integration of detector data with signal controller data provides accurate cumulative plots for travel time estimation. 
When signal timings and saturation flow rate are available (case-DSS), the estimation is very accurate and can be used as a reference. For the other cases, sensitivity in accuracy is tested depending on four parameters (i- (, for the detection interval, ii- g/c, for the green split, iii- α, for offset between detection interval and green period, and iv- X, for degree of saturation).
When signal timings are available (case-DS), the accuracies are generally more than 94% with (2 less than 2%, so it is reasonable to conclude that even in the absence of saturation flow rate information one should obtain travel time with reasonable accuracy by integrating detector data with signal controller data.
In fact, with small values of (, accuracy is close to perfection in case-D also. Yet, the sensitivity analysis for 1≤ ( ≤ 2 indicates that case-D is highly sensitive to detection interval. For ( around 1.5, the model is most accurate with high reliability, whereas, for (  close to 1 and 2, the model is least accurate with low reliability.  In fact, X has relatively little impact on the sensitivity of case-D. As for g/c and α, they are the two secondary most important factors for the sensitivity of case-D; that is when ( is close to 1 or 2.
The explanations for these findings are also provided, which enable us to generalise the results when only detector data is available. For ( >2, detection interval should be chosen such that (  is close to the half of an odd number (e.g., 2.5, 3.5, 4.5, etc.), because of high accuracy and more stability. On the contrary, integral values of ( should be avoided because of its low reliability. If ( is close to an integer, then accuracy and reliability can still be improved with high g/c or choosing α = 0.3. This generalization is consistent with the simulation results presented in model testing section for 
[image: image20.wmf]1

12

 ≤ ( ≤ 3, g/c = 0.5 and α = 0. 

The performance of the model is encouraging and the extension of the model to consider presence of mid-block sources and sinks and absence of real turning proportion is under development.  
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