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ABSTRACT

The neurosphere assay is the standard retrospective assay to test the self-renewal 

capability and multipotency of neural stem cells (NSC) in vitro. However, it has 

recently become clear that not all neurospheres are derived from a NSC and that on 

conventional cell culture substrates, neurosphere motility may cause frequent 

neurosphere ‘merging’ (Singec et al., Nature Methods, 2006; Jessberger et al., Stem 

Cells, 2007). Combining biomimetic hydrogel matrix technology with 

microengineering, we developed a microwell array platform on which NSC fate and 

neurosphere formation can be unequivocally attributed to a single founding cell. 

Using time-lapse microscopy and retrospective immunostaining, the fate of several 

hundred single NSCs was quantified. Compared to conventional neurosphere 

culture methods on plastic dishes, we detected a more than 100% increase in single 

NSC viability on soft hydrogels. Effective confinement of single proliferating cells to 

microwells led to neurosphere formation of vastly different sizes, a high percentage 

of which showed stem cell phenotypes after one week in culture. The reliability and 

increased throughput of this platform should help to elucidate better the function of 

sphere-forming stem/progenitor cells independent of their proliferation dynamics. 
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INTRODUCTION

Stem cells are characterized by their dual ability to self-renew and differentiate, yielding

large numbers of progeny that can form, maintain and regenerate tissues. Due to these 

unique properties, the therapeutic potential of stem cells is significant. However, to fully 

exploit this potential and enlist stem cells therapeutically, we must better understand the 

molecular mechanisms that govern stem cell function. 

Experimental assays that can reliably identify stem cells and help exploring their 

function are indispensable tools to further our fundamental understanding of stem cell 

regulation. The paradigmatic assay of mammalian adult stem cell function is the long-

term reconstitution of blood upon transplantation of hematopoietic stem cells (HSCs) into 

lethally irradiated recipients1. Self-renewal of these rare, phenotypically well-

characterized cells can be unambiguously defined by long-term multilineage engraftment 

at the single cell level and over multiple generations in serial transplantation assays. 

Similarly rigorous experimental paradigms have yet to be developed for most other 

somatic stem cells. In the absence of a functional in vivo assay, the definition and 

characterization of stem cells relies, at least to some extent, on in vitro assays. A case in 

point is the in vitro assessment of neural stem cell (NSC) function of the mammalian 

central nervous system. In serum-free medium and in the presence of mitogens such as 

epidermal growth factor (EGF) and/or fibroblast growth factor (FGF)-2, NSCs can be 

cultured on non-adhesive surfaces as multicellular spheres, termed neurospheres2. The 

extensive proliferation of neurosphere-forming cells has been used as an indicator of stem 

cell function based on the assumption that all neurospheres are derived from a stem cell. 

Over the last 15 years or so, this assay has become an indispensable tool to identify 
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putative stem cells in different regions of the central nervous system in the adult and at 

defined developmental stages, and has also been used to probe the perturbation of their 

self-renewal and differentiation functions in response to numerous regulatory cues3. 

However, just as any other in vitro assay, the neurosphere assay is not without its 

limitations3-8. Neurosphere cultures become heterogeneous with time in culture and the 

frequency of sphere-forming cells reduces to a few percent9. Accordingly, it may be 

problematic to correlate neurosphere numbers with stem cell numbers, as neurospheres 

can also form from progenitor cells4, 8. Thus, the neurosphere assay expands cells that 

proliferate in response to defined growth factors, but not necessarily NSCs. Extensive 

research on HSCs and other adult stem cells has shown that stem cells reside 

predominantly in a relatively quiescent G0 state10, 11 and that even in vitro, primitive cells 

may be quiescent with slower proliferation kinetics compared to more committed 

progenitors12. Importantly, neurospheres are motile and can merge with each other even 

under culture conditions considered as clonal5, 6. At the level of individual cells, NSCs 

have also been observed to spontaneously fuse6. Although a rare event (ca. 0.2% of 

proliferating cells) that appears to lead to cell death, cell fusion could adversely affect the 

genetic composition of NSC cultures.  

Our goal was to develop an alternative to the neurosphere assay that permits i) to 

explore neurosphere formation from single cells in the absence of sphere aggregation, 

and ii) to capture the dynamic behavior of individual neurosphere-derived cells via time-

lapse microscopy completely independent of their proliferation kinetics. Thus one could 

generate a ‘snapshot’ of the single cell dynamics of a given NSC population. Due to the 

heterogeneity of neurosphere cultures, we targeted an assay format that would be 
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amenable to high-throughput experimentation with regards to the number of individual 

stem cells tested. 

We used standard photolithography techniques to generate microwell arrays13-15

from soft and highly hydrated poly(ethylene glycol) (PEG)-based hydrogels16. This 

microengineered culture platform has proven very effective in confining single NSCs and 

in guiding their extensive proliferation to form neurospheres of vastly different sizes. The 

high density of microwells on the arrays allowed a simultaneous tracking of several 

hundred live single cells via time-lapse microscopy, and a quantitative assessment of 

their viability and proliferation kinetics. Retrospective immunostaining of neurospheres 

grown within these arrays confirmed a high percentage of stem cell potential after one 

week in culture on microwell arrays. This platform should serve as robust alternative to 

the conventional neurosphere assay to study NSC function in vitro. 
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MATERIALS AND METHODS

Hydrogel Precursor Synthesis 

Pentaerythriol tetra(mercaptoethyl) polyoxyethylene (4armPEG-thiol), (mol. wt. 

40000g/mol, 98.9% substitution as indicated by manufacturer) and hexaglycerol 

polyethyleneglycol ether (8arm-PEG-OH, mol. weight 10063 g/mol, Mw/Mn= 1.1, 99% 

substitution as indicated by manufacturer) were obtained from NOF Corporation (Japan). 

Divinyl sulfone was purchased from Aldrich (Buchs, Switzerland). 8arm-PEG-

vinylsulfones (8arm-PEG-VS) were produced and characterized as described elsewhere17. 

The final product was dried under vacuum and stored under argon at -20°C. The product 

was analyzed by gel permeation chromatography (GPC) using waters separation module 

equipped with a 515 HPLC pump, a series of Styragel columns (HR2, HR3, and HR4 

with pore sizes 102, 103, and 104 Å, respectively), and waters 410 differential 

refractometer for detection. THF was used as eluent at a flow rate of 1 ml/min at 40°C to 

confirm the identical molecular weight distribution of PEG-OH and PEG-VS. The degree 

of end group conversion was 88.8 % as determined via 1H NMR (CDCl3) on a Bruker 

(400 MHz): 3.6 ppm (PEG backbone), 6.1 ppm (d, 1H, =CH2), 6.4 ppm (d, 1H, =CH2), 

and 6.8 ppm (dd, 1H, -SO2CH=).

Surface Modification of Glass Slides

Microscopic glass slides were modified by a treatment with 3-mercaptopropyl-

trimethoxylsilane (MPS) (Falcone, Switzerland) in order to expose free thiol groups that 

could react with the VS-groups and covalently graft hydrogels to the glass surface. The 

silanization was performed as previously described18. Briefly, the glass slides were 
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cleaned with detergent, bi-distilled water and ethanol and dried on air. In a bath of 150 ml 

toluene, 1.5 ml MPS and 5 drops (~ 0.2 ml) of acetic acid was mixed for 30 min. The 

glass slides were immersed for 30 min, rinsed with toluene and dried on air, followed by 

a baking step of 1 hour at 110°C. Prior to usage, the slides were immersed for 10 min in 

10 mM DTT solution to reduce disulfide bonds, washed with bi-distilled water and dried 

on air. 

Formation of Thin Hydrogel Films on Glass Slides

PEG hydrogels were formed from 8armPEG-VS and 4armPEG-thiol macromers (at 5% 

v/w) as thin films on glass slides as described elsewhere17 (Fig. 1A). PEG-VS was 

dissolved in 0.3 M triethanolamine (TEOA, Fluka, N° 90279), and 4armPEG-thiol was 

dissolved in bi-distilled water. A film of defined thickness (100 µm) was prepared in a 

sandwich structure using a spacer. 

Determination of Hydrogel Swelling 

Gel disks with a volume of 50µl were synthesized as described above, their weight and 

density in air and ethanol before and after swelling at room temperature determined on 

the basis of Archimedes’ buoyancy principle17. A swelling ratio Q (=Volume of swollen 

gels/Volume of dry polymer) of 22.6 +/- 1.9 was determined at 5% solid precursor 

content, corresponding to a water content of approximately 96 %. Relative to the gel 

volume during cross-linking, gels only swelled by a factor of 1.45 (+/- 0.02). The 

minimal swelling led to stable hydrogel films that adhered to the substrate even after 

storing for more than a month in water at room temperature.
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Patterning of Microwell Arrays by PDMS Stamping of Soft Hydrogels

Hydrogel microwell arrays were fabricated via a multi-step soft lithography process (Fig. 

1A). First, a topographically structured silicon wafer was fabricated, then PDMS was cast 

onto this structure, and finally the hydrogel films were patterned in a stamping step using 

this PDMS stamp. A 4-inch Silicon (Si) wafer was designed using the layout editor of 

CleWin. A pattern was selected consisting of 8 squares, each square matching the 

dimensions of a standard 96-well plate. Each square included 33 x 33 = ~ 1’000 wells 

with a diameter of 100 µm and 50 µm distance per well. The data from the CleWin 

program was converted and transferred to the laser-writing machine for the mask 

fabrication conducted in the clean room facility of EPFL. After the writing of the 

chrome-blank mask (Nanofilm, USA), the photoresist was developed, and chrome etched 

two times for 5 min before stripping off the photoresist (2 x 15 min). These steps resulted 

in a mask with transparent and non-transparent parts, which was later used for 

photolithography. The Si wafer was cleaned in oxygen plasma for 4 min and then spin 

coated (1700 rmp) with a 50 µm thick negative photoresist (GM1070, from Gersteltec, 

Switzerland). The coated wafer was prebaked (5 min at 130°C, 4°C/min) before exposing 

for 3 x 13 sec to UV light through the mask and postbaked (40 min at 105°C, 4°C/min). 

The unexposed part was washed away with PGMEA (Propylene glycol monomethyl 

ether acetate) for 2 x 2 min, cleaned with IPA (Isopropyl alcohol) and air-dried. This 

resulted in the desired 3D structured wafer, where the well depth was determined by the 

photoresist thickness of 50 µm. The structured wafer was then used to mold PDMS 

(Sylgard 184 Silicone Elastomer, Dow Corning Corporation, USA). The components 
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were mixed in a weight ratio of 10 parts of base and one part of curing agent. The PDMS 

replicas were carefully peeled off and cut to the desired size. The hydrogel film was 

fabricated as described in the previous section and, after 30 minutes of hydrogel 

crosslinking, the PDMS stamps were pressed onto film. The PDMS was finally released 

from the hydrogel after 90 minutes of complete crosslinking, thus achieving the 3D 

microstructured hydrogel pattern.

Confocal Microscopy to Assess Gel Pattering

Confocal laser scanning microscopy was utilized to qualitatively assess the 

micropatterning process and to determine the dimensions of the microwells. PEG 

hydrogels were stained by covalently immobilizing FITC-conjugated BSA. BSA was pre-

reacted for 30 min at room temperature with a 10-fold molar excess of a heterofuntional 

NHS-PEG-VS PEG linker (Nektar, Huntsville, AL, USA). The PEGylated protein was 

mixed with the precursors solution to graft at the termini of the thiolated PEG macromer. 

Images were acquired using a Leica DMR XA2 motorized upright confocal laser 

scanning microscope (Leica, Germany). Typically, z-stacks were acquired with a 

constant slice thickness of 3 µm, reconstructing a cross section profile of approx. 150 

µm. Cross section analysis and image processing were done using Imaris 6.0 software.

Isolation of Neural Stem/Progenitor Cells

Epidermal growth factor (EGF)-dependent neurospheres cultures were generated from 

subventricular regions of postnatal (young adult; 1 month old) Hes5-GFP transgenic mice 

as previously described19. Briefly, subventricular regions were dissociated in 300 µL 1 : 1 
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papain : ovomucoid mix at 37 °C for 45 min. Papain mix: 30 U/µL papain (Sigma), 240 

µg/mL cysteine, 40 µg/mL DNAse, in L15 (Invitrogen); ovomucoid mix:1.125 mg/mL 

Trypsin inhibitor (Sigma), 0.5 mg/mL bovine serum albumin (BSA; Sigma), 40 ng/mL 

DNA, in L15. The cells in the resulting cell suspension was centrifuged (5 min. 80g), 

dissociated, resuspended and cultured in suspension in neurosphere medium (DMEM/F12 

+ Glutamax, Invitrogen) containing 10 ng/mL EGF (Peprotech), and 1 x B27 supplement 

(Invitrogen) for 4 days at 37°C. The supernatant was then transferred to new flasks 

containing fresh medium and the cells were allowed to grow in suspension for an 

additional 2 days. Neurospheres were passaged with 0.25% trypsin in Versene 

(Invitrogen) followed by mild mechanical trituration with a fire-polished pasteur pipette 

and expanded at least twice before being seeded onto hydrogel microwell arrays in a 1 : 1 

solutions comprising of fresh neurosphere medium and neurosphere conditioned 

medium20.

Time-lapse Analyses of NSC Migration, Proliferation and Neurosphere Growth

Glass slides patterned with hydrogel microwell arrays were fitted with the top of a Lab-

Tek II chamber (NUNC) and sealed with Elastosil silicone glue (Wacker Chemie AG, 

Germany). Dissociated cells from neurosphere cultures (passage 2 to 4) were randomly 

distributed and trapped in microwells by gravitational sedimentation at a density of 1.25 x 

104 cells/mL (corresponding to 2000 cells/96-well-sized pattern). For automated cell 

culture, the slides were placed in the environmental chamber of an inverted microscope 

(Zeiss, Axio Observer.Z1) equipped with a motorized Zeiss scanning stage. The XYZ 

stage was programmed to repeatedly scan across the microwell array surface in a mosaic 
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pattern, acquiring phase contrast images at 10X magnification in defined time intervals 

for a period of up to 4 days, or as specified. The resulting images were then automatically 

compiled into a stack using the Metamorph software (Molecular Devices, USA). 

Microwells containing a single live cell at time point t = 0 were followed over time by 

visual inspection. Cells were scored as dead when they completely ceased to move and 

markedly shrunk in size on the microwell surface. Cell death was confirmed via 

fluorescence microscopy using Propidium Iodide (PI) staining (see Supplementary Figure 

1). PI intercalates into double-stranded nucleic acids. It is excluded by viable cells but 

can penetrate cell membranes of dying or dead cells. PI was added at a concentration of 

1:1000 to the medium and time-lapse experiments were conducted in bright field and 

fluorescence every four hours for a period of three days. Individual cell proliferation 

kinetics were determined by manually scoring the number of cells per microwell at each 

time point. The raw data containing the cell count and the region location was then 

compiled on an Excel spreadsheet for further statistical analysis of the growth kinetics of 

individual live cells. 

Neurosphere areas were measured in phase contrast images using Metamorph software

(region of interest tool) and data was logged in an Excel sheet. Nuclei counterstained 

with DAPI were then counted in the fluorescent image and added to the log sheet.

Migration analysis of Metamorph stacks was performed using an Image J plugin 

(http://rsb.info.nih/ij/plugins/download/MultiTracker_.java). The coordinates of a cell’s centroid in 

each time frame were used to define its migration path. The paths were represented 

graphically by overlaying multiple cell migration paths starting at the origin.
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Retrospective ‘Phenotyping’ by Immunostaining

Cells grown on the arrays were fixed in 4% paraformaldehyde in phosphate-buffered 

saline (PBS, pH 7.4), washed in glycine buffer (0.1 M Glycine in PBS), permeabilized 

and blocked with 0.4% saponin, 4 % BSA in PBS and incubated overnight at 4°C in 

blocking solution containing a combination of the following primary antibodies: mouse 

anti-nestin (1:500; BD Biosciences), rabbit anti-GFAP (1:500; Dako), rabbit anti-β-

TubulinIII (Tuj1; 1:250; Abcam), and mouse anti-O4 (1:500; R&D). Arrays were washed 

3 x 30 min in glycine buffer and incubated for 2 h at room temperature with secondary 

antibodies anti-mouse Alexa 555 and anti-rabbit Alexa 647 (1:500; Invitrogen). Arrays 

were washed 3 x 30 min with glycine buffer, with 10 µg/mL DAPI (Sigma) in the second 

wash. Arrays were stored at 4°C in PBS until visualized using an upright Leica TCS-SP2 

AOBS confocal microscope with a 63x water immersion objective. Images were 

processed using deconvolution software Huygens 2.8 and reconstructed using Imaris 6.0 

software.

Statistics

Data were analyzed statistically by ANOVA followed by pairwise comparisons using 

Fisher’s LSD test. Significance was set at p < 0.05.
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RESULTS

Formation of PEG Hydrogel Microwell Arrays for NSC Culture

To address some of the complexities associated with the conventional neurosphere 

assay3-5, 7, 8, we developed a novel family of arrayed microwell surfaces. We chose 

poly(ethylene glycol)-(PEG)-based hydrogels as substrates for single NSC culture for two 

reasons: i) these materials contain 95-98% water and as a result are very soft (i.e. an 

elastic modulus of a few hundred Pascal17); NSC would be exposed to an environment 

that to some extent recapitulates the biophysical characteristics of their in vivo niche, and 

ii) their extensive hydrophilicity renders the gels inert to protein adsorption and cell 

adhesion. As neurosphere growth occurs in suspension in the absence of cell adhesion2, a 

topographically patterned gel surface could therefore readily trap cells to confined areas 

as they are not able to migrate in the absence of adhesion.

Adapting a previously developed cross-linking chemistry17, we fabricated 

microwell arrays from vinylsulfone- and thiol-terminated multifunctional PEG 

macromers in a multi-step soft lithography process using poly(dimethylsiloxane) (PDMS) 

stamps (Fig. 1A). Each stamp (8 per film) consisted in squares corresponding to the area 

of a standard 96-well comprising ca. 1’000 wells with a diameter of 100 µm, a depth of 

50 µm, and a well-to-well spacing of 50 µm. Confocal laser microscopy revealed a 

regular pattern of hydrogel microwells with only slightly changed dimensions upon 

swelling (Fig. 1B and 1C). Notably, gels that were completely cross-linked before 

initiating the stamping process resulted in patterned microwells with a negligible depth of 

only 4.4 +/- 0.4 µm.
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Live Imaging of NSC Cultures: Increasing the Sensitivity and Throughput of the 

Neurosphere Assay

Time-lapse microscopy was used to monitor NSC growth. The established in vitro

method to study the behavior of these cells at the single cell level is to plate them at 

clonal density (100 cells/cm2) in standard multi-well plastic culture plates (hereafter 

referred to as ‘plastic’), which we chose as the control treatment. Dissociated NSCs from 

suspension cultures were seeded on microwells at a density of 1.25 x 104 cells/mL, which 

resulted in the majority of single wells being occupied by single cells. After 1 – 2 hours 

the cells had settled to the bottom of microwells and time-lapse experiments were started, 

imaging every 4 hours for 72 hours. The possibility to geographically confine cells was 

crucial for their efficient tracking (Fig. 2). Cells on plastic were extremely motile (Fig. 

2A and Supplementary Movie 1), despite the lack of any adhesive cues in the serum-

free medium. In approximately 15% of cases, cells left the field of view during the 

experiment. In marked contrast, cells cultured on PEG microwell arrays remained trapped 

and could easily be monitored over time (Fig. 2B and Supplementary Movie 2). Indeed, 

an automated analysis of migration paths of NSCs grown on these substrates confirmed 

this visual assessment (Fig. 2C and D). Therefore, trapping individual cells in hydrogel 

microwell arrays allows to study multiple, single, trapped cells in one field of interest (up

to 24 microwells at 10X magnification). This dramatically increases the sensitivity and 

throughput of single NSC cultures. Neurosphere merging, which can occur in 

conventional suspension cultures of NSCs5, may also occur on PEG microwell arrays but 

only in cases where two or more cells settle within one microwell. However, at the 

seeding densities we selected, only a few microwells contained two or more cells, and 

Page 14 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Microarrayed Neurosphere Culture

15/29

these events were easily excluded in subsequent image analysis. 

Increased Viability of Single NSCs Cultured in Hydrogel Microwells 

We next assessed the fate of individual stem cells of the population on the microwell 

array surface compared to plastic. Time-lapse movies of three independent experiments 

were visually inspected and wells containing single cells at time zero were tracked over 

time to distinguish between cell death, proliferation, or absence of cell divisions over the 

3-day period (Fig. 3A, Supplementary Movie 3). Cell death was defined as complete 

loss of movement and extensive shrinking - a visual read-out that was verified using 

Propidium Iodide (PI) staining (see Supplementary Figure 1). Distinguishing these 

different fates, on PEG microwells we scored 31% +/- 3 of the population of single cells 

as dead, 20% +/- 8 as non-dividing, and the remaining 49% +/- 8 as proliferating cells 

that formed neurospheres of different sizes (see Fig. 5). Notably, viability of single cells 

decreased markedly within the first 24 hours and then leveled off (Fig. 3B). Death of 

single cells exposed to plastic occurred in 69 +/- 6% of cases, more than twice as 

frequently as on PEG (33 +/- 5%) (Fig. 3C). 

NSC Proliferation and Neurosphere Formation Efficiency

The conventional neurosphere assay captures rapidly proliferating, sphere-forming cells 

that are believed to be primarily stem cells. This assumption has recently come under 

scrutiny4, 8. We tried to assess the proliferation dynamics of individual neurosphere-

derived cells in an unbiased fashion, independent of their growth behavior. We first 

scored the number of cells per microwell up to day 3, when divisions and cell numbers 
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could still be reliably assessed (Fig. 4A, top panel). We detected a heterogeneous 

distribution of the time to the 1st division and the time for the 2nd cell cycle. The average 

time to the 1st division of the entire population of single cells was ca. 18 hours. 

Interestingly, three sub-populations were apparent (indicated by dashed lines), with 90% 

of the cells dividing within the first 30 hours. The distribution of the 2nd cell cycle times 

showed a slight shift towards longer times (population average: 25 hours). In particular, 

30% of single cells divided a second time within the next 48 hours. To assess synchrony 

in cell divisions kinetics, we quantified the time gap (∆t) between daughter cell divisions 

of the second generation (Fig. 4B, scheme). Notably, 90% of all dividing cells showed 

asynchronous divisions, defined as a ∆t larger than 4 hours (Fig. 4B, right panel), 

suggesting a different identity of the two progeny of the founding cell. After 72 hours in 

culture, approximately 20% of the surviving single cells did not divide, while more than 

30% divided at least once (Fig. 4C). In 20% of cases, one of the daughter cells divided a 

second time resulting in three cells per well. The remaining 30% could be considered as 

more proliferative, yielding 4 or more cells over the 3 days in culture.

To assess neurosphere-forming efficiency of the entire NSC population at the 

endpoint of the experiment (i.e. 7 days), the number of spheres with a diameter ≥ 20 µm -

the threshold above which we defined cell clusters as neurospheres assuming that they 

had a diameter of at least 2 single cell diameters (measured as ∼10µm) - on one array was 

scored and compared to the number of wells occupied by cells that did not proliferate to 

reach the size of a sphere. We found that approximately 30% of wells contained cells that 

had proliferated to form a sphere, while ca. 70% of the wells contained single cells or 

small aggregates of cells below 20 µm in diameter (not shown). Next, the area of 
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individual neurospheres was quantified via automated image analysis (Fig. 5A), revealing 

that half of the spheres had a diameter between 20 and 40 µm, 40% had a diameter 

between 40 and 60 µm, and less than 5% of all neurospheres grew to a size to fill out 

most of the microwell surfaces. To retrospectively correlate neurosphere diameters with 

cell numbers, we visualized the nuclei with DAPI after fixation, imaged and counted the 

cells (Fig. 5B). A good correlation was found between the number of nuclei/well and the 

surface area of the spheres (R2 = 0.9). This correlation was used to plot a size histogram 

for the entire neurosphere population (Fig. 5C), binning sphere sizes according to 

categories of 10 cells. After 7 days of culture, the majority of neurospheres (ca. 60%) on 

the array were small, comprising less than 20 cells (referred to as NS type I), while only 

5% of the population comprised large NS of 50 and more cells (NS type III). The 

remaining 35% was of intermediate size of 20-50 cells (NS type II). Due to the likelihood 

of extensive neurosphere merging on flat plastic dishes, smaller neurospheres of type I or 

II that in our hands encompass the largest proportion of the population, can not be 

reliably detected. Not surprisingly, conventional read-outs of the neurosphere assay are 

biased towards rapidly growing clones, which may not necessarily be the stem cells. The 

microwell confinement in conjunction with time-lapse analyses allowed probing the 

dynamic behavior of large numbers of individual cells completely independent of their 

proliferation kinetics, and thus revealed the heterogeneity in cell fate and proliferation 

kinetics of a given cell population. 

Retrospective Phenotyping

Apart from the proliferation kinetics, the presence of phenotypic markers can be an 

Page 17 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Cordey et al.

18/29

additional indicator correlating with stem cell function. We chose cells originating from 

transgenic reporter mice expressing eGFP under the control of the Hes-5 promoter, a 

downstream effector of Notch signaling19, to be able to probe stem cell phenotypes in 

situ. That is, in these mice, GFP expression was shown to be restricted to multipotent 

stem and progenitor cells of the developing embryonic brain19, and the expression of 

Hes5-GFP has been reported to remain in the neurogenic regions of the postnatal and 

adult brain (Basak, O. and Taylor, V., unpublished observations). In cells fixed after a 3-

day culture period on the microwell arrays, GFP+ cells accounted for ca. 30% of all cells 

(single or part of a sphere) as assessed with confocal microscopy (Fig. 6A, B and 

Supplementary Movie 4). Dissociated cells from standard suspension neurosphere 

cultures (passage 2 to 5) analyzed by FACS also contained on average 30% of GFP+ 

cells (data not shown).  More than 90% of the cells strongly expressed Nestin (Fig. 6B; 

Nestin marked in red), a filament marker of neural progenitors. The Nestin+ cells were 

observed to preferentially be located in direct contact with the hydrogel surface. We 

could not detect any GFAP or β-Tubulin III-positive cells after three days, suggesting 

that the cells had not differentiated at this time-point. 

Neurospheres developed from single cells on the array during 7 days were 

comprised of cells with phenotypes of both stem/progenitor cells and differentiated cells 

(Fig. 6C, D and Supplementary Movie 5). We detected Hes5-GFP-positive and Nestin-

positive cells alongside a substantial number of GFAP-positive cells (Fig. 6C; 

Nestin=red, GFAP=yellow). Nestin+ cells appeared to be located in the periphery of the 

neurosphere, while GFAP+ cells were found in the center and in contact with the 

surface20. Image analysis on several confocal sections revealed that GFAP and Nestin 
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staining did not colocalize (data not shown), consistent with previous results showing 

neurospheres contain cells that start expressing GFAP after 5 days in culture19.

DISCUSSION

The neurosphere assay is a versatile tool in NSC biology. It has helped to expand putative 

stem/progenitor cells, to assess their self-renewal capability and multipotency, and to 

shed light on the role of mechanisms that regulate NSC-like cells3. Similar sphere-

forming assays are used in a wealth of other stem cell systems including skin21, breast22, 

or pancreas23, and even in the context of cancer stem cells24. Given its significance, it 

goes without saying that such cytosphere assays must function efficiently, particularly 

with regards to their clonality. This is often not the case, except where single cells are 

seeded in single wells, which renders the assay highly inefficient. The hydrogel 

microwell platform introduced here addresses some of the limitations of the standard 

neurosphere assay.

As we have demonstrated by tracking single cell migration, the possibility of 

geographically restricting cells not only dramatically simplifies live-cell imaging 

capability, but also eliminates merging events that appear to be a bottleneck of the 

standard assay5, 6. While cell trapping and high-throughput single cell experimentation is 

afforded by several other microwell array systems previously developed for cell culture25-

28, in contrast to PDMS or glass substrates that are predominantly used for that purpose, 

the biomimetic properties of our platform and its implications described below, may be a 

beneficial hallmark of hydrogel-based arrays29, 30. 
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Indeed, this novel platform appears to provide a microenvironment that greatly 

enhances single cell viability compared to plastic (Fig. 3), allowing the study of a much 

higher proportion of single cells from a given NSC population than currently possible. 

Death can occur at multiple stages of the culture phase, before or after cell divisions (i.e. 

in the forming neurosphere). In the latter case it may be related to apoptosis as a 

regulatory mechanism of cell numbers. We rarely detected single, non-dividing (viable) 

cells on plastic, which may be due to the rapid merging of single cells with motile 

neurospheres but perhaps is also due to preferential death of individual cells on this 

substrate. Strikingly, on PEG hydrogels, of the 70% of surviving single cells 

approximately 20% never divide. We believe that the soft and hydrated environment 

provided by PEG gels, reminiscent of the in vivo extracellular milieu, may explain this 

enhanced single cell viability. Indeed, it has been reported that the elasticity of a substrate 

itself may affect viability and stem cell fate directly, implying involvement of 

mechanotransduction mechanisms31. However, for this to play a role one would expect 

cell adhesion to be a prerequisite, transmitting forces from the outside to the inside of the 

cell via receptor-ligand interactions, a phenomenon which may not play an important role 

in the case of the non-adherent neurospheres. On the other hand, it is conceivable that the 

high water content of the substrate enhances diffusion of nutrients and morphogens to the 

cells, which can occur from all sides in the case of hydrogels. The underlying 

mechanisms responsible of increased viability warrants further investigation.

We detected non-dividing cells alongside three types of neurospheres on the array 

that differ dramatically in size (Fig. 5C): small type I spheres which made up 60% of the 

population, intermediate sizes of type II (35%), and large spheres of type III (5%). 
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Follow-up studies should dissect the phenotype, self-renewal function and multipotency 

of the non-dividing cells and of the three types of neurospheres we have identified using 

the novel array-format. For example, if subjected to an environment that favors 

differentiation, it would be possible to address whether cells with different proliferation 

behaviors generate different cell-types and thus may represent defined NSC lineages, and 

whether there is there a link between neurosphere size and multipotentiality. We believe 

that the microwell arrays presented here represent an ideal platform to address these 

questions, and that they may help, if combined with in vivo stem cell transplantation 

studies, to bring us closer to a better understanding of stem cell biology. 

ACKNOWLEDGMENTS

We thank our collaborators Yunsuk Jo for help with PEG syntheses, Steffen Cosson for 

single cell migration analysis, Andhyk Halim for help with scoring, Adrian Ranga for 

critical reading of the manuscript, J-C Floyd Sarria and Thierry Laroche of the 

Bioimaging and Optics platform (EPFL) for help with image acquisition and analysis. 

This work was supported by the SNSF grant FN 205321-112323/1 and by a EURYI 

award to M.P.L. 

Page 21 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Cordey et al.

22/29

References

1. Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells - The paradigmatic tissue-specific 
stem cell. American Journal of Pathology. 2006;169:338-346.

2. Reynolds BA, Weiss S. Generation of Neurons and Astrocytes from Isolated Cells of the Adult 
Mammalian Central-Nervous-System. Science. 1992;255:1707-1710.

3. Singec I, Quinones-Hinojose A. Neurospheres. In: Gage FH, Kempermann G, Song H, eds. Adult 
Neurogenesis. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2007:119-
134.

4. Reynolds BA, Rietze RL. Neural stem cells and neurospheres - re-evaluating the relationship. 
Nature Methods. 2005;2:333-336.

5. Singec I, Knoth R, Meyer RP, et al. Defining the actual sensitivity and specificity of the 
neurosphere assay in stem cell biology. Nature Methods. 2006;3:801-806.

6. Jessberger S, Clemenson GD, Gage FH. Spontaneous fusion and nonclonal growth of adult neural 
stem cells. Stem Cells. 2007;25:871-874.

7. Deleyrolle LP, Rietze RL, Reynolds BA. The neurosphere assay, a method under scrutiny. Acta 
Neuropsychiatrica. 2008;20:2-8.

8. Louis SA, Rietze RL, Deleyrolle LP, et al. Enumeration of neural stem and progenitor cells in the 
neural colony forming cell assay. Stem Cells. 2008;DOI: 10.1634/stemcells.2007-0867.

9. Tropepe V, Sibilia M, Ciruna BG, et al. Distinct neural stem cells proliferate in response to EGF 
and FGF in the developing mouse telencephalon. Developmental Biology. 1999;208:166-188.

10. Passegue E, Wagers AJ, Giuriato S, et al. Global analysis of proliferation and cell cycle gene 
expression in the regulation of hematopoietic stem and progenitor cell fates. Journal of 
Experimental Medicine. 2005;202:1599-1611.

11. Nygren JM, Bryder D, Jacobsen SEW. Prolonged cell cycle transit is a defining and 
developmentally conserved hemopoietic stem cell property. Journal of Immunology.
2006;177:201-208.

12. Young JC, Varma A, DiGiusto D, et al. Retention of quiescent hematopoietic cells with high 
proliferative potential during ex vivo stem cell culture. Blood. 1996;87:545-556.

13. Falconnet D, Csucs G, Grandin HM, et al. Surface engineering approaches to micropattern 
surfaces for cell-based assays. Biomaterials. 2006;27:3044-3063.

14. Khademhosseini A, Langer R, Borenstein J, et al. Microscale technologies for tissue engineering 
and biology. Proceedings of the National Academy of Sciences of the United States of America.
2006;103:2480-2487.

15. Underhill GH, Bhatia SN. High-throughput analysis of signals regulating stem cell fate and 
function. Current Opinion in Chemical Biology. 2007;11:357-366.

16. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for 
morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47-55.

17. Lutolf MP, Hubbell JA. Synthesis and physicochemical characterization of end-linked 
poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules.
2003;4:713-722.

18. Huang L, Nair PK, Nair MTS, et al. Chemical deposition of Bi2S3 thin films on glass substrates 
pretreated with organosilanes. Thin Solid Films. 1995;268:49-56.

19. Basak O, Taylor V. Identification of self-replicating multipotent progenitors in the embryonic 
nervous system by high Notch activity and Hes5 expression. European Journal of Neuroscience.
2007;25:1006-1022.

20. Nyfeler Y, Kirch RD, Mantei N, et al. Jagged1 signals in the postnatal subventricular zone are 
required for neural stem cell self-renewal. Embo J. 2005;24:3504-3515.

21. Toma JG, Akhavan M, Fernandes KJL, et al. Isolation of multipotent adult stem cells from the 
dermis of mammalian skin. Nature Cell Biology. 2001;3:778-784.

22. Matsuda M, Imaoka T, Vomachka AJ, et al. Serotonin regulates mammary gland development via 
an autocrine-paracrine loop. Developmental Cell. 2004;6:193-203.

Page 22 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Microarrayed Neurosphere Culture

23/29

23. Seaberg RM, Smukler SR, Kieffer TJ, et al. Clonal identification of multipotent precursors from 
adult mouse pancreas that generate neural and pancreatic lineages. Nature Biotechnology.
2004;22:1115-1124.

24. Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain 
tumors. Proceedings of the National Academy of Sciences of the United States of America.
2003;100:15178-15183.

25. Revzin A, Tompkins RG, Toner M. Surface engineering with poly(ethylene glycol) 
photolithography to create high-density cell arrays on glass. Langmuir. 2003;19:9855-9862.

26. Chin VI, Taupin P, Sanga S, et al. Microfabricated platform for studying stem cell fates. 
Biotechnology and Bioengineering. 2004;88:399-415.

27. Dusseiller MR, Schlaepfer D, Koch M, et al. An inverted microcontact printing method on 
topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells. 
Biomaterials. 2005;26:5917-5925.

28. Mohr JC, de Pablo JJ, Palecek SP. 3-D microwell culture of human embryonic stem cells. 
Biomaterials. 2006;27:6032-6042.

29. Karp JM, Yeh J, Eng G, et al. Controlling size, shape and homogeneity of embryoid bodies using 
poly(ethylene glycol) microwells. Lab on a Chip. 2007;7:786-794.

30. Moeller HC, Mian MK, Shrivastava S, et al. A microwell array system for stem cell culture. 
Biomaterials. 2008;29:752-763.

31. Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell.
2006;126:677-689.

Page 23 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Cordey et al.

24/29

Figure Captions

Figure 1. Overview of multistep process to fabricate hydrogel microwell arrays for NSC 

culture. (A) Thin PEG hydrogel films of defined thickness are cast on a modified glass 

cover slide (step I). A PDMS stamp containing an array of micropillars fabricated from a 

micropatterned Silicon wafer is gently placed onto the PEG film to stamp the desired 

microwell array topography (step II). Microwell arrays are washed and sealed for 

subsequent stem cell culture (step III). Multiarm PEG macromers bearing thiol- and 

vinylsulfone end-groups serve as precursors of crosslinked polymer networks formed 

under mild conditions via conjugate addition reaction. (B) Hydrogel microwell arrays 

fabricated via stamping of PDMS templates. Micrographs from 3D-reconstructions of 3-

µm confocal z-stacks reveal a regular pattern of microwells. (C) Obtained dimensions of 

individual microwells after 30 min of film formation (partial cross-linking) and swelling 

in water: 94.3 +/- 2.6 µm diameter and 39.6 +/- 2.4 µm depth. The cross-linking kinetics 

significantly influence microwell depth; for example, stamping after complete cross-

linking led to patterns of only 4.4 +/- 0.4 µm.
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Figure 2. PEG microwells restrict migration of single NSCs. (A) Still images from a 3-

day time-lapse movie showing extensive migration of a single NSC on an untreated 

standard 96-well plastic plate (BD Biosciences). Scale bar = 100 µm. (B) In marked 

contrast, in all cases and over extended culture periods, single NSCs on the bottom of 

PEG microwells remained trapped. (C) Representative migration paths of 10 individual 

NSCs overlaid at a common starting point on plastic (left panel) and in PEG microwells 

(right panel). Two out of 10 cells left the field of view, while cells on microwell arrays 

were constrained in their migration distance to the well dimensions. All tracks were 

acquired during an observation period of 72 hours. (D) The total average migration 

distance covered by single NSCs (left panel) and the average migration rate (right panel) 

on PEG microwells are significantly lower than on plastic.  **p < 0.01.
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Figure 3. Fate and viability of single NSCs cultured on PEG hydrogel microarray. (A) 

Neural stem cells were trapped in microwells and imaged every 4 hours over a 72-hour 

time period. Circles indicate wells that contained single cells at the time of seeding (t = 0 

hrs), and color indicates the representative fate of these cells over 24, 48 and 72 hrs. The 

diameter of one microwell is ca. 95 µm. (B) Single cell viability in microwells was 

quantified by visually inspecting every frame of a time-lapse movie over the 3-day period 

and validated via PI staining (see Supplementary Figure 1). (C) Single NSCs seeded at 

‘clonal’ density (i.e. 100 cells/cm2) on uncoated 96-well plastic culture plates had 

significantly lower viability after 3 days than cells seeded on PEG hydrogel microwells 

(**p < 0.01). Data shown are mean ± SD and cell viability is represented as a percentage 

of the total number of single cells scored at time 0 (n = 3 independent experiments, > 80 

single cells/experiment). 
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Figure 4. Quantification of initial single NSC proliferation kinetics on hydrogel 

microwell arrays up to 3 days in culture. (A) Single NSCs trapped in microwells were 

imaged by time-lapse microscopy and visually inspected to determine the distribution of 

the time to the 1st, and the time between the 1st and 2nd division (n=140 cells/histogram 

for 1st division, and n=77 for the 2nd division, respectively). Top panels show a 

representative example of a cell dividing twice (arrowheads) to produce 3 daughter cells. 

The diameter of the microwell is ca. 95 µm. (B) The time gap ∆t between divisions of the 

1st generation of daughter cells was chosen as a read-out for synchrony in division 

behavior. A 4-hr threshold was chosen: synchronous: ∆t<4hr, asynchronous: ∆t>4hr. 90% 

of the population of dividing cells showed asynchronous division kinetics. (C) Histogram 

of cells per well generated after a 3-day culture period reveals a large heterogeneity in 

neurosphere sizes (n = 3 independent experiments, > 80 single cells/experiment). Data 

shown are mean ± SD.
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Cordey et al.
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Figure 5. Quantification of single NSC proliferation kinetics on hydrogel microwell 

arrays after 7 days in culture. (A) Histogram of neurosphere diameters generated after a 

7-day culture period reveals a large heterogeneity in neurosphere sizes. Neurosphere were 

counted and their area and diameter were measured via image analysis (Metamorph) from 

bright field images. (B) The number of DAPI-stained nuclei was determined by image 

analysis and correlated with the above neurosphere area. Right panels show an example 

of DAPI-stained nuclei and the corresponding phase contrast images.  The diameter of 

one microwell is ca. 95 µm.  (C) Spheres were categorized according to their size into 

small (NS I), intermediate (NS II) and large spheres (NS III). Data shown are mean ± SD 

and population behavior is represented as a percentage of the total number of 

neurospheres with a diameter ≥ 20 µm (total 127 NS scored on 4 different arrays).
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Figure 6. Phenotype of neurosphere-forming cells. NSCs were grown on microwell 

arrays, fixed after 3 or 7 days, respectively, and stained with Nestin, GFAP, O4, and β-

tubulin III for subsequent imaging via confocal microscopy. (A, B) Two sections of a 3-

day old sphere show Hes5-GFP-positive cells (=green), and Nestin-positive (=red) cells. 

The other markers were not detected after 3 days. (C, D) Two sections of a 7-day old 

sphere show Nestin-positive cells located at the periphery, with GFAP-positive cells 

(=yellow) and GFP-positive cells in the center. O4 and β-tubulin III cells were not 

detected. DAPI stain identifies cell nuclei (blue). Scale bar = 20 µm.

Page 29 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

253x199mm (300 x 300 DPI)  
 

Page 30 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

1138x808mm (72 x 72 DPI)  
 

Page 31 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

742x1101mm (72 x 72 DPI)  
 

Page 32 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

745x644mm (72 x 72 DPI)  
 

Page 33 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

721x863mm (72 x 72 DPI)  
 

Page 34 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

786x984mm (72 x 72 DPI)  
 

Page 35 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

612x1124mm (72 x 72 DPI)  
 

Page 36 of 38

ScholarOne Support: (434) 817-2040 ext. 167

Stem Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Supplementary Figure 1, Cordey et al.

Representative examples of still images from fluorescent time-lapse experiments to 
assess cell viability and time-points of cell death via Propidium Iodide (PI) staining. 
Images were acquired in bright field and fluorescence every 4 hour for a period of 72 hrs. 
(A and B) PI effectively marks dying and dead cells. Cell death is also readily apparent 
by a complete loss of cell movement and extensive shrinking in size. Cell death occurred 
at different time-points of the experiment, as quantified in Figure 3B of the manuscript. 
Top panels: bright field images, middle panels: fluorescent images, bottom panels: 
overlays of both. (C, control) Viable cells are negative for PI over the entire course of the 
experiment. 

Supplementary Video legends, Cordey et al.

Supplementary Video 1 
Representative time-lapse video microscopy demonstrating extensive migrating behavior 
of a single neurosphere-forming cell on an uncoated, standard plastic 96-well plate. 
Dissociated neurosphere cultures derived from adult mice subventricular zone were 
seeded at clonal density (100 cells/cm2) in 96-well plates placed in the environmental 
chamber of an inverted microscope (Zeiss, Axio Observer.Z1), and imaged every 30 min 
for 64 hours. Note how the motile cell divides and leaves behind cells (or cell fragments) 
on its path, until it leaves the field of view. Cellular processes allowing motility can be 
better appreciated at higher magnification in Supplementary Video 3.

Supplementary Video 2
Representative time-lapse video microscopy showing isolation and geographical 
confinement of 7 single cells (blue circles) in PEG hydrogel microwells (microwell 
diameter = 100 µm). Dissociated neurosphere cultures derived from the subventricular 
zone of postnatal mice were seeded on PEG hydrogel microarrays and imaged every 4 
hours for 80 hours. Note the different proliferative potential of the cells followed in the 
same field of view, which can be seen at higher magnification in Supplementary Video 3.

Supplementary Video 3
Higher magnification of a single neurosphere-forming cell trapped in a PEG microwell. 
Images were captured every 4 hours for 72 hours, showing how cell divisions could be 
scored over this time period. This magnification also reveals cellular processes permitting 
motility.

Supplementary Video 4
3D reconstruction of a neurosphere grown on PEG hydrogel microarrays for 3 days. Cells 
originated from transgenic reporter mice expressing eGFP under the control of Hes-5 
promoter, a downstream effector of Notch signaling. Confocal images show Hes5-GFP 
(green) expression and neural stem cell marker nestin immunostaining (red), confirming 
the neural stem cell phenotype of these cells. Nuclei were counterstained with DAPI 
(blue). Images were acquired using a Leica DMR XA2 motorized upright confocal laser 
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scanning microscope. Z-stacks were acquired with a slice thickness of 1.2 µm, 
reconstructing a cross section profile of approximately 30 µm. Note that we did not detect 
any GFAP, β-tubulin III or O4 staining, which would indicate astrocytic, neuronal or 
oligodendrocytic differentiation.

Supplementary Video 5
3D reconstruction of a neurosphere grown on PEG hydrogel microarrays for 7 days. 
Confocal images show that Hes5-GFP (green) and nestin (yellow) are still expressed, 
with nestin-positive cells located at the edge of the sphere. Core cells show GFAP (red) 
expression, a marker of astrocytic differentiation. Nuclei were counterstained with DAPI 
(blue). Note that we did not detect any β-tubulin III or O4 staining, which would indicate 
neuronal or oligodendrocytic differentiation.
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