
A Newton method using exact jacobians for

solving fluid-structure coupling

Miguel Ángel Fernández a,1, Marwan Moubachir b

aÉcole Polytechnique Fédérale de Lausanne, IACS, 1015 Lausanne, Switzerland
bInstitut National de Recherche en Informatique et en Automatique, OPALE,

BP 93, 2004 route de Lucioles, 06902 Sophia-Antipolis, France

Abstract

This paper aims at introducing a partitioned Newton based method for solving
nonlinear coupled systems arising in the numerical approximation of fluid-structure
interaction problems. We provide a method which characteristic lies in the use of
exact cross jacobians evaluation involving the shape derivative of the fluid state with
respect to solid motion perturbations. Numerical tests based on an implementation
inside a 3D fluid-structure interaction code show how the exactness of the cross
jacobians computation guarantee the overall convergence of the Newton’s loop.

Key words: Fluid-Struture interaction, Navier-Stokes equations, ALE formulation,
full coupled schemes, Newton methods, shape sensitivity analysis, haemodynamics.

1 Introduction

Nowadays, Computational Fluid-Structure Dynamics (CFSD) spreads out in every
engineering field, from aeroelasticity to bio-mechanics problems (see, for instance,
[26,8,10,22,14,25,23,29,16,31]). One issue arising in the numerical approximation of
these nonlinear coupled systems, is the definition of coupling algorithms based on spe-
cific solvers involving efficient discretization for each of the solid and fluid subsystems,
that may guarantee accurate and fast convergence of the overall system. This issue is
particularly difficult to face when the structure is light, namely, when the fluid and
the solid densities are of the same order, as it happens in haemodynamics for example.
Indeed, in this case, numerical experiments show that only fully coupled schemes can
ensure stability of the resulting method (see [22,28,6,16,23,24]). Thus, at each time
step, the rule is to solve a coupled highly non-linear system using efficient methods
that may preserve, inside inner loops, the fluid-structure subsystem splitting.

1 Corresponding author e-mail: miguel.fernandez@inria.fr

Preprint submitted to Elsevier Science 20 December 2003



Standard and simple strategies to solve these non-linear problems are fixed-point based
methods [3,1]. Unfortunately, these methods are very expensive (even if several accel-
eration techniques may improve their efficiency [25,6]) and may fail to converge [16].
Recent advances in this topic suggest the use of Newton based methods for a fast
convergence towards the solution of the non-linear coupled system [1,23,24,31,16,19].
These methods rely on the evaluation of the jacobians associated to the fluid-solid cou-
pled state equations. More precisely, the critical step consists in the evaluation of the
cross jacobians [31], e.g. the sensitivity of the fluid state with respect to solid motions.
Up to now, this difficulties have been overcome either by using finite difference approx-
imations [23,24,31,19], or by replacing the tangent operator of the coupled system by a
simpler operator [31,16,5,7,17]. In both cases, such approximations may deteriorate or
avoid the overall convergence [31]. In this paper, we provide an explicit expression of
these cross jacobians, using shape sensitivity calculus [30], in the case of an incompress-
ible Newtonian fluid coupled with a nonlinear elastic solid under large displacements.
These expressions are then implemented inside a 3D finite element (FE) library and
we show on some model cases the superiority of using exact jacobians against approx-
imated versions of the Newton’s method.

The reminder of the paper is organized as follows. In section 2, we introduce a general
fluid-solid coupled system and describe its associated mathematical model. In section
3, the resulting coupled set of equations is used to build a coupled weak variational
formulation. The latter is discretized in time using a fully coupled scheme in section
4, where, the resulting nonlinear coupled system is turned into an abstract form. In
order to solve this abstract coupled system, in section 5 we describe the main steps
of the Newton’s method in terms of fluid and solid operators and its derivatives. The
expressions of such derivatives are obtained, in section 6, using general shape derivative
calculus results that are recalled in appendix A. These expressions have been already
announced in [12,13] as brief notes. In section 7, we detail the major steps of the
Newton’s algorithm applied to the coupled fluid-solid problem. The resulting algorithm
has been implemented in a 3D fluid-solid research code. The numerical results are
presented in section 8, showing the relevance of our approach. Finally, we give some
conclusions and draw some lines for future works.

2 Mechanical problem

Let us first describe a general non-linear fluid-structure system in large displacements.
We consider a mechanical system occupying a moving domain Ω(t) . It consists of a
deformable structure Ωs(t) (vessel wall, pipe-line, . . . ) surrounding a fluid under motion
(blood, oil, . . . ) in the complement Ωf(t) of Ωs(t) in Ω(t) (see figure 1). The problem is
to determinate the time evolution of the configuration Ω(t), as well as the velocity and
Cauchy stress tensor within the fluid and the structure. The latter being governed by
the classic conservation laws of the continuum mechanics, endowed with appropriate
constitutive laws.

The evolution of Ω(t) (see e.g. [8,20,22]), can be described through a smooth and

2



Γout(t)

Ωs(t)

Ωf (t)

Γw(t)

Γin(t)

Ω(t)

Fig. 1. Geometric configurations

injective mapping

x : Ω0 × R
+ −→ R

3,

which maps any point x0 of a given fixed (reference) configuration Ω0
def
= Ωf

0 ∪ Ωs
0 into

its corresponding image x(x0, t), inside the present configuration Ω(t) (see figure 2).

We set xf def
= x|Ωf

0
and xs def

= x|Ωs
0
. For x0 ∈ Ωs

0, xs(x0, t) represents the position at time
t ≥ 0 of the material point x0 inside the solid domain. This corresponds to the classical
lagrangian flow. In particular, the solid displacement ds(x0, t) reads

ds(x0, t)
def
= xs(x0, t)− x0, x0 ∈ Ωs

0.

This implies that the configuration velocity matches the solid velocity inside the solid
domain. Conversely, the map xf = IΩf

0
+ df can be defined from the interface displace-

ment ds
|Γw

0
as an arbitrary extension over the domain Ωf

0, namely,

df = Ext(ds
|Γw

0
).

This explains the use of the terminology Arbitrary Lagrangian Eulerian (ALE) for-
mulation for the resulting equations [8,20,22]. In practice, we can choose an harmonic
extension operator [22,28,6,16], which means that df solves the following elliptic prob-
lem:

{

−κ∆df = 0, in Ωf
0,

df = ds, on Γw
0 ,

where κ > 0 is a given “diffusion” coefficient, that might depend on ds. Other alterna-
tive extension approaches can be found, for instance, in [2,34].

Therefore, the fluid domain can be parametrised as follows:

Ωf(t) = Ωf(df(·, t)) = (IΩf
0
+ df)(Ωf

0), (1)

and its corresponding velocity (the so-called ALE velocity) by

w(df)
def
=

∂df

∂t
.

3



Ωf

0

Γw

0

Γin Γin(t) Γout(t)

Ωs

0

Ωs(t)

Γout

Ωf (t)

Γw(t)

x
f(·, t)

x
s(·, t)

Γn

0Γd

0

Fig. 2. The map x

We deal with a Newtonian viscous, homogeneous fluid under incompressible flow with
density ρ and kinetic viscosity µ. Its behavior is described by its Eulerian velocity u and
pressure p. The constitutive law for the Cauchy stress tensor is given by the following
expression:

σ(u, p) = −p I +µ
[

∇u + (∇u)T
]

.

The elastic solid under large displacements is described by its displacement ds and its
stress tensor S (second Piola-Kirchhoff tensor). The field S is related to ds through an
appropriate constitutive law, S = S(ds) (see [4,21,18]). Its boundary is divided into
three disjoint parts Γd

0 ∪ Γn
0 ∪ Γw

0 . We impose respectively a homogeneous Dirichlet
boundary condition on Γd

0 and a homogeneous Neumann boundary condition on Γn
0.

The coupling between the solid and the fluid is realized through standard boundary
conditions at the fluid-structure interface Γw

0 , namely, the kinematic continuity of the
velocity and the kinetic continuity of the stress:

u = w(df),

F (ds)S(ds)n0 = J(df)σ(u, p)F (df)
−T

n0,
(2)

with n0 being the unit outward normal vector to Ωf
0, and

F (ds)
def
= I+∇0d

s, F (df)
def
= I +∇0d

f , J(ds)
def
= det F (ds), J(df)

def
= det F (df),

where F (ds) and F (df) stand, respectively, for the deformation gradient inside the solid
and the fluid domains.

Finally, the fluid-structure coupled state (u, p,df ;ds) satisfies the following strong cou-

4



pled system (involving an ALE fluid formulation),







ρ
∂J(df)u

∂t |x0

+ ρ div
[

u⊗ (u−w(df))− σ(u, p)
]

= 0, in Ωf(t),

div u = 0, in Ωf(t),

u = w(df), on Γw
0 ,

σ(u, p)n = g, on Γin(t) ∪ Γout(t),

df = Ext(ds
|Γw

0
), in Ωf

0,

ρ0
∂2ds

∂t2
− div0 (F (ds)S(ds)) = 0, in Ωs

0,

F (ds)S(ds)n0 = J(df)σ(u, p)F (df)
−T

n0, on Γw
0 ,

ds = 0, on Γd
0,

F (ds)S(ds)n0 = 0, on Γn
0,

(3)

with ρ0 the solid density, n the unit outward normal vector to Ωf(t), given by

n =
F−T(df)n0

‖F−T(df)n0‖
,

and g standing for the external forces acting on the fluid. For the sake of simpleness,

no body forces are considered. In the sequel, we shall set Γin−out
def
= Γin ∪ Γout.

Remark 1 Let notice that, in (3), the fluid domain Ωf(t) is directly related to the
unknown df through expression (1).

Remark 2 A variant to bypass the fluid ALE formulation in (3) is to use a fully
Eulerian fluid description and then to discretise using espace-time finite elements, as
in [32,33,31].

3 Continuous weak formulation

Problem (3) can be reformulated in a weak variational form using appropriate test
functions (see [15,22]), performing integration by parts and taking into account the
boundary and interface conditions. This lead to the following coupled weak formulation
(see [28,22]), involving a fluid and a solid weak-formulations: Find df : Ωf

0 −→ R
3,

u : Ωf(t) −→ R
3, p : Ωf(t) −→ R and ds : Ωs

0 −→ R
3, satisfying the following coupled

non-linear subproblems:

5



(1) The fluid weak-formulation:

ρ
d

dt

∫

Ωf (t)
u · vf dx + ρ

∫

Ωf(t)
div

[

u⊗ (u−w(df))
]

· vf dx

+
∫

Ωf (t)
σ(u, p) : ∇vf dx−

∫

Γin−out(t)
g(t) · vf da−

∫

Ωf(t)
q div u dx

+
∫

Γw(t)
(u−w(df)) · ξ da +

∫

Ωf
0

(

df − Ext(ds
|Γw

0
)
)

· λ dx0 = 0,

∀ (vf , q, ξ, λ) ∈ V f(t).

(4)

(2) The solid weak-formulation:

∫

Ωs
0

ρ0
∂2ds

∂t2
· vs dx0 +

∫

Ωs
0

F (ds)S(ds) : ∇vs dx0

+ ρ
d

dt

∫

Ωf(t)
u ·

�
(vs

|Γw
0
) dx + ρ

∫

Ωf(t)
div

[

u⊗ (u−w(df))
]

·
�

(vs
|Γw

0
) dx

+
∫

Ωf(t)
σ(u, p) : ∇

�
(vs

|Γw
0
) dx = 0, ∀vs ∈ V s.

(5)

Here, the space of solid test functions is given by

V s def
=

{

vs ∈ H1(Ωs
0)

3
∣
∣
∣vs = 0 on Γd

0

}

,

and the space of fluid test functions V f(t) is defined using the ALE parametrization xf

(see [15]),

V f(t)
def
=

{

vf = v̂ ◦
(

xf
)−1 ∣

∣
∣ v̂ ∈ H1(Ωf

0)
3, v̂ = 0 on Γw

0

}

×
{

q = q̂ ◦
(

xf
)−1 ∣

∣
∣ q̂ ∈ L2(Ωf

0)
}

×
{

ξ = ξ̂ ◦
(

xf
)−1

|Γw(t)

∣
∣
∣ ξ̂ ∈ L2(Γw

0 )3
}

× L2(Ωf
0)

3.

In addition, we denote by
�

a given linear continuous lift operator

�
: H

1

2 (Γw
0 ) −→

{

vf = v̂ ◦
(

xf
)−1 ∣

∣
∣ v̂ ∈ H1(Ωf

0)
3, v̂ = 0 on Γin−out

}

.

Remark 3 Notice that the interface coupling condition (2)2 is implicitly treated in (5).
Indeed, the last three terms of equation (5) represent nothing but the residual of the
fluid momentum equations in (4). This furnishes a weak description of the fluid load
at the interface (see [22]).

4 Time semi-discretised weak formulation

The weak coupled formulation (4)-(5) is now semi-discretized in time. Numerical ex-
periments (see [28,22–24,16,6]) show that only fully coupled schemes (e.g. the fluid

6



geometry and the interface coupling conditions are implicitly treated) ensure stability
and allow to solve effectively problems in which both the fluid and structural densities
are of the same order. This arises, for instance, in haemodynamics applications (see
[28,14,6,16,17]).

4.1 An implicit coupling scheme

We use an implicit Euler scheme for the ALE Navier-Stokes equations, with a semi-
implicit treatment of the non-linear convective term. Furthermore we use a mid-point
rule for the structural equation (see [22,14,16,6]). Thus, for n = 0, 1, . . ., the semi-
discretized in time problem writes: Given (un,df,n;ds,n,ws,n), find

(un+1, pn+1,df,n+1;ds,n+1),

satisfying the following coupled non-linear subproblems:

(1) Fluid time semi-discretised weak-formulation:

ρ

∆t

∫

Ωf(tn+1)
un+1 · vf dx−

ρ

∆t

∫

Ωf (tn)
un · vf dx

+ ρ
∫

Ωf(tn+1)
div

[

un+1 ⊗ (un −wg(d
f,n+1))

]

· vf dx

+
∫

Ωf(tn+1)
σ(un+1, pn+1) : ∇vf dx−

∫

Γin−out(tn+1)
g(tn+1) · v

f da

−
∫

Ωf (tn+1)
q div un+1 dx +

∫

Γw(tn+1)

(

un+1 −wg(d
f,n+1)

)

· ξ da

+
∫

Ωf
0

(

df,n+1 − Ext(ds,n+1
|Γw

0
)
)

· λ dx0 = 0, ∀ (vf, q, ξ, λ) ∈ V f(tn+1),

(6)

with the notation wg(d
f,n+1)

def
=

1

∆t

(

df,n+1 − df,n
)

.

(2) Solid time semi-discretised weak-formulation:

2

(∆t)2

∫

Ωs
0

ρ0d
s,n+1 · vs dx0 −

2

(∆t)2

∫

Ωs
0

ρ0 (ds,n + ∆tws,n) · vs dx0

+
1

2

∫

Ωs
0

F (ds,n+1)S(ds,n+1) : ∇vs dx0 +
1

2

∫

Ωs
0

F (ds,n)S(ds,n) : ∇vs dx0

+
ρ

∆t

∫

Ωf(tn+1)
un+1 ·

�
(vs

|Γw
0
) dx−

ρ

∆t

∫

Ωf (tn)
un ·

�
(vs

|Γw
0
) dx

+ ρ
∫

Ωf(tn+1)
div

[

un+1 ⊗ (un −wg(d
f,n+1))

]

·
�

(vs
|Γw

0
) dx

+
∫

Ωf(tn+1)
σ(un+1, pn+1) : ∇

�
(vs

|Γw
0
) dx = 0, ∀vs ∈ V s,

(7)

with ws,n+1 =
2

∆t

(

ds,n+1 − ds,n
)

−ws,n.

7



4.2 Abstract formulation

In order to use general methods to solve the coupled-system (6)-(7), it is useful to turn
it into an abstract form. Let U f×U s be the space of fluid and solid states. We introduce
the following operators:

(1) Fluid operator:

F : U f × U s −→ (V f)′

(uf, us) 7−→ F(uf, us),

with uf def
= (u, p,df) and us def

= ds, whose action on fluid test functions (in V f(tn+1))
is defined as follows,

〈

F(u, p,df;ds), (vf, q, ξ, λ)
〉

def
=

ρ

∆t

∫

Ωf(df )
u · vf dx−

ρ

∆t

∫

Ωf (tn)
un · vf dx

+ ρ
∫

Ωf(df )
div

[

u⊗ (un −wg(d
f))

]

· vf dx +
∫

Ωf(df )
σ(u, p) : ∇vf dx

−
∫

Γin−out(df )
g(tn+1) · v

f da−
∫

Ωf(df )
q div u dx

+
∫

Γw(df )

(

u−wg(d
f)

)

· ξ da +
∫

Ωf
0

(

df − Ext(ds
|Γw

0
)
)

· λdx0,

(8)

with wg(d
f) =

1

∆t

(

df − df,n
)

.

(2) Solid operator:

S : U f × U s −→ (V s)′

(uf, us) 7−→ S(uf , us),

whose action on solid test functions is defined as follows,

〈

S(u, p,df ;ds),vs
〉

def
=

2

(∆t)2

∫

Ωs
0

ρ0d
s · vs dx0

−
2

(∆t)2

∫

Ωs
0

ρ0 (ds,n + ∆tws,n) · vs dx0 +
1

2

∫

Ωs
0

F (ds)S(ds) : ∇vs dx0

+
1

2

∫

Ωs
0

F (ds,n)S(ds,n) : ∇vs dx0 +
〈

L(u, p,df),vs
〉

,

(9)

where the fluid load transfer operator L : U f −→ (V s)′ is defined by

〈

L(u, p,df),vs
〉

def
=

〈

F(u, p,df ;ds), (
�

(vs
|Γw

0
), 0, 0, 0)

〉

=
ρ

∆t

∫

Ωf(df )
u ·

�
(vs

|Γw
0
) dx−

ρ

∆t

∫

Ωf(tn)
un ·

�
(vs

|Γw
0
) dx

+ ρ
∫

Ωf(df )
div

[

u⊗ (un −wg(d
f))

]

·
�

(vs
|Γw

0
) dx

+
∫

Ωf(df )
σ(u, p) : ∇

�
(vs

|Γw
0
) dx.

(10)

8



Therefore, using the above definitions, the coupled problem (6)-(7) reads: For n =
0, 1, . . ., find

(un+1, pn+1,df,n+1;ds,n+1),

solution of the following non-linear coupled system:
〈

F(un+1, pn+1,df,n+1;ds,n+1), (vf, q, ξ, λ)
〉

= 0, ∀ (vf, q, ξ, λ) ∈ V f(tn+1),
〈

S(un+1, pn+1,df,n+1;ds,n+1),vs
〉

= 0, ∀vs ∈ V s,

that is,

F(un+1, pn+1,df,n+1;ds,n+1) = 0,

S(un+1, pn+1,df,n+1;ds,n+1) = 0.

To simplify the notation, we shall only consider one time step so that we drop the

upper index n + 1. Thus, the above coupled problem writes: find uf def
= (u, p,df) and

us def
= ds such that

F(uf, us) = 0,

S(uf , us) = 0.
(11)

In the sequel, we shall assume that the methods and software which have been de-
veloped to solve separately each subsystem (the fluid and the structure) will continue
to be used. Hence, it is useful to turn problem (11) into an abstract form in terms of
the fluid and structure solvers. To this purpose, we introduce the fluid solver operator�

: U s −→ U f , defined by

F(
�

(us), us) = 0, ∀us ∈ U s, (12)

and the solid solver operator � : U f −→ U s, defined by

S(uf , � (uf)) = 0, ∀uf ∈ U f . (13)

Therefore, using the above definitions, the coupled non-linear problem (11) can be
reduced to: find us ∈ U s solution of the following non-linear equation

R(us)
def
= us − � ◦

�
(us) = 0, (14)

see [16]. If (uf, us) solves (11) then us satisfies (14) and, conversely, if us is a solution
of (14) then (uf =

�
(us), us) solves (11).

In the next section, we describe the main steps of the Newton’s algorithm when applied
to the above nonlinear problem.

5 The Newton’s algorithm

Standard forms for solving the non-linear problem (14) are fixed-points based iterations,
see [28,25,16,6]. Unfortunately, these methods usually show poor convergence properties

9



and may fail to converge (see [23–25,6,16]). In order to speed up the convergence, it is
useful to use Newton-Raphson based methods (see [23,24,31,16,19]).

The Newton’s method applied to the non-linear equation (14) reads:

(1) Choose ūs ∈ U s

(2) Do until convergence

(a) Evaluate the fluid operator ūf =
�

(ūs)
(b) Evaluate the solid operator ûs = � (ūf)
(c) Evaluate the residual R(ūs) = ūs − ûs

(d) Solve [

DusR(ūs)
]

δus = −R(ūs)

(c) Update rule: ūs ←− ūs + δus.

Step 2(b) of this algorithm can be carried out by using an iterative free matrix method
as GMRES (see [23,24,31,16]). In this case, we only need to evaluate several times the
operator DusR(ūs) against solid state perturbations z. In particular, we have,

[

DusR(ūs)
]

z = z −
[

Duf � (ūf)
] [

Dus

�
(ūs)

]

z
︸ ︷︷ ︸

δuf = (δu, δp, δdf)
︸ ︷︷ ︸

δz

.

By differentiating the equations (12) and (13), we are able to split the above expression
in terms of the derivatives of the fluid an solid operators (8)-(9), defined in the previous
section:

(i) Solve the fluid tangent sub-problem:

[

Duf F(ūf, ūs)
]

δuf = −
[

Dus F(ūf, ūs)
]

z, (15)

(ii) Solve the solid tangent sub-problem:

[

Dus S(ūf , ûs)
]

δz = −
[

Duf S(ūf , ûs)
]

δuf ,

(iii) Evaluate [

DusR(ūs)
]

z = z − δz.

The main difficulty here (see [23,24,31,16,19]) relies on of the fluid tangent subproblem
(15). Indeed, as we shall see in the next section, this problem involves the evaluation
of the following cross-derivative of the fluid operator:

Ddf F(ū, p̄, d̄f ; d̄s)δdf ,

which corresponds to the directional derivative with respect to fluid-domain pertur-
bations. In previous works, the evaluations of these cross-jacobians were performed
using finite difference approximations, that only require state operators evaluations
[23,24,31,19]. However, the lack of a priori rules for selecting optimal finite difference
infinitesimal steps, leads to non-consistent jacobians and a reduction of the overall

10



convergence speed [16]. In the following section, we will show how to avoid these ap-
proximations by establishing the exact expression of the above linearized sub-systems.

6 Weak state operators derivatives

In this section, we present the differentiation of the fluid and solid operators with
respect to the fluid and solid state variables. We will use shape derivative calculus
results in order to perform the differentiation of integral terms with respect to their
supports.

6.1 Fluid operator derivatives

We are able to obtain the expressions of the action of the derivative of the fluid weak

state operator F with respect to the state variables uf = (u, p,df) and us def
= ds at point

(ū, p̄, d̄f ; d̄s) in the direction
(

δu, δp, δdf; δds). We can split the operator derivative in
two terms:

D(u,p,df)F(ū, p̄, d̄f ; d̄s)(δu, δp, δdf) = D(u,p)F(ū, p̄, d̄f ; d̄s)(δu, δp)

+ Ddf F(ū, p̄, d̄f; d̄s)δdf .
(16)

The first term D(u,p)F(ū, p̄, d̄f ; d̄s)(δu, δp) is a classical Fréchet derivative, in the sense
we do not need to perturb the support of the integrals inside the operator. Thus, we
have

〈

D(u,p)F(ū, p̄, d̄f ; d̄s)(δu, δp), (vf, q, ξ, λ)
〉

=
ρ

∆t

∫

Ωf(d̄f )
δu · vf dx

+ ρ
∫

Ωf(d̄f )
div

[

δu⊗ (un −wg(d̄f))
]

· vf dx +
∫

Ωf (d̄f )
σ(δu, δp) : ∇vf dx

−
∫

Ωf (d̄f )
q div δu dx +

∫

Γw(d̄f )
δu · ξ da.

(17)

The second term, Ddf F(ū, p̄, d̄f ; d̄s)δdf , requires the derivation with respect to df of
Eulerian integrals over Ωf(df) and its boundary. Actually, this kind of derivatives can
be viewed as shape derivatives, see for instance [30]. Some elements on shape derivative

11



calculus are given in appendix A and allow to establish the following identity,

〈

Ddf F
(

ū, p̄, d̄f ; d̄s
)

δdf , (vf , q, ξ, λ)
〉

=
ρ

∆t

∫

Ωf(d̄f )
(div δdf)ū · vf dx

+
∫

Ωf(d̄f )
ρ div

{

ū⊗ (un −wg(d̄f))
[

I div δdf − (∇δdf)T
]}

· vf dx

−
ρ

∆t

∫

Ωf(d̄f )
div(ū⊗ δdf) · vf dx +

∫

Ωf(d̄f )
σ(ū, p̄)

[

I div δdf − (∇δdf)T
]

: ∇vf dx

−
∫

Ωf(d̄f )
µ

[

∇ū∇δdf + (∇δdf)T(∇ū)T
]

: ∇vf dx−
∫

Γin−out(d̄f )
(η(δdf) · n)g(tn+1) · v

f da

−
∫

Ωf(d̄f )
q div

{

ū
[

I div δdf − (∇δdf)T
]}

dx +
∫

Ωf
0

δdf · λ dx0

+
∫

Γw(d̄f )

[

(ū−wg(d̄f))(η(δdf) · n)−
δdf

∆t

]

· ξ da.

(18)

Here, we used the notation η(δdf)
def
=

[

I div δdf − (∇δdf)T
]

n, which represents the first

order variation of the surface vector n da (see, for instance, [11,9]). The derivative of
F with respect to the solid variable is given by,

〈

Dds F
(

ū, p̄, d̄f ; d̄s
)

δds, (vf , q, ξ, λ)
〉

= −
∫

Ωf
0

Ext′(d̄s)δds · λdx0. (19)

with the notation Ext′(d̄s)δds def
= Dds Ext(d̄s)δds.

6.2 Solid operator derivatives

We proceed in the same fashion for the solid operator differentiation. We first get the
classical Fréchet derivatives,

〈

Dds S(ū, p̄, d̄f ;ds)δds,vs〉 =
2

(∆t)2

∫

Ωs
0

ρ0δd
s · vs dx0

+
1

2

∫

Ωs
0

(

F (d̄s)δS +∇δdsS(d̄s)
)

: ∇vs dx0

(20)

where δS
def
= Dds S(d̄s)δds.

Again we can split the derivative with respect to the fluid state in two terms:

D(u,p,df) S(ū, p̄, d̄f ; d̄s)(δu, δp, δdf) = D(u,p) S(ū, p̄, d̄f ; d̄s)(δu, δp)

+ Ddf S(ū, p̄, d̄f ; d̄s)δdf .
(21)

The first term D(u,p) S(ū, p̄, d̄f ; d̄s)(δu, δp) is a classical Fréchet derivative. Thus, we

12



have

〈

D(u,p) S(ū, p̄, d̄f ; d̄s)(δu, δp),vs
〉

=
ρ

∆t

∫

Ωf(d̄f )
δu ·

�
(vs

|Γw
0
) dx

+ ρ
∫

Ωf(d̄f )
div

[

δu⊗ (un −wg(d̄f)
]

·
�

(vs
|Γw

0
) +

∫

Ωf(d̄f )
σ(δu, δp) : ∇

�
(vs

|Γw
0
) dx.

(22)

Using the definition (9), the derivative of the solid operator with respect to df corre-
sponds to the derivative of the fluid loads operator with respect to df , i.e.

〈

Ddf S(ū, p̄, d̄f ; d̄s)δdf ,vs
〉

=
〈

Ddf L(ū, p̄, d̄f)δdf ,vs
〉

=
〈

Ddf F(ū, p̄, d̄f ; d̄s)δdf , (
�

(vs
|Γw

0
), 0, 0, 0)

〉

.

Then using (18), we get

〈

Ddf S
(

ū, p̄, d̄f ; d̄s
)

δdf ,vs
〉

=
ρ

∆t

∫

Ωf(d̄f )
(div δdf)ū ·

�
(vs

|Γw
0
) dx

+
∫

Ωf(d̄f )
ρ div

{

ū⊗ (un −wg(d̄f))
[

I div δdf − (∇δdf)T
]}

·
�

(vs
|Γw

0
) dx

−
ρ

∆t

∫

Ωf (d̄f)
div(ū⊗ δdf) ·

�
(vs

|Γw
0
) dx

+
∫

Ωf(d̄f )
σ(ū, p̄)

[

I div δdf − (∇δdf)T
]

: ∇
�

(vs
|Γw

0
) dx

−
∫

Ωf(d̄f )
µ

[

∇ū∇δdf + (∇δdf)T(∇ū)T
]

: ∇
�

(vs
|Γw

0
) dx,

(23)

7 Detailed Newton’s algorithm sub-steps

Let us recall the following notations:

z
def
= z, ūf def

= (ū, p̄, d̄f), ūs def
= d̄s,

ûs def
= d̂s, δuf def

= (δu, δp, δdf), δz
def
= δz.

Thus, from (16), it follows that step 2(d)(i) consists in solving for (δu, δp, δdf) the
following linear variational problem

D(u,p)F(ū, p̄, d̄f ; d̄s)(δu, δp) + Ddf F(ū, p̄, d̄f ; d̄s)δdf = −Ddf F
(

ū, p̄, d̄f ; d̄s
)

. (24)

Using the expressions of the fluid operator derivatives provided in (17)-(19) and by
taking (0, 0, 0, λ) as test function in (24) we obtain that

δdf = Ext′(d̄s)z, in Ωf
0.

On the other hand, taking the quadruplet (0, 0, ξ, 0) as test functions in (24), we obtain
the following boundary condition,

δu =
δdf

∆t
− (ū−wg(d̄f))(η(δdf) · n), on Γw(d̄f). (25)

13



Moreover, since by definition ūf =
�

(ūs), it follows that ū−wg(d̄f) = 0 on Γw(d̄f) so
that (25) reduces to

δu =
δdf

∆t
, on Γw(d̄f). (26)

Finally, using (17)-(19) and choosing the quadruplet (0, 0, ξ, 0) as test functions in
(24), we obtain the following variational expression satisfied by (δu, δp),

〈

D(u,p)F(ū, p̄, d̄f ; d̄s)(δu, δp), (vf, q, 0, 0)
〉

= −
〈

Ddf F
(

ū, p̄, d̄f ; d̄s
)

δdf , (vf, q, 0, 0)
〉

,

(27)

Actually, the last expression corresponds to the weak formulation associated to the
following PDE involving the linearized ALE Navier-Stokes equations:







ρ

∆t
δu + ρ div

[

δu⊗ (un −wg(d̄f))− σ(δu, δp)
]

= −
ρ

∆t
(div δdf)ū

− div
{[

ρū⊗ (un −wg(d̄f))− σ(ū, p̄)
] [

I div δdf − (∇δdf)T
]}

+
ρ

∆t
div(ū⊗ δdf)− div

{

µ
[

∇ū∇δdf + (∇δdf)T(∇ū)T
]}

, in Ωf(d̄),

div δu = − div
{

ū
[

I div δdf − (∇δdf)T
]}

, in Ωf(d̄f),

endowed with the following inflow-outflow condition on Γin−out(d̄f):

σ(δu, δp)n = g(tn+1)(η(δdf) · n)− σ(ū, p̄)η(δdf) + µ
[

∇ū∇δdf + (∇δdf)T(∇ū)T
]

n.

In short, taking into account the above considerations, step 2(d)(i) can be carried out
by computing δdf = Ext′(d̄s)z and by solving the following linearized Navier-Stokes
problem for (δu, δp):







ρ

∆t
δu + ρ div

[

δu⊗ (un −wg(d̄f))− σ(δu, δp)
]

= −
ρ

∆t
(div δdf)ū

− div
{[

ρū⊗ (un −wg(d̄f))− σ(ū, p̄)
] [

I div δdf − (∇δdf)T
]}

+
ρ

∆t
div(ū⊗ δdf)− div

{

µ
[

∇ū∇δdf + (∇δdf)T(∇ū)T
]}

, in Ωf(d̄),

div δu = − div
{

ū
[

I div δdf − (∇δdf)T
]}

, in Ωf(d̄f),

δu =
δdf

∆t
, on Γw(d̄f),

σ(δu, δp)n = g(tn+1)(η(δdf) · n)− σ(ū, p̄)η(δdf)

+ µ
[

∇ū∇δdf + (∇δdf)T(∇ū)T
]

n, on Γin−out(d̄f),

(28)

Finally, using the expressions of the solid operator derivatives provided in (20)-(23),
we are able to identify the structure of step 2(d)(ii). It consists in solving for the

14



perturbed solid state δz the following problem:

2

(∆t)2

∫

Ωs
0

ρ0δz · v
s dx0 +

1

2

∫

Ωs
0

(

F (d̂s)δS(z) +∇δzS(d̂s)
)

: ∇vs dx0

=
ρ

∆t

∫

Ωf(d̄f )
δu ·

�
(vs

|Γw
0
) dx + ρ

∫

Ωf(d̄f )
div

[

δu⊗ (un −wg(d̄f)
]

·
�

(vs
|Γw

0
)

+
∫

Ωf(d̄f )
σ(δu, δp) : ∇

�
(vs

|Γw
0
) dx +

ρ

∆t

∫

Ωf(d̄f )
(div δdf)ū ·

�
(vs

|Γw
0
) dx

+
∫

Ωf(d̄f )
ρ div

{

ū⊗ (un −wg(d̄f))
[

I div δdf − (∇δdf)T
]}

·
�

(vs
|Γw

0
) dx

−
ρ

∆t

∫

Ωf(d̄f )
div(ū⊗ δdf) ·

�
(vs

|Γw
0
) dx

+
∫

Ωf(d̄f )
σ(ū, p̄)

[

I div δdf − (∇δdf)T
]

: ∇
�

(vs
|Γw

0
) dx

−
∫

Ωf(d̄f )
µ

[

∇ū∇δdf + (∇δdf)T(∇ū)T
]

: ∇
�

(vs
|Γw

0
) dx,

Let notice, that the right hand side of this problem is nothing but the residual of the
linearized fluid momentum equation (28)1 involved in step 2(d)(i).

An approximate fluid tangent problem can be simply derived from exact expression
(28) by neglecting the shape derivative terms (see [31,5,7]), yielding







ρ

∆t
δu + ρ div

[

δu⊗ (un −wg(d̄f))− σ(δu, δp)
]

= 0, in Ωf(d̄f),

div δu = 0, in Ωf(d̄f),

δu =
δdf

∆t
, on Γw(d̄f),

σ(δu, δp)n = 0, on Γin−out(d̄f),

(29)

Still, by neglecting here the convective and diffusive terms we get the following approx-
imate fluid tangent problem:







ρ

∆t
δu +∇δp = 0, in Ωf(d̄f),

div δu = 0, in Ωf(d̄f),

δu =
δdf

∆t
, on Γw(d̄f),

δpn = 0, on Γin−out(d̄f),

that was proposed in [16] (see also [7,17]).

8 Numerical results

In this section we compare the exact Newton’s algorithm, whose jacobian evaluations
have been described in Section 7, with two former approaches:

15



• fixed-point iterations combined with an Aitken’s acceleration techniques (FP-Aitken)
[25,16],
• a quasi-Newton’s algorithm, whose approximate jacobians evaluations are carried

out using the simplified fluid tangent problem (29), i.e., without taking into account
the shape derivatives of the fluid operator (see [31,5,7]).

As we shall see, in the sequel, the expected superiority of the exact jacobian approach
is validated by the numerical experiments, mainly when using moderate time steps.

(a) t = 0.0025 s (b) t = 0.005 s

(c) t = 0.0075 s (d) t = 0.01 s

Fig. 3. Pressure wave propagation (straight cylinder)

We consider a fluid-structure problem arising in the modelling of the blood flow in large
arteries: it consists of a thin elastic vessel conveying an incompressible viscous fluid (see
[6,5,28,14,16]). The solid is described by the linear elasticity equations (Saint Venant-
Kirchhof material), while the fluid is described by the incompressible Navier-Stokes
equations. We consider two different geometries:

(1) a straight cylinder of radius R0 = 0.5 cm and length L = 5 cm,

16



(a) t = 0.0025 s (b) t = 0.005 s

(c) t = 0.0075 s (d) t = 0.01 s

Fig. 4. Pressure wave propagation (curved cylinder)

(2) a curved cylinder of radius R0 = 0.5 cm with curvature ratio 0.25 cm−1.

The surrounding structure has a thickness of h = 0.1 cm. The physical parameters are
the following (see [14,16]):

• Fluid: viscosity µ = 0.003 poise, density ρ = 1 g/cm3,
• Solid: density ρ0 = 1.2 g/cm3, Young modulus E = 3 × 106 dynes/cm2 and Poisson

ratio ν = 0.3.

Both systems, the fluid and the structure, are initially at rest. The structure is clamped
at the inlet and the outlet. An over pressure of 1.3332 × 10−4 dynes/cm2 (10 mmHg)
is imposed on the inlet boundary Γin during 3× 10−3 seconds. The fluid equations are
discretised using P1bubble/P1 finite elements, whereas for the solid equations we use P1

finite elements.

17



A pressure wave propagation is observed in both configurations. Figures 3 and 4 show
the fluid pressure at time t = 0.0025, 0.005, 0.0075, 0.01 s with time step ∆t = 10−4 s.
These results are similar to those provided in [16,14]. In figures 5 and 6 the correspond-
ing solid deformed configurations (half section) are displayed.

Remark 4 The boundary data imposed on the inlet and outlet boundaries [14,16,17] do
not have any physiological meaning. Let us notice that the typical period of a heart beat
is about 1 second [27]. Providing realistic physiological simulations of the interaction
between the blood and the arterial wall, lies outside the scope of this paper. This will be
the purpose of a forthcoming work. In such cases, the use of moderate time steps will
be crucial to perform over several cardiac beats.

(a) t = 0.0025 s (b) t = 0.005 s

(c) t = 0.0075 s (d) t = 0.01 s

Fig. 5. Solid domain deformed configuration (straight cylinder)

For comparison purposes, we give in figures 7 and 8 the number of iterations of either
method at each time level, for ∆t = 10−4 s. The superior convergence properties of both
Newton’s algorithms are evident. However, the cost of each Newton iteration is higher
than the cost of a fixed-point iteration. Therefore, the previous promising convergence

18



(a) t = 0.0025 s (b) t = 0.005 s

(c) t = 0.0075 s (d) t = 0.01 s

Fig. 6. Solid domain deformed configuration (curved cylinder)

behavior does not necessarily imply an overall reduction of the computational cost.
Hence, in order to compare the computational cost of these algorithms, we furnish
in tables 1 and 2 the elapsed CPU time (dimensionless) for either algorithm after
300 time steps of length ∆t = 10−4 s. We can notice that both Newton’s algorithms
are (in our implementation) about 2 times faster than the fixed-point algorithm. This
computational gain can be also recovered (from figures 7 and 8) by simply estimating
the cost of each Newton iteration in terms of the number of fluid and solid solvers calls.
Each Newton iteration requires:

• a fluid solver evaluation,
• a solid solver evaluation,
• about 9 inner GMRES iterations (with a tolerance of 10−4).

At this point, it is important to remark that each call of the fluid solver updates the fluid
mesh and the corresponding FE fluid matrices, while the tangent fluid solver keeps the

19



same FE matrix during the GMRES process. As a result, and since we are dealing with
linear solvers, the cost of each Newton iteration is approximately 7 times the cost of a
fluid solver evaluation, plus 10 times the cost of a solid solver evaluation. This explains
the observed overall computational cost reduction. Obviously, this performance rises
much more when the fluid and solid solvers are non-linear.

Now, let us address in details the comparison between the exact Newton and quasi-
Newton algorithms. Obviously, the GMRES iterations in the exact version are more
expensive than in the quasi version. Indeed, the exact Newton’s algorithm involves the
computation of a shape derivative which is required by the fluid tangent problem (28).
However, this is usually compensated by a reduced number of Newton iterations. For
instance, Figures 7 and 8 and tables 1 and 2 show that, for ∆t = 10−4 seconds, these
algorithms exhibit a comparable behavior.

0

5

10

15

20

25

30

35

40

45

50

0 0.005 0.01 0.015 0.02 0.025 0.03

nu
m

be
r 

of
 it

er
at

io
ns

time

Newton
quasi-Newton

FP-Aitken

Fig. 7. Straight cylinder ∆t = 10−4 s

0

10

20

30

40

50

60

0 0.005 0.01 0.015 0.02 0.025 0.03

nu
m

be
r 

of
 it

er
at

io
ns

time

Newton
quasi-Newton

FP-Aitken

Fig. 8. Curved cylinder ∆t = 10−4 s

20



Algorithm CPU time

FP-Aitken 1.00

Quasi-Newton 0.56

Newton 0.52

Table 1
Dimensionless CPU time (straight cylinder)

Algorithm CPU time

FP-Aitken 1.00

Quasi-Newton 0.55

Newton 0.60

Table 2
Dimensionless CPU time (curved cylinder)

0

5

10

15

20

25

0 0.005 0.01 0.015 0.02 0.025 0.03

nu
m

be
r 

of
 it

er
at

io
ns

time

Newton
quasi-Newton

FP-Aitken

Fig. 9. Straight cylinder ∆t = 10−3 s

The superiority of the exact Newton’s algorithm can be simply illustrated by increasing
the time step. Indeed, in figures 9 and 10, we specify the number of iterations of either
method at each time level, with time step ∆t = 10−3 s. The fixed-point and quasi-
Newton algorithms fail to converge after two time steps: the allowed maximum number
of iterations is in both cases reached, whereas the exact Newton’s method converges
and requires a low (almost constant) number of iterations. This illustrates the expected
good convergence properties of the Newton’s method using exact jacobians evaluations.
Figures 11 and 12 show the evolution of the residual during the iteration process in both
Newton’s algorithms at the third time step. We may observe that the quasi-Newton’s
algorithm is unable to reduce the residual after 100 iterations, while the exact Newton
only requires 3 iterations to reach the convergence threshold.

Let notice that the initial guess used in our computations, for starting each Newton’s
loop, is based on a extrapolation of the displacement of the previous time steps (see,

21



0

5

10

15

20

25

0 0.005 0.01 0.015 0.02 0.025 0.03

nu
m

be
r 

of
 it

er
at

io
ns

time

Newton
quasi-Newton

FP-Aitken

Fig. 10. Curved cylinder ∆t = 10−3 s

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0 20 40 60 80 100

re
si

du
al

number of iterations

Newton
quasi-Newton

Fig. 11. Straight cylinder ∆t = 10−3 s

for instance, [22,28,16]). Consequently, larger time steps lead to worse initial guess and
then to a higher number of iterations. The variations of the fluid domain become thus
more relevant and, therefore, the shape derivatives (18) can not be neglected in (28).

9 Conclusion

Using Newton based methods for solving the non-linear coupled systems arising in the
numerical approximation of fluid-structure interaction problems, requires evaluations
of the jacobian associated to coupled non-linear problem. Up to now, these evaluations
were approximated either using finite differences [23,24,31,19], or by introducing sim-

22



1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0 20 40 60 80 100

re
si

du
al

number of iterations

Newton
quasi-Newton

Fig. 12. Curved cylinder ∆t = 10−3 s

plified expressions [31,16,5,7,17]. In any case, with a loss of some of the convergence
features of the Newton’s method. In this article, we have proposed a new strategy con-
sisting in implementing linearized solvers in order to evaluate, in a consistent way, the
different jacobians involved in the Newton’s algorithm. The main contribution of this
paper consists in establishing the expressions of these jacobians, in the case of a coupled
system consisting of an incompressible Newtonian fluid interacting with a non-linear
elastic solid under large displacements. On the numerical view point, the Newton’s
method has been implemented in a 3D research code in the case of a linear elastic
solid. Performing several numerical experiments allowed us to show how the exactness
level of the jacobian evaluations influences drastically the convergence properties of the
Newton’s loop.

There exist several ways of improving the results presented in this paper. First we shall
move from a linear to a nonlinear elastic solid. Then we may address the technical point
consisting in preconditioning the GMRES iterations during the Newton’s loop [19,7].
We shall also investigate the application of our approach in the case of disretisations
involving space-time finite elements [31]. Our underlying motivation is, in any case, to
be able to provide fast and reliable simulations of the mechanical interaction between
the blood and the arterial wall [14,28,6,5,16,17], over several cardiac beats.

Acknowledgments

First author was supported by the Swiss National Science Foundation (contract number
20-65110.01). Second author was supported by the Semester Program “Mathematical
Modelling of the Cardiovascular System” of the Bernoulli Center at the EPFL.

23



A Shape derivative calculus

In this section we shall give some elements of the shape derivative calculus used in
section 6 (see also [11]), for establishing the expressions of the cross-derivative (18) of
the fluid operator.

We consider a smooth domain Ω0 ∈ R
3 and a one-to-one mapping x ∈ T k,∞ where

T k,∞ def
=

{

x |x− I ∈ W k,∞(R3, R3), x−1 − I ∈ W k,∞(R3, R3)
}

with k ≥ 1.

We introduce the transported domain Ω(x) = x(Ω0). We introduce a scalar parameter
τ ≥ 0 and a perturbation mapping δx ∈ T k,∞ and we set Fτ = ∇(x + τδx) and
Jτ = det Fτ . The following identities are easy to verify:

Dx [J ] δx
def
=

d

dτ
Jτ |τ=0 = J div δx,

Dx

[

F−1
]

δx = −F−1∇δx.

We introduce the unit outward normal to Γ(x)
def
= ∂Ω(x) by

n(x) =
F−Tn0

‖F−Tn0‖
,

where n0 is unit outward normal to Γ0
def
= ∂Ω0. We have the following identities:

Dx

[
∫

Γ(x)
da

]

δx =
∫

Γ(x)
η(δx) · n da,

Dx

[
∫

Γ(x)
n da

]

δx =
∫

Γ(x)
η(δx) da,

with η(δx)
def
=

[

I div δx− (∇δx)T
]

n. We also have the following linearised Piola iden-
tity:

div
[

I div x− (∇x)T
]

= 0. (A.1)

Now we consider a function u(x) : Ω(x) → R
3 depending on the mapping x. We set

u(τ)
def
= u(x + τx) : Ω(x + τδx)→ R

3.

Definition 1 We say that the function u(x) admits a shape material derivative u̇(x; δx)
in the direction δx if the following limit exists,

u̇(x; δx)
def
= lim

τ→0

u(τ) ◦ (x + τδx)− u(x) ◦ x

τ
.

In the sequel we shall need the following result, whose proof can be found in [30, section

24



2.31]:

Dx

[
∫

Ω(x)
u · v dx

]

δx =
∫

Ω(x)
[(u̇(x; δx) · v + u · v̇(x; δx) + (div δx)u · v] dx. (A.2)

Let U(Ω0) be a given abstract functional space of functions defined on Ω0, we define
its transported image through x as follows,

U(Ω(x))
def
=

{

û ◦ x−1, û ∈ U(Ω0)
}

.

Then we have the following result:

Lemma 2 For
(

(u, p), (v, q)
)

∈ U(Ω(x))×V (Ω(x)), the following identities hold true,

Dx

[
∫

Ω(x)
u · v dx

]

δx =
∫

Ω(x)
(div δx)u · v dx. (A.3)

Dx

[
∫

Ω(x)
q div u dx

]

δx =
∫

Ω(x)
q div

{

u
[

I div δx− (∇δx)T
]}

dx. (A.4)

Dx

[
∫

Ω(x)
σ(u, p) : ∇v dx

]

δx =
∫

Ω(x)
σ(u, p)

[

I div δx− (∇δx)T
]

: ∇v dx

−
∫

Ω(x)
µ

[

∇u∇δx + (∇δx)T(∇u)T
]

: ∇v dx. (A.5)

Proof. - In the special case where
(

(u, p), (v, q)
)

∈ U(Ω(x))× V (Ω(x)), obviously we
have (

(u̇(x; δx), ṗ(x; δx)), (v̇(x; δx), q̇(x; δx)
)

=
(

(0, 0), (0, 0)
)

then using (A.2), we have

Dx

[
∫

Ω(x)
u · v dx

]

δx =
∫

Ω(x)
[(div δx)u · v] dx

The next results follows using the following identities,
∫

Ω(x)
q div u dx =

∫

Ω0

q̂ div
{

JûF−T
}

dx0

∫

Ω(x)
∇u : ∇v dx =

∫

Ω0

J∇ûF−1 : ∇v̂F−1 dx0

and the definition σ(u, p) = −p I +µ
[

∇u + (∇u)T
]

. 2

References

[1] S. Artlich and W. Mackens. Newton-coupling of fixed point iterations. In W. Hackbusch
and G. Wittum, editors, Numerical treatment of coupled systems, volume 51 of Notes on

25



Numerical Fluid Mechanics, pages 1–10, Wiesbaden, 1995. Vieweg.

[2] J.T. Batina. Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA
J., 28(8):1381–1388, 1990.

[3] M. Cervera, R. Codina, and M. Galindo. On the computational efficiency and
implementation of block-iterative algorithms for nonlinear coupled problems. Engrg.
Comput., 13(6):4–30, 1996.

[4] P.G. Ciarlet. Mathematical elasticity. Vol. I, volume 20 of Studies in Mathematics and
its Applications. North-Holland Publishing Co., Amsterdam, 1988.

[5] S. Deparis. Axisymmetric flow in moving domains and fluid-structure interaction
algorithms for blood flow modelling. PhD thesis, École Polytechnique Fédérale de
Lausanne, 2004.

[6] S. Deparis, M.A. Fernández, and L. Formaggia. Acceleration of a fixed point algorithm for
fluid-structure interaction using transpiration conditions. M2AN Math. Model. Numer.
Anal., 37(4):601–616, 2003.

[7] S. Deparis, J.-F. Gerbeau, and X. Vasseur. Dynamic GMRES-based preconditioner
for Newton or Quasi-Newton algorithms with application to fluid structure interaction.
Submitted, 2004.

[8] J. Donea. An arbitrary lagrangian-eulerian finite element method for transient dynamic
fluid-structure interactions. Comput. Methods Appl. Mech. Eng., 33:689–723, 1982.

[9] T. Fanion, M.A. Fernández, and P. Le Tallec. Deriving adequate formulations for fluid-
structure interactions problems: from ALE to transpiration. Rév. Européenne Élém.
Finis, 9(6-7):681–708, 2000. Also in A. Dervieux, editor, Fluid-Structure Interaction,
chapter 3, Kogan Page Science, London, 2003.

[10] C. Farhat, M. Lesoinne, and P. Le Tallec. Load and motion transfer algorithms for
fluid/structure interaction problems with non-matching discrete interfaces: momentum
and energy conservation, optimal discretization and application to aeroelasticity. Comput.
Methods Appl. Mech. Engrg., 157(1-2):95–114, 1998.

[11] M.A. Fernández and M. Moubachir. Sensitivity analysis for an incompressible aeroelastic
system. Math. Models Methods Appl. Sci., 12(8):1109–1130, 2002.

[12] M.A. Fernández and M. Moubachir. An exact Block-Newton algorithm for solving fluid-
structure interaction problems. C. R. Math. Acad. Sci. Paris, 336(8):681–686, 2003.

[13] M.A. Fernández and M. Moubachir. An exact Block-Newton algorithm for the solution of
implicit time discretized coupled systems involved in fluid-structure interaction problems.
In K.J. Bathe, editor, Second MIT Conference on Computational Fluid and Solid
Mechanics, volume 2 of Computational Fluid and Solid Mechanics, pages 1337–1341,
Cambridge (MA), June 17-20 2003. Elsevier.

[14] L. Formaggia, J.-F. Gerbeau, F. Nobile, and A. Quarteroni. On the coupling of 3D and
1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods
Appl. Mech. Engrg., 191(6-7):561–582, 2001.

[15] L. Formaggia and F. Nobile. A stability analysis for the arbitrary Lagrangian Eulerian
formulation with finite elements. East-West J. Numer. Math., 7(2):105–131, 1999.

26



[16] J.-F. Gerbeau and M. Vidrascu. A quasi-Newton algorithm based on a reduced model for
fluid structure problems in blood flows. M2AN Math. Model. Numer. Anal., 37(4):631–
647, 2003.

[17] J.-F. Gerbeau, M. Vidrascu, and P. Frey. Fluid-structure interaction in blood flows on
geometries coming from medical imaging. Technical Report 5052, INRIA, 2003.

[18] M.E. Gurtin. An introduction to continuum mechanics, volume 158 of Mathematics in
Science and Engineering. Academic Press Inc., New York, 1981.

[19] M. Heil. An efficient solver for the fully-coupled solution of large-displacement fluid-
structure interaction problems. Comput. Methods Appl. Mech. Engrg., 2003. In press.

[20] T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann. Lagrangian-Eulerian finite element
formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Engrg.,
29(3):329–349, 1981.

[21] P. Le Tallec. Numerical methods for nonlinear three-dimensional elasticity. In Handbook
of numerical analysis, Vol. III, Handb. Numer. Anal., III, pages 465–622. North-Holland,
Amsterdam, 1994.

[22] P. Le Tallec and J. Mouro. Fluid structure interaction with large structural displacements.
Comput. Methods Appl. Mech. Engrg., 190(24–25):3039–3067, 2001.

[23] H.G. Matthies and J. Steindorf. Partitioned but strongly coupled iteration schemes for
nonlinear fluid-structure interaction. Computer & Structures, 80:1991–1999, 2002.

[24] H.G. Matthies and J. Steindorf. Partitioned strong coupling algorithms for fluid-structure
interaction. Computer & Structures, 81:805–812, 2003.

[25] D.P. Mok, W.A. Wall, and E. Ramm. Accelerated iterative substructing schemes for
instationary fluid-structure interaction. In Computational fluid and solid mechanics,
Vol. 1, 2 (Cambridge, MA, 2001), pages 1325–1328. Elsevier, Amsterdam, 2001.

[26] H. Morand and R. Ohayon. Fluid-Structure Interaction. John Wiley & Sons, Chichester,
1995.

[27] W.W. Nichols and M.F. O’Rourke. McDonald’s Blood Flow in Arteries. Theoretical,
experimental and clinical principles. Arnold, London, 1998.

[28] F. Nobile. Numerical approximation of fluid-structure interaction problems with
application to haemodynamics. PhD thesis, École Polytechnique Fédérale de Lausanne,
2001.

[29] S. Piperno, C. Farhat, and B. Larrouturou. Partitioned procedures for the transient
solution of coupled aeroelastic problems. I. Model problem, theory and two-dimensional
application. Comput. Methods Appl. Mech. Engrg., 124(1-2):79–112, 1995.

[30] J. Soko lowski and J.-P. Zolésio. Introduction to shape optimization, volume 16 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 1992.

[31] T.E. Tezduyar. Finite element methods for fluid dynamics with moving boundaries and
interfaces. Arch. Comput. Methods Engrg., 8:83–130, 2001.

[32] T.E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations
involving moving boundaries and interfaces—the deforming-spatial-domain/space-time
procedure. I. The concept and the preliminary numerical tests. Comput. Methods Appl.
Mech. Engrg., 94(3):339–351, 1992.

27



[33] T.E. Tezduyar, M. Behr, S. Mittal, and J. Liou. A new strategy for finite
element computations involving moving boundaries and interfaces—the deforming-
spatial-domain/space-time procedure. II. Computation of free-surface flows, two-liquid
flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Engrg., 94(3):353–
371, 1992.

[34] P.D. Thomas and C.K. Lombard. Geometric conservation law and its application to flow
computations on moving grids. AIAA J., 17(10):1030–1037, 1979.

28


