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Abstract. Many and important integrable Hamiltonian systems are ‘superintegrable’, in the sense
that there is an open subset of their 2d-dimensional phase space in which all motions are linear
on tori of dimension n < d. A thorough comprehension of these systems requires a description
which goes beyond the standard notion of Liouville–Arnold integrability, that is, the existence of an
invariant fibration by Lagrangian tori. Instead, the natural object to look at is formed by both the
fibration by the (isotropic) invariant tori and by its (coisotropic) polar foliation, which together form
what in symplectic geometry is called a ‘dual pair’, or ‘bifoliation’, or ‘bifibration’. We review this
geometric structure, relating it to the dynamical properties of superintegrable systems and pointing
out its importance for a thorough understanding of these systems.
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1. Introduction

A. Integrability of Hamiltonian systems is often identified with complete inte-
grability, or Liouville integrability, that is, the existence of as many independent
integrals of motion in involution as the dimension of the phase space. Under certain
regularity and compactness conditions, the invariant geometric structure associ-
ated to Liouville integrability is a fibration by Lagrangian tori, on which motions
are linear. This structure plays an important role in many questions, such as the
quantization of the system and certain aspects of the study of small perturbations
of it.

However, there are many and important systems which have more independent
integrals of motion (with suitable properties) and correspondingly have motions
linear on tori of smaller dimension. Systems of this type are called superintegrable,
or degenerate, or noncommutatively integrable. Here are few examples:

• A point in a central force field: three degrees of freedom, four integrals of
motion (energy and angular momentum), motions linear on two-dimensional
tori.

• Kepler system, which has one further integral of motion (coming from the
Laplace–Runge–Lenz vector) and periodic motions.
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• The Euler top: three degrees of freedom, four integrals of motion (energy and
spatial angular momentum), motions linear on tori of dimension two.

The fact that this short, and not exhaustive, list includes some of the ‘classical’
systems of mechanics indicates the importance of the subject.

The aim of this article is to review the geometric structure of superintegrable
systems. As it turns out, the natural, intrinsic, invariant geometric object associated
to superintegrability is not a Lagrangian fibration, but a finer and richer structure,
which is formed by both

• the (isotropic) fibration by the invariant tori, and
• its (coisotropic) ‘polar’ foliation.

Together, they form what is well known in symplectic geometry under a variety of
names: dual pair, symplectically complete foliation, bifoliation, bifibration.

If, as it often happens, both these foliations are fibrations, then the space of the
leaves of the polar foliation is an affine manifold which has the same dimension
of the invariant tori and plays the role of ‘action manifold’ of the system. Further-
more, the base of the fibration by the invariant tori is a Poisson manifold and the
space of its symplectic leaves can be identified with the action manifold. There
is therefore a clear distinction between the ‘actions’ and the other first integrals,
which can be regarded as local coordinates on the symplectic leaves. This ‘double’
structure is obviously hidden in the Liouville case because any Lagrangian foliation
coincides with its own polar. Its consideration provides however a thorough insight
into superintegrable systems.

In general, of course, not all of the phase space of a (super)integrable system is
fibered by invariant tori of a given dimension n. The orbits form in fact a foliation
with singularities (equilibria, lower-dimensional tori, hyperbolic sets, etc.). Nev-
ertheless, we shall (tacitly) restrict our attention to the regular subset of the phase
space, which is fibered by invariant tori of a given dimension: the idea is that the
consideration of this regular structure has already several reasons of interest.

B. To our knowledge, a comprehensive study of superintegrability begins with the
work of Nekhoroshev in 1972 [38]. (A good source for what was classically known
is [12].) In [38] Nekhoroshev related superintegrability to properties of the integrals
of motion, provided a generalization of the Liouville–Arnold theorem which de-
scribes the local structure of the fibration by the invariant tori, and began the study
of the global structure of this fibration. In particular, he identified what became
later known as ‘monodromy’ after Duistermaat’s treatment of the Liouville case
[17]. However, the role of the polar foliation is missing in Nekhoroshev’s treatment.
Nekhoroshev work passed largely unobserved. A few years later, Mischenko and
Fomenko [36] gave a more Lie algebraically-oriented treatment which received
more attention.

The characterization in terms of dual pairs is present, e.g., in the work of Dazord
and Delzant [16] and of Karasev and Maslov [29]. A complete study of the global
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geometry of the fibration by tori, which generalizes Duistermaat’s treatment of the
Lagrangian case, was given by Dazord and Delzant [16].

The importance of the consideration of the bifibrated structure for the com-
prehension of superintegrable systems of mechanical interest was pointed out in
particular in [29, 20–22]. Nowdays there is a growing number of works which rest
on the notion of superintegrability and on the corresponding geometric structure,
see, e.g., [10, 23, 24, 27, 11, 49, 18].

We note that there is also a vast literature on superintegrable systems which
focuses on problems different from those considered here, such as the construction
of potentials producing ‘maximally superintegrable’ systems (that is, systems with
periodic dynamics), the connection with the spectrum of the Schrödinger operator,
the separation of variables in Hamilton–Jacobi equation, etc., see, e.g., [19, 30] and
the very recent volume of proceedings [45].

C. The article is organized as follows. In Section 2 we preliminarily discuss an
elementary but motivating example, where one can ‘touch by hands’ the bi-fibrated
structure. Sections 3 and 4 are the core of the article: as a way of arriving at the
dual pair structure of superintegrable systems, we start from the theorem on ‘non-
commutative integrability’ by Mischenko and Fomenko, which is probably the best
known among the various results in this field, and explain the symplectic geomet-
rical meaning of its hypotheses. Section 5 is devoted to a few examples. Section 6
gives a very short account of perturbation theory for superintegrable systems – an
important topic in which the geometry of these systems play an essential role and
a homage to the title of this conference.

The present review is based on [21, 22].

2. An Elementary Example

2.1. TWO UNCOUPLED OSCILLATORS

We begin by considering a well known and elementary example, that is, a system
of two uncoupled harmonic oscillators. This will help in pointing out some of the
main facts about superintegrability. The Hamiltonian is

H(p1, p2, q1, q2) = ω1

2
(p2

1 + q2
1 ) + ω2

2
(p2

2 + q2
2 ),

where (p, q) are canonical coordinates in R
4 and the two frequencies ω1 and ω2

are positive constants. The energies H1 = ω1(p
2
1 +q2

1 )/2 and H2 = ω2(p
2
2 +q2

2 )/2
of the two oscillators are integrals of motion. Their common level set

Mh1,h2 = {(p1, q1) : p2
1 + q2

1 = 2h1/ω1} × {(p2, q2) : p2
2 + q2

2 = 2h2/ω2}
is a two-dimensional torus if h1 and h2 are both positive, a circle if one is positive
and the other vanishes, a point if they are both zero, see Figure 1(a). Thus, a
large subset of the phase space is foliated by invariant two-dimensional tori and
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Figure 1. (a) Classification of the fibers of (h1, h2), and (b) singularities of the Liouville tori.

this foliation has singularities, corresponding to motions where either one or both
oscillators are at rest. Figure 1(b) depicts the local structure of the foliation near
the S1-singular leaves.

The description of this system as Liouville-integrable focuses on the foliation by
the two-dimensional tori. The subset where h1 > 0 and h2 > 0 is fibered� by them
and one can there introduce action-angle coordinates (a1, a2, α1, α2) ∈ R

2 ×T
2 via

the well known relations pj = √
2aj cos αj , qj = √

2aj sin αj . The Hamiltonian
takes the form ω1a1+ω2a2 and the equations of motion are ȧ1 = 0, ȧ2 = 0, α̇1 = ω1

and α̇2 = ω2. Of course, these coordinates are not defined on the singularities of
the foliation.

The key question now is whether this invariant structure – the fibration by two-
dimensional tori – reflects any intrinsic property of the system. This depends on
the arithmetic properties of the two frequencies:

• If ω1/ω2 is irrational, then every trajectory fills densely an invariant two-
dimensional torus Mh1,h2 . Thus, there is no (continuous) integral of motion
independent of H1 and H2 and the fibration by the two-dimensional tori is
the finest fibration with fibers invariant under the flow – and as such, it is a
geometric object naturally created by the dynamics.

• If instead ω1/ω2 is rational, then all motions are periodic. Correspondingly,
the periodic orbits form a regular invariant structure (in fact, a fibration) which
is finer than that by the Liouville tori. In fact, each Liouville torus is fibered by
periodic orbits. For certain values of ω1/ω2, moreover, this fibration includes
also one or both families of periodic orbits with either h1 = 0 or h2 = 0, and
hence it is defined in a larger set than the fibration by Liouville tori (see below
for the case ω1 = ω2). This situation reflects the existence of an additional
independent integral of motion and is clear that it is this structure, and not that
by the Liouville tori, which is, so to say, ‘created by the dynamics’ – and as
such, should be taken into consideration.

� In this work, by ‘fibration’ we mean a locally trivial fibration, see, e.g., [1]. The distinction
between fibration and foliation will appear constantly. We shall often (tacitly) invoke the important
Ehresmann fibration theorem and some of its consequences, according to which a surjective sub-
mersion whose fibers are compact and connected (or, more generally, have a constant number of
connected components) is a fibration, see [35].
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Figure 2. (a) Doubly-fibered structure of the phase space of the isotropic oscillator, and
(b) foliation of the sphere |π | = const producing the Liouville tori.

The obvious question now is what is gained in comprehension, in the ‘super-
integrable’ case ω1/ω2 ∈ Q, from the consideration of the fibration by periodic
orbits instead of that by the two-dimensional Liouville tori. And also, which is the
relation between the two structures.

2.2. THE ISOTROPIC OSCILLATOR

In order to elucidate these points we consider the simple case ω1 = ω2, in which the
system can be regarded as an isotropic oscillator in the plane. Three independent
first integrals are π1(q, p) = q1q2 + p1p2, π2(q, p) = p1q2 − p2q1, π3(q, p) =
1
2(p

2
1 +q2

1 −p2
2 −q2

2 ), see, e.g., [29]. These functions are of course not independent
of the Hamiltonian, but satisfy

π2
1 + π2

2 + π2
3 = H 2. (1)

It is easy to check that the map π = (π1, π2, π3): R
4 → R is a submersion at

all points but at the origin. Moreover, its fibers are connected and hence coincide
with the periodic orbits. Therefore, the periodic orbits are the fibers of the fibration
π = (π1, π2, π3): M → B with total space M = R

4 \ {0} and base B = R
3 \ {0}.

However, M is also fibered by the level sets of H , which are three-dimensional
spheres centered at the origin. Clearly, this is a trivial fibration with base R+, so
that M ≈ R+ × S3.

The key fact is now that, given the constancy of H , each of its level sets is
in turn fibered by the periodic orbits. Each of these fibrations is described by the
restriction of the map π to the set H = const. Hence, according to Equation (1),
its base is a two-dimensional sphere. In fact, such a fibration is the well known
Hopf fibration S3 → S2, which is topologically nontrivial. (See, e.g., [44] for its
definition, which uses exactly the flow of the isotropic oscillator.)

Another way of saying that the fibers of H are fibered by the periodic orbits is
that there is a map H̃ : B → R+, in fact a fibration, which is such that H = H̃ ◦ π ,
that is, its fibers are the spheres |π | = const in B.

The overall structure is illustrated in Figure 2(a). Its meaning will be fully clar-
ified when we consider the general case: the structure of superintegrable systems
is an immediate generalization of this structure, the periodic orbits being replaced
by the invariant tori, the Hamiltonian by the ‘actions’, the base B by a Poisson
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manifold, the spheres |π | = const by its symplectic leaves, the fibration H̃ by its
symplectic foliation.

Note also that, in the present case, all the topological nontriviality of this struc-
ture comes from the ‘internal structure’ of the fibers of H , which is a Hopf fibration.

2.3. LIOUVILLE TORI

The two-dimensional tori Mh1,h2 do not play any role in the previous picture, which
however allows a clear understanding of their origin.

Expressing π in terms of the action-angle coordinates one finds π1 =
2
√

a1a2 cos(α2−α1), π2 = 2
√

a1a2 sin(α2−α1) and π3 = a1−a2. Since h1 = ω1a1

and h2 = ω2a2, this shows that Mh1,h2 consists of all periodic orbits based on one
of the parallels π3 = const of the sphere |π | = h1+h2 in B. Thus, the Liouville tori
are produced by grouping together the periodic orbits which sit on these circles.

As is clear, this procedure is highly not unique: one would obtain a different
foliation by Liouville tori by choosing a different foliation into circles of these
spheres. And moreover, since any foliation of S2 into circles has singularities, any
foliation by Liouville tori will necessarily have singularities of the type shown in
Figure 1(b), while the fibration by the periodic orbits is there regular.

The question which remains to be answered is whether the considered foliation
by Liouville tori has anything special. The answer is no and, in the case considered
here of equal frequencies, there is a very simple argument showing it. As we have
already remarked, the system can be regarded as a point in the plane connected to
the origin by a spring, see Figure 3. Since the system is invariant under rotations,
we can freely choose the two axes q1 and q2 in the plane. A simple computation
[24] shows that if we take new axes forming an angle ψ with the previous ones
and then repeat the construction of the map π , but in terms of the new coordinates,
we arrive at Liouville tori M ′

h1,h2
which are constructed by foliating the spheres

|π | = const into circles which form an angle 2ψ with the previous ones. The fact
that there is no preferred choice of coordinates in the plane means that there is no
preferred choice among these different families of Liouville tori.

It should appear clear from these considerations that the foliation by the Liou-
ville tori is not a property of the system, but an artifact introduced by the observer.
This is in fact the common situation with superintegrable systems, that we now
consider from a general viewpoint.

3. Geometry of Noncommutative Integrable Systems

3.1. MISCHENKO–FOMENKO’S ‘NONCOMMUTATIVE’ INTEGRABILITY

We base our treatment on the analysis of a standard theorem about superintegrabil-
ity, which is essentially Mischenko and Fomenko’s theorem on ‘noncommutative
integrability’ [36]. In all of this section (M, �) will be a symplectic manifold of
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Figure 3. Construction of different foliations by Liouville tori for the isotropic oscillator:
(a) change of coordinates in configuration space; (b) foliations of the sphere |π | = const.

dimension 2d, d � 1, and n � d will be a positive integer (the dimension of the
invariant tori).

THEOREM 1 ([38, 36]). Let f = (f1, . . . , f2d−n): M → f (M) ⊂ R
2d−n be a

submersion with compact and connected fibers (hence, a fibration). Assume that

MF1. There exist functions Pij : f (M) → R such that

{fi, fj } = Pij ◦ f, i, j = 1, . . . , 2d − n. (2)

MF2. The matrix P with entries Pij has rank 2d − 2n at all points of f (M).

Then:

(i) Every fiber of f is diffeomorphic to T
n.

(ii) The fibration f has local trivializations which are symplectic: precisely, every
fiber of f has a neighbourhood U endowed with a diffeomorphism

b × α: U → B × T
n, B = b(U) ⊂ R

2d−n, (3)

such that the level sets of f coincide with the level sets of b and, writing
b = (p1, . . . , pd−n, q1, . . . , qd−n, a1, . . . , an),

�|U =
d−n∑

k=1

dpk ∧ dqk +
n∑

j=1

daj ∧ dαj . (4)

This theorem reduces to the Liouville–Arnold theorem for n = d. We shall
therefore consider only the ‘superintegrable’ case n < d.

The local coordinates a and α will be called, respectively, (local) actions and
(local) angles of the fibration f . The reason of this terminology is that, according to
(4), the Hamiltonian vector field of aj is ∂/∂αj and, generally speaking, an ‘action’
of a toric fibration of a symplectic manifold is a function whose Hamiltonian vector
field is tangent to the fibers and has 2π -periodic flow. The novelty with respect to
the Liouville–Arnold theorem is thus in the presence of the coordinates (p, q),
which are not action-angle pairs. Because of this, the diffeomorphism (3) is called
(local) generalized (or partial) action-angle coordinates [38, 16].
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1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

If a Hamiltonian system has 2d − n first integrals f1, . . . , f2d−n as in The-
orem 1, then its phase space is fibered by the invariant tori f = const. More-
over, since all coordinates (a, p, q) are first integrals, the local representative h

of the Hamiltonian in any local system of generalized action-angle coordinates
necessarily depends on the actions a alone, h = h(a). Therefore,

α̇ = ∂h

∂a
(a) (5)

and motions are quasi-periodic on the tori f = const, with frequencies which
depend on the actions alone.

Theorem 1 is only one of the possible characterizations of noncommutative
integrability,� which is also called superintegrability, degenerate integrability, gen-
eralized Liouville integrability, etc. We shall later introduce a more geometric
point of view. For the time being we shall therefore keep using the expression
noncommutative integrability (NCI) in a rather vague way and we shall speak of
MF-integrability to refer exactly to the situation of Theorem 1.

We shall not reproduce here the proof of Theorem 1, which is after all a slight
modification of the well known proof of the Liouville–Arnold theorem (see Prop-
erty B5 below). Instead, our aim is to elucidate its geometric content.

3.2. BIFOLIATIONS

To this end, we need to review a few basic notions from symplectic geometry. As
above, let (M, �) be a 2d-dimensional symplectic manifold.

If N is a submanifold of M and x ∈ N , the symplectic complement (TxN)⊥ of
the tangent space TxN is the subspace of TxM constituted by all vectors which are
symplectically orthogonal to TxN :

(TxN)⊥ = {u ∈ TxM : �(u, v) = 0 ∀v ∈ TxN}.

If N has dimension n, then (TxN)⊥ has dimension 2d−n. Moreover, ((TxN)⊥)⊥ =
TxN .

A submanifold of M is said to be isotropic (resp. coisotropic) if its tangent
spaces are contained in (resp. contain) their own symplectic complements. Isotropic
(coisotropic) submanifolds have dimension � d (� d). Lagrangian submanifolds
are both isotropic and coisotropic.

Let F be a foliation of M . The polar of F , if it exists, is the unique foliation
F ⊥ of M with the property that the tangent spaces of its leaves are the symplectic
orthogonals of the tangent spaces of the leaves of F .

� Mischenko and Fomenko considered the special case in which the functions f1, . . . , f2d−n

form a Lie algebra G of dimension 2d − n, that is {fi, fj } = ∑
l cij lfl for some constants cij l .

When n < d this algebra is necessarily not commutative.
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If the leaves of F have dimension n, then the leaves of F ⊥ have dimension
2d − n. Furthermore, (F ⊥)⊥ = F . If F is isotropic�� then F ⊥ is coisotropic;
hence, each leaf of F ⊥ is union of leaves of F .

A foliation F which has a polar is called symplectically complete [16]. Here are
a few examples:

• Any Lagrangian foliation, which coincides with its own polar.
• The orbits of a Hamiltonian vector field XH : the polar is given by the (con-

nected components of the) level sets of H . Indeed, if a vector field Y is tangent
to the level sets of H then �(Y, XH) = LY H = 0.

• Every coisotropic foliation has a polar: this follows from Property B1 below.
• The orbits of a Hamiltonian action and the level sets of its momentum map

are polar to each other, see, e.g., [31, 33].

However, not every isotropic foliation has a polar, see, e.g., [48].
If F is symplectically complete, then the pair (F , F ⊥) is called a bifoliation

[29]. If, moreover, both F and F ⊥ are fibrations,� let us denote them i: M → B

and c: M → A, then (F , F ⊥) is also called a bifibration and will be denoted

A
c←M

i→B. A bifibration is a particular case of dual pair [47]. For a general
treatment of these objects see, e.g., Section 9 of [31], on which part of what follows
is based.

3.3. NCI AND BIFOLIATIONS

A first integral of a foliation is a function (possibly defined only in an open subset)
which is constant on the leaves of the foliation. If the foliation is a fibration, then
its first integrals are the lifts of functions defined on the base. The following simple
observation plays a key role in the sequel:

LEMMA. A function f is a first integral of a foliation F of a symplectic mani-
fold M if and only if its Hamiltonian vector field Xf is everywhere symplectically
orthogonal to F .

Proof. f is a first integral of F if and only if LY f = 0 for any vector field Y

tangent to the leaves of F . But �(Y, Xf ) = LY f . �
This elementary fact, which is illustrated in Figure 4, has some important con-

sequences:

PROPERTY B1. A foliation F is symplectically complete if and only if the Poisson
brackets of any two first integrals of F is a first integral of F .

�� By saying that a foliation or a fibration is (co)isotropic we mean that its leaves or fibers are
(co)isotropic.

� By saying that a foliation is a fibration we mean that its leaves are the fibers of a fibration. Since
the leaves of a foliation are connected, in the above definition of bifibration is hidden the condition
that both fibrations have connected components.
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Figure 4. Illustrating the lemma: Fz and F ⊥
z are the leaves of F and F ⊥, respectively,

through a point z, f is a first integral of F , g of F ⊥, h of both.

Proof. If F is symplectically complete, then the distribution F ⊥ consisting of
the symplectic complements of the tangent spaces to the leaves of F is completely
integrable. If f and g are two first integrals of F , then by the lemma Xf , Xg ∈ F⊥.
Hence, by Frobenious theorem, also X{f,g} = [Xf , Xg] ∈ F⊥. Invoking again the
lemma, one concludes that {f, g} is a first integral of F .

In order to prove the converse take local coordinates z1, . . . , zc transversal to
the leaves of F (here c = codim(F )). By the lemma, Xz1, . . . , Xzc are tan-
gent to F⊥; being linearly independent, they form a local basis for F⊥. Thus,
to prove involutivity of F⊥ we can just show that all brackets [Xzi , Xzj ] ∈ F⊥.
By hypothesis, all functions {zi, zj } are first integrals of F . Hence, by the lemma,
[Xzi , Xzj ] = X{zi ,zj } ∈ F⊥. �

The argument used in the second part of the proof of Property B1 shows that,
given a fibration f = (f1, . . . , fk): M → f (M) ⊂ R

2d−n, it is sufficient to check
that all Poisson brackets {fi, fj } are first integrals to conclude that the Poisson
bracket of any two first integrals is still a first integral. This clarifies the geometric
meaning of condition MF1 of Theorem 1:

The fibration by the invariant tori has a polar foliation.

We should now understand which is the polar foliation and what are its properties.

3.4. NCI AND POISSON MANIFOLDS

For this, we need a few basic properties of Poisson manifolds. See, e.g., [31, 33]
for a general treatment.

A Poisson manifold (P, { , }P ) is a manifold P equipped with Poisson brackets
{ , }P for functions. By means of the Poisson brackets one can associate to every
function f : P → R a Hamiltonian vector field Xf , which is defined by the identity
LXf

g = {f, g}P for every function g: P → R.
The set of values of all Hamiltonian vector fields form a subspace Sx of every

tangent space TxP , x ∈ P . It is a key fact that the distribution of subspaces Sx ,
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x ∈ P , is completely integrable, so that it defines a foliation of P , and moreover
that the leaves of this foliation carry a symplectic structure; for this reason, they
are called the symplectic leaves of P .

The dimension of the symplectic leaf through a point x ∈ P is called the rank
of P at the point x; if (y1, . . . , ym) are local coordinates around x (m = dim P ),
the rank of P at x equals the rank of the matrix {yi, yj }P (x).

The (local) Casimirs of a Poisson manifold are the functions (defined in open
sets) which are constant on the symplectic leaves, or equivalently, they are the
functions which Poisson-commute with every other function on P .

A map φ: P1 → P2 between two Poisson manifolds (P1, { , }1) and (P2, { , }2)

is called a Poisson morphism if {f ◦ φ, g ◦ φ}1 = {f, g}2 ◦ φ for all functions f, g

defined in (open sets of) P2.
We go back now to our symplectic manifold (M, �) and equip it with the

Poisson structure induced by the symplectic form. We then have:�

PROPERTY B2. Assume that a foliation F is a fibration i: M → B. Then, F is
symplectically complete if and only if there exists a Poisson structure on B with
respect to which i is a Poisson morphism. Such a structure, if it exists, is unique.

Proof. Any first integral of F is of the form f ◦ i, for some function f defined
on an open subset of B. By Property B1, if F ⊥ exists, then for any U ⊂ B and any
f, g ∈ C∞(U) the Poisson bracket {f ◦ i, g ◦ i}M is a first integral of F . Hence,
there exists a function Pf,g in U such that Pf,g ◦i = {f ◦i, g◦i}

M
. Since the leaves

of F are connected, we can define {f, g}
B

= Pf,g. Conversely, the existence of
a Poisson bracket { , }

B
such that {f, g}

B
◦ i = {f ◦ i, g ◦ i}

M
for all f and g

implies that the Poisson bracket of any two first integrals of F is a first integral of
F ; hence, the conclusion follows from B1. Uniqueness is obvious. �

Going back to NCI, we thus see that:

The base of the fibration by the invariant tori is a Poisson manifold.

In order to characterize this Poisson structure we investigate its Casimirs and its
rank. Note that, by the lemma, the lifts to M of the Casimirs of B are first integrals
of both the fibration by the invariant tori and of its polar, see also Figure 4.

PROPERTY B3. For a foliation F which is a fibration i: M → B and has a polar,
the following four conditions are equivalent:

(i) The leaves of F are isotropic.
(ii) The rank of the induced Poisson structure of B is everywhere equal to

2 dim B − dim M .
(iii) The leaves of F are generated by the Hamiltonian vector fields of the lifts to

M of the Casimirs of B.

� This property and most of the following ones are valid under slightly weaker conditions than
the foliations are fibrations, see, e.g., [31]. However, this generality is irrelevant to our purposes.
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(iv) A function is a first integral of F ⊥ if and only if it is the lift to M of a Casimir
of B.

Proof. The number nx of independent Casimirs of B at a point i(x) equals the
number of independent germs of functions which are simultaneously first integrals
of F and F ⊥. Since the Hamiltonian vector fields of these functions are simulta-
neously tangent to Fx (the leaf of F through x) and to F ⊥

x (the leaf of F ⊥ through
x), this implies nx = dim(Fx ∩ F ⊥

x ). Thus nx = dim Fx if and only if Fx ⊂ F ⊥
x .

This proves that the first two statements are equivalent. In view of the Lemma, the
remaining two are just restatements of the second. �

In the case of an MF-integrable system, M has dimension 2d and B has dimen-
sion 2d − n. Hence, the isotropy of the invariant tori is equivalent to the fact that
the rank of B is 2d − 2n. Thus:

Condition MF2 is equivalent to the isotropy of the invariant tori.

3.5. THE ACTION MANIFOLD

The isotropy of the fibration by the invariant tori implies that its polar is coisotropic
and thus each of its leaves is union of invariant tori, and this links the two structures.

For simplicity, we consider only the case of a bifibration A
c←M

i→B. Note that if
B has dimension 2d − n then A has dimension n.

PROPERTY B4. Consider a bifibration A
c←M

i→B and assume that the fibers of
i are isotropic. Then, there is a surjective submersion s: B → A which is such that

• c = s ◦ i.
• The symplectic leaves of B are the fibers of c.

Proof. By Property B3(iv) the fibers of c are the level sets of the lifts to M of
the Casimirs of B. For b ∈ B define s(b) = c(m) where m is any point in c−1(b).
This map is a submersion because such are i and c. �

Thus, for an isotropic–coisotropic bifibration A
c←M

i→B, the base A of the
coisotropic fibration coincides with the space of the leaves of the symplectic folia-
tion of B. The overall structure of the bifibration is depicted in Figure 5(a).

3.6. THE FIBERS, AND LOCAL COORDINATES

We can now conclude this analysis with the following property, which implies
Theorem 1 as a special case:

PROPERTY B5. Assume that i: M → B is a symplectically complete fibration
with compact, connected, isotropic fibers. Then
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Figure 5. The bifibrated structure of the phase space: (a) the three fibrations; (b) pictorial
representation: the meadow is the action manifold A, the flowers the coisotropic fibers, their
centers the symplectic leaves, the petals the invariant tori.

(i) Its fibers are diffeomorphic to T
n, n = dim M − dim B.

(ii) For each b ∈ B there is a local trivialization

(a, p, q, α): i−1(U) → V × T
n

of i, where U is a neighbourhood of b in B and V an open set in R
2d−n, which

satisfies (4).

Sketch of the proof. (i) Since i is a Poisson morphism, the lifts to M of the local
Casimirs of B are in involution and hence their Hamiltonian vector fields commute.
Therefore, according to Property B3(iii), each fiber of i has n everywhere linearly
independent commuting vector fields. A well known argument, which is basic
to the proof of the Liouville–Arnold theorem, then implies that the fibers, being
compact and connected, are diffeomorphic to T

n.
(ii) The proof of this fact is not very different from the proof of the analogous

statement of the Lioville–Arnold theorem. The details can be found, e.g., in [22],
where an equivalent statement is given. �

The local ‘generalized action-angle coordinates’ (a, p, q, α) are related to the

bifibrated structure of A
c←M

i→B. The angles α are of course coordinates on the
fibers of i and (with a small abuse of notation) the first integrals (a, p, q) can
be regarded as local coordinates on the base B. Expression (4) of the symplectic
structure implies that the a’s Poisson commute with all other first integrals of i.
Hence, by Property B2, the local actions a1, . . . , an are local Casimirs of B. In
turn, they can also be regarded as local coordinates on the base A, which will
therefore be called the action manifold of the bifibration. Finally, by Property B4,
(p, q) are local coordinates on the symplectic leaves of B.
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4. Superintegrability: Geometry and Dynamics

4.1. GEOMETRY

If we shift the emphasis from the integrals of motion to the invariant geometric
objects it is now very natural to give the following definition of superintegrablity:

DEFINITION. A Hamiltonian vector field on a symplectic manifold M is said to be
superintegrable if it is tangent to the fibers of a symplectically complete fibration
i: M → B whose fibers are isotropic, compact and connected.

By the lemma, this is equivalent to requiring that the Hamiltonian H of the
system is a function of the lifts to M of the Casimirs of B. Equivalently, if the polar
foliation is a fibration, H is the lift to M of a function H̃ on the action manifold:
H = H̃ ◦ c.

As we have already remarked, usually not all of the phase space of a superinte-
grable system is fibered by invariant tori. It is therefore tacitly understood that in
any practical situation the manifold M is a submanifold of the phase space.

4.2. SEMILOCAL, SEMIGLOBAL, GLOBAL

For a bifibration A
c←M

i→B there are different notions of globality, which refer
to the two fibrations. To distinguish between them we shall say that a property is
semilocal if it holds in a neighbourhood of each fiber of i, semiglobal if it holds in
a neighbourhood of each fiber of c, global if it holds in all of M . The reason for
the term ‘semiglobal’ is that the fibers of the coisotropic fibration have their own
internal structure, with related globality problems.

As a visual help for imagination, the doubly-fibered structure of the phase space
of a superintegrable system can be represented as in Figure 5(b), from [21]. Each
fiber of the coisotropic fibration is thought of as being a flower, whose center is
the symplectic leaf and whose petals are the isotropic tori. Correspondingly, the
action space is the meadow on which they grow. Note that the semilocal context
pertains to (neighbourhoods of) individual petals while the semiglobal one pertains
to (neighbourhoods of) entire flowers.

The distinction between semilocality and semiglobality appears in a number of
questions. For instance, it is clear that any MF-integrable system is superintegrable
in the sense of Definition 1. Conversely, a submersion f as in Theorem 1 always
exists semilocally: the lift to M of any system of local coordinates on B has all the
desired properties: that the Poisson brackets of its components satisfy conditions
MF1 and MF2 follows from Properties B1 and B3(ii).

Another issue where the distinction between the two local levels may help
clarifying things is the relationship between superintegrability and Liouville in-
tegrability – a topic which has received a certain consideration, see, e.g., [36, 11].

Semilocally, every superintegrable system has certainly the maximal number
of independent commuting integrals: just take the coordinates a and p within the
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domain of every local system of generalized action-angle coordinates. If, as in the
case of the isotropic oscillator of Section 2, the d − n coordinates q can be taken
to be angles, then such a domain is even fibered by Liouville tori.

Semiglobally, however, this interpretation can hardly be mantained. As in the
case of the isotropic oscillator, taking into consideration the structure of even a sin-
gle, but entire coisotropic fiber, makes evident that the Liouville tori are constructed
in a rather arbitrary way: one takes the product of the isotropic tori and, so to say,
of pieces of the symplectic leaves. The description of a superintegrable system as
Liouville integrable thus hides the relevant geometric, invariant structures.

4.3. GLOBAL GENERALIZED ACTION-ANGLE COORDINATES

The existence of generalized action-angle coordinates is guaranteed only semi-
locally, see Property B5. One can of course construct an atlas for M consisting
of several of these coordinate systems, but it may happen that there is no such
atlas made of a single chart. In fact, it often happens that it is even impossible to
cover a single coisotropic fiber with a single system of generalized action-angle
coordinates (which are therefore intrinsically semilocal).

A complete study of this problem can be found in [16]. Superintegrability gives
this problem some new features and specificities compared to the case of com-
pletely integrable systems studied in [17]. For reasons of space we necessarily
limit ourselves to a few remarks, and consider only the case of a bifibration. We
begin by considering the transition functions between local systems of generalized
action-angle coordinates:

PROPOSITION 1 ([12, 38]). Consider a superintegrable system with bifibration

A
c←M

i→B. Consider any two systems of local generalized action-angle coor-
dinates (a, p, q, α) and (a′, p′, q ′, α′) whose domains have connected nonempty
intersection. Then

α′ = Zα + F (a, p, q), a′ = Z−Ta + z (6)

for some matrix Z ∈ SL±(Z, n), some vector z ∈ R
n and some map F , while p′

and q ′ depend on a, p, q.
Proof. Since a and a′ are first integrals of the polar foliation, a′ = a′(a). Since

(a, p, q) and (a′, p′, q ′) are first integrals of i, p′ and q ′ do not depend on α.
Symplecticity implies

∑
j da′

j∧dα′
j+

∑
s dp′

s∧dq ′
s = ∑

j daj∧dαj+∑
s dps∧dqs .

Equating terms in daj ∧ dαl leads to ∂α′/∂α = [∂a′/∂a]−T. Thus, ∂α′/∂α is a
function of a alone and hence α′ = Zα + F for some matrix Z(a) and some
vector F (p, q, a) which depend smoothly on (p, q, a). Since α and α′ are both
coordinates on the torus, the matrix Z(a) ∈ SL±(n, Z) and hence is constant.
Recalling that a′ = a′(a) we arrive at a′ = Z−Ta + z with some constant z. �

Equations (6) show that there are several obstructions to the existence of an atlas
with generalized action-angle coordinates with all transition functions of actions
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and angles equal to the identity (which is a little less than having a global system
of these coordinates).

1. Monodromy. The matrices Z appear in the transition functions of both angles
and actions. On the one hand, the possibility of taking all these matrices equal to
the identity reflects the fact that the fibration by the invariant tori is a principal
T

n-bundle. When this does not happen, the bifibration is said to have (nontrivial)
monodromy.

On the other hand, the second group of Equations (6) shows that the action
manifold A is an affine manifold: it possesses an atlas with affine transition func-
tions which defines an affine (and hence locally flat) connection. Monodromy is
precisely the obstruction to the global flatness of this connection [4].

For our purposes, it is important to note that monodromy always vanishes if
the action manifold is simply connected. Therefore, if a subset U of A is simply
connected, then c−1(U) is a principal T

n-bundle and has an atlas made of local
generalized action-angle coordinates with all matrices Z equal to the identity. Note
that this is true, in particular, for the individual coisotropic fibers.

Monodromy has been identified in several Liouville integrable systems, see,
e.g., [14], and plays an important role in their quantization, see, e.g., [46, 15] and
references therein. An example of a superintegrable system with monodromy is
given in [18].

2. Global section for the angles. The presence of the functions F in the an-
gles transition functions reflects an obstruction to the topological triviality of the
fibration by the invariant tori, that is, the nonexistence of a global section. This
obstruction is met in very many superintegrable systems in an even stronger form:
the global section does not even exist for the restriction of the fibration i to each
coisotropic fiber, see, e.g., the isotropic oscillator of Section 2, the Euler top below,
and [27]. This obstruction is on the contrary rather exceptional among Liouville
integrable systems, which lack the internal structure of the coisotropic fibers (to
our knowledge, the only known example is the one given in [3]).

3. The vectors z. The presence of the vectors z in the transition functions of the
actions is more closely related to the symplectic structure: one can take all z equal
to zero if, e.g., the symplectic two-form of M is exact.

4. Coordinates on the symplectic leaves. These inevitably vague considerations
do not of course exhaust the problem. In particular, nothing has been said about
the possibility of choosing in a global way the coordinates (p, q). Clearly, this
is never possible if the symplectic leaves are, e.g., compact. Together with the
nontriviality of the fibration by tori of the coisotropic fibers, this is an obstruction
to the possibility of constructing semiglobal system of generalized action-angle
coordinates.
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4.4. DYNAMICS

The doubly-fibered structure of a superintegrable system is of course linked to its
dynamics. The dynamical meaning of the isotropic fibration is obvious, at least if
all the integrals of motion have been taken into consideration, i.e., more precisely,
if the dimension n of the invariant tori is the smallest as possible, so that they form
the finest invariant fibration of (some part of) the phase space.� From a dynamical
point of view, this is certainly the case if a dense subset of these tori is closure of
orbits, that is, carry nonresonant motions.

In order to enlighten the dynamical meaning of the coisotropic fibration, we
need to say something about the frequencies of motions. This will be important
also for perturbation theory, because resonances depened on frequencies.

A simple way of defining frequencies is by means of local coordinates. Within a
system of generalized action-angle coordinates, the frequencies are ω(a) = ∂h

∂a
(a),

see (5). According to Equations (6), in another system of generalized action-angle
coordinates the frequencies of the same motion are Zω(a). If we want to compare
the frequencies of motions on the tori based on two different points y, y ′ ∈ B

we can join these two points by a curve in B, cover (any lift to M of) this curve
with a number of systems of generalized action-angle coordinates, and ‘transport’
the frequency vector along this chain, multipliying it by the appropriate matrix
Z at each change of chart. A little reflection will show that what we are using
here is exactly the parallel transport of A. The question now is whether the result is
independent of the chosen curve. Clearly, this happens if and only if the connection
of A is globally flat, that is, there is no monodromy.

Therefore, if one restricts the analysis to a simply connected subset U of A,
then there is a way of comparing the frequencies of motions of different tori ly-
ing in c−1(U). Note that this always happens for the tori based on an individual
coisotropic fiber. This is after all obvious, since any coisotropic fiber can be covered
with an atlas with all matrices Z equal to the identity and there is no doubt at all
that, with respect to such an atlas, all tori have the same frequencies.

The conclusion is thus that all motions inside the same coisotropic fiber have
the same frequencies. Thus, the coisotropic fibration has a double origin: geometri-
cally, it is the polar to the invariant tori; dynamically, it is related to the frequencies
of motions.

This conclusion can be made even stronger if Kolmogorosv’s condition is satis-
fied, that is, in each chart, the frequency map is a local diffeomorphism:

det
∂ω

∂a
(a) �= 0. (7)

(This condition is chart-independent because the frequencies transform linearly.) In
such a case there is a one-to-one local correspondence between coisotropic fibers
and frequencies. Consequently, the motion is nonresonant in all tori of a dense

� The distinction between fibration and foliation here is crucial: the finest invariant foliation of
phase space is given by the orbits.
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subset of coisotropic fibers, what implies the uniqueness of isotropic fibration. Note
that another case in which the isotropic fibration is unique is when the frequencies
are constant, but nonresonant.

5. Examples

We provide now a few examples of superintegrable systems and of their bifibrated
structure.

1. Maximally Superintegrable Systems. Any Hamiltonian system whose orbits
are all periodic and have continuous nonvanishing period is superintegrable. In
fact, the continuity and the positiveness of the period ensure that the orbits are the
fibers of a fibration [26] and their isotropy is granted by the fact that they are one-
dimensional. The coisotropic foliation is given by (the connected components of)
the level sets of the Hamiltonian, which is the only Casimir. The action manifold
is thus a subset of R. Kepler system (restricted to the subset of negative energy
and nonzero angular momentum) and the d-dimensional isotropic oscillator (after
the equilibrium has been removed) belong to this class. The bifibrated structure is
easily worked out, see, e.g., [29, 22] for some details.

2. The Point in a Central Force Field. The details depend of course on the choice
of the potential V (r), so for definitness we consider the case of V (r) = −r−k,
k > 2. Let us restrict the analysis to the subset M of the phase space where the
energy H is negative and the angular momentum m is nonzero, where all motions
are bounded.

The energy-momentum map (H, m) takes values in B = R− × (R3 \ {0}). It is
very easy to check that this map is a submersion and that the Hamiltonian and the
three components mx , my , mz of m satisfy conditions MF1 and MF2 with d = 3
and n = 2. In fact

P =





0 0 0 0
0 0 mz −my

0 −mz 0 mx

0 my −mx 0




 (8)

and this matrix has rank two wherever m �= 0. (Global) Casimirs of B are the
Hamiltonian and G := |m|2. Thus, the symplectic leaves of B are the two-dimen-
sional spheres H = const, |m| = const which, for fixed energy, can be identified
with the spheres of constant modulus of the angular momentum.

3. The Euler Top. The Euler top (or Euler–Poinsot system) is the rigid body with
a fixed point and no external torques acting on it. It is known from elementary
treatments that this system, which has three degrees of freedom, has motions which
are (generically) quasi-periodic with two frequencies, see, e.g., [2]. The description
of the motions and of the geometric structure of the resulting bifibration is a little
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Figure 6. (a) Motions of the symmetric Euler top; (b) the local coordinates (g, l, j), part of a
local system of generalized action-angle coordinates; e′ is the line orthogonal to ez and m, e′′
the line orthogonal to m and e3.

bit easier for a dynamically symmetric body, for which two of the three moments
of inertia relative to the fixed point are equal, so we restrict to this case. (For details
and for the general case of a nonsymmetric body see [21].)

The configuration of the system can be parametrized by the matrix R ∈ SO(3)

which carries a given ‘spatial’ orthonormal frame {O; ex, ey, ez} into a given ‘body’
frame {O; e1, e2, e3}. We assume that e1, e2, e3 are principal axes of inertia of the
body, with corresponding moments of inertia I1 = I2 and I3. After left-trivialization
of T ∗SO(3), the phase space can be identified with SO(3) × R

3 � (R, mb), where
mb = (m1, m2, m3) is the body angular momentum vector (that is, the triple of the
components of the angular momentum vector m relative to the body frame).

The system has four integrals of motion: the kinetic energy

H(R, mb) = m2
1 + m2

2

I1
+ m2

3

I3

and the three components mx, my, mz of the spatial angular momentum vector
ms := Rmb. In the dynamically symmetric case under consideration, also the
component of m along the body symmetry axis e3 is a first integral, that we denote
either m3 or L. Of course these five integrals are not all independent. To describe
the fibration by the invariant tori it is convenient to use L, mx, my, mz (this gives a
submersion also on the points where m3 = 0, while (H, mx, my, mz) does not).

The classical description of motions, which is due to Euler and Poinsot, is
obtained by exploiting these integrals, see, e.g., [2]: the body rotates with constant
angular velocity (I−1

3 −I−1
1 )m3 around its symmetry axis e3, which in turn rotates in

space with angular velocity I−1
1 |ms | around the direction of m, keeping a constant

angle with it, see Figure 6(a), where one can ‘see’ the two-dimensional invariant
tori.

The Fibration by tori. It is easy to recognize that the level sets of (m3, m
s) are

all two-dimensional tori, but those with zero angular momentum (equilibria: the
fiber is SO(3)) and those with angular momentum aligned with the symmetry axes
e3 (steady rotations around the body symmetry axes: the fibers are circles). Thus,
if we restrict to the subset M of the phase space were m �= 0 and m3 �= ±|m|, we
obtain a fibration with fiber T

2 given by

(L, ms): M → B, B = {(L, ms) ∈ R × R
3 : |L| < |ms |}.
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The structure of the base. The matrix of the Poisson brackets of the functions
L, mx, my, mz has the form (8) and therefore has everywhere rank two in M . Two
independent (global) Casimirs are L := m3 and G := |ms |. Hence, the symplectic
leaves are the two-dimensional spheres L = const, |ms | = const; for given L,
they can be identified with the two-dimensional spheres of constant modulus of the
angular momentum vector in space.

The coisotropic foliation. The lifts to M of the two Casimirs of B form a
submersion

(L, G): M → A, A = {(L, G) ∈ R
2 : |L| < G}

and it is immediate to verify that its fibers are all diffeomorphic to SO(3)× S1 (the
matrix R is unrestricted while the vector m belongs to the intersection of a sphere
and of a plane). Thus, the polar foliation is a fibration with fiber SO(3)× S1. Since
the base A is contractible, there is no monodromy. The two Casimirs L and G

are in fact (global) actions, as can be verified by checking that the flows of their
Hamiltonian vector fields are 2π -periodic. Thus, the Hamiltonian is K ◦ c with

K(G, L) = I−1
1 G2 + (I−1

3 − I−1
1 )L2. (9)

The internal structure of the coisotropic fibers. It remains to be described the
structure of the fibration by the invariant tori of the coisotropic fibers. Since the
base of this fibration is a symplectic leaf, this is a fibration SO(3) × S1 → S2

which is given by (R, mb) �→ (m3, Rmb). It is easy to see that this map contains
a Hopf fibration SO(3) → S2 and is thus nontrivial. Hence, the system does not
possess global angles.

Local generalized action-angle coordinates. Local systems of generalized
action-angle coordinates are provided for instance by the so-called Andoyer–Deprit
coordinates (G, L, J, g, l, j), where J is a component of the angular momentum
vector in space, conventionally identified with the z-one, and g, l, j are defined as
in Figure 6(b), see, e.g., [21] and references therein. These coordinates have singu-
larities on the boundary of M (that is where |m3| = |m| and the two-dimensional
tori collapse to circles or equilibria) and at the poles |mz| = |m| of each symplectic
leaf. In fact, (J, j) are cylindric-like coordinates on the symplectic leaves. The
angles are g and l. If necessary, an atlas for M can be constructed with two of these
coordinate systems, relative to two spatial frames with nonparallel z-axis.

4. Nekhoroshev Superintegrability Criterion. In [38], Nekhoroshev considered a
submersion f := (f1, . . . , f2d−n): M → R

2d−n such that its first n components are
mutually in involution with all others:

{fj , fs} = 0, j = 1, . . . , n, s = 1, . . . , 2d − n.

By the lemma and by Property B3, this condition implies that the foliations by the
(connected components of the) level sets of f and of g = (f1, . . . , fn) are polar to
each other and that the former is isotropic.
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Given a superintegrable system, functions f1, . . . , f2d−n as in Nekhoroshev’s
hypotheses always exist semilocally: just take n Casimirs and a set of local co-
ordinates on the symplectic leaves. However, it may happen that no set of such
functions exists semiglobally: after all, the functions fn+1, . . . , f2d−n are local co-
ordinates on the symplectic leaves and there can be obstructions to their global
existence.

5. Symmetry and Superintegrability. Superintegrablity is often linked to the ex-
istence of a ‘large’ symmetry group, the fibration by the invariant tori being given
either by the momentum map or by the energy-momentum map. We give a very
quick look at this important topic, presuming some knowledge of group actions
and momentum maps (see, e.g., [31, 33]).

Assume there is a Hamiltonian action of a Lie group G on a symplectic man-
ifold M , with coadjoint equivariant momentum map J : M → G∗. As we have
already remarked in Section 3.2, the level sets of J form a symplectically complete
foliation, with polar given by the group orbits. Therefore, if J : M → J (M) is a
fibration with compact and connected fibers, what remains to be checked in order
to conclude that its level sets are the invariant tori of a superintegrable system is
isotropy. Since J is a Poisson morphism from the symplectic manifold to G∗, by
Property B3(ii) the isotropy of its level sets is a condition on the dimension of the
coadjoint orbits Oµ. Precisely, as a simple computation shows, the fibers of J are
isotropic if and only if

dim Oµ = 2d − 2n ∀µ ∈ J (M). (10)

(This is equivalent to the zero-dimensionality of the reduced phase spaces, if they
exist.) In this situation, the symplectic leaves of the base J (M) can be identified
with the (connected components of the) coadjoint orbits. An example of this sit-
uation is offered by the dynamically symmetric Euler top, with symmetry group
SO(3) × S1.

If the Hamiltonian H is independent of the momentum map J , one should
consider the energy-momentum map (H, J ), which defines an invariant foliation
which is finer than J . This case can be reduced to the previous one by observing
that (H, J ) is the momentum map of the action of the direct product R×G given by
(t, g). x = 	H

t (g. x), where 	H
t is the map at time t of the flow of the Hamiltonian

vector field of H . Thus, if the energy momentum map is a fibration with compact
connected fibers, then the isotropy condition becomes

dim Oµ = 2 + 2 dim J (M) − dim M.

If the reduced phase spaces exist, then this condition is equivalent to the fact that
they are two-dimensional.

6. Other Cases. Even though superintegrability is rather general, and to some
extent even typical of Hamiltonian systems, it does not exhaust all possible cases.
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There exist indeed Hamiltonian systems on nonexact symplectic manifolds which
have all motions linear on coisotropic tori [40–42] as well as on tori of any dimen-
sion 1 < n < 2d which are neither isotropic (if n � d) nor coisotropic (if n � d),
see [10, 21, 25].

6. Perturbations of Superintegrable Systems

The bifibrated geometry of superintegrable systems plays an important role for
the study of small (Hamiltonian) perturbations of them. Concluding this review,
we thus give a very quick look at this topic. Since perturbation theory is rather
technical, we shall necessarily restrict ourselves to lay down a few ideas.

We consider a superintegrable system with bifibration A
c←M

i→B and Hamil-
tonian K ◦ c for some function K: A → R, and add to it a small perturbation εF ,
where F : M → R is some function and ε a small (positive) parameter. The object
of interest is the long-term dynamics of the perturbed system with Hamiltonian
K ◦ c + εF .

6.1. PERTURBATION THEORY IS SEMIGLOBAL

Hamiltonian perturbation theory is based on the construction of normal forms
which are

• Adapted to the (local) resonance properties of the unperturbed motions.
• Defined in sets which, for the time-scale of interest, are invariant under the

perturbed flow.

For a superintegrable system, resonances – like frequencies of motion – are a prop-
erty of the coisotropic fibers. Therefore, the natural sets where normal forms should
be constructed are of the form c−1(U), where U is a subset of A characterized by
certain resonance properties.

A key observation, however, is that any perturbation result will show that the
actions remain nearly constant for the time-scale of interest. Therefore, for ε → 0,
the set U can be taken as small as one wants – hence contractible. This has the
important consequence that monodromy, even if present, can be ignored in the
perturbation study.

On the other hand, it is in general� impossible to confine the other integrals of
motion, namely the projection of motions on the symplectic leaves. Therefore, the
normal forms should be constructed semiglobally, in sets of the form c−1(U), not
just semilocally in neighbourhoods of the individual tori, as is done when working
in coordinates.

� This might be possible for nonresonant motions (e.g., in the KAM case and, if the symplectic
leaves are two-dimensional, also in the Nekhoroshev case) but in general not for all motions, see [20]
for a detailed discussion.
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The existence of semiglobal normal forms has been proved in [37, 13] for the
maximal superintegrable case, in which the unperturbed dynamics is periodic and
there are no resonances. The general case, which is significantly different because
the treatment of resonances requires an essential use of the bifibrated structure, has
been studied in [20] (see also [9], where however only averaging on periodic orbits
is considered). As there shown, thanks to the fact that monodromy is not seen at the
semiglobal level, normal forms can always be constructed semiglobally – even if
the isotropic fibration does not have a global section: this is important, because this
semiglobal obstruction to the triviality of the isotropic fibration is quite frequent, if
not even typical, among superintegrable systems.

6.2. AVERAGES AND NORMAL FORMS

The possibility of defining averages and constructing normal forms on a bifibration
with trivial mondodromy rests on the fact that each fiber of the coisotropic fibration
is a T

n-principal bundle. This ensures that there is a (semiglobal) Fourier series
defined on it. The simplest way of looking at this matter is probably via local
coordinates.

Consider the bifibration U
c←CU

i→SU where U ⊂ A is simply connected,
CU := c−1(U) ⊂ M and SU := s

−1
(U) ⊂ B. Choose an atlas with generalized

action-angle coordinates for CU which has all matrices Z equal to the identity. If
F : CU → R is any function, then its local representative f in any chart of this
atlas can be expanded in Fourier series f = ∑

ν∈Zn fν , where fν(a, p, q, α) =
f̂ν(a, p, q)eiν·α, f̂ν = (2π)−n

∫
Tn f e−iν·αdα being the Fourier components. The

local representative f ′ of F in another chart can also be expanded in Fourier series
f ′ = ∑

ν∈Zn f ′
ν . If the two chart domains intersect, then using the transition func-

tions (6) it is immediate to verify that, for each ν ∈ Z
n, the two ‘harmonics’ fν

and f ′
ν match: that is, they are the local representatives of a function Fν : CU → R.

(Note that this does not happen for the Fourier components.) Hence, there is a
Fourier series F = ∑

ν∈Zn Fν for functions in CU . Only the labelling ν of the
‘harmonics’ Fν depends on the choice of the atlas.

Thanks to this fact, we can average functions F : CU → R. Given any subset L

of Z
n, the L-average of F is

�LF :=
∑

ν∈L

Fν : CU → R.

Here too, only the labelling by L depends on the choice of the atlas. In particular:

• �{0}F is the lift of a function defined on the base SU and its restriction to each
torus is the average of F over that torus.

• For a lattice L of positive dimension, instead, �LF is a function on CU which,
on each torus, coincides with the average of F over the subtorus determined
by L.
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From here on, the construction of semiglobal normal forms proceeds exactly
as the standard semilocal construction using coordinates – just observing that all
operations can be performed semiglobally [20]. For instance, the ultraviolet cutoff
is defined in terms of Fourier series. The symplectic diffeomorphisms leading to
the normal forms can be constructed by means of the so called Lie method, that is,
as the time-one map of the Hamiltonian flow of a suitable ‘generating’ function; if
this function is semiglobally defined, and if the symplectic leaves are for instance
compact so that no escape is possible within each coisotropic fiber, then this dif-
feomorphism is semiglobally defined, too. The generating function is the solution
of a homological equation, which is formulated in terms of Poisson brackets, and
can be represented by a Fourier series which, thanks to the fact that the frequencies
of motions are constant on the coisotropic fibers, is also semiglobal.

Estimates, which control the small denominators (and the remainders) can be
performed using local charts [20]. Ref. [9] even succeeds in doing estimates with-
out the use of local coordinates on the symplectic leaves, under the hypothesis that
the coisotropic fibers are the orbits of a compact Lie group.

For details, and for a discussion of the role of monodromy, see [20].

6.3. KAM THEORY

Typically, KAM theory proves the existence of a Cantor set of invariant tori of the
perturbed system, which carry motions with highly nonresonant (e.g., diophantine)
frequencies. A necessary condition for the KAM construction is a nondegenracy
condition, which expresses the fact that the frequencies of the unperturbed system
change ‘as much as possible’ from torus to torus. This is clearly incompatible
with superintegrability, where all tori in the same coisotropic fibers have the same
frequencies and the best one can require is that the frequency map has rank n, see
(7). The standard way out is to try to use (part of) the perturbation to construct
a nondegenerate Liouville integrable system to which the KAM construction will
then be applied.

One begins by considering only the highly nonresonant coisotropic fibers and
constructs a nonresonant semiglobal normal form

K ◦ c + εN ◦ i + ε2F2

in a small neighbourhood of each of them. Since the function N is defined on the
base B, by Property B2 its Hamiltonian vector field is tangent to the symplectic
leaves. If N defines a nondegenerate Liouville integrable system on each symplec-
tic leaf, then (large parts of) the symplectic leaves are foliated into invariant tori
of dimension d − n. In such a case, the truncated Hamiltonian K ◦ c + εN ◦ i is
Liouville integrable and nondegenerate and one can apply KAM theorem to it. (In
fact, some further normalization may be necessary to make the perturbation small
enough, see [34].) The conclusion is that there is a Cantor set of large measure
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of coisotropic fibers on each of which a Cantor set of large measure of invariant
d-dimensional tori is created.

This structure has been studied in [28] and in [34] for perturbations of the Euler
top. In this case the symplectic leaves are two-dimensional, so that integrability of
the normal form is not an issue.

6.4. NEKHOROSHEV THEORY

Nekhoroshev theory [39, 43, 32, 5] has a double content. First of all, it provides a
sharp confinement of the actions in all motions for a very long time-scales. Second,
the (resonant) normal forms constructed within the proof give detailed informations
on the motions: Nekhoroshev theory is to a large extent a theory of motions in
resonance.

A semiglobal formulation of Nekhoroshev theorem for superintegrable systems
was obtained in [20] by coupling the techniques of the standard semilocal proof
with the semiglobal techniques described in Subsection 6.2. Another proof was
given in [9] using Lochak’s simultaneous approximation technique [32], which
however is not suitable for a detailed analysis of motions in resonance because it
avoids the construction of all resonant normal forms.

A possible statement is that if the unperturbed Hamiltonian K ◦ c has some
convexity property (see below) and if the symplectic leaves are (e.g.) compact,
then any motion t �→ zt of the perturbed system satisfies

|c(zt ) − c(z0)| < εβ for times |t | < Tε := exp(ε−γ )

for some positive constants β and γ , e.g., β = γ = (2n)−1. ‘Convexity’ of K:
A → R means that the Hessian of its local representative in any local system of
action coordinates is positive definite. (This condition is well defined because of
the affine structure of A.)

Based on Nekhoroshev theorem, one obtains the following picture of the per-
turbed motions, which is valid for the whole time-scale Tε :

• Since the actions stay nearly constant, the system remains very near the coiso-
tropic fiber from which it starts.

• For the same reason, the angles advance with nearly uniform speed: the pro-
jection of the motion on the isotropic tori is approximately quasi-periodic,
with nearly constant frequencies which are approximately equal to the unper-
turbed ones.

What remains to be described is the projection of the motion on the symplectic
leaves. Since this motion is due to the perturbation εF , it is of course slow:

d

dt
i(zt ) = O(ε).

This slow motion may however become important on the very long time-scale Tε .
A better understanding of it is possible, at least in simple cases, by analysing the
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Figure 7. Spatial motion of the direction of the angular momentum vector in a perturbed Euler
top, from [6]. Left: three different nonresonant orbits. Right: a single orbit in the resonance
(1, −1) (relative to the actions (G, L), see the expression (9) of the unperturbed Hamiltonian).
All orbits are relative to ε = 10−5, I1 = I2 = 2, I3 = 1. Only one hemishpere of the unit
sphere is shown, in stereographic projection.

(resonant) normal forms. We discuss this point with reference to a specific example,
from [7].

6.5. THE EULER TOP

For a small perturbation of the Euler top, the previous results tell that, for a very
long time-scale, the perturbed motion is approximately an Euler motion around the
instantaneous direction of the angular momentum vector in space, which however
moves (slowly) in space. As we now discuss, the properties of this slow motion,
which are clearly important for applications, are deeply influenced by the reso-
nance properties of the unperturbed motions. Since the invariant tori of the Euler
top are two-dimensional, there are only two possibilities: either a coisotropic fiber
is nonresonant or it is resonant with one-dimensional resonant lattice.

Nonresonant coisoptropic fibers. The nonresonant normal forms are of the type
K ◦ c + εNε ◦ i + exp(ε−1/4)Fε . Neglecting the exponentially small remainder
one is left with the Hamiltonian K ◦ c + εNε ◦ i. Since K ◦ c is constant on the
coisotropic fibers, the motion on the symplectic leaves is described by Nε . This is
a Hamiltonian system with one degree of freedom. Hence, conservation of energy
implies that, for times |t | < Tε , the direction of ms moves along the level curves of
the restriction of Nε to the symplectic leaves, which are almost all closed curves.
The symplectic diffeomorphism leading to the normal form and the exponentially
small remainder add a small noise around these essentially ordered motions.

Resonant coisotropic fibers. If the resonant lattice is L, then the normal form
is K ◦ c + εNε + exp(ε−1/4)Fε where Nε = �LNε . Neglecting the remainder,
one is left with the Hamiltonian K ◦ c + εNε , which has two degrees of freedom.
Typically, such a system is not integrable and might have chaotic dynamics. In
particular, the projection of motions on the symplectic leaves need not stay close
to the level curves of a regular function and could in principle erratically wander
through extended, two-dimensional regions of the spheres.
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These deeply different behaviours, which are present no matter how small is ε,
are actually found in numerical integrations of sample perturbations of the Euler
top, see Figure 7 (from [6]). For details and extensions of these results see [7, 8]
and references therein.
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