
SwisTrack - A Flexible Open Source Tracking Software for Multi-Agent

Systems

Thomas Lochmatter, Pierre Roduit, Chris Cianci, Nikolaus Correll, Jacques Jacot and Alcherio Martinoli

Abstract— Vision-based tracking is used in nearly all robotic
laboratories for monitoring and extracting of agent positions,
orientations, and trajectories. However, there is currently no
accepted standard software solution available, so many research
groups resort to developing and using their own custom
software. In this paper, we present Version 4 of SwisTrack,
an open source project for simultaneous tracking of multiple
agents. While its broad range of pre-implemented algorithmic
components allows it to be used in a variety of experimental
applications, its novelty stands in its highly modular architec-
ture. Advanced users can therefore also implement additional

customized modules which extend the functionality of the
existing components within the provided interface. This paper
introduces SwisTrack and shows experiments with both marked
and marker-less agents.

I. INTRODUCTION

Tracking moving agents with overhead cameras is an tech-

nique often used in robotics and other related research areas.

Cameras are relatively cheap and easy to use, and therefore

provide easily accessible “ground truth” measurements and

indoor localization. Such data can be very valuable for offline

analysis, e. g. to analyze trajectories [1], to measure traveled

distances, or simply to check whether an experiment was

successful or not. In addition, such systems can give robots

online feedback about their current position, emulating an

indoor GPS, for instance.

Even though cameras are frequently used in nearly all

robotic labs, it seems that no single common integral soft-

ware package exists. Vicon Motion Systems provides a so-

lution [2] efficient enough for most robotics application, but

it is hardly affordable for most research laboratories. Noldus

Information Technologies offers another commercial option

with EthoVision [3], but neither solution can be tailored to

non-standard custom applications or environments, as their

source code bases cannot be modified by the end user.

As a result, many robotic research labs therefore write

their own tracking software more or less from scratch. At

first glance, the task seems to be fairly simple, and with a

T. Lochmatter, P. Roduit, C. Cianci and A. Martinoli are with the
Distributed Intelligent Systems and Algorithms Laboratory, P. Roduit
and J. Jacot are with the “Laboratoire de Production Microtechnique”,
both at the École Polytechnique Fédérale de Lausanne, 1015 Lau-
sanne, Switzerland. N. Correll is with the Computer Science and Ar-
tificial Intelligence Laboratory, Massachusetts Institute of Technology,
02139 Cambridge, MA, USA. (thomas.lochmatter@epfl.ch,
pierre.roduit@epfl.ch)

This work was partly supported by the National Competence Center
in Research on Mobile Information and Communication Systems NCCR-
MICS, a center supported by the Swiss NSF under grant number 5005-
67322. P. Roduit and C. Cianci are currently sponsored by Swiss NSF grant
contracts Nr. 200020- 113795 and PP002–68647 respectively.

few lines of code one can arrive at a crude, but service-

able, solution; which would seem to imply that a proper

implementation should not take more than a few dozens

of additional hours of work. However, when such minimal

effort is invested, the resulting program is rarely usable by

anyone other than the original programmer or in any context

other than the original experiment. Typically, if a graphical

user interface is implemented, it is extremely rudimentary,

with parameters being specified directly in the source code

(necessitating recompilation for even simple adjustments). In

an active research laboratory, with researchers joining and

leaving on a regular basis, this process is repeated over

and over, summing up to an incredible amount of man-

hours for what was previously thought to be a “simple” tool.

RoboTracker [4] is an example of a tracking application built

from scratch and not accessible to the scientific community.

Other research laboratories are diffusing their work, such as

TrackIt [5] or XVision [6]. Open source software does exist,

but was developed for specific applications, such as activity

monitoring [7], [8] or tracking of specific markers [9]. Many

of these solutions are bound to a specific camera interface,

and the option to do off-line tracking using stored video is

uncommon. In addition, none of them provide a modular

architecture. ImageJ [10], an image processing utility with a

plugin-based interface, is an example of this type of shared

resource which has had a profound impact on its community.

Correll et al. [11] therefore started an open source project

called SwisTrack to serve as a generic and flexible tool

for tracking robots and insects. Version 3 of this program,

released in 2006, has been adopted by several other research

laboratories, and the community behind it continues to grow;

around 60 to 100 downloads occur each month from the

Sourceforge website. Some examples of its use include

the tracking of Khepera III and e-puck mobile robots in

flocking and formation experiments by the Departamento

de Tecnologı́as Especiales Aplicadas a la Telecomunicación

and the División de Ingenierı́a de Sistemas y Automática of

the Universidad Politécnica de Madrid, and the tracking of

young chickens in the Miniature Mobile Robots Group from

the École Polytechnique Fédérale de Lausanne.

In this paper, we present version 4 of SwisTrack. It has

been completely rewritten and expanded, using the knowl-

edge and experience acquired from working with the previ-

ous versions. Noteworthy, in particular, is the new modular

architecture and the considerable amount of implemented

algorithmic components provided. The resulting program is a

stable, production quality tracking package for both marked

and markerless agents, with support for several different



Fig. 1. A close-up view of the processing pipeline of SwisTrack’s main window (see Figure 2). Data channels are displayed as columns and can be read
(R), edited (E) and written (W) by components. In this example a grayscale image is thresholded, which yields a binary image. The binary image is then
modified by the Binary mask component.

camera standards. It can also be used on both Windows and

Linux systems. A graphical user interface allows the user

to set up a processing pipeline consisting of components

(modules implementing processing steps). The parameters

of each component can then be changed at runtime, and

component output can be visualized in real-time on the

screen. SwisTrack also keeps track of the processing time

taken by each operation, which can be very helpful for speed

optimizations.

SwisTrack can also be used to record agent trajectories

during an experiment, either from a camera (in real time) or

a segment of recorded video (post-processing). For example,

SwisTrack can be used to feed position information to the

robots (or other devices) during the experiment, and data

can be saved or output in a variety of formats for later use.

In addition, SwisTrack can easily be extended by imple-

menting new modular components, which can subsequently

be used and configured just as any other component. There-

fore, even very specific tracking applications can make use

of the existing SwisTrack framework.

SwisTrack’s documentation is written as a Wikibook [12]

and contains—in addition to general usage hints—a series of

examples which may serve as a good starting point for any

of a number of possible tracking setups.

The remainder of this paper is organized as follows: Sec-

tion II gives an overview of SwisTrack and its components.

Section III explains how SwisTrack can be used in a multi-

camera setup with coded markers. This is followed by two

single-camera experiments (Section IV), and a multi-camera

experiment (Section V).

II. SOFTWARE OVERVIEW

In this section, we give a brief overview of SwisTrack’s

architecture. This architecture has been remodeled since the

initial release [11] in order to allow easy combination of new

and existing algorithms, input, and output media.

The software architecture is component-based, with each

component conforming to well-defined interfaces for interac-

tion with the other components in the pipeline. Components

pass their data through structures referred to here as “data

channels.”

The existing data channels, shown in Figure 1, are: input,

grayscale image, color image, binary image, particles and

tracks. A component can read (R), edit (E) or write (W)

any of these data channels, as illustrated in Figure 1. For

example, the component Threshold a grayscale image will

read the grayscale image channel, threshold the image (i. e.

give a value of 1 to all pixels with an intensity within

Fig. 2. SwisTrack’s main window with the display in the center, the
processing pipeline and the timeline at the bottom, and the configuration
panel on the right side. The configuration panel displays the controls and
parameters associated with each component.

given boundaries and 0 to all other pixels), and write the

resulting binary image into the binary image channel. Then,

the Binary mask component reads from the binary image

channel, applies a logical AND (∧) operation with the

desired mask image, and writes the result back into the

binary image channel. This component is therefore marked

as editing (E) the binary image channel.

A SwisTrack project mainly consists of an ordered set

of components (the processing pipeline) assembled by the

user. Figure 3 shows an example of such a pipeline. Each

component in this pipeline has a series of parameters which

can be modified in SwisTrack’s right-hand panel. When

processing a camera frame, the components are applied (in

order) to the acquired frame with their current configuration.

After each component, the resulting processed image can be

displayed on the screen. There is no limit in the number of

components and their order. The user needs only to ensure

that the data channel read by any given component has

previously been written by another component. The same

component can also be applied multiple times, if desired

(even if this does not make sense for most components).

For catering to most typical tracking scenarios, SwisTrack

classifies the components into ten categories, and proposes a

certain order in which these components should be executed.

The categories along with a description of the most important

algorithms therein are listed in their proposed execution order



Fig. 3. A standard processing pipeline for color images. The pipeline is
similar for grayscale images.

in Table I. This classification supposes that the input image is

transformed into a binary image (after some preprocessing

steps), and that the objects to be tracked are detected as

blobs (i. e. set of connected pixels with the same value in a

binary image). Blobs are then converted into particles (i. e.

points). The particles of successive frames can be associated

to tracks, and sent to an output component. This general

structure has emerged from experiences with different re-

quirements in our group and elsewhere.

A. Visual Feedback for Parameter Tuning

Most of the components modify an image data channel and

thus allow the user to visualize its results online. Relevant

parameters of each component can be modified on the fly,

which allows for fast prototyping of entire tracking applica-

tions and easy adaption to changing environment conditions.

B. Interfacing SwisTrack

SwisTrack provides two ways to output data: an output to

file component which writes tab-separated files, and a TCP

interface with NMEA 0183 message streaming. NMEA 0183

is a simple human-readable and easily parsable protocol,

well known from GPS receivers. Code examples for C, C++,

Java, Perl and Python are provided. The TCP interface not

only allows several clients to receive information about the

object’s positions, but also to remote control SwisTrack.

C. Implementing Specific Components

While the already available components allow for catering

to a large variety of tracking scenarios, it may sometimes

be necessary to implement a specific algorithm, e. g. to

track a special type of object, deal with a special type of

environment, or simply acquire images from a new type of

camera (or camera driver).

This can be done by implementing a new component in

SwisTrack. For easing this process, a component template

is available, and detailed information is available in the

wikibook [12]. Relevant parameters and their data types of

each component are stored in an XML file, which allows

SwisTrack to automatically generate a graphical user inter-

face specific to the custom component.

Note that even for very special types of object tracking, we

believe that implementing a component in SwisTrack should

be preferred over writing a separate program, as SwisTrack

allows to leverage on a suite of useful features (camera

support, displaying images, calibration, ...) and simplifies the

debugging process with its graphical user interface and its

strong encapsulation.

III. MULTI-CAMERA TRACKING AND CODED MARKERS

SwisTrack has recently been endowed with a multi-camera

tracking feature. Using more than one camera adds additional

challenges. First, robots can disappear on a camera image an

reappear later, and second, robots shall be tracked when they

leave one camera range and enter another.

Merging all camera images and doing the detection on one

big image is clearly very expensive in terms of processing

and memory requirements. A much more viable approach

is to detect the robots on all camera images individually,

and to merge the robot positions afterward. This requires

some camera range overlap to make sure that the trajectories

are merged correctly when a robot moves from one camera

image to another.

A. Coded Markers

When working with multiple robots, an additional increase

in robustness can be achieved by marking the robots with a

unique code. This allows the tracker to maintain a continuous

trajectory even if the robot disappears temporarily (e. g.,

because of occlusion). We developed a set of markers using

a 14-chip circular code. All codes are rotationally unique,

i. e. no two codes are the same in any rotation relative to

each other. To make the detection more robust, the codes

have a Hamming distance of at least 4 chips in any rotation.

Using a simple heuristic algorithm, we found 25 such 14-

chip codes. A fair number of different marking strategies

have been developed by the scientific community, such as

ARTag [13], but in our case the circular patterns help us to

get a precise positioning.

To use such codes, the camera needs to have a rather high

resolution, i. e. the code should occupy an area of at least 20

by 20 pixels on a good quality image.

To decode the ID, the pixels on the ring are first trans-

formed into a vector of brightness and angle values. The

covariance between this vector and all expected codes (in

different rotations) then reveals which code is seen, under

which angle it is seen (with 2 - 10 degrees accuracy), and a

confidence level (covariance value). The latter can be used

to filter out blobs that were by mistake detected by the blob

detection algorithm.

IV. SINGLE-CAMERA EXPERIMENTS

In a first series of experiments, we demonstrate how the

available components of SwisTrack can be wired together

for tracking agents with and without markers using a single

camera.



TABLE I

COMPONENT CATEGORIES.

Category Reads Writes Description of the main algorithms implemented in the current components

1 Trigger - - Tell SwisTrack when to process the next frame, e. g. using a timer

2 Input - I Image acquisition from a camera (USB, FireWire, Basler GigE) or a file (AVI, BMP,
...)

3 Input conversion I G, C Conversion to color or grayscale, or from a Bayer pattern

4a Preprocessing (color) C C Color image transformations, e. g. background subtraction, fixed color subtraction,
channel arithmetic

4b Preprocessing (grayscale) G G Grayscale image transformations, e. g. background subtraction

5 Thresholding G, C B Conversion to a binary image using a multi-channel or single-channel threshold

6 Preprocessing (binary) B B Binary image operations, such as erosion, dilation, masking, and blob filtering

7 Particle detection B P Blob detection on the binary image (marker-less, marker-based with or without codes)

8 Calibration P P Transformation from pixel coordinates to world coordinates, using a second-order linear
model or Tsai’s algorithm

9 Tracking P T Association of particles with trajectories, using a nearest neighbor criterion

10 Output All - Output to file (tab-separated) or TCP connection (NMEA 0183 messages)

Data channels: I = Input, G = Grayscale image, C = Color image, B = Binary image, P = Particles, T = Tracks

14−1942

Deformation 3

14−7226

Deformation 9

ID 3 ID 9

Fig. 4. Two sample markers. The white blob in the middle allows for
the detection of the robot’s position. The circular code around allows to
discriminate between up to 25 robots, and to detect their orientation.

A. Marker-based tracking

As first example we consider tracking of 8 e-puck robots

[14] that are endowed with elliptic markers in a setup with

one overhead camera.

1) Setup: A white arena of 1.60 by 1.60 m with 8 e-puck

robots is captured with one GigE color camera (Basler Vision

Technologies) mounted on the ceiling. The arena, depicted

in Figure 5, covers a size of roughly 660 by 660 pixels on

the image.

Special attention was given to the light. The light in the

room is diffuse, which ensures an even illumination of the

arena and greatly helps reducing dark shadows.

Each robot is carrying a circular piece of white paper with

a black ellipse drawn on it. Such an ellipse has a size of about

13 by 30 pixels on the image. Attaching the marker in the

center of the robot helps to prevent that blobs can seemingly

merge. Whether a simple nearest-neighbor algorithm is then

sufficient for tracking is a function of the robot speed and

the acquisition frame rate.

2) SwisTrack Configuration: SwisTrack is configured as

follows. A frame is acquired with a GigE camera com-

ponent, converted to grayscale and thresholded. Since the

background is white and homogeneous, there is no need

Fig. 5. An image of the overhead camera showing the 8 e-pucks in the
arena. Robots are equipped with elliptical markers.

to apply background subtraction here. Then, blob detection

is applied with two selection criteria: the blobs must be

within a certain size range, and be reasonably compact. The

effect of this selection is demonstrated in Figure 6. After

thresholding, not only the blobs, but also robot shadows

and the arena borders are visible on the image. While the

arena border and other markings are filtered out with the

size criterion, the shadows have a compactness below the

selection criterion. The resulting image contains only the

markers. Finally, the robots are tracked with the nearest

neighbor tracking component.

3) Results: Both blob detection and nearest neighbor

tracking work reliably in the whole arena. The robot posi-



(a) (b)

Fig. 6. A sample image after thresholding (a) and after blob selection (b).
Blobs are selected by their compactness and size, which is very robust in
this setup.

tions are detected at a precision below 2 mm. In this setup, it

would be possible to work without any markers on the robots,

if one does not need the additional position accuracy that

they provide. Since the blobs are ellipses, the blob detection

algorithm also reliably detects their orientation with an error

of maximum 5 degrees.

B. Marker-less tracking

SwisTrack has been also used for tracking cockroaches

[15]. Tracking cockroaches is particularly challenging as the

animals can move extremely fast (up to 50 cm/s), tend to

stay very close together or on top of each other, and have

widely varying sizes and appearances when compared with

robotic agents (see also [11]).

1) Setup: Cockroaches walk in a circular arena of about

1 meter of diameter, shown in Figure 7(a). An overhead

camera was used to produce AVI video files (MPEG-4) with

a framerate of 30 Hz recording the experiment. Pictures of

the empty arena and of a calibration pattern with 69 dots

were saved at the same time.

2) SwisTrack Configuration: Images are acquired from an

AVI video feed and the image is converted to a grayscale

image. Then, the image of the empty arena (background)

is subtracted from the input frames of the video, and a

simple threshold is applied on the resulting gray image. The

threshold value is estimated online by the user using the

detected blobs as visual feedback. A binary mask consisting

of the arena shape is then applied on the resulting binary

image to remove all the objects outside of the arena. Next,

a close operation (an erode followed by dilate) is applied to

fill small holes inside of the blobs. The resulting blobs are

filtered based on their size to remove blobs that are too small

or too big to be a cockroach. The direct visual feedback

of the filter results eases parameter tuning substantially

here. The center of mass of the blobs then become the

particle positions, which are subsequently transformed from

pixel coordinates to metric space using Tsai’s algorithm

[16]. Finally, a nearest neighbor tracking method is used to

create trajectories from the extracted particles, as shown in

Figure 7(c).

3) Results: The error of a calibration method can be

quantified as the distance between the real position and the

calculated positions of the points used in the calibration

process.

Due to the large optical deformation in this setup, Tsai’s

calibration method [16] yields particularly good results. The

mean value of the error on the 69 calibration points was only

0.4 mm, and the maximal error was 1 mm. This corresponds

to a relative error of about 0.5 0/00 for our arena diameter

of 1 m.

For comparison, calibration with a second order linear

model yields a mean error of 3.9 mm and a maximal error

of 6.0 mm.

V. MULTI-CAMERA EXPERIMENTS

In a second series of experiments, we consider tracking

Khepera III robots [17] endowed with coded markers in a

multi-camera setup.

A. Setup

The arena is tracked by two overhead cameras, each

connected to its own computer. Both computers run an

instance of SwisTrack. A small script intercepts the output

of both instances, and records it for offline processing. The

arena monitored by two GigE color cameras has a size of

approximately 3.4 m by 2.6 m. The cameras are synchronized

by an external trigger signal and have a resolution of 1032

by 778 pixels, resulting in a pixel size of about 2.5 mm by

2.5 mm on the floor. For demonstration purposes, a large

overlap region of about 80 cm width is chosen, as shown in

Figure 9. The ceiling is low, requiring and a wide angle lens

with 3.6 mm focal length, which in turn results in a visible

distortion at the image borders. All robots are equipped with

the 14-chip coded markers described in Section III-A, which

are projected onto about 40 by 40 pixels on the image.

Fig. 9. A sketch (not to scale) of the setup with two cameras.

B. SwisTrack Configuration

SwisTrack is configured as follows. A frame is acquired

with a GigE camera component and converted to grayscale

(Figure 8 (a)). The image is then passed through an adaptive

background subtraction component (Figure 8 (b)), initialized

at the beginning with no robot in the arena, and then

thresholded (Figure 8 (c)). On the black and white image,

blob detection is applied (Figure 8 (d)). The blobs are filtered

by their size and their compactness, which allows us to

get rid of most of the occasional bright reflections on the

robot. Finally, the ID is read (Figure 8 (e)) and the robot



(a) Top view of cockroaches moving in a closed
arena.

(b) Pattern used for the calibration. (c) Trajectories resulting of the cockroaches
tracking.

Fig. 7. Tracking of cockroaches in a circular arena.

(a) (b) (c) (d) (e)

Fig. 8. A robot as seen from the camera (a), after background subtraction (b), after thresholding (c), after blob detection (d) and after reading its ID (e)
in the multi-camera setup.

positions on the image are transformed to world coordinates.

The calibration process is explained below.

The procedure is exactly the same for both cameras, but

the parameters are sometimes slightly different to compen-

sate for the minor differences in light conditions on both

sides of the arena.

C. Calibration

The detected robot positions are calibrated using Tsai’s

calibration method [16], an algorithm requiring information

on the position of at least 5 non-collinear points on the

image. Such points were found by driving a robot to various

locations in the arena, and by noting their position on the

camera as well as their “real” position. This “real” position

was measured using the odometry of the (differential-drive)

robot, which is very precise over the short distances (few

meters) involved in this calibration procedure.

Both cameras were calibrated in a single operation, i. e.

whenever the robot reached one calibration point, an image

was taken with both cameras. One camera saw the robot

8 times, while the other camera detected it 9 times in its

range. Two calibration points were in the overlap region and

therefore shared by both cameras.

Thanks to SwisTrack’s TCP interface, such procedures can

be fully automatized with a few simple scripts.

D. Results

Figure 10 shows a robot trajectory in the overlap region.

The distance between the trajectories recorded by the two

cameras is in the order of 1-2 cm, which is precise enough

for most purposes. Given that the robots have a diameter of

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trajectory in the overlap region

X [m]

Y
 [

m
]

 

 

Camera 1

Camera 2

Fig. 10. A sample trajectory of the overlap region, generated by an odor
source localization algorithm [17].

roughly 12 cm, the two trajectories can easily be matched

using a nearest neighbor criteria at each time step.

In the presented setup, the ID is always correctly decoded,

except at the border of the image where the code is not com-

pletely visible. Furthermore, the detected robot orientation

angle is within 2 degrees precision. Since the orientation is

not corrected by the calibration component, its accuracy is

worse, though.

The complete processing of one frame takes about 20 ms

on a state-of-the-art computer. Since images were acquired

at 20 fps, the processor is only moderately loaded. The most



time-consuming operations are blob detection and reading

the code on the marker.

VI. CONCLUSION

We have introduced the new version of SwisTrack, a stable

software solution for multi-agent tracking, and have shown

its flexibility through three experiments with robots and

cockroaches. Nonetheless, SwisTrack is not limited to the

examples presented here and offers modularity, extendability,

and interoperability making it an attractive tool for any kind

of agent tracking.

Simple problems, such as tracking a robot with an over-

head camera, can be solved with the existing components,

without writing a single additional line of code. For more

complex problems, the implementation of a new component

may be necessary. But even then, SwisTrack provides an

invaluable service, as it contains a complete graphical in-

terface, a clear structure, and many re-usable components

that solve parts of the problem. For example, agent tracking

in a complicated environment may require implementing

an advanced agent detection algorithm, but can fully reuse

SwisTrack’s image acquisition, preprocessing, tracking, and

output components.

The SwisTrack development team has benefited from the

knowledge of both a computer vision and a robotics research

group. While the implemented algorithms are not necessarily

novel, their compilation into a single stable tracking program

is.

We believe that SwisTrack greatly supports research ef-

forts involving cameras. Therefore, we encourage research

groups to take part in the collaborative effort by using

the software, and potentially implementing and contributing

their own algorithmic components. The user interface is

straightforward; the average moderately skilled computer

user is able to become productive within a very short period

of time. Furthermore, with the help provided in the SwisTrack

documentation [12], a good C++ programmer should be able

to implement components with relative ease.

By publishing SwisTrack as an open source program, we

hope to alleviate the current unfortunate state of affairs in

which many research groups have felt obligated to re-invent

their own solution due to the lack of a readily-available

standard for multi-agent tracking.

REFERENCES

[1] P. Roduit, A. Martinoli, and J. Jacot, “A Quantitative Method for
Comparing Trajectories of Mobile Robots Using Point Distribution

Models,” in Proc. of the 2007 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2007, pp. 2441–2448.

[2] Vicon Motion Systems. (2008, June) Vicon MX. [Online]. Available:
http://www.vicon.com/products/viconmx.html

[3] Noldus Information Technology. (2008, June) Ethovision 3.1.
[Online]. Available: http://www.noldus.com/site/doc200801005

[4] A. Sirota, “Robotracker - a system for tracking multiple robots in real
time,” Technion Israel Institute of Technology, Tech. Rep., December
2004.

[5] S. N. Fry, M. Bichsel, P. Mller, and D. Robert, “Tracking of flying
insects using pan-tilt cameras,” Journal of Neuroscience Methods, vol.
101, no. 1, pp. 59–67, August 2000.

[6] Computational Interaction and Robotics Lab - John Hopkins
University. (2008, June) A Brief Tour of XVision. [Online].
Available: http://www.cs.jhu.edu/CIPS/xvision

[7] P. Aguiar, L. Mendona, and V. Galhardo, “Opencontrol: A free
opensource software for video tracking and automated control of
behavioral mazes,” Journal of Neuroscience Methods, vol. 166, pp.
66–72, June 2007.

[8] J.-E. Poirrier, L. Poirrier, P. Leprince, and P. Maquet, “Gemvid, an
open source, modular, automated activity recording system for rats
using digital video,” Journal of Circadian Rhythms, vol. 4, June 2006.

[9] Music Technology Group - Pompeu Fabra Univer-
sity. (2008, June) reacTIVision 1.4. [Online]. Available:
http://reactable.iua.upf.edu/?software

[10] M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing
with imagej,” Biophotonics International, p. 36.

[11] N. Correll, G. Sempo, Y. L. de Meneses, J. Halloy, J.-L. Deneubourg,
and A. Martinoli, “Swistrack: A tracking tool for multi-unit robotic
and biological systems,” in Proceedings of the 2006 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2006).
IEEE/RSJ, 2006, pp. 2185—2191.

[12] T. Lochmatter, P. Roduit, and N. Correll. (2008) SWISTrack (Wiki-
book). [Online]. Available: http://en.wikibooks.org/wiki/SwisTrack

[13] M. Fiala, “Artag, a fiducial marker system using digital techniques,”
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, vol. 2, pp. 590–596 vol. 2, June
2005.

[14] C. M. Cianci, X. Raemy, J. Pugh, and A. Martinoli, “Communication
in a Swarm of Miniature Robots: The e-Puck as an Educational Tool
for Swarm Robotics,” in Simulation of Adaptive Behavior (SAB-2006),

Swarm Robotics Workshop, ser. Lecture Notes in Computer Science
(LNCS), 2007, pp. 103–115.

[15] J. Halloy, J.-M. Amé, G. S. C. Detrain, G. Caprari, M. Asad-
pour, N. Correll, A. Martinoli, F. Mondada, R. Siegwart, and J.-L.
Deneubourg, “Social integration of robots in groups of cockroaches to
control self-organized choice,” Science, vol. 318, no. 5853, pp. 1155–
1158, 2007.

[16] R. Y. Tsai, “A versatile camera calibration technique for high-accuracy
3d machine vision metrology using off-the-shelf tv cameras and
lenses,” IEEE Journal of Robotics and Automation, vol. RA-3, no. 4,
pp. 323–344, August 1987.

[17] T. Lochmatter, X. Raemy, L. Matthey, S. Indra, and A. Martinoli,
“A comparison of casting and spiraling algorithms for odor source
localization in laminar flow,” in Proc. of the 2008 IEEE Int. Conf. on

Robotics and Automation, may 2008, pp. 1138—1143.


