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Abstract 

Micro-fabricated solid oxide fuel cells (μSOFCs) are finding an increasing interest as potential power 

sources for portable devices such as MP3 players or laptops. The aim of this work was to fabricate a 

μSOFC demonstrator that works at 500°C and is fuelled by hydrogen. This thesis was divided into two 

parts. The first one was devoted to the development of an electrolyte and electrodes in form of 

sputtered thin films with electrical and mechanical properties suitable for the implementation in a real 

cell. YSZ and CGO electrolyte have been reactively sputtered from metallic targets. Both films are 

dense and have a columnar microstructure. The ionic conductivity of these films was of 0.5 S/m at 

550°C for the CGO and of 5.5 x 10-3 S/m at 500°C for the yttria stabilized zirconia (YSZ) . Albeit the 

ceria doped gadolinia (CGO) was a better ionic conductor at low temperature, it was not possible to 

obtain an open circuit voltage (OCV) with a CGO electrolyte film. Most likely, the reduction of the 

Ce+4 ion into Ce+3 in a hydrogen atmosphere creates an electrical leakage. Better results were obtained 

with YSZ layers. Single, (111) textured columnar films showed OCV's of 200 mV. Best results were 

obtained with a double layer of two different microstructures. The first one exhibited a dense, 

columnar microstructure with (111) texture. The second layer was porous with nanocrystalline grains 

and preferential (200) orientation. The improved properties are ascribed to the absence of film 

crossing grain boundaries. Of special interest is the mechanical stress behaviour upon heating to the 

operation temperature. The stress was investigated as a function of temperature up to 700°C. An 

anomalous, hysteretic behaviour was found during the first heating cycle in YSZ as well as CGO thin 

films. This phenomenon could be modelled as an oxygen uptake to fill up excess oxygen vacancies 

created during the sputtering process. The model allowed to derive a diffusion activation energy of 0.6 

eV for these excess vacancies in YSZ. Annealing in air at 700 °C permits to reduce stress and to 

stabilize the YSZ membrane. As electrode materials, sputter deposited, porous platinum, porous Ni-

CGO composites and dense LaxSr1-xCoO3-y (LSCO) thin films were developed and characterized. The 

PEN (Positive electrode-Electrolyte-Negative electrode) layer processes were combined with Micro 

Electro Mechanical System (MEMS) process technology to fabricate μSOFC test devices. The PEN 

membranes were liberated by deep silicon dry etching. The cell diameter was varied between 0.5 and 5 

mm, the electrolyte thickness between 500 and 700 nm. A nickel grid grown by electroplating was 

used to support the electrolyte layer and to serves as current collector for the anode. The cell with a 5 

mm diameter shows a very good mechanical stability up to 600°C in SOFC operating conditions and 

for several heating cycles. The functionality of the fuel cell with two 20 nm thick porous platinum 

electrodes and a YSZ bilayer electrolyte (500 nm) has been demonstrated. An OCV of 850 mV was 

measured at 500°C with hydrogen fuel. . Unfortunately, a too high cathode contact resistance reduced 

the current to very low values. The achieved maximal power density was only 19 μW/cm2. A simple 

design change should remedy the problem. 
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Résumé 
Les piles à combustibles à oxyde solide  rencontrent un intérêt croissant comme sources d’énergie 

potentielle pour les appareils électroniques portables tels que les laptops et les lecteurs MP3. Le but de 

ce travail fut de fabriquer un démonstrateur d’une pile à combustible à oxyde solide fonctionnant à 

500°C et alimenté par de l’hydrogène. Cette thèse fut divisée en deux parties. La première fut 

consacrée au développement d’un électrolyte et d’électrodes sous forme de films minces pulvérisés 

ayant des propriétés électriques et mécaniques satisfaisantes pour être implémentées dans une vraie 

pile. Des électrolytes d’oxyde de zircone dopé à l’yttrium (YSZ) et d’oxyde de cérium dopé au 

gadolinium (CGO) ont été déposés à partir de cibles métalliques. Les deux films sont denses et 

présentent une microstructure colonnaire. La conduction ionique de ces films était de 0.5 S/m à 550°C 

pour le CGO et de 5.5 x 10-3 S/m à 500°C pour le YSZ. Bien que le CGO fusse un meilleur conducteur 

à basse température, il n’a pas permis d’obtenir de voltage à circuit ouvert. La cause la plus probable 

de ce dysfonctionnement est la réduction des ions Ce+4 en Ce+3 sous hydrogène qui crée un court 

circuit électronique. De meilleurs résultats ont été obtenus avec le YSZ. Des films simples, texturés 

selon la direction (111), ont permis d’atteindre un voltage de 200 mV. Les meilleurs résultats ont été 

obtenus grâce à des films de YSZ consistant en deux couches de morphologies différentes. La 

première présentait une microstructure colonnaire et était texturée selon l’orientation (111). La 

seconde était poreuse avec des grains nanométriques orientés préférentiellement selon (200). 

L’amélioration des performances de la pile est due à l’absence de joints de grains traversant 

l’électrolyte. Un intérêt tout particulier s’est porté sur l’évolution des contraintes mécaniques lors du 

chauffage jusqu’à la température de fonctionnement de la pile. Les contraintes furent mesurées en 

fonction de la température jusqu’à 700°C. Un comportement hystérétique anormal fut découvert lors 

du premier cycle de chauffe des films minces de YSZ et de CGO. Ce phénomène a pu être modélisé 

par une absorption d’oxygène compensant l’excès de lacunes du matériau crée lors de la déposition. 

Le modèle a permis de dériver une énergie d’activation de 0.6 eV pour les lacunes excédentaires 

d’oxygène dans le YSZ. Un recuit dans l’air à 700°C a permis de réduire les contraintes et de stabiliser 

la membrane de YSZ. Des films de platine poreux, d’un composite poreux de nickel et de CGO ainsi 

que des films denses d’oxyde de lanthane dopé au strontium et au cobalt (LSC) ont aussi été 

développés et caractérisés pour servir d’électrodes. Le procédé de fabrication des couches de la PEN 

(Positive électrode-Electrolyte-Négative électrode) a été combiné avec les technologies de 

microfabrication du silicium pour créer de micro-piles à combustible. Les membranes formant la PEN 

ont été libérées par gravure sèche profonde du silicium. Le diamètre de la membrane fut compris entre 
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0.5 mm et 5 mm, et son épaisseur entre 500 et 700 nm. Une grille en nickel formée par 

électrodéposition a été utilisée pour renforcer la membrane et a aussi servi de collecteur de courant 

pour l’anode. La pile ayant une membrane de 5 mm de diamètre a démontré une grande stabilité 

mécanique dans les conditions d’utilisation à 600°C et ce durant de nombreux cycles thermiques. La 

fonctionnalité d’une micro-pile comprenant deux électrodes de platine poreux de 20 nm d’épaisseur 

ainsi qu’un électrolyte compose d’une bicouche de YSZ de 500 nm d’épaisseur a été démontrée. Un 

volage à circuit ouvert de 850 mV a été mesuré à 500°C avec de l’hydrogène comme combustible. 

Malheureusement, une trop grande résistance interne des contacts a réduit le courant obtenu. Ainsi la 

densité maximale de puissance atteinte ne fut que de 19 μW/cm2. Un simple changement de design 

pourra résoudre ce problème. 

 

Mots clés: piles à combustible à oxyde solide, films minces, YSZ, microfabrication, pulvérisation 

réactive par magnétron 
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List of abbreviations 
 

 

AFC   Alkaline Fuel Cell 

ASR   Area Specific Resistivity [Ω/cm2] 

BSFC   Ba0.5Sr0.5Co0.8Fe0.2O3-x  

CGO   Ceria Doped Gadolinia 

CVD   Chemical Vapour Deposition 

DC   Direct Current 

DFAFC  Direct Formic Acid Fuel Cell 
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PVDF    Polyvinylidene Fluoride 

RF   Radio Frequency (13.56 MHz) 

RT   Room Temperature (25°C) 

SC-SOFC  Single Chamber Solid Oxide Fuel Cell 
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SDC   Samaria Doped Ceria 
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SOFC   Solid Oxide Fuel Cell 

μSOFC   Micro-fabricated Solid Oxide Fuel Cell 

TEM   Transmission Electron Microscopy 
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XRD   X-Rays Diffraction 

YSZ   Yttria Stabilized Zirconia 

8YSZ   Yttria Stabilized Zirconia containing 8 %mol. of yttria 
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List of symbols 
 

 

a  Lattice constant  [Å] 

αx  Thermal expansion coefficient of x [ppm/K] 

β  Lattice volume expansion [%]  

C  Capacity [F] 

cx  Concentration of the specie x [%] 

dx  Diameter of x [m] 

D  Diffusion coefficient [m2/s] 

D0  Diffusion constant [m2/s] 

da  Lattice constant displacement [Å] 

dgb  Density of grain boundaries [m/m2] 

Ea  Activation energy [eV] 

Ex  Electrical potential of x [V] 

εmem  Emissivity of the membrane 

F  Faraday constant 96485 C/mol 

G  Gibbs energy [J/mol] 

hx or Hx  Heigth of element x [m] 

ι  Current density [A/m2] 

ηx  Polarization due to x [Ω] 

j  2 1j = −  

xj   Flux of species x [mol/s m2] 

k  Boltzmann constant 1.38 10-23 J/K 

K  Reaction constant 

L  Length [m] 

NA  Avogadro’s number 6.022 mol-1 

ν  Poisson ratio of x [-] 

Px  Pressure of gas x [mT] or [atm] 

Qa  Heat loss into the air by convection 

Qe  Heat loss due to radiation 

Qh  Heat loss by conduction  

Qr  Reactive gas flow 

rx  Radius of curvature of x [m] 
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r1  Radius of curvature before film deposition [m] 

r2  Radius of curvature after film deposition [m] 

R  Molar gas constant 8.3144 J/molK 

R4  Four points resistance [Ω] 

Rp  Parallel resistance [Ω] 

Rs  Serial resistance [Ω] 

ρ0  Density [kg/m3] 

Sx  Stress of the element x [MPa] 

σ  Ionic conductivity [S/m] 

σb  Stephan Boltzmann constant 5.67x10-8 W/m2K4 

T  Temperature [K] 

T0  Temperature in the center of the membrane [°C] or [K] 

Tb  Temperature at the border of the membrane [°C] or [K] 

Tfinal  Final temperature [°C] or [K] 

Tinitial  Initial temperature [°C] or [K]  

ΔT  Temperature change [°C] or [K] 

ΔTcrit  Critical temperature change for buckling or cracking [°C] or [K] 

tx  Thickness of x [m] 

τx  Rate of deposition of film x [nm/min] 

tanδ  Capacitive losses [%] 

V  Voltage [V] 

w  Width [m] 

ω  Pulsation [Hz] 

ωrot  Rotation speed [Hz] 

Y  Complex admittance [S] 

Yx  Young modulus of x [MPa] 

Z  Complex impedance [Ω] 

z  Number of charges 

 

Special notations: 

 

X   Mean value of variable X 

ΔX  Variation of variable X 

Y(X)  Y is function of variable X 
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1.1. Motivation for this thesis 
 

In 2004, the primary worldwide energy consumption was about 11.7 Gtoe (gigaton of oil equivalent) 

[1]. Eigthy-two percent of this energy has produced CO2 emissions by means of fossil fuel 

combustion. This is the equivalent of 7 GTon of carbon. Keeping the emissions at this level for the 

next 50 years will permit to stabilize the CO2 concentration at 500 ppm, less than the double of the 

pre-industrial concentration (280 ppm), but more than its actual value (375 ppm). Such an effort is 

extremely important to keep the earth’s living conditions acceptable [2]. 

Since 1985, the balance between the annual world reserves additions of petroleum and the annual 

consumption becomes negative [3] (Figure 1). This means that since then we are discovering less 

petroleum than we are consuming, and this difference increases year after year. 

 

 
Figure 1: Balance of the petroleum annual world reserves additions minus the consumption over the 

years, from [3]. 
 

This still growing consumption of petroleum has two major impacts: the price of oil and the amount of 

greenhouse gases released in the atmosphere increase continuously. The price of oil could be a more 

critical parameter for the end of the oil era than the depletion of the actual petroleum reserves. New 

green technologies such as solar cells and windmills could substitute petroleum in electrical power 

production. 

The problem of substituting petroleum in mobile applications remains. One simple way to reduce 

energy consumption is not to waste it. The fuel cells have better efficiency than engines and generators 

(Figure 2). Moreover, there are viable scenarios for a society with hydrogen as portable energy 

produced by renewable sources, such as hydroelectric, geothermal, solar, wind and biomass or even 

nuclear power plants [4]. The abundance of oil lead to a negligence of the research on alternative 

energy topics during the 20th century. Solid oxide fuel cell (SOFC) technologies exist as prototypes, 

but predictions show that fuel cells will dominate the transportation market only after 2030-2040 [5]. 

The reasons for this delay are difficulties related to the storage and distribution of hydrogen [6], the 

high costs and the technological immaturity of fuel cells [7]. Nevertheless, it is urgent to implement 
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fuel cells and hydrogen as vector for energy. Engines fuelled by hydrogen have the advantage of being 

non pollutant as they mostly reject water vapour [8]. Cars using this technology already exist and 

show sufficient performances [9]. Fuel cells can also be used for co-generation of heat and electricity 

to supply buildings or industries [10] or even in portable applications [11]. This thesis has been 

motivated by the question whether SOFCs can be scaled down for use in portable devices and 

fabricated in MEMS technology. The high energy density and large autonomy of miniature or micro 

SOFC cells makes these portable power sources ideal for hand held equipment such as digital cameras. 

Micro SOFCs (μSOFC) would require an easy to handle and secure fuel. Currently we can consider 

lighters based on butane as an already existing product based on small volume fuel reservoirs. This 

means that micro-SOFCs would not suffer from a fuel distribution problem. If in later years hydrogen 

society became reality, hydrogen would of course be an even more environmentally fuel. 

 

 

 
Figure 2: Efficiency and capacity of different types of electrical power plant, from [8] 

 

 

1.2. Generalities on fuel cells 
 

This introduction will give an overview on fuel cells, presents their working principles and compares 

with alternative portable power sources. At the end of the chapter, the goals of this thesis will be 

formulated. 

A fuel cell is a device that converts chemical energy directly into electrical energy. Since the 

discovery of the principle of the fuel cell by W. Groove in 1829 [12], this power source didn’t get the 

enthusiasm it was supposed to. This is mainly due to the discovery of electromagnetic induction (i.e. 

basic principle of electrical power generators transforming mechanical power) in 1839 by M. Faraday 
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[13] and to development of combustion motors (Otto and Diesel). Although engines are less efficient 

[14] (Figure 2) and more pollutant than fuel cells, they were advantaged by a lower cost and a simpler 

technology. Fuel cells were only developed for some specific applications requiring high efficiency 

such as space modules [13]. Today, with the still increasing interest on the environmental aspects, fuel 

cells are probably the best solution for clean power generators as Ostwald pointed it out already in 

1894 [15]. 

The chemical reaction that drives fuel cells is divided into two parts: 

  

- At the anode, the oxidation of a fuel such as hydrogen, carbon monoxide or even hydrocarbons. 

- At the cathode, the reduction of oxygen or carbon dioxide. 

 

As well as two electrodes, the fuel cell also consists of an electrolyte that is permeable to a given type 

of ions (H+, O2-, CO3
2- or OH-). Ions are chemically formed at one electrode and then diffuse to the 

other through the electrolyte. This internal ionic flux is balanced by an external electrical current in the 

load. The nature of the electrolyte and the diffusion of ions through it are a critical aspect of these 

devices. The choice of electrolyte influences the power, the materials requirements, the temperature of 

operation, the fuel and even the geometry of the cell. Fuel cells are classified by their type of 

electrolyte. It can be a liquid, a polymer or even a ceramic. Low temperature fuel cells have the 

advantage of smaller requirements on materials properties such as resistance to corrosion and thermal 

dilatation. Within fuel cells operating over 600°C, internal gas reforming is possible. It permits the use 

of hydrocarbon fuels like methane or propane that is transformed (reformed) into hydrogen within the 

cell. High temperature cells also take the advantage of transforming the exhausted heat into energy and 

thus reach a better overall efficiency. 
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Figure 3: Different types of fuel cell with typical reactions and operation parameters, from [16]. 

 

Different types of fuel cells have been developed (Figure 3). Alkaline fuel cells (AFCs) were used in 

the Apollo missions and have a low temperature of operation (70°C). The electrolyte is a concentrated 

solution of potassium hydroxide. The major disadvantage of AFCs is that the alkaline solution doesn’t 

reject carbon dioxide and thus they are limited to pure O2 (air with CO2 removal) and H2. Polymer 

electrolyte membrane fuel cells (PEMFCs) use a polymer membrane such as fluorinated sulfonic acid 

polymer as electrolyte. They conduct protons and work at temperatures below 100°C. The only liquid 

in the cell is water, thus corrosion problems and materials requirements are limited. Water 

management in the membrane is critical for efficiency. The water should not evaporate faster than it is 

produced by the cell in order to keep the membrane hydrated. The low operating temperature limits 

the fuel range to pure hydrogen and internal reforming is not possible. In Phosphoric Acid Fuel Cells 

(PAFCs), protons diffuse in a concentrated phosphoric acid solution constrained in a polymer [17]. 

PAFCs have the same requirements on fuel purity as PEMFCs. The temperature of operation of 

PAFCs is comprised between 160°C and 220°C. This higher temperature makes the waste heat more 

valuable. PAFCs can use external reforming and are still the most used type of fuel cells for 

commercial applications with a power of 200 kW. In Molten Carbonate Fuel Cells (MCFCs) CO3
2- 

ions diffuse in a liquid Li/Na/KCO3 electrolyte. MCFCs operate at 650°C thus they can use a wider 

range of fuels thanks to internal reforming. Furthermore they reach a higher efficiency by using of the 

waste heat and can deliver 2 MW of power. On the other hand, the high temperature imposes severe 

constraints on the choices of materials. Solid Oxide Fuel Cells (SOFCs) utilize a true solid electrolyte 
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made of ceramic (mostly yttria stabilized zirconia YSZ). As the diffusion of O2- ions in solids is 

slower, SOFCs operate only at high temperature (1000°C). A great scientific effort is ongoing to lower 

the temperature of SOFC to around 500°C [18]. Micro SOFCs (μSOFCs) can even operate at 400°C 

with hydrogen as fuel [19]. SOFCs operating at high temperatures can use either CO or H2 and internal 

reforming is feasible. The thermal strain is a great disadvantage for SOFCs and can even break stacks. 

The deposition of carbon on the nickel anode can also lower the efficiency of the SOFCs. 

 

 

1.3. Solid Oxide Fuel Cells 
 

1.3.1. Principle of work 

 

As schematically shown in Figure 4, a SOFC is composed of three active layers: a cathode, an 

electrolyte and an anode. This stack is often referred as PEN for “Positive electrode-Electrolyte-

Negative electrode”. The fuel can be hydrogen or carbon monoxide. The high temperature of operation 

also permits to reform hydrocarbon gas within the cell.  

The PEN is basically a membrane separating two different gas atmospheres, in the specific case two 

different oxygen partial pressures. At the cathode side exposed to air, electrons dissociate and reduce 

adsorbed oxygen, thus forming oxygen anions. These ions diffuse through the electrolyte and oxidize 

the fuel (hydrogen or carbon monoxide) at the anode side to form steam or carbon dioxide and 

electrons. The electrons are released at a negative, thus higher electronic potential, into the external 

circuit. This provides the electro-motoric force for driving an external user device. The continuous 

oxidation of the fuel maintains a very low oxygen partial pressure at the anode, and thus maintains the 

difference in electrochemical potential also during current flow. 

 

 
Figure 4: Schematic view and principle of operation of a SOFC  

 

The summary chemical reactions involved in a SOFC are the following: 
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- At the cathode, the formation of oxygen anion by reduction of the oxygen gas: 

 

 2
2

1 22O e O− −+ →  (1.1) 
 

- At the anode, the oxidation of the fuel: 

 

 2
2 2 2H O H O e− −+ → +  (1.2) 

 2
2 2CO O CO e− −+ → +  (1.3) 

 

The complete cell reactions are: 

 

 2 2 2
1

2O H H O+ →  (1.4) 

 2 2
1

2O CO CO+ →  (1.5) 
 

The Gibbs free energy change ΔG per mole of reactions (1.4) and (1.5) can be directly transformed 

into electric energy by the SOFC. 

 

 G zF EΔ = ⋅  (1.6) 
 
where F (96485 C) is the Faraday constant, E the cell voltage and z the number of charges involved in 

the reaction. 

 

The open circuit voltage (OCV) of a cell can be related to the constant of reaction K and thus to the 

oxygen pressure at the cathode pc(O2) and at the anode pa(O2). 

 

 2

2

( )ln
( )

c
OCV

a

p ORTE
nF p O

=   (1.7) 

where R is the gas constant. 

 

OCV is due to the oxygen pressure difference between the cathode and the anode, whereby 

thermodynamic equilibrium is assumed on the anode side. 

 

 

1.3.2.  SOFC components 

 

The SOFC is not only composed of the PEN but also of several other parts [8] as shown in Fig. 5. The 

purpose of the different cell’s parts and the interactions between them are described hereafter. 
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Figure 5: Summary of the different component of an SOFC power plant 

 

As the SOFC operates at high temperatures (500-1000°C) it should be thermally isolated from the 

environement. For security and efficiency reasons, it is important to minimize thermal losses into the 

environment. Very helpful are heat exchangers that heat up incoming gases by means of the hot 

oxidized gases leaving the SOFC. A large part of the output gas consists of hot steam. In very well 

designed generators, part of the output heat can even be converted into electrical energy. This 

phenomenon is called co-generation and can improve the efficiency of the cell by some percents. The 

fuel is stored in a tank at room temperature i.e. outside of the hot module. The air is provided directly 

from the atmosphere, and is thus cold too. If the needed hydrocarbon fuels are treated with hot steam 

in the reformer to form CO and H2 as:  

 

 4 2 23CH H O CO H+ → +  (1.8) 
 

the thermal energy of the hot steam is used to drive at least partially this endothermic reaction (-49 

kcal/mol) [20]. The maximal forming efficiency is obtained at 550°C. A further improvement of the 

overall energy efficiency is obtained when the exhaust heat is used for heating purposes, usually by 

heating water in a heat exchanger. This thermal energy output can be used to heat a building for 

example, and increases the efficiency of the SOFC up to 80%.  A further heat source is due to non-

reacted fuel gases. These are burned in a post combustor. This one must also be included into the 

energy recuperation scheme, and is especially suited to deliver the initial heat to ramp up temperature 

to the operation level. Finally, also a rather intelligent regulation circuit is necessary to adjust heat and 

fuel flow to the electrical power consumption by the external users. Since this adjustment is not very 

fast, buffer batteries are needed to store and deliver electrical energy on short terms. 
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1.3.3. SOFC designs 

 

The design of a single cell is closely related to the design of the whole stack. Because a single cell 

only delivers 1V, several cells are often connected in series to reach higher voltage [20]. The most 

common stacks have tubular, planar or single chamber designs [21]. 

Experimental SOFCs with tubular design were invented in the 1960s to facilitate gas sealing that was 

complicated by thermal expansion mismatch between the different parts of the cell. Figure 6 shows the 

tubular design was mainly developed and improved by Siemens-Westinghouse over the last 20 years 

[22]. The air flows in the center of the cell within the cathode pipe. The fuel flows in the same 

direction outside of the tube along the anode. The electrolyte is sandwiched between the inner cathode 

pipe and the outer anode pipe.  

 

 
Figure 6: Siemens-Westinghouse tubular design for SOFC 

 

At the end of the tubes, the remaining gases recombine to produce heat. The drawback is that the 

electrical current is collected along the tube at the anode and at the cathode. It increases the length of 

the conducting path and the ohmic resistance. Existing tubular cells have relatively low power density 

(100 to 200 mV/cm2 [21]), compared to other systems. 

Planar SOFCs are composed of plates with distinctive functions (anode, electrolyte, cathode and 

interconnect) that are piled up. The gas feeding system is included within the interconnectors. The 

whole stack can be supported either by the anode or by the electrolyte. Anode supported systems can 

reach a power density of almost 2 W/cm2, while electrolyte supported systems are limited by the high 

resistance of the 100-200 μm thick YSZ ceramic plate. Their surface is also limited to an area of 

10x10 cm2 [21]. One of the best known electrolyte supported planar SOFC is the Sulzer Hexis  system 

(Figure 7) that provides 1.1 kW at 950°C and composed of 70 cells stacked together [23]. 
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Figure 7: Sulzer-Hexis planar design for SOFC 

 

To thin the electrolyte and to support it by the anode is a good method to reduce the operating 

temperature of the cell. Some special alloys of chromium and ferrite can support corrosion at 850°C 

and can be used as interconnectors. Their good thermal conductivity reduces the temperature gradient 

across the stack and allows increasing its size. 

Another design option is single chamber SOFCs (SC-SOFCs) [24]. Both anode and cathode are placed 

in the same gas mixture of oxidant and reducing species. The electrodes can be deposited on the same 

side of the electrolyte with an interdigited pattern or on both side of it (Figure 8) and some SC-SOFCs 

are also anode supported. No complex gas flow structures are needed and the sealing is simplified. The 

reaction requires high selectivity of the electrode according to the different gases and this phenomena 

isn’t well understood for the moment. Hibino and co-wokers have been working on SC-SOFCs for 

more than ten years. In 2000, they reached a power density of 350 mW/cm2 at 700°C with 

La0.9Sr0.1Ga0.8Mg0.2O3 as electrolyte [25]. 

 

 
Figure 8: Single chamber SOFCs with interdigited electrodes on the same side of the electrolyte or with 

electrolyte sandwiched between anode and cathode. 
 

When both electrodes are mounted on the same side of the electrolyte substrate, SC-SOFCs have the 

advantage of being very robust since they are not freestanding. The critical length for this type of SC-

SOFCs is the gap between the anode and the cathode. It can be narrowed to 100 μm by use direct 

writing through micro-nozzles [26] and even to 10 μm by of screen printing [27] for a maximal power 

density of 17 mW/cm2. 
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1.4. Materials requirements for SOFCs 
 

1.4.1. The electrolyte 

 

Electrolytes should conduct oxygen ions and be insulating to electrons. Figure 9 summarizes the 

different choices for the electrolyte materials, by taking a typical value 0.15 Ω/cm2 [16] for the 

maximal area specific resistivity (ASR). 

 

 
Figure 9: Conductivity of different electrolyte materials with temperature from [16] and [20] 

 

When using weak ionic conductors and at low temperatures, electrolytes should be thinned down to 

keep the ASR below this critical value. Electrolytes that are thinner than 150 μm are subject to 

cracking if they are not supported [28], for example by a thick and porous anode [29]. Thicker 

electrolytes can be self-supported but often require higher temperature. 

Electrolytes should be dense and gas tight to prevent gas mixing across the PEN. They should be 

stable with temperature and chemically inert towards the anode and the cathode. Thin and columnar 

microstructures can be a problem if grain boundaries or pinholes are electronically conductive. 

Electrolytes are made of ionic conductor with a fluorite type structure, such as yttria stabilized zirconia 

(YSZ) or gadolinia doped ceria (CGO). In theses materials oxygen vacancies are created by the 

substitution in the lattice of ions of lower valency than the predominant cations. Here are shown the 

defects reactions of YSZ and CGO: 
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 2 '
2 3

1
2

ZrO
Zr O ZrY O Y V Zr⋅⋅⎯⎯⎯→ + +  (1.9) 
  

 2 '
2 3

1
2

CeO
Ce O CeGd O Gd V Ce⋅⋅⎯⎯⎯→ + +  (1.10) 

 
CGO shows a better ionic conduction than YSZ but is electronically conductive at low oxygen 

pressure [30]. Some other candidates for electrolytes are bismuth oxides [31] and lanthanum strontium 

gallium manganite [32]. 

 

 

1.4.2. The cathode 

 

The electrodes should conduct electrons and ions, be permeable to gases, favor the adsorption of 

oxygen atoms, be chemically stable to the electrolyte and be thermally compatible with it. Porous 

ceramics and cermets are good candidates for electrodes.  

At the cathode, the presence of oxygen restricts the use of metals even in the form of cermets. The 

triple phase boundary (TPB) is the line between the gas, the ionic conductor and the electronic 

conductor. At TPB, all the species required in the chemical reaction are available. It has been shown 

by finite element modeling, that the width of the TPB (or the zone where the reaction is possible) 

affects the ASR and thus the cell power [33]. 

With a pure electronic conductor as cathode, the reaction can only occur at TPB, because metals don’t 

conduct ions nor do electrolytes conduct electrons. In this case, porosity should be sufficient through 

the cathode to bring oxygen molecules in contact with the electrolyte. The quite low activity of metal 

cathodes and their low resistance to oxidation make them bad cathodes for high temperatures (800-

1000°C). But pure and noble metals like platinum [34], silver and gold [35] can exhibit higher ASR at 

low temperatures (below 600°C) than mixed conductors because these ones are limited by their ionic 

conductivity. Nevertheless most of the literature deals with ceramic, mixed conducting cathodes [36]. 

In this case, there are more possible reaction routes than in purely metallic electrodes [30] and the 

reduction of oxygen occurs not only at TPB (or the TPB can be considered as wider). For example, 

when the cathode is a mixture of an ionic conducting phase and of an electronic conducting one, 

oxygen molecules can be reduced at the boundary between the two phases, if the porosity is sufficient. 

In this case, the reaction also occurs at the frontier between the ion conducting phase and the 

electronic one, even if this zone is far from the electrolyte. If the cathode is a mixed conductor, the 

reaction can occur all over the grains, if they are in contact with air. Perovskite mixed conductors such 

as doped lanthanum oxides, [37] or as praseodymium barium cobalt oxides [38] are often used as 

cathodes. In all the cases, the effect of the microstructure and of the composition of the cathode is very 

important for the efficiency of the SOFC. 
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Figure 10: Reaction routes for reduction of oxygen in a pure electronic conductor (a), in a composite of a 

electronic and an ionic conductor (b) and in a single-phased mixed conductor 
 

For thin electrolytes (<100 μm), the electrolyte conductance deviates from the linear law 1/thickness 

and also becomes dependent on the electrode microstructure dimensions (grain size and space between 

them) [33]. 

 

 

1.4.3. The anode 

 

Like the cathode, the anode should conduct ions and electrons and be permeable to gas. Since the 

anode is exposed to the fuel, there is no risk of oxidation, thus the use of metals such as nickel [39], 

platinum [40] and ruthenium [41] or cermets is more common [41, 42]. Nickel and YSZ based cermets 

are still the most common anodes in SOFCs [42] but mixed conducting materials such as CGO are 

also studied [43]. Nevertheless, in case of PEN stack breaking, the anode can be exposed to oxygen at 

high temperatures and the resulting oxidation would be a killing factor for the whole cell. The TPB has 

the same role as on the cathode side, and the diffusion routes of the different species in ceramic-metal 

cermet are the same as for the cathode.  

The catalytic activity of the anode is very important, as the oxidation of hydrogen molecules begins 

with a chemisorption and dissociations at the surface of the anode [43]. 

The anode serves as mechanical support in most of the SOFC designs. In this case, the porosity should 

be sufficient in the anode because its thickness should be more over 100 μm. Most of the supporting 

anodes are made of NiO or YSZ cermets [29, 44], but the cell can also be supported by a metallic 

substrate, for example by a nickel porous plate [45]. 
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1.4.4. Polarization 

 

In steady-state conditions, SOFC voltage EOCV follows the laws of thermodynamics and is given by the 

Nernst equation (1.7). EOCV only depends on the difference of oxygen pressure between the cathode 

and the anode. Steady-state means that no electrical current is established in the load or even within 

the cell. Obviously thermodynamics can only describe a situation that is far away from the operating 

conditions of the SOFC. When a current is drawn out of the cell, or even if some small currents take 

place within the PEN, its behavior should be described by kinetic relations. 

Usually, the establishment of a current density i in or out of the cell implies a voltage drop in the PEN. 

This drop is called the polarization η and is the difference between EOCV and the voltage measured in 

series with the cell V. Therefore η is measured in Volts. 

 

 ( ) ( )OCVE V i iη= +  (1.11) 
 

The polarization η and the measured voltage V are functions of the current density i. If the gas 

conditions are stable, the voltage at OCV doesn’t depend on i and follows the Nernst equation.  

The polarization η may have several origins: 

 

1) Ohmic polarization ηohm 

2) Concentration polarization ηconc 

3) Activation polarization ηact 

 

The ohmic polarization is due to the transfer of ions or electrons in bulk materials (the electrodes or 

the electrolyte). ηohm simply follows Ohm’s law and is characterized by the lengths li and the 

resistivities ρi of the different materials. The index i can be replaced by a for the anode, c for the 

cathode and e for the electrolyte. With this formalism, ηohm is just the sum of all the PEN elements 

contributions and the resistance of the contact Rcont. 

 

 ( )ohm e e a a c c contl l l R iη ρ ρ ρ= + + +  (1.12) 
 

The concentration polarization ηconc is due to the mass balance at reaction points. For example, at the 

anode the oxidation of hydrogen (equ. (1.2)) involves several fluxes (in number of atoms of molecules 

per second and per surface): 

 

1) The flux of hydrogen gas |jH2| 

2) The flux of oxygen |jO2| 

3) The flux of exhausted water steam |jH2O| 
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4) The flux of electrons or current density i. 

 

In the case of the reaction (1.2), the balance of the fluxes implies:  

 

 
2 2 2

2
2

A
H H O O

iNj j j
F

= = =  (1.13) 

 

with Avogadro’s number NA (6.022 x 10-23 mol-1) and the Faraday constant F (9.649 x 104 C/mol) 

 

The activation polarization ηact is due to the activation energy needed for chemical reactions occurring 

during SOFCs operation. For example, the dissociation of an oxygen molecule adsorbed on a metallic 

cathode into an oxygen atom requires a given activation energy: 

 

 2,
1 ( ) ( )
2 ads adsO metal O metal→  (1.14) 

 

This can delay the process and therefore limit the rate of the reaction and the current of the cell. 

During SOFC operation, the chain of reactions involved in the process is not clear and may vary with 

materials and operating conditions [46-50]. If possible, the limiting step should be elucidated in order 

to understand the cell behavior better. 

In all the cases, polarization depends on many different parameters such as materials, microstructure, 

gas pressure, temperature and also on the current density. 

 

 

1.5. Batteries for portable applications 
 

For the sake of comparison with fuel cells, the existing portable batteries will be briefly described and 

discussed in this chapter. In figure 1, the performances such as specific energy and energy density are 

reported and compared to micro fuel cells. 

In contrary to fuel cells, the batteries are not relying on the availability of an external fuel. In other 

words, they do not stop in case of lack of fuel but when the reactants are transformed. As they are 

sealed, it is also impossible to replenish reactants. Nevertheless, most of the batteries can be recharged 

as fuel cells can be refuelled. The batteries rechargeable by an electrical current are called secondary 

batteries and batteries that are not chargeable are referred to as primary batteries. The applied voltage 

during charge reverses the cell reaction. This mechanism is time-dependent. In contrast, the fuel cells 

can be refuelled immediately just by filling their tank. Another disadvantage of secondary batteries 

compared to fuel cells is that they are subject to gassing if overcharged. The phenomena can lead to 
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explosion even if it is well controlled by battery manufacturers. Nevertheless, the market of portable 

electronics is still dominated by batteries (especially Li-ion) and micro fuel cells are still under 

development. 

Before the description of most of the existing types of portable batteries, we introduce important 

parameters for the description of batteries and fuel cells such as the energy density and the specific 

energy. 

 

 

1.5.1. Important parameters for the description of batteries and fuel cells 

 

As explained in chapter 1, the cell standard potential E° is proportional to the change of the system 

free energy ΔG occurring during the cell reaction (equation 1.1). The ΔG’s and E°’s of the different 

basic chemical reactions are listed in handbooks. They can be summed up to find the ΔG and E° of a 

more complex reaction. For example: 

 

 

2

2

2 2

2 ........ ( 0.76 )
2 2 .............1.36

________________________
, 2.12

Zn Zn e V
Cl Cl e V

Zn Cl ZnCl E V

+

−

→ + − −

→ −

+ → ° =

 (1.15) 

 

The theoretical coulombic capacity depends on the amount of active material in the cell. The electrical 

equivalence in Ah/g or g/Ah are listed in tables such as in Handbook of batteries [51]. By summing up 

the electrical equivalence of all the active elements involved in a reaction, it is possible to determine 

the theoretical capacity of a given battery. With the electrical equivalences of Zn (1.22 g/Ah) and of 

Cl2 (1.32g/Ah), the theoretical capacity of the previous cell reaction (1.15) can be calculated:  

 

 1.22g/Ah+1.32g/Ah= 2.54 g/Ah  (1.16) 

 

This theoretical capacity only takes the active anode and cathode materials into account. 

The theoretical energy of a battery can be calculated by multiplying the standard potential times the 

theoretical electrical capacity: 

 

  

 ( ) ( ) ( )Watthour Wh voltage V ampere hour Ah= × −  (1.17) 
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The specific energy (in Wh/g or Wh/kg) can be calculated by dividing the theoretical energy of a cell 

by its weight. The ratio of the energy divided by the cell volume is called energy density. The energy 

density has units of watthour per liter (Wh/L). 

It is important to notice that the specific energy and the energy density are theoretical values based 

only on the active materials involved in the cell. Actually the battery is also composed of non-active 

materials other than the electrolyte and the electrodes. These materials forming the current collectors, 

the separators or the packaging (sealing, container terminals) are not included into the calculation and 

their weight and volume reduce the theoretical energy density by almost 50%. Another deduction 

should be done because in most of the cases it is impossible to totally discharge a battery. Finally, the 

actual energy density of a battery is only about 25 to 35% of the theoretical value. Nevertheless, the 

theoretical value is a very good and simple tool for batteries comparison. 

 

 

1.5.2. Li-ion batteries 

 

Lithium ions batteries are the most widespread power sources in portable electronics. In 2006, 2.5 

billion Li-ions cells were sold in the world. They reach a high specific energy of approximately 150 

Wh/kg and an energy density of 400 Wh/L, which makes them very competitive for small and light 

applications. Lithium ions move from the anode to the cathode during the discharge and in the 

opposite way during the charge. The anode is made of carbon, the cathode is a metal oxide (e.g. 

CoO2), and the electrolyte is a lithium salt (e.g. LiPF6) in an organic solvent. The full reaction of a 

conventional Li-ion battery is [51]: 

 

 1 2 2
DISCHARGE

x x n nCHARGE
Li MO Li C LiMO C−

⎯⎯⎯⎯⎯→+ +←⎯⎯⎯⎯⎯  (1.18) 
 

Li-ion batteries are often referred to as rocking-chair batteries as lithium ions “rock” from on electrode 

to the other during charge and discharge. A Li-ion single cell can operate in the range of 2.5 to 4.2V, 

approximately three times more than NiCd or NiMH batteries. The polymer electrodes degrade when 

the cell is discharged below 2 V and need a protective circuit since they cannot avoid overcharging. 

 

 

1.5.3. Zinc-air batteries 

 

Zinc air batteries were first available as primary button type batteries and commercialized in the 

1930’s. These buttons have a very high specific energy of 442 Wh/kg and an energy density of 970 

Wh/L with a voltage of 0.9 V. They offer the highest available energy density for primary cells and 
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can be used in very small applications such as hearings aids. They are nevertheless limited by their 

power output and by their short active life [51]. The porous thin cathode should be permeable to 

oxygen as well as hydrophobic and is thus often coated by Teflon [52]. The cathode catalyses the 

formation of hydroxide ions by combination of oxygen and water. The anode is simply made of zinc 

and is oxidised into Zn2+ ions. The overall reaction of this kind of battery is given below: 

 

 2
1

2Zn O ZnO+ →  (1.19) 
 

Zinc air secondary batteries (i.e. capable of recharging) were developed later and the charge remains a 

problem because of the replating of zinc. The zinc-air secondary batteries provide electrical energy 

from the oxidation of zinc from oxygen in the air. Their overall reaction is the same as zinc air button 

cells (cf. equation (1.19)). This type of battery is already used in mobile phones and has a typical 

energy density of 1000 Wh/L and a specific energy of 400 Wh/kg [51]. Zinc-air batteries also exist in 

form of a fuel cell where zinc is replenished and zinc oxide waste is removed continuously [53]. 

 

 

1.5.4. Nickel cadmium batteries 

 

Portable sealed nickel cadmium batteries are designed to prevent gassing during overcharge and do not 

require any other services than recharging. This type of nickel cadmium battery is comparable to other 

portable power sources discussed in this chapter. The negative electrode is made of cadmium 

hydroxide (Cd(OH)2), the electrolyte of a solution of potassium hydroxide and the positive electrode 

of nickel oxyhydroxide (NiOOH). During the discharge, the cadmium electrode is oxidized 

( 22 ( ) 2Cd OH Cd OH e−+ → + ) and the nickel electrode is reduced 

( 2 22 ( ) 2 2 2 ( ) 2NiO OH H O e Ni OH OH −+ + → + ). The overall charge/discharge reaction is: 

 

 
22 22 ( ) 2 ( ) 2 ( )DISCHARGE

CHARGE
Cd NiO OH H O Cd OH Ni OH⎯⎯⎯⎯⎯→+ + +←⎯⎯⎯⎯⎯  (1.20) 

 

Nickel cadmium batteries can operate for 500 cycles and for 5 to 7 years in standby mode and reach a 

specific energy of 70 Wh/Kg. They have fast charging time and good performance stability with 

temperature. They are disadvantaged by poor charge retention, a lower capacity than other batteries 

and the cadmium toxicity that is an environmental concern. 
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1.5.5. Nickel-metal hydride batteries 

 

The nickel-metal hydride batteries (NIMH) are a new technology with the same characteristics as the 

nickel cadmium batteries. NIMH batteries are replacing nickel-cadmium cells because of their higher 

specific energy (100 Wh/Kg). NIMHs are interesting as low cost power sources for computers, mobile 

phones and other portable electronics. In NIMH, hydrogen is stored in a metal alloy that serves as 

active negative electrode. This alloy adsorbs and desorbs hydrogen ions as the battery charges and 

discharges. Rare earth AB5 compounds like LaNi5 and or AB2 alloys based on titanium or zirconium 

are the most common negative electrodes for NIMHs. The other electrode is made of nickel 

oxyhydroxide (NiOOH) and the electrolyte is an aqueous solution of potassium hydroxide (NaOH). 

During discharge, the NiOOH is reduced by water and an electron into nickel hydroxide Ni(OH)2 and 

hydroxide ions (OH-). The metal hydride (MH) is oxidized by OH- into metal alloy M with water and 

an electron. The complete NIMH cell discharge reaction is: 

 

 2( )MH NiOOH M Ni OH+ → +  (1.21) 
 

The charge reaction is the opposite one. When overcharged, the NIMHs positive electrode reaches full 

charge before the negative one and starts to produce oxygen gas. With an appropriate separator, the 

gas can diffuse to the negative electrode and it oxidizes the hydrogen to produce water. This 

mechanism naturally prevents an increase in pressure. Apart from their high capacity and their fast 

recharging capability, NIMHs batteries take advantage of a long cycle life. Nevertheless, this type of 

device is disadvantaged by its poor charge retention and the higher cost of the metal hydride 

electrodes. 

 

 

1.5.6. Zinc-carbon batteries 

 

Zinc-carbon batteries have been developed by a telegraphic engineer named Georges-Lionel 

Leclanché in 1866. The majority of primary batteries worldwide are of this type albeit their market is 

declining as they are replaced by zinc-alkaline systems or secondary batteries. Zinc carbon cells are 

cheap and show acceptable performances (110 Wh/kg and 250 Wh/L) for a great number of low 

consuming applications like flashlights and small portable radios. They use a zinc anode, a manganese 

dioxide cathode and an aqueous solution of ammonium chloride and/or zinc chloride. During the 

discharge, the zinc is oxidized and the manganese dioxide is reduced. The overall reaction of the cell 

is: 
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 2 2 32Zn MnO ZnO Mn O+ → ⋅  (1.22) 
 

Apart from well-known Leclanché cells, this category of batteries also involves zinc-chloride batteries. 

Zinc-chloride batteries use thin paper separators between the electrodes and thus dispose of a higher 

volume for active materials and can reach a higher capacity than Leclanché cells. Zinc-carbon 

batteries are characterized by a low cost per watt even if their power density is not so high. 

 

 

1.5.7. Lead acid batteries 

 

The lead acid battery has been a commercial success since Raymond Gaston Planté developed the first 

prototype in 1860. In 1999, lead batteries represent 40 to 45% of the sales values of all batteries in the 

world [51]. Most of these batteries are used in vehicles for which they provide energy for engine 

starting and car lighting. Lead acid batteries can also power telephone systems, power tools and 

emergency lighting systems. These batteries are the least expensive ones albeit they reach a low 

specific energy per weight of 50 Wh/kg. The lead acid batteries are also very versatile as they are 

available in various sizes and powers.  

The negative electrode is made of lead and the positive electrode is made of lead oxide (PbO2). As the 

cell discharges, both electrodes are converted to lead sulphate (PbSO4). During charge the process 

reverses. In contrast to other batteries, there is no ion transport in lead batteries as they only involve a 

dissolution-precipitation mechanism. The complete reaction of such a cell is: 

 

 2 2 4 4 22 2 2DISCHARGE

CHARGE
Pb PbO H SO PbSO H O⎯⎯⎯⎯⎯→+ + +←⎯⎯⎯⎯⎯  (1.23) 

 

When overcharged, the cell produces oxygen and hydrogen gases by water decomposition. In some 

designs, H2 production can lead to explosion risk. The lead acid batteries are disadvantaged by their 

relatively low cycle life (50-500 cycles) and their relatively low energy density albeit they show a cell 

voltage superior to 2 V. A long term storage in a discharged condition can lead to irreversible 

polarization of electrodes by sulfation. 

In the past years, lead-acid batteries have been designed for small portable applications. They are 

referred to as valve regulated lead-acid batteries (VRLA), are sealed and maintenance free. They work 

like the other lead-acid cells but are based on thin films with an electrolyte immobilized by absorption 

in a mat or in form of a gel. VRLA reach a maximal specific energy of 35 Wh/kg in cylindrical form. 
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1.5.8. Alkaline-manganese dioxide batteries 

 

The alkaline-manganese dioxide batteries are dominant in the portable battery market since their 

introduction in the 1960s. They are primary batteries meaning that they can not be recharged. 

Nevertheless, they take advantage of their low cost and low internal resistance to be used in many 

applications such as remote controls, radios, CD players, cameras and camcorders. Their most familiar 

designs are the cylindrical (AA size) and the button configuration. The alkaline battery can deliver 130 

Wh/kg with a voltage of 1.2 V (AA). The electrolyte is made of concentrated KOH which as a good 

ionic conductivity and prevents hydrogen gassing. The anode is made of metallic zinc powder with a 

high reactive surface and the cathode of manganese oxide (MnO2). The total cell reaction on 

continuous discharge is: 

 

 2 2 22 2 2 ( )MnO Zn H O MnOOH Zn OH+ + → +  (1.24) 
 

In this case, water management can be a problem as a lack of H2O can stop the reaction. For 

intermittent discharge the reactions changes to: 

 

 2 3 43 2 2MnO Zn Mn O ZnO+ → +  (1.25) 
 

Here the water management is no a problem anymore. Alkaline batteries are also disadvantaged by 

their low energy density compared to other small batteries. 

 

 

1.6. Micro fuel cells (μSOFCs) 
 

Micro-solid oxide fuel cells (μSOFCs) are small energy sources produced by means of 

microfabrication processes and thin film technology [33, 54]. The idea of a SOFC made of thin films 

has been presented by Barnett in 1990 [55]. In this paper, the author already pointed out the benefits of 

reducing the PEN thickness and therefore its ionic resistance. The low resistance permits to reduce the 

temperature of operation below 500°C and therefore the materials requirements and the costs [18]. The 

scaling down of a “bulk” technology to thin films implies new challenges and questions. Most of these 

points are related to the thermal stability of thin PEN membranes and to the behaviour of thin films 

having a different microstructure than sintered ceramics. The lower temperature also implies new 

materials choices because the ionic conductivity, the thermal expansion and the chemical degradation 

are different at 500°C. 
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1.6.1. From fuel cells to micro solid oxide fuel cells 

 

As F.T. Bacon wrote in 1969 [56], it seems “that electrochemical storage of energy is the most hopeful 

method for achieving a portable storage device”. In these early years, microsystems were not 

developed but fuel cells were already shipped in Apollo and Gemini space flights [13, 56]. The 

production of electricity within a space ship was not governed by the costs but by the efficiency (i.e. 

by the total weight of the shuttle). The transformation of hydrocarbon fuels into electrical energy by 

fuel cells is not limited by the Carnot cycle. Therefore, the fuel cells benefit from their higher 

efficiency compared to electrical generators based on the combustion of hydrocarbon fuels. On the 

other hand, their high temperature of operation and the corrosivity of chemicals involved in their 

operation processes (mainly for phosphoric acid fuel cells) imply higher material requirements and 

therefore higher costs. On earth, the good availability (until now) low cost oil resource and its cost 

always limited the development of fuel cells. Today, mainly because of the imminent lack of oil and 

environmental concerns, fuel cells are being developed as green power sources for vehicles [57] or as 

generators for buildings. These solid oxide fuel cells have very large dimensions and operate at around 

1000°C. 

The combination of MEMS (Micro Electrical and Mechanical Systems) and fuel cells technologies 

opens a new field of applications. Micro fuel cells having a volume of some cubic centimetres can be 

used for laptops, portable video games systems or mobile phones. At the moment, fuel cells operating 

near room temperature, such as polymer electrolyte membrane fuel cells or direct methanol fuel cells, 

are favoured. Here again, the relatively low material requirements of these type of cells helps them to 

be competitive on the market because they are relatively easy to produce. For example, PEMFCs and 

DMFCs use commercial polymer membranes (e.g. Nafion) that obviously limit their R&D expenses. 

But at temperatures of around 500°C, micro solid oxide fuel cells can use internal reforming of 

hydrocarbons [58] and transform their thermal losses into energy by co-generation [59]. Thus, SOFCs 

have better efficiency and can achieve higher energy density per weight of device (in Wh/kg). 

μSOFCs can also take advantage of the high energy capacity of the hydrogen gas. Thus, μSOFCs can 

dispose of smaller fuel tanks and can reach a better specific energy (in Wh/L of device). μSOFCs are 

very good candidates to replace Li-ion batteries in portable applications [54, 60]. Apart from the Li-

ion rechargeable batteries, zinc-air primary cells are the biggest competitor for μSOFCs because of 

their high energy density. At the moment Zn-air cells are not rechargeable but developments are 

ongoing [53]. In the future Zn-air batteries could be a very competitive power sources that might delay 

considerably the introduction of μSOFCs. 
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1.6.2. Existing micro fuel cells 

 

The importance of micro fuel cells has improved with the demand of small power sources for 

increasingly consuming portable electronics. The most important developments have been realized in 

the field of micro polymer electrolyte membrane fuel cells (μPEMFCs) and micro direct methanol fuel 

cells (μDMFCs) [61]. They both have the advantage of operating at low temperatures (below 100°C) 

and having a polymer membrane as electrolyte. μSOFCs are hotter (400°C-600°C) but their specific 

energy and energy density are far better (Figure 14). Thus, unless their development is more difficult, 

they will probably be very interesting portable power sources in a near future. 

The power and the autonomy of a micro fuel cell mostly depend on the energy density of its fuel. For 

the comparison, the energy densities (in Wh/kg of fuel) of all the fuels that will be discussed in this 

chapter are reported in the next table: 

 

Table 1: Energy densities of several fuels used in micro fuel cells compared with nuclear material from 
[61] and [62]. 

Fuel Density Energy density Cell type 

Sodium borohydride (NaBH4) 1.07 kg/l 3600 Wh/kg μPEMFC 

Formic acid (CHOOH) 1.22 kg/l 1532 Wh/kg μDFAC 

Methanol (CH3OH) 0.79 kg/l 5500 Wh/kg μDMFC 

Most liquid hydrocarbons  ~0.6-0.8 kg/l ~12400 Wh/kg μSOFC and μPEMFC 

with reformer 

Hydrogen gas  33200 Wh/kg μSOFC, μPEMFC 

Nuclear material  2800000 Wh/kg Nuclear power plant 

 

 

1.6.2.1. Micro polymer electrolyte membrane fuel cells 

 

Micro polymer electrolyte membrane fuel cells (μPEMFCs) with or without an on-board hydrocarbon 

reformer have been developed. μPEMFCs without a reformer are simpler and have a higher efficiency 

because the reformer requires significant energy from the device and therefore lowers its total 

efficiency [63]. Without a reformer, the only possible fuel is pure hydrogen and its storage becomes 

the main problem. The availability of a material with a high efficiency of hydrogen storage is a very 

critical point for this type of devices. With a reformer, μPEMFCs are fuelled by hydrocarbons (e.g. 

methanol) or by sodium boro hydride. 
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With the advantage of their low operation temperature of, μPEMFCs can be fabricated on polymer 

substrates such as PDMS, PMMA or SU8. These substrates are easy to structure by means of hot 

embossing or molding, photolithography or laser ablation and are therefore very convenient for micro-

channel fabrication [64]. μPEMFCs can also be fabricated on silicon or glass wafers. The electrolytes 

are made of commercial polymer membranes such as Nafion. 

The best performances for μPEMFCs have been obtained by the group of Yu with a cell of 5 cm2 [65] 

(Figure 11.a) and with twin cells of 3 cm2 area [66] mounted on silicon, with respectively 194 

mW/cm2 and 190 W/cm2. These high values have been obtained at room temperature and with pure 

oxygen in place of air. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

Figure 11: a) SEM cross section of a μPEMFCs fabricated by Yu [65], b) array of 4 μPEMFCs fabricated 
on a silicon wafer by Lee [67], c) PDMS based μPEMFCs by Shah [68], d) PMMA based μPEMFCs by 

Hsieh [69]. 
 

The group of Prinz has developed 2 and 4 μPEMFCs arrays with flip-flop interconnection on glass and 

silicon substrates (Figure 11.b). They show a maximal power density of 42 mW/cm2 with a cell 

surface of 5 cm2 [70]. Shah et al. presented cells mounted on PDMS (Figure 11.c) and showing a 

maximal power density of 35 mW/cm2, when they are heated to 60°C [68]. Hsieh et al. used laser 
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ablation to create gas channels in PMMA substrates (Figure 11.d) to realize cells that reach a power 

density of 31 mW/cm2 at room temperature [69]. 

 

 

1.6.2.2. Micro direct methanol fuel cells 

 

Micro direct methanol fuel cells (μDMFCs) directly convert methanol (CH3OH) and oxygen into 

electricity producing carbon dioxide and water. They are advantaged by their lightweight, smallness, 

easy refilling and long duration [61]. Most of these cells have an electrolyte made of a commercial 

polymer membrane such as Nafion [71] or PVDF [21]. The anode catalyst and the water management 

are two majors concerns. The catalyst promotes the dissociation of the methanol into protons directly 

onto the polymer electrolyte. Metals such as palladium, platinum and ruthenium can be used for this 

purpose [71, 72]. The water management consists of keeping the ratio of water molecules lost to the 

air per molecule of methanol consumed in the reaction constant. The long term stability of the cell is 

fully dependent on this ratio that should remain equal to 2 [73]. It’s estimated that 7 to 12 years are 

needed for μDMFCs to compete with lithium-ion batteries in term of size, cost and overall 

performances [74]. 

Toshiba and Hitachi have already presented in 2005 prototypes powering MP3 players [11] and a lot 

of other international companies are active in the field [61]. PolyFuel claims record for the maximal 

power density achieved by a μDMFCs with 200 mW at 70°C [75]. Their cell is based on a very thin 

(20 μm) hydrocarbon membrane used as electrolyte. MEMS based μDMFCs including a silicon 

membrane micro pump have been fabricated by Yao [76]. Blum et al. presented a μDMFC with plastic 

housing that show a stable operation for 900h and a peak power density of 12.5 mW/cm2 [73]. 

 

 
a) 

 
b) 

Figure 12: a) Toshiba prototype of μDMFC, b) 8 cells air breathing μDMFC stack [77]. 
 

 

1.6.2.3. Micro direct formic acid fuel cells 
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Micro direct formic acid fuel cells (μDFAFCs) convert formic acid (CHOOH) and oxygen into carbon 

dioxide and water to produce energy. The formic acid does not have many of the limitations of 

methanol and hydrogen. CHOOH is non-flammable at room temperature and relatively benign 

chemically as it can even be present in food. The major disadvantage of the formic acid is its relatively 

small volumetric energy of 1870 Wh/L.  

A stack of 15 micro DFACs provides enough energy for the operation of a laptop computer [62]. This 

stack delivers 30 W at 60 mW/cm2 and can feed a computer for 2.5 hours using a 280 ml tank of fuel. 

Chu et al. present μDFACs to be used as on-chip power sources [78]. This system is based on porous 

silicon membranes directly wet etched into Si wafers. These devices reach a power density of 30 

mW/cm2. The maximum power density for μDFACs was reached by Kundu et al. with a value of 110 

mW/cm2 at 30°C with a Nafion 112 membrane [79]. 

 

 
Figure 13: μDFAFCs stack providing 30 W within a volume of 88 mm x 70 mm x 50 mm [62]. 

 

 

1.6.2.4. Micro solid oxide fuel cells 

 

Micro solid oxide fuel cells (μSOFCs) take advantage of the high energy density of the hydrogen gas 

of 33200 Wh/kg compared to 5500 Wh/kg for methanol [61]. Some studies show that the μSOFCs 

could ultimately deliver an energy density three times bigger than the long-term goal for lithium-ion 

batteries [80]. The thermal management is a critical technological point for μSOFCs. Even though the 

temperature is reduced from 1000°C to 500°C with their miniaturization, the thermal insulation is still 

a major problem for μSOFCs [80]. At this temperature, it is still possible to reform hydrocarbon 

directly within the cell and to use the cogeneration, thus the main advantages of the high temperature 

remain. Finally, the temperature directly influences the design of the μSOFCs and especially the PEN 

membrane (see paragraph 2.2). At the moment, only a few demonstrators have been fabricated 

according to the literature and no long-time stability tests have been reported. For the large SOFCs 

power plants, the carbon poisoning, the interconnect stability and the formation of second phases 
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between the electrodes and the electrolyte are of major concern. All these effects depend on the 

temperature and should be reduced or even eliminated within μSOFCs. Figure 14 shows a comparison 

in term of specific energy in Wh/L and energy density in Wh/kg of different primary and secondary 

batteries with micro fuel cells. At the top right of the graph, the fuels cells are lighter and smaller than 

other devices. μSOFCs have the best potential because of their higher efficiency than the direct 

methanol fuel cells and polymer electrolyte membrane fuel cells. 

 

 
Figure 14: Specific energy (per mass of device) and energy density (per volume of device) of several 

portable energy sources from [81]. * indicates estimated values as these devices are not fully developed 
yet.  

 

 

1.7. Aim of this work 
 

The aim of this work is to study materials and fabrication issues for micro solid oxide fuel cells 

working in the range of 400°C to 550°C based on silicon MEMS technology and of millimeter to 

centimeter dimension. At the beginning, this temperature range was chosen rather for stability reasons 

than based on actual knowledge of required gas forming temperatures. With the evolvement of this 

work, however, it has been shown by the ETH thermodynamics laboratory that 530 °C would be 

sufficiently high to reform butane with high efficiency. Silicon was chosen as substrate because it is 
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conveniently patterned by dry etching techniques, and because it is - apart of a thin oxide scale 

formation - a stable material at the mentioned temperature range. It was also decided to concentrate on 

membrane structures with defined gas separation, because such structures should be more efficient and 

safer in operation than single chamber fuel cells. This implies, however, the solution to a heavy 

technical problem: the weak mechanical stability of thin membranes made of brittle ceramic films. 

Hence, as further goal, the study of means to reinforce such brittle membrane structures was included 

into the work program. More specifically, it was attempted to create a metal-ceramic composite 

membrane combining the functional properties of the electrolyte ceramics with the toughness of a 

nickel grid structure.  

 

 

1.8. Outline 
 

Apart from this first introducing chapter dedicated to fuel cells in general and to the working principle, 

the materials and the design of SOFCs, the thesis has been structured as follow: 

 

Chapter 2 covers the state of the art for the fabrication of μSOFCs with dimensions in the millimeter 

range. The existing designs of μSOFCs and their properties are discussed and then the deposition 

methods for thin films are reviewed. 

 

Chapter 3 presents the study of YSZ, CGO, LSCO and porous platinum thin films deposited by 

reactive magnetron sputtering. Structural and compositional analysis, ionic and electronic conduction, 

and thermal stress, are the major issues. 

 

Chapter 4 discusses the microfabrication of μSOFCs and the problems related to the miniaturization of 

such devices. Electrical characterization of the fabricated cells and lifetime tests are also presented. 

 

Chapter 5 gives an overall discussion, conclusions and reviews potential improvements for the future. 
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2.1. Micro solid oxide fuel cells 
 

2.1.1. Actual performances of existing demonstrators 

 

Prior to the start of this work in 2003, only a few reports were available on μSOFCs. In 1990, S.A. 

Barnett described for the first time a SOFC fabricated with thin films [1]. He demonstrated that such a 

device can operate at temperature below 750°C and deliver a power of approximately 500 mW/cm2 

with a YSZ electrolyte of thickness comprised between 0.5 to 10 μm. He already pointed out the 

difficulty to deposit dense and crack free thin films on porous substrates and proposed to etch them 

subsequently. In 2002, Jankowski et al. presented the first μSOFC demonstrator. They have processed 

a silicon based μSOFC by mean of photolithography and silicon wet etching [2]. This cell reached a 

power density of 145 mW/cm2 with hydrogen fuel at 600°C, and contained a 1.2 μm thick YSZ 

electrolyte made by sputtering. The anode was made of a 0.5 μm thick nickel layer and the anode is 

made of 0.8 μm thick silver layer. The PEN membrane was supported by a patterned silicon nitride 

layer. The cell dimensions were 2 x 2 mm2 and the openings in the silicon nitride layer were squares of 

5 x 5 μm2. The grid covered 75% of the total cell surface and as the nitride is not active in any manner 

for the cell operations the total output power per device was relatively small. But this work, showed 

that μSOFCs can be implemented on a silicon substrate and that microfabrication method can be used 

to render a dense substrate porous and still reaching a reasonable power density. 

More recently, the best results for μSOFCs were obtained by Huang et al. with a power density of 400 

mW/cm2 at 400°C [3] in 2007. This power density was measured on a 50 x 50 μm2 cell. The 

electrolyte is a very thin YSZ membrane (50 nm) deposited by RF sputtering. The cell areas are 

comprised between 50 x 50 μm2 and 240 x 240 μm2. The energy per device is only 0.2 mW but arrays 

of cells can be put in parallel. The electrodes were made of porous platinum deposited by DC 

sputtering. I-V curves were measured on a heater with micro probes on the anode side in the air. This 

technique allows testing the 832 cells on the silicon wafer in a very short time. Cells mounted on a 

photostructurable glass (Foturan) have been developed by the group of Gauckler [4] also in 2007. 

These μSOFCs have maximal power density of 150 mW/cm2 at 550°C, with a YSZ bilayer electrolyte 

composed of a 550 nm thick pulsed laser deposited film and of a 200 nm thick spray pyrolised one. 

The anode is made of sputtered platinum and the cathode of platinum paste (20 μm thick). Before 

2007, a single chamber μSOFCs (SC-μSOFC) stack designed by Shao et al. reached a power density 

of 250 mW/cm2 and a power output of 350 mW for a total cathode area of 1.42 cm2. The single 

chamber design insures the mechanical stability of the PEN and therefore the system is very robust. 

This construction avoids most of the processing problems due to the membrane fabrication, but the 
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selectivity of electrodes to gases can be a critical issue. In that work, the catalytic oxidation reaction 

supplies sufficient thermal energy to maintain the system at 500°C-600°C during 200 hours. The cell 

is supported by a 0.7 mm thick anode made of nickel and of samaria doped ceria (SDC) supporting a 

SDC electrolyte and a composite cathode made of Ba0.5Sr0.5Co0.8Fe0.2O3-x (BSCF) and SDC. 

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 1: a) μSOFC supported by a silicon nitride grid [2], b) Free standing μSOFC Huang [3], c) 3 
μSOFCs mounted on a Foturan substrate [4] and d) schematic view of a single chamber μSOFC [5]. 

 

 

2.1.2. Comparison with the performances of other type of micro fuel cells  

 

For an easier comparison, the characteristics of the micro solid oxide fuel cells presented in this 

chapter are compared with other type of micro fuel cells, in the next table: 
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Table 1: Summary of the characteristics of the micro fuel cells presented in this chapter 
 

Type of cell Temp. Fuel Electrolyte Single cell size Substrate Power 

density 

Ref. 

μPEMFC 25°C H2  5 cm2 Si 190 mW/cm2 [6, 7]  

μPEMFC 25°C H2  5 cm2 Si/glass 42 mW/cm2 [8] 

μPEMFC 60°C H2  1.4x1.2 cm2 PDMS 35 mW/cm2 [9] 

μPEMFC 25°C H2 Nafion 5 cm2 PMMA 31 mW/cm2 [10] 

μDMFC 70°C C2H6 Fluorocarbon 

20 nm thick 

  200 mW/cm2 [11] 

μDMFC  C2H6  1 cm2 Si 25 mW/cm2 [12] 

μDMFC  C2H6 PVDF 6 cm2 Plastic 12 mW/cm2 [13] 

μSOFC 400°C H2/H2O YSZ sputt. 50x50 μm2 Si 400 mW/cm2 [3] 

SC-μSOFC ~550°C C3H8 SDC 1.42 cm2 Anode 

Ni-SDC 

250 mW/cm2 [5] 

μSOFC 600°C H2 YSZ 5x5μm2 Si/Si3N4 145 mW/cm2 [2] 

μSOFC 550°C H2 YSZ bilayer. 

PLD/Spray 

150μm diam. Foturan 150 mW/cm2 [4] 

μDFAC 

stack 

25°C Formic 

acid 

Nafion  Si 60 mW/cm2 

Stack 30W 

[14] 

μDFAC 30°C Formic 

acid 

Nanoporous 

Si 

100μm diam. Si 30 mW/cm2 [15] 

μDFAC 60°C Formic 

acid 

Nafion 5 cm2  110 mW/cm2 [16] 

 

As seen in table 2, μSOFCs have the highest energy density but demonstrators are less developed than 

for direct methanol fuel cells. Furthermore, no stack of μSOFCs has been developed up to now and 

their dimensions are limited to the micrometer range. 

 

 

2.1.3. Summary of the actual performances of μSOFCs 

 

Up to now, the micro solid oxide fuel cells are limited in size (<0.01 mm2). This is mainly due to the 

electrolyte membrane that is a brittle and thin (< 1μm) ceramic film and to their high temperature of 

operation (400-550°C) in comparison with other types of micro fuel cells. With their small size, the 
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total output per device of μSOFC is very limited, even if their power density is already of some 

hundreds of mW/cm2. The technologies used in the processing of μSOFCs allow for fabrication of cell 

arrays but there are no reports on this topic in the literature as far as we know. The reason is probably 

the difficulty to obtain a reproducible process at this stage of development of μSOFCs. Thus, the 

fabrication of larger cell or array of cells will only occur when the technical problems for small single 

cell have been solved. As shown in Figure 2, μSOFCs already reach higher power density than other 

types of cells but are limited by their size. PEMs and DMFCs operate below 70°C and have polymer 

electrolytes. Thus, they are more ductile than ceramic electrolytes and less subject to the thermal 

stress.  

 
Figure 2: Comparison of μSOFC with other type of micro fuel cells in terms of cell size and power density. 

References: PEMs [6, 8-10], DMFCs [12, 13], DFACs [15, 16], SC-SOFC[5], SOFCs [2-4]. 
 

As far as we know, only one demonstrator of a μDMFC cell has been fabricated for the moment by 

Toshiba [17]. In comparison and for the reasons exposed before, the μSOFCs will not reach the 

market within the next 10 to 15 years. One of the previous works shows a cell membrane supported by 

a stiffener [2] to reduce mechanical and thermal stresses. These cells have a large aperture of 4 mm2 

but only 25% of the surface is effectively producing energy as the silicon nitride used as support is not 

part of the PEN. Another work shows a cell supported by a porous metallic anode [18]. In this case, 

the support is an active part of the system and the proportion of active surface is increased. 

Nevertheless, it is difficult to grow thin and dense electrolyte film on this type of support. In addition, 

the resistance of the PEN becomes dependent of the electrode microstructure, when its thickness is in 

the range of the porous electrodes particle size [19]. In conclusion, up to now the literature only 

reports on μSOFCs prototypes and no long-term study or complete systems have been made.  
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2.2. The design of micro SOFCs 
 

μSOFCs are subject to severe constraints due to their smallness and their thin PEN membrane. The use 

of new fabrication methods, with lower processing temperatures such as sputtering, reduces the costs 

[1]. Furthermore, thin films of rare earth compounds are less expensive than thicker ones. Although 

μSOFCs have the advantage of low temperatures (400°C-600°C) [20-22], the thermal stress is still a 

major problem for the membrane stability. The reduction of temperature also requires the thinning 

down of the electrolyte to keep the area specific resistance (ASR) below the critical value of 0.2 

Ω/cm2. Single chamber μSOFCs [23] could be a solution for thermal stresses. In this design, the whole 

cell is supported by a thick electrolyte and the ion flux is parallel to this substrate. For better cell 

efficiency, it is worth to use interdigited electrodes with the smallest gap between them [19], but the 

photolithography resolution  is limited (to ~1 μm) and thus diffusion length is larger with this type of 

electrode. Futhermore selectivity of the electrodes to gases will still limit the efficiency of such cells 

and even more when electrodes are very close to each other. In the rest of this paragraph, we will 

concentrate on two chambers μSOFCs. 

Apart from thermo-mechanical stress, residual stress due to processing also plays a role. Most of the 

deposition methods presented in the next paragraph involve high temperatures steps to crystallize the 

films. After cooling down from the sputtering temperature, ceramic thin films usually show tensile 

stress as they have a bigger thermal expansion coefficient than the silicon wafer. This contribution to 

the stress can be reduced by using other types of substrates. It is still important to consider that most of 

the microfabrication process tools have been developed for Si. 

Heat losses are very important in μSOFCs as the ratio of surface over volume is very high. Heat losses 

are mainly due to radiation, convection in the gases and conduction to the substrate or to the other 

parts of the cell. 

Finally, the interconnection of the fuel cell elements and the gas channels into the stack remain a 

problem [24], even if the reduced operation temperatures of μSOFC are of a great advantage. The 

microfabrication methods can also simplify the stack fabrication. 

 

 

2.2.1. Thermal stress 

 

Since μSOFCs operate at temperatures between 400°C and 600°C, the thermal expansion coefficient 

mismatch between the substrate and the PEN is a major issue. The thermal Sth stress in the electrolyte 

membrane can be written as the product of the thermal mismatch αfilm-αsubstrate, the temperature 



 41

variation Tfinal-Tinitial during heating, the biaxial Young modulus Yfilm/1-νfilm where νfilm  is the Poisson’s 

coefficient of electrolyte film: 
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The choice of a substrate with a thermal expansion coefficient close to the one of the electrolyte is the 

simplest way to reduce the thermal stresses. 

During the ramping up of the cell from the ambient temperature to the temperature of operation, the 

thermal mismatch between the supporting wafer and the membrane itself can create buckling or even 

cracks in the membrane. Tang et al. [25] give the maximal temperature ramp ΔTcrit sustainable by a 

free standing membrane in function of its radius Rmem and its thickness hmem: 
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From this relation, it is possible to calculate the maximal membrane radius in function of its thickness 

(see figure 1). For a 1μm thick YSZ membrane operating at 500°C and supported by a silicon wafer, 

the maximal radius 500°C is only 25 μm. 

 

 
Figure 3: Maximal membrane radius for a YSZ membrane supported by a silicon wafer with the 

temperature ramp [25]. 
 

Because of thermal stress, μSOFCs self supporting electrolytes either YSZ of CGO membranes are 

limited to a sub millimeter size [26]. Since the electrolyte should remain thin to reduce the cell 
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resistance, large self-supported membranes are almost impossible to fabricate. Interestingly the YSZ 

membrane of Prinz giving the spectacular results of 400 mW/cm2 [3], should buckle very much since 

the critical temperature ramp (equation (2.2)) is calculated as less than 1 K with a thickness of 50 nm 

and an aperture of 50 μm. So we can consider as open question whether a membrane thickness far less 

than the critical one could also be considered as a viable approach. 

The mechanical and thermal stability of MEMS thin membranes has already been solved using 

corrugated design [27, 28]. The use of corrugation steps, as schematically shown on figure 2, helps to 

improve the critical stress of failure of the membrane without reducing its radius or its thickness [25]. 

The gain of resistance increases with the ratio of the step height Hstep over the membrane thickness 

hmem. 

 

 
Figure 4: Schematic view of a corrugated membrane of thickness hmem and with a step of corrugation Hstep. 

 

Nevertheless, such a design requires more complicated microfabrication process flows and, for 

μSOFCs, flat surfaces are more advantageous. The corrugation steps increase the diffusion path in 

some areas and electrolyte films deposited onto steps are much prone to form cracks. For better 

convenience, the membrane can be supported by a mechanical support. This part can by made of 

stiffeners [29] or of a porous substrate. In the second case, the porosity is obtained by using special 

substrates [30] or by subsequent etching of a metallic plate [31]. Furthermore special techniques are 

required to grow a dense thin film electrolyte on a porous substrate [32-34]. Finally the conducting 

properties of the support also affect the power density of the device and thus ionic or electronically 

conductors supports are more favorable than insulating materials such as silicon nitride [2]. 

 

 

2.2.2. Process induced stresses 

 

Stresses are usually present in thin films even if they are not externally loaded. This is due to 

deposition conditions. These stresses directly affect different phenomena such as the adhesion, the 

defect concentration and even the film roughness. Residual stresses can also affect the functionality of 

microfabricated devices. For example, the resonant frequency of vibrating devices such as transducers 

[35] depends on their stress state and a gradient of stress can bend cantilevers [36]. 
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The origin of this stress is usually divided into two parts: the thermal stress and the intrinsic stress. 

The thermal stress occurs when the deposition is held at high temperatures. It is due to the thermal 

expansion coefficients mismatch between the growing film and the substrate. During the cooling, the 

film expansion or shrinkage is limited by the substrate and it leads to a residual stress in the film as 

shown in Figure 5. This stress is also described by the equation (2.1) but the temperature of operation 

should be replaced by the temperature of deposition and the sign of ΔT is negative as the film is cooled 

and not heated. 

 

 
Figure 5: Stress due to cooling of the film after its deposition at high temperature onto a substrate with a 

different thermal expansion coefficient. A film with a higher expansion coefficient than the substrate 
becomes compressive (a). A film with a lower expansion coefficient than the substrate becomes tensile (b). 
 

Apart from the thermal stresses, the deposition process can also induce intrinsic stress in the film. The 

intrinsic stress is due to several phenomena and is less well understood than the thermal stress. The 

intrinsic stress is defined as the total stress minus the thermal contribution [37]. The intrinsic stress 

contribution depends on the temperature of the process, the type of process and the materials it self. 

The thermal activation helps reducing the intrinsic stress by atomic rearrangements and it is 

considered that the intrinsic contribution diminishes with the increasing process temperature, thus 

when the thermal stress increases [37]. During sputtering, the bombardment forces some ions into the 

interstitial sites of the lattice. The lattice is thus denser and the clamping to the substrate creates a 

compressive stress [38]. 

In ion conducting oxides, strain and elastic modulus are related to the density of oxygen vacancies in 

the film [39, 40] and thus to the ionic conductivity [41]. The defect density doesn’t affect directly the 

stress, but some material properties strongly related to it, like the elastic modulus or the thermal 

expansion coefficient of YSZ [42]. In CGO thin films, fast and slow elastic modulii have been 

reported [43]. In this case, the intrinsic chemical stress is reduced by atomic rearrangements that are 

time dependent [44]. As the concentration of defects is related the environemental conditions, the 

chemical stress can also develop when changing the outside temperature or the oxygen pressure. 
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A thermal annealing reduces the intrinsic stress in the film after its deposition [45]. The temperature 

and the time are the most important parameters for annealing. The temperature allows atom motion by 

increasing the amplitude of the thermal vibrations in the crystal. The probability of moving an atom to 

another site increases with time. 

 

2.2.3. Heat losses 

 

The heat losses can be very important in μSOFCs as the PEN membrane is very thin and should cover 

the largest possible area. There are three ways of heat losses in μSOFCs: air convection, structure 

thermal conduction and radiation [25]. 

The convection losses are due to heat transfer from the PEN to the surroundings atmosphere. For a 

circular membrane of radius Rmem, the heat losses by laminar air flow convection Qa may be expressed 

as: 

 5/ 4 7 / 41.27a memQ T R= Δ  (2.3) 
 

The properties of the fluid are used to obtain equation (2.3) are given in [46]. Convection losses 

almost change linearly with the thin film area (Rmem
2) and the temperature difference ΔT with the 

surroundings. 

The conduction losses Qh are due to the difference of temperature between the centre of the membrane 

T0 and its border Tb, with T0 >Tb. This difference is due to the cooling of the support substrate. The 

whole losses by thermal conduction for a circular membrane of thickness hmem and thermal 

conductivity kmem is given by [47]: 

 0( )h mem b memQ k T T hπ= −  (2.4) 
 

The conduction losses are linearly dependant of the film thickness, as heat is conducted through it to 

the support. 

It is assumed that there is a radial distribution of the temperature over the circular surface of the 

membrane of radius Rmem. T0 is the temperature in the centre of the membrane and Tb at its border. 

According to the Stephan-Boltzmann law, heat losses Qe can be expressed as function of the 

emissivity of the membrane εmem (0.4 for zirconia [48]) and Boltzmann constant (σB=5.67x10-8 

W/m2K4): 
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The radiation losses are proportional to the surface of the membrane. 

The figure 9 summarizes these different effects with the size of the membrane. For membranes with a 

small radius, conduction losses are the most important but they are reduced as the size of the 
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membrane increases. It is due to the fact that the heat is released at the perimeter of the membrane. 

The convection and the radiation losses increase with the membrane radius because heat is exchanged 

at the surface of the membrane. In cell normal operation conditions, the conduction losses into the 

gases (the air the fuel) are more important than the radiation losses. The conduction losses can be 

reduced by pre-heating the gases before they reach the membrane and for smaller fluxes. The heat loss 

by natural convection through the ambient air can be reduced by suitable packaging, such as vacuum 

packaging. 

 

 
Figure 6: Heat losses versus film radius for a circular membrane with a difference of 350 °C between its 

centre and its border [47]. 
 

 

2.3. Approach of this work 
 

It is sought to achieve large and thin ceramic membranes by adding a metallic supporting structure. 

Ideally, the metal should have the same expansion coefficient as the ceramic membrane. Nickel with 

10 ppm/K differs only by 1 ppm/K from YSZ and appears to be a good choice, also to assume part of 

the electrode structure on the anode side. Such a  nickel grid would solve the buckling problem at least 

in the interior of the membrane where the thermal expansion of the nickel grid is dominating the 

mechanical behaviour. According to equation (2.2) much higher critical temperatures are obtained. For 

example, if the electrolyte is 700 nm thick, a nickel grid with apertures of 30 μm allows for maximal 

temperature differences of 520 °C before buckling of the ceramic layer. It is planned to focus the stress 

due to mismatch with silicon into the nickel structure.  

All the PEN elements are deposited by sputtering which is good for research as well as for upscaling 

to industrial fabrication. The sputtering method also permits the deposition of different type of 

microstructures, for example a porous composite anode and a dense electrolyte.  
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We also will test the conductivity of the electrolyte and electrode thin films as a function of 

temperature and in different gas atmospheres to find out if the sputtered films can be applied to a 

SOFC system. We also will assess the thermal stress in the membrane to improve designs.  

Finally, we will test the fabricated cells in operation conditions by impedance spectroscopy, open 

circuit voltage and I-V measurements. We will also concentrate on the lifetime properties of the cell 

and especially on the thermal oxidation of the nickel grid. 
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3.1. Thin film deposition and characterization 
 

All the thin films discussed in this chapter have been deposited by reactive magnetron sputtering. The 

first paragraph of this chapter will describe the specific tool used to sputter the films. Then, the used 

deposition processes will be explained. Finally, the characterization results of these films will be 

reported and their properties discussed. 

 

 

3.1.1. Thin film sputtering 

 

During sputtering, a target of a given material is bombarded with positive ions emitted by a noble gas 

(argon) discharge between an anode and the target mounted on the cathode. The discharge is obtained 

by applying a high electrical field between the anode and the cathode, while the substrate and the 

chamber are usually close to the anode potential, the latter being usually grounded. The deposition of 

metals works well by using a DC source for powering the cathode. In the case of a dielectric target, the 

use of a radio frequency (RF) source is required. Higher sputtering efficiency and deposition rates are 

obtained with magnetron sources. They possess a magnetic field to confine the secondary electrons 

ejected from the target, thus increasing collision probability with neutral atoms and so increase plasma 

density. Important parameters for sputtering are: the applied voltage (400-1000 V), the temperature of 

the substrate, the distance target-substrate, the sputter gas pressure and eventually the applied 

electrical bias on the substrate. 
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Figure 1: Schematic representation of a typical sputtering system. The parameters used for the different 

films deposition are summarized in paragraphs 3.2 to 3.6. 

 

By adding a reactive gas in the chamber such as oxygen or nitrogen it is possible to deposit 

compounds as oxides or nitrides from a metallic target. The conditions required to yield compounds in 

place of metallic films depend on the flow rate of reactive gas Qr added to the non reactive gas (Ar) at 

P0 and the total pressure in the chamber P [1]. Without sputtering process, the pressure varies linearly 

with the flow of gas (dotted line in Figure 2) for a constant pumping speed. With working sputter 

source, the pressure first remains stable and equal to P0, because the reactive gas is incorporated into 

the film and thus removed from the gas phase. When the flow Qr reaches Qi*, the pressure jumps to 

P1, indicating that the target surface is fully oxidized (to use the example of oxygen gas), resulting in a 

drop of the sputtering yield. If no reactive sputtering took place, the pressure would reach a higher 

value of P3. Once the equilibrium pressure P1 is achieved, a change of Qr causes a linear increase or 

decrease of P. If the flow decrease below Q(0), P reaches the initial pressure again. The hysteretic 

behaviour represents two stable states with a rapid transition between them. Along the line A, the 

concentration of reacted material increases with Qr. At Q*r, the change from state A to B is due to the 

drop of the sputter rate when the target surface reaches a critical value of oxide coverage. Due to the 

rate drop, target and film are suddenly pumping less reactive gas, the pressure increases and saturation 

of the reaction is reached, usually at stoichiometry or slightly above. State B is maintained even if the 

reactive gas flow is reduced. When reaching Qi(0) the system falls back into state A. This hysteresis 

can be monitored by measuring the cathode voltage because ion-induced secondary electron emission 

is higher for compounds than for metals. According to Ohm’s law, the plasma impendency is lower in 
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the state B than in the state A. Thus a high cathode voltage indicates the deposition of a metallic film 

and a voltage drop indicates the deposition of a compound. An example of this hysteretic behaviour is 

given in the Figure 2. 

 

 
Figure 2: System pressure P according to the reactive gas flow Qr during reactive sputtering. Without 

sputter process, P(Qr) curve is hysteretic. Line A is the result of strong pumping of reactive gas by the fast 
growing film below the saturation is reached. Line B is the result of reached saturation leading to a low 

deposition rate. Right: Hysteretic behaviour of the voltage versus the oxygen partial pressure during 
sputtering of YSZ (total pressure 20 mT) 

 

Sputtering is a very popular technique for the study of all PEN elements (anode, electrolyte and 

cathode). Films obtained by this method are usually dense with columnar microstructure and are thus 

very good candidates for electrolytes. Yttria stabilized zirconia YSZ [2], La2Mo2O9 [3], Sm-doped 

ceria SDC and scandia stabilized zirconia ScSZ [4] have been deposited by this method. Dense and 

thick (2-12 μm) electrolytes [5] and even the whole stack of layers [6] can also be obtained on porous 

substrates. Electrodes such as Ni-YSZ [7] and can also be sputter deposited and it’s even possible to 

obtain porous films on dense layers [6]. 

In this work we used a Nordiko sputter system having a single chamber containing four magnetrons 

and a 360° rotating substrate holder (see Figure 3). Two DC generators and one RF generator can be 

operated simultaneously for the cosputtering from maximal three targets. The substrate holder can 

either stop in front of one of the targets or rotate over all of them at a given speed (1 to 10 rpm). Thus 

it is possible to deposit consecutive layers or a compound of the different target materials. This system 

has for instance been used to deposit PbZrxTi1-xO3 by co-sputtering from titanium, zircon and lead 
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targets [8]. Two DC and one RF sources are used to apply voltage on the different targets. The RF 

source is used to sputter from dielectric targets. 

 

 
Figure 3: Configuration of the reactive magnetron sputtering tool Nordiko a) Rotating substrate holder, 
b) 4”substrate, c) heating lamps, d) 4 different targets, e) entry for process gases Ar and O2, f) Baratron 

gauge used during process, g) Pirani gauge used during pumping, h) Pirani gauge, i) Pirani gauge, j) turbo 
pump, k) primary pump, l) high-vacuum valve, m) foreline valve, n) roughing valve. The four power 

generators for targets (2 DC and 1 RF) and substrate bias (1 RF) are not shown on this scheme. 
 

The substrate is heated indirectly by the radiation of lamps and can reach a nominal temperature of 

800°C. The distance between substrate and targets can be varied between 1 and 10 cm. The pressure in 

the chamber is monitored by a Baratron gauge controlling the aperture of a gate-valve. During the 

process, the fluxes of argon and of oxygen are fixed between 1 and 60 sccm for Ar and 1 and 20 sccm 

for O2 and the pressure is controlled by the aperture of the gate-valve. The working pressure can by 

varied between 1 and 100 mTorr. The chamber base pressure is approximately of 5x10-4 mbar. 

 

 

3.1.2. Stress measurement in thin films 

 

The stress in the deposited thin films is evaluated by a Tencor FLX-2900 apparatus. It measures the 

radius of curvature r of the substrate, derived from the deflection angle θ of a laser beam hitting the 

surface of the substrate. The laser source and the detector are mounted on a single module that scans 

along the substrate length. 
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Figure 4: Schematic view of the Tencor Flex 2900 stress gauge 

 

The following equation is used to determine the film stress S depending to the Young modulus 

Ysubstrate, Poisson coefficient νsubstrate and thickness tsubstrate of the substrate, the film thickness tfilm and 

the radii of curvature before r1 and after deposition r2:  
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For silicon (100) wafers and 4 x 1 cm2 samples the following parameters were used: 

 

Table 1: Mechanical properties of the silicon (100) substrates 
Young modulus [GPa] Poisson coefficient [-] Thickness [μm] 

180.5 0.2 380 or 525 

 

When several films of thickness ti are deposited on the substrate, the change of the curvature Δ(1/r) is 

given by the following law: 
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In this case, the total stress Stot is by the sum of the products of the films thicknesses ti multiplied by 

their corresponding stress Si:  
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Tencor FLX-2900 includes an oven and allows measuring the stress at temperatures from 20°C up to 

900°C at a given rate controlled by a thermocouple. It is also possible to undergo experiments under a 

given gas flux of argon or oxygen but the chamber is not gas tight and the pressure cannot be 

controlled. 

 

 

3.1.3. Electrical characterization of thin films 

 

3.1.3.1. DC conductivity measurements in furnace with controlled atmosphere 

 

DC 4 points conductivity measurements were performed in a tubular furnace under a controlled 

atmosphere. The sample was place on a sample holder shown in the Figure 5:  

 

 
Figure 5: Sample holder for conductivity measurements in the furnace 

 

Two platinum electrodes with dimensions of approximately 10 x 5 mm2 were sputtered on the sample 

to serve as electrical contacts. Four Pt wires (from Goodfellow), with a diameter of 0.5 mm, were 

stuck to the electrodes with a commercial Pt paste (Heraeus LPA 88/11 S). The 4 point resistance of 

the sample was measured with a digital multimeter (Hewlett Packard 34401A). The atmosphere in the 

furnace was set by controlling the flows of argon, oxygen and hydrogen with 3 flowmeters (MKS 

1179) and a flow controller (MKS 647B). Most of the experiments were performed under pure oxygen 

or nitrogen. A Pt/PtRh thermocouple was placed in the furnace near the sample holder. A schematic 

view of the experimental setup is shown in the Figure 6: 
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Figure 6: Schematic view of the DC conductivity measurement in the furnace. 

 

The in-plane conductivity of the film was calculated from the measured 4 points resistance R4 and the 

dimensions (length L, thickness t and width w) of the sample as seen in the Figure 7: 

 

 
Figure 7: Schematic view of the sample dimensions and electrical connections. 

 

The in-plane conductivity of the sample σ is simply given by: 
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3.1.3.2. DC conductivity measurements on a hot plate 

 

The tested samples are in the form of an electrical capacitor with Pt top and bottom electrodes. The 

size of the capacitor is determined by the surface of the top electrode of diameter d. A schematic view 

of the sample with its relevant dimensions is given in the Figure 8: 
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Figure 8: Schematic view of the sample dimensions and electrical connections 

 

The measurements are made by using an impedance analyzer (Hewlett Packard 4194A). It measures 

the capacity C in Farad and the losses tanδ at different frequencies (100Hz to 10MHz). The 

experimental setup is also composed of a hot plate capable of ramping up to 520°C. A Pt/PtRh 

thermocouple is placed on the hot plate near the sample. Two tungsten probes are used to measure the 

capacity and the losses tanδ between the top and the bottom electrodes. The experience is held in air. 

The admittance Y of the film can be written in a complex form as: 
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The total parallel resistance R// of the film capacity is the imaginary part of the capacity and is related 

to the pulsation ω by the following equation: 
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If the loss tangent is entirely due to leakage or conduction, the film conductivity σ is the inverse of R// 

multiplied by the ratio of the film thickness t divided by the capacitor area πd2/4: 

 

 
2

2
//

4
4 tan

t
t Cd

R d
ω δπσ
π

⋅ ⋅⋅= =
⋅

 (3.7) 

 

 

3.1.3.3. Impedance spectroscopy measurements 

 

The samples for impedance spectroscopy have the shape of a capacitor with the same dimensions as 

the ones described in the paragraph 3.1.3.2. The impedance spectra are measured with an HP 4194A 

Impedance Analyzer from 100 Hz to 10MHz or with HP4284A from 20 Hz to 1 MHz. The analyzer 
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measures the real and imaginary parts of the electrical impedance Z for a given range of frequencies or 

pulsations ω. The obtained data are shown on a Nyquist plot with Re(Z) as x-axis and –Im(Z) as y-

axis. Each point of the Nyquist plot corresponds to a given value of ω. The resistance of the film was 

obtained for the impedance spectra by fitting the curves using a resistance Rs in series with a capacity 

C and a resistance R// in parallel. The total complex impedance of this circuit Z is equal to: 
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In the limits of infinite and zero pulsation ω , the impedance assumes the following values:  
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Between these two extremes, the impedance curves describes a semicircle in the (-Im(Z), Re(Z)) plane, 

as shown in the Figure 9: 

 

 
Figure 9: Schematic view of the plot of the real and imaginary part of the equivalent circuit impedance 

 

Finally, the film conductivity σ is obtained from the sample geometry (electrode diameter d, and 

thickness t) and measured resistance R// by means of the Equation (3.10): 
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3.1.3.4. Arrhenius plot of the ionic conductivity 

 

The ionic conduction is a diffusion process and thus requires thermal activation. The diffusion 

constant D relating current to concentration gradient has the form:  
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−
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Where k is the the Boltzmann constant k (1.38 x 10-23 J/K or 8.61 x 10-5 eV/K), T the temperature (in 

K) and Ea the activation energy (in eV). At infinite temperature, the diffusion constant is limited to D0 

(in m2/s): 

 

The ionic conductivity σ is given by [9]: 
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Where A is constant with the temperature and depends on k, D0, the carrier density n (in 1/mol), the 

charge of the carriers z and the charge of the electron e (1.602 x 10-19 C/mol): 
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Ea can be directly derived from the slope of the Arrehnius plot, i.e. from the slope –Ea/k, of ln(σΤ) vs 

1/T. 

 

 

3.2. YSZ thin film electrolyte 
 

Yttria stabilized zirconia thin films containing 8% mol. Y2O3, referred to as 8YSZ, were deposited by 

reactive magnetron sputtering. The goal was to develop dense and columnar films as well as 

multilayer films with interrupted columns. Optimal parameters for the growth of both types of films 

were found. 

 

 

 

 



 62

3.2.1. Growth and microstructure characterization of single layer YSZ thin films 

 

8YSZ films have been deposited by reactive magnetron sputtering onto (100)-oriented, 100 mm 

diameter silicon wafers of 0.1 to 100 Ωcm resistivity. The wafers were cut into 4 x 1 cm2 pieces for 

characterization by electron microscopy, X-ray diffraction (XRD), electrical measurements or thermal 

stress analysis. The full wafer size was used for the fabrication of μSOFCs, which will be treated in 

Chapter 5. If required, the wafers were oxidized in a furnace to obtain 0.5 to 1.5 µm thick layers. Pt 

electrodes were deposited by DC sputtering under a Ar flow of 15 sccm and a power of 1000 W at 

300°C. They were 100 nm thick and exhibited a (111) texture.  

8YSZ was deposited from a commercial zirconium-yttrium alloy target of composition 16/84 

purchased from Kurt J. Lesker. The purity amounted to 99.9%. Target diameter and thickness 

amounted to 10 cm and ¼", respectively. . The metallic target has the advantages of being a better 

thermal conductor and more ductile than a ceramic, thus it is less sensitive to cracking than a ceramic 

target, and allows for higher sputter powers. In DC mode operation the plasma was instable and some 

sparks appeared. Sparking always produces particles, and bears the risk to get pinholes into the film. 

We thus changed to RF power supply, even though the deposition rate was smaller. 

The deposition conditions for the 8YSZ films are reported in Table 2: 

 

Table 2: Deposition conditions for the YSZ thin films of type A. 
Pressure 

[mT] 

Ar flow 

[sccm] 

O2 flow 

[sccm] 

RF power 

[W] 

RF voltage 

[V] 

Temperature 

[°C] 

Rate 

[nm/min] 

Dist. T-S. 

[mm] 

5 10 10 200 200 500 2.1 100 

 

After deposition at 500°C, the samples were cooled down during 3 hours in the chamber under 80 mT 

of pure oxygen (20 sccm flow). 

The morphology and orientation of the obtained thin YSZ films were investigated by using scanning 

electron microscopy SEM (Zeiss LEO 1550) and X-ray diffraction (Kristalloflex 805 Siemens, with 

Cu Kα radiation).  

As seen in Figure 3, the film has a columnar microstructure with a grain width of approximately 50-

100 nm. Hence, most of the grain boundaries are crossing the film slab on the shortest way. The grain 

boundary density δgb has been calculated using the equation (3.14) with the assumption that the grains 

have a circular base of diameter d. For d equals to 75 nm, the density is approximately of 50 μm-1. 
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Albeit the film is very dense, this high density of grain boundary per surface turned out to be very 

critical for electronic leakage and H2 permeability across the layer. The substrate (amorphous SiO2, 

{111}-platinum or {100}-silicon) does not affect the morphology of the film. In all cases, X-ray 

diffraction patterns revealed higly {111}-textured films {see Figure 11 for the case of YSZ grown on 

thermal oxide). It appears that the (111)-plane of the cubic face-centred fluorite structure nucleates 

more easily, as it is the case for all fcc metals. 

 

 
Figure 10: SEM cross-section of a 500 nm thick film of YSZ deposited onto a Pt layer (100 nm). 

 

 
Figure 11: X-ray diffraction pattern of a 300nm thick YSZ deposited on amorphous SiO2. 

 

 

3.2.2. Growth and microstructure characterization of multilayer YSZ films 

 

Multilayer YSZ films were deposited in sequence from the same target as reported in paragraph 3.2.1. 

Rudell et al. have shown experimentally that it was possible to interrupt zirconia film growth and to 
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obtain a stack of layers with different microstructures and orientations [10]. The multilayer films were 

deposited in sequence with a different set of conditions for each step. YSZ films of type A were 

sputtered with conditions as in paragraph 3.2.1 and Table 2. Films of type B were deposited while 

applying a substrate bias and at room temperature as described in Table 3. 

 

Table 3: Deposition conditions for YSZ thin films of type B. 
Press. 

[mT] 

Ar flow 

[sccm] 

O2 flow 

[sccm] 

RF power 

[W] 

RF voltage 

[V] 

Subst. biais 

[W]/[V] 

Temp. 

[°C] 

Rate 

[nm/min] 

Dist. T-S. 

[mm] 

5 10 10 200 200 100/80? 25 2.8 100 

 

Stacks of two or three layers alternating A and B types were deposited on small silicon samples and 4” 

wafers (as described in paragraph 3.2.1). 

The X-ray diffraction pattern obtained after the deposition of the A-type layer shows that it is mainly 

(111) oriented as reported in paragraph 3.2.1. After the sputtering of the B-type layer, the XRD pattern 

shows a small (200) peak (Figure 12). This (200) peak obviously belongs to the 2nd layer as the 

recrystallizsation of the first layer can be excluded for a room temperature deposition. The smaller 

intensity of the (200) peak compared to the (111) is due to the smaller grain size of the B-type layer as 

observed by SEM (see Figure 13). The B-type layer shows a disordered structure of small grains with 

diameters of 20 nm and is obviously porous. 

 
Figure 12: X-ray diffraction patterns of the YSZ after deposition of the layer A and A+B. 

 



 65

 
Figure 13: SEM cross section of a stack of three YSZ layers A+B+A covered by a 50 nm thick gold layer. 

 

A TEM picture (Figure 14) shows the sequence of the three YSZ layers deposited onto Si substrate 

followed by Cr and Pt layers. The thickness of the 2nd YSZ layer of B-type (307 nm) is 25% larger 

than the thickness of each of the 1st and 3rd YSZ layer of A-type (245 nm). The A-type layers showed 

a dense columnar microstructure with columns having diameters between 50 and 100 nm. The grain 

size in the B-type layer is approximately 20 nm. Diffraction patterns show that the A-type layers are 

strongly (111) textured, whereas the B-type layers are randomly oriented. This phenomenon can be 

explained by a higher sputter yield of (111)-planes, leading to a partial or total suppression of (111)-

oriented grains. Such phenomena are known from fcc metal systems such as aluminum. The 3rd layer - 

again of type A - is less textured than the 1st layer. Apparently, the columnar growth of (111) grains is 

disturbed by the nano porosity and inhomogeneous orientation of the 2nd layer. 

 

 
Figure 14: TEM cross section and diffraction patterns of the 3 layer YSZ electrolyte deposited on SiO2 

(left) and covered by a thin gold layer (right) 
 

The relative mass density of the second layer was estimated using EDAX (Electron Diffraction X-Ray 

Analysis) by comparing the total intensity of the X-rays characteristic spectra taken in identical 
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conditions on each layer. The X-ray intensity depends proportionally on the number of atoms excited 

by electrons. Assuming a similar thickness of the layers close to their interface, the X-ray intensities 

are directly proportional to the density of the material. For all three YSZ layers the spectra look very 

similar. The density ratios are d2/d1= 0.75 and d3/d1 = 1. So the 2nd layer has a porosity higher than 

25%. Because the atomic fluxes from the YSZ target are the same (same applied power) in the 

deposition chamber, the changes of densities induced by the different growth mechanism should be 

correlated with the thickness variation, The observed higher porosity (lower density) corresponds well 

with the observed larger thickness. Theses results prove that it is possible to disturb the columnar 

microstructure of the YSZ film by ion bombardment at lower temperature Even if the 2nd layer is 

porous, the (111) layer deposited onto it is dense and columnar as shown by TEM. For application in 

μSOFC, the electrolyte should be gas tight to prevent gas mixing between the anode and the cathode. 

For this purpose, we propose the deposition of two (111) oriented layers separated by a thin 2nd 

porous layer to prevent the formation of YSZ columnar grains along the entire film thickness. 

 

 

3.2.3. Stress in (111) YSZ thin films 

 

The stress in the multilayered film is mainly due to the dense (111) oriented layers. The porous (200) 

layer does not contribute. The stress in two YSZ (111) thin films with a thickness of 500 nm has been 

measured as a function of temperature in air by using the Tencor FLX 2900 described in the paragraph 

3.1.2. The YSZ films were deposited by reactive sputtering from the ceramic target at a temperature 

Tdep of 430°C on oxidized silicon samples (1 x 4 cm2), and then cooled down during 3 h in the process 

chamber at various oxygen pressures. To compensate the stress variation due to the presence of the 1.5 

μm thick oxide layer, a sample that was not coated by YSZ was tested up to 700°C (Figure 15). 
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Figure 15: Stress versus temperature curve for a silicon sample covered with 1.5 μm of thermal wet silicon 

oxide. 
 

The obtained stress versus temperature curve was fitted with a polynom of the second degree and this 

background was subtracted to the YSZ data according to the equation (3.3). The obtained coefficients 

are very close (0.501 x 10-6 K-1 and 0.25 10-9 x 10-4 K-2) to the ones of quartz glass (0.518 x 10-6 K-1 

and 0.29 10-9 x 10-4 K-2 [11]). 

In case of a film reacting by pure elastic deformation, the thermal mismatch with the substrate causes a 

mechanical stress Sth during cooling down to room temperature that adds to a stress Sdep(Tdep) resulting 

from the deposition process. When growing at 430 °C, local diffusion at the growing surface should 

indeed reduce the compressive stress that might be caused by ion bombardment, thus Sdep(Tdep) should 

be relatively small. The experiment includes a heating ramp at 3.8°C/min from 20°C to 700°C, a 

plateau of 1 hour at 700°C and cooling to 70°C at the rate of -3.8°C/min. Below 100°C, the cooling 

rate is limited by the cooling capacity of the equipment. 
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Figure 16: Total stress with temperature of YSZ thin films deposited at 500°C and then cooled for 3 hours 

in 80 mT or 5 mT of oxygen. The film cooled in 80 mT of O2 has undergone two thermal cycles. 
 

The thermal expansion coefficient of YSZ (10 ppm/K at 500°C, [14]) being considerably larger than 

the one of the silicon substrate (3 ppm/K), a tensile state of stress is expected at room temperature for 

the (111) films that are deposited at 430°C according to equation (3.15).  

In case of ceramics, Young's modulus Ycer and Poisson ratio νcer are reported as Ycer=220 GPa, and 

νcer=0.315, respectively. Since our thin film exhibits a (111) textured columnar growth, it is more 

appropriate to use single crystal values valid in the plane perpendicular to the {111} direction. These 

were calculated as Yfilm =190 GPa, and νfilm=0.27 from the stiffness constants given by Ingel and Lewis 

[12] (as explained in Appendix A.4). From equation 2.12, the thermal stress Sth is of: 
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In contradiction to expectations, however, we always obtained large compressive stresses, even when 

increasing the growth temperature (Figure 16). This means that a much different mechanism is 

responsible for stress development. We will show evidence that oxygen loss that leads to additional 

oxygen vacancies is the reason for stress development. Stoichiometric, charge neutral YSZ contains 

half as much oxygen vacancies as Y3+ ions. At not too high temperature, these are bound to the yttrium 

site [13] , more specifically to the 2nd neighbour oxygen positions [14]. Such vacancies can be 

considered as trapped vacancies (density cVtp) since the attractive YZr' point defect does not move with 

the vacancy. The usual ionic conduction in YSZ is due to hopping of vacancies from trap to trap 
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requiring an activation energy of 1.07 eV [15]. In reducing ambient, additional oxygen vacancies are 

formed by means of the process: 
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These occupy arbitrary oxygen sites and are not subject to a Coulomb attraction by Y dopants, as their 

charge is already compensated by the trapped vacancies. The additional oxygen vacancies are thus less 

bound and require less activation energy for hopping. In the following we call these the free vacancies 

(density cVfe). Such vacancies have been postulated earlier [15] and chemical stress Tchem induced by a 

change of the defects concentration in the film [16] or by gradient defect concentration, for example in 

the case of defects recombination [17], as already been reported in the literature. In equilibrium and 

respecting electrical neutrality, the concentration of free oxygen vacancies cvfe is installed according 

the mass action law to yield the following concentration: 
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where K(T) is the reaction constant and pO2 the oxygen partial pressure.  

It is well known that oxygen vacancies lead to an increase of the volume if we deal with a 

mechanically free body. In case of a clamped film, a stress Schem results accordingly: 

 

 0,( )
1

film
chem vfe vfe

film

Y
S c cβ

ν
= ⋅ −

−
 (3.18) 

 

Where (cvfe- c0,vfe) is the change of free vacancies concentrations, Yfilm/1-νfilm is the biaxial modulus of 

the film and β the volume change  induced by the defect creation or movement. The parameter β is the 

proportionality factor relating strain and vacancy concentration. This factor is estimated to be 0.06 

from atomistic calculations, knowing that when an oxygen ion is released from the YSZ lattice, three 

of the oxygen nearest neighbours move towards the vacancy and the second nearest neighbours move 

away from it thus increasing the lattice constant [18], as seen in Figure 17. 
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Figure 17: Expansion of the oxygen lattice in YSZ after the creation of an oxygen vacancy. The scheme 
shows a quarter of the lattice plane. The oxygen vacancy is represented by a square and the oxygen ions 

by circles. Adapted from [18]. 
 

We tested the hypothesis of oxygen pressure impact according to equations (3.17) and (3.18) by 

cooling down identically processed films at different oxygen pressures of 5 mT or 80 mT. The effect 

of oxygen pressure is clearly observed (Figure 16). According to equation (3.17), the stress ratio at 

room temperature is expected to be 161/6=1.66. The experiment yields a ratio of 1.5 other than vacancy 

contibutions. The annealing experiments discussed later justify the assumption that the stress without 

oxygen vacancies is near to zero at room temperature, meaning that the whole stress at room 

temperature can be assigned to oxygen vacancies. The corresponding concentrations of oxygen 

vacancies created in the film are calculated as 3.2 % and 4.8 %  for the films cooled in 80 mT and 5 

mT of oxygen, respectively, when assuming the isotropic deformation without rigidity reduction by 

vacancy migration: 
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 (3.19) 

 

More information is gained by heating/cooling cycles in air. Such cycles for Tmax= 700°C are shown in 

(Figure 16). Theoretically, a misfit stress of -1.56 MPa/K should be seen in the linear behavior below 

400 °C. The measured curve shows less, i.e. -0.96 MPa/K. It is very common to measure a smaller 

rigidity in thin films. In a recent paper, an even smaller value was published for the stress vs. 

temperature slope: 0.67 MPa/K [19]. Also by nanoindentation, a smaller stiffness with Y ranging from 

120 to 150 GPa is observed in thin films [20]. This range of values is quite compatible with our 

findings (Y=120 GPa) if we assume the thermal expansion to be the same as in a cubic crystal. 

Various reasons may be forwarded for such a difference. One is of course the microstructure that 
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might contain softer, or open grain boundaries, or eventually a size effect of the special (111)-

orientation. It has been proposed by Lubomirsky and coworkers that in slow strain or stress 

accommodation processes the increase in elastic energy is partially counterbalanced by defect 

migration between two non-equivalent sites [21]. If such slow phenomena play role the stress change 

should depend on heating and cooling rates. We did not find any difference in slope when heating with 

3.8°C/min or 10C°/min in the linear range below 400 °C (Figure 18). This means that such 

phenomena, if occurring are either much faster of much slower. In order to give a correction to the 

apparent rigidity, they would be required to be much faster, in contradiction with the findings in [21] 

 

 
Figure 18: Comparison of the stress vs temperature curve for the same YSZ sample at two different 

heating speed 3.8 and 10 °C/min. 
 

For the anomalous part above 400 °C, we have evidence that gas exchange with ambient air pressure is 

responsible for the anomalous stress behaviour observed at non-annealed films. The vacancy 

desorption process is a combination of diffusion processes in the bulk, and the oxygen chemisorption 

at the surface. The electrons created during the reduction process must stay around the vacancies, 

meaning that a free vacancy diffuses as kind of pseudo He atom. The complete process can be written 

as: 

 

 , , 2
12 ( ) 2 ( ) ( )
2

diffusion x
O fe O feV e V surface e surface O O surface⋅⋅ ⋅⋅+ ⎯⎯⎯⎯→ + + + ⎯⎯→  (3.20) 

 

There are two thermally activated processes going on: The diffusion of vacancies with the electrons to 

the surface, and the up-take of oxygen, including the dissociation of O2. It is more convenient to 

describe the latter process as a desorption of vacancies. Both processes are thermally activated and 

show thus similar temperature dependences. However, they should differ in their time (t) dependence. 
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If desorption is limited by the diffusion from the inside, the amount of desorbed vacancies γ  per area 

follows the well known Dt  behaviour, where D is the diffusion constant: 
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The average vacancy concentration c Vfe  is diminished as c Vfe (t) = c Vfe (0) − γ (t) / t f , where t f is the film 

thickness. As we measure the average stress of the YSZ film, according to: 
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we obtain then as a function of time, at a given temperature: 
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This equation does not strictly apply because the surface concentration decreases with time. However, 

as long as the change is small to the total amount of vacancies, we can do as if the concentration is 

constant for a certain time. Comparison with the experiment indeed shows that the fit with a t  

function works well (Figure 20). This means that we deal with rate limitation by diffusion from within 

the film. Doing the experiment for different temperatures, we can in addition derive the thermal 

activation energy Ea for the free vacancy diffusion as seen in the Figure 21:  

 

 ,0( ) exp( /( ))Vfe Vfe aD T D E kT= −  (3.24) 
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We can now make an approximation for the vacancy concentration in the surface layer, since this one 

must be smaller (or equal) to the average vacancy concentration. The stress curve gives a clear 

indication in the latter. At high temperature, the vacancy induced stress must go to zero. Therefore we 

conclude that the stress SVfe is zero, or nearly zero in the contribution to the cool down stress. In this 

way we obtain an absolute value for SVfe and thus also for the average vacancy concentration:  
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Hence we can write: 
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Now, for calculating the stress curve during the whole temperature ramp (Figure 22), we used in 

iteration procedure: 
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Since we have a constant heating rate, the time factor in Equation (3.29) is constant, and if we assume 

a constant vacancy density, the change in mechanical stress should follow an Arrhenius law with slope 

Ea/2k: 
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Before curve fitting, the thermal component of the stress was removed from experimental data by 

adding 0.96 MPa/K to the stress curve. The activation energy Ea,vfe was derived as 0.54+/- 0.01 eV for 

both samples, independently of oxygen cooling pressure (Figure 19). 
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Figure 19: Arrhenius plot of the stress change due to the incorporation of oxygen ions in the YSZ films 

cooled in 5mT or 80mT of oxygen.  
 

In order to test the time dependence as given is equation (3.25) and (3.27), we measured the stress of 

the film cooled in 80 mT as a function of time for various, stable temperatures. The film was heated 

from 25°C to 200°C at the rate of 3.8 °C/min and then it was kept at this temperature for 1 hour. 

Successive plateaus of 1 hour were made at 400°C, 600°C and 700°C. The heating rate between the 

plateaus was kept constant (Figure 20). The time dependence indeed follows a t  behaviour, 

confirming the diffusion character of the underlying mechanism. The prefactor in front of the t  term 

contains the exponential factor that again should reproduce an Arrhenius law. This is shown in Figure 

21 and 22. This time a slightly higher value of 0.6 eV is obtained. Nevertheless, the agreement with 

the heating curve is quite satisfying. 
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Figure 20: Variation of the stress in YSZ film with time for different temperatures 

 

 
Figure 21: Log-Log plot of the chemical stress showing the square root dependency with time. Inserted: 

Arrhenius plot of the stress variation during 1 hour at 200°C, 400°C, 600°C and 700°C. 
 

Finally, the experiment is compared to the overall behaviour as described by iteration equation (3.29), 

as seen in Figure 22: 
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Figure 22: Stress change with time for the YSZ sample (cooled in 5mT of oxygen) measured 

experimentally during heating and cooling and compared with the iteration model including the 
diminishing vacancy concentration. 

 

The obtained values of Ea,vfe and prefactors are equivalent as for the previous experiment. The 

experimental deviations from the calculated curve are due a certain "noise" in the experimental curve 

at lower temperatures. The noise can be assigned to grain boundaries, which release vacancies quicker 

as the bulk. The deviation at higher temperature is rather due to the inaccuracy of the model that 

overestimates the diffusion flux at higher temperatures, where the small concentration gradients lead 

to smaller fluxes than assumed in the model.  

All the stress experiments and their evaluation yield an activation energy for free O vacancy diffusion 

of 0.56-60 eV. This is almost half of the activation energy for trapped O vacancies (1.07 eV [20].). As 

reported in paragraph 3.2.4, the ionic conductivity of this YSZ film was measured at a capacitor of 2 

mm diameter, yielding an activation energy of 0.94 eV. 

Computer-based calculations have shown that in tetragonal zirconia the activation energies for the 

diffusion of oxygen ions differs with the presence of dopants [13]. In pure ZrO2, the activation energy 

is of 0.30 eV and in yttria doped ZrO2 it increases to 1.07 eV. In Cormack’s work [15], it is claimed 

that the energy needed for ions diffusion is divided into two parts. The first is needed to separate the 

O2- from its two associated Y3+ defects and the second is needed to move the ion through the zirconia 

lattice. The oxygen vacancies created during the post-deposition cooling under low oxygen pressure 

are not related to cationic Y3+ defects. We suppose that these vacancies are paired with electrons, as 

the Zr4+ cations are monovalent. Thus these additional vacancies are randomly distributed in the film 

and are mostly surrounded by Zr4+ ions as if they were in pure ZrO2. Therefore the activation energy 
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for the diffusion of these free vacancies, is smaller and calculated as 0.3 eV in ref. [15]. Obviously, we 

measure something in between. What is not clear in the cited theoretical work is the question of charge 

compensation. Since Zr vacancies cannot be formed during cool down of the film, we only can 

postulate free electrons. Since they have to migrate with the O vacancies, the overall activation energy 

might be increased. Finally we also have to explain why a higher activation energy is obtained by 

conductivity measurements. Reliable data for the Arrhenius fit are only obtained at higher 

temperatures. There, the ionic conduction with trapped vacancies is dominating, and so the measured 

value is closer to 1.07 than to 0.6 eV. In addition, the free vacancies should be removed with time 

when measuring in air. 

 

The study of the behaviour of the stress in the YSZ thin films with the temperature helps to 

discriminate between the O2- ions induced by the doping and the ones created by the process. The high 

compressive stress due to the vacancies created during the post process cooling will break YSZ 

membranes. Annealing of these films in air permits to fill the unexpected oxygen vacancies and to 

stabilize the behaviour of the film up to 700°C. After annealing, the variation of the stress with the 

temperature is limited and 500 nm thick membranes can survive thermal cycles up to 600°C as seen in 

Chapter 4. 

 

 

3.2.4. Electrical characterization of multilayer and single layer YSZ films 

 

The YSZ films are deposited on a titanium platinum bottom electrode which was deposited by 

sputtering with the parameters given in Table 4. Ti/Pt bottom electrodes with respective thicknesses of 

5 and 100 nm were deposited on silicon wafers with a 1 μm thick wet oxide layer. The wafers were 

subsequently cut into 4 x 1 cm2 samples. The depositions were carried out in the SPIDER sputtering 

tool. 

 

Table 4: Deposition parameters for the Ti/Pt (5/100nm) electrode in the SPIDER. 
Film Ar flow 

[sccm] 

DC power 

[W] 

Dep. time 

[sec] 

Temperature 

[°C] 

Rate 

[nm/min] 

Ti 15 1000 3 300 250 

Pt 15 1000 22 300 280 

 

 

Then YSZ was deposited onto the platinum bottom electrode in the form of a single layer or of a stack 

of three layers. The parameters for these two types of depositions can be found in Table 2 and Table 3. 
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Platinum electrodes with a thickness of 100 nm were deposited by DC magnetron sputtering in the 

Nordiko tool through a patterned hard mask. The resulting electrodes are circular with a diameter of 2 

mm. The parameters for deposition are given in Table 5: 

 

Table 5: Deposition conditions for platinum electrodes in the Nordiko tool. 
Press. 

[mT] 

Ar flow 

[sccm] 

O2 flow 

[sccm] 

DC power 

[W] 

Dep. time 

[min] 

Temperature 

[°C] 

Rate 

[nm/min] 

Dist. T-S. 

[mm] 

5 40 0 45 6 25 17 100 

 

Capacity C and losses tanδ of multilayered YSZ films were measured as a function of temperature. 

Figure 23 shows the Arrhenius plots of the film conductivity. During the first temperature ramp to 

520°C, the conductivity shows a deviation from the ideal behaviour above around 280°C. This 

temperature corresponds approximately to the deviation from the linear stress/temperature behaviour 

during the first anneal. At this point, the conductivity is lower than during the second temperature 

ramp. As during stress measurements, this behaviour is only observed during the first annealing of the 

film and seems irreversible, at least when the film is kept in the air. Possibly, the free oxygen 

vacancies build up space charges that are hindering the motion of the ordinary trapped vacancies. The 

second cycle also presents a deviation of its conductivity from the linear activation behaviour. If as 

during stress measurements, the oxygen saturation is achieved only after several cycles up to 700°C, 

the maximal value of the conductivity has not been reached at 500°C. After annealing at 500°C, the 

maximal conductivity reaches 0.007 S/m at 500°C as seen in the Figure 23: 

 

 
Figure 23: Arrhenius plots of the conductivity (in S/m) versus 1000/T for a 700 nm YSZ film measured at 

100Hz. The conductivity was measured during the 1st and 2nd heating cycles. 
 

The conductivity is comparable to literature value (5.5 x 10-3 S/m at 500°C [22]) of thin film deposited 

by pulsed laser deposition. This study also confirms that the conductivity is increased when the film is 
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annealed for 8h at 800°C (1.5 x 10-2 S/m). An activation energy of 0.92 eV was measured, with the 

method explained in 3.1.3.4, and is slightly lower than the literature values for PLD films (1.03 to 1.15 

eV).  

 

 

3.3. CGO thin film electrolyte 
 

3.3.1. Growth conditions and microstructure characterization 

 

Ceria doped gadolinia thin films containing 20% molar Gd2O3, referred to as CGO, were sputter 

deposited from 2 different targets: 

 

1) A ceramic target of 4” diameter and ¼” thickness, from Neyco, containing 20% mol. of 

gadolinia with a purity of 99.9%. 

2) A metallic target of 4” diameter and ¼” thickness, from Kurt J. Lesker made of a cerium 

gadolinium alloy and containing 13% atomic of Gd. 

 

The ceramic target was pasted on a molybdenum disk to improve the thermal conduction to the target 

holder. 

The composition of the (500 nm) CGO thin films deposited was elucidated by Energy Dispersive X-

ray spectroscopy (EDX) in SEM. The intensities of the Ce L and Gd L lines were used to find out the 

%at. of cerium and of gadolinium. The films deposited from the stochiometric ceramic target 

(Ce0.8Gd0.2O2) contain of 30%at. of Gd in place of 20%. To compensate this excess of gadolinium, the 

metallic target was chosen with a Ce-richer composition (Ce0.87Gd0.13). The EDX shows that the films 

deposited from the metallic target can reach the stoichiometric composition of Ce0.8Gd0.2O2 (see Table 

6). 

 

Table 6: Composition of the targets and deposited CGO films 
Target type Target composition Film composition 

Ceramic Ce0.8Gd0.2O2-x Ce0.7Gd0.3O2-x 

Metallic Ce0.87Gd0.13 Ce0.81Gd0.19O2-x 

 

The choice of a metallic target is due to the fact that the ceramic target starts to crack and peel off after 

a very small number (<20) of depositions. Thus, it was replaced by a metallic target after the 

composition of the film was proven to be too rich in Gd. This metallic target showed a better chemical 

and mechanical stability and can be used for more than 50 depositions without any deterioration. 
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The first objective of this work was to find out parameters for the deposition of the CGO thin films 

from the metallic target. 200 nm thick CGO films were deposited onto bare (100) silicon samples with 

dimensions of 4 x 1 cm2, or covered with 1μm of wet oxide or 100 nm of (111) Pt. In order to analyze 

the film orientation, the samples have been deposited under various conditions as listed in Table 7:  

 

Table 7: Conditions of deposition for CGO thin films from the metallic target. *) the sample’s name is 
given without the suffix referring to the substrate type (Si for silicon, Pt for platinum and Ox for wet 

oxide) 
Sample* Pressure 

[mT] 

Ar flow 

[sccm] 

O2 flow 

[sccm] 

RF power 

[W] 

Temperature 

[°C] 

Dist. T-S. 

[mm] 

Cold Ar 15 10 0 250 20 100 

Cold O 15 10 10 250 20 100 

Hot Ar 15 10 0 250 500 100 

Hot O 15 10 10 250 500 100 

 

The texture index P(hkl) is defined as the ratio of the peak intensity I(hkl) relative to the absolute 

intensity I0(hkl) for a randomly oriented powder (for Ce0.8Gd0.2O2 JCPDS file #33-784) divided by the 

sum of all the intensities relative to their absolute values [23]: 
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The texture indexes for all orientations of growth have been measured on the three different substrates 

at RT and at 500°C, with pure Ar flow or with a mix of Ar and O2 (ratio 1/1). The texture indexes for 

the twelve samples are given in Figure 24: 
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Figure 24: Texture index for the various CGO film orientations for the different samples. The 2 first 

letters of the name refer to the substrate (Ox for amorphous SiO2, Pt for (111) Pt and Si for (100) Si). The 
3rd letter refers to the temperature (H for 500°C and C for 25°C) and the last one to the gas atmosphere 

(Ar for pure argon and O for a 1/1 mix of Ar and O2). 
 

The films sputtered at room temperature do not present any preferential orientation. The {111}-texture 

is favoured by the high temperature (500°C) and by the presence of the (111) platinum layer. On this 

substrate, the CGO film has a perfect {111} texture. On the amorphous SiO2, the maximal texture 

index for the {111}-orientation is of 90 % and on Si it reaches 87%. A pure argon atmosphere also 

helps the growth of the grain oriented in the (111) direction but only by a few percents. For the 

devices, the film will be deposited on a Pt mesh covering a silicon oxide layer. Thus the control of the 

texture will be more difficult than on small homogenous samples. The deposition conditions used for 

the CGO films comprised in the μSOFC structure are given in Table 8: 

 

Table 8: Deposition conditions for the CGO films used as electrolytes for the μSOFCs 
Pressure 

[mT] 

Ar flow 

[sccm] 

O2 flow 

[sccm] 

RF power 

[W] 

RF voltage 

[V] 

Temperature 

[°C] 

Rate 

[nm/min] 

Dist. T-S. 

[mm] 

15 10 10 250 180 500 2.4 100 
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After being deposited, the CGO films were cooled for 3 hours in the chamber at the base pressure (~5 

x 10-6 bar). 

On a 4” Si (100) wafer the thickness of the film deposited with the conditions shown in Table 8 varies 

by 30% from the border to the centre of the wafer. This inhomogeneity is due to the small size of the 

target and to the use of a magnetron that confines the plasma over the centre of the wafer [1]. 

 

 
Figure 25: SEM cross section of a 100nm CGO thin film deposited on SiO2 

 

 

 

3.3.2. Stress in the CGO thin film 

 

The cerium is capable of having a +III or +IV valence. Thus in reducing conditions, Ce+3 ions can 

exist in the crystals [24, 25]. The reduction of Ce4+ ions can also lead to hopping electronic conduction 

at low oxygen pressures (<10-15 atm [26]). The reduction of cerium ions creates oxygen vacancies: 

 

 '
2

12 22
x x
O Ce O CeO Ce O V Ce••+ → + +  (3.32) 

 

The possible existence of two different types of cationic defects (Gd3+ and Ce3+) is the most important 

difference between CGO and YSZ. As in YSZ, the loss of oxygen ions due to the film sputtering 

process creates stress [21]. Ce3+ has a greater ionic radius than Ce4+, 1.14 Å in place of 0.97 Å [27] 

and can be a reason for compressive stress in addition to the oxygen vacancies. The cohabitation of 

these two types of defects and the possible reactions between them and with Gd3+ complicate the 

analysis of stress measurements. For a better understanding, some authors have defined new 

parameters such as the non-stoichiometry δ. δ is the oxygen deficit in the CGO composition written as 

Ce1-yGdyO2-y/2-δ. 
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The relation between δ, due to the formation of oxygen vacancies in low oxygen pressure pO2 and at 

high temperatures, and the subsequent strain has been measured [24]. This strain is positive and 

varying with the -¼ power of the pO2 and with the -1/2 power of the concentration of Gd3+.  

 

 
2

' 1/ 2 1/ 4[ ]Ce OGd pδ − −∝  (3.33) 
 

Thus, the presence of oxygen vacancies (ie. δ>0) increases the volume of the film at low pO2 and at 

sufficient high temperatures. The deformation is then proportional to the non-stoichiometry δ. As in 

YSZ, oxygen vacancies induce a compressive state of stress.  

It was also reported that even the association of Gd3+ and oxygen vacancies can lead to stress 

variations [21]: 
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It is proposed in the cited work that by pairing or un-pairing Gd3+ and oxygen vacancies, the film 

compensates mechanical stress even at room temperature and under atmospheric pressure.  

The stress of CGO thin films with a thickness of 100 nm has been measured as function of temperature 

in the air by using the Tencor FLX 2900 as described in the paragraph 3.1.2. The experiment include a 

heating ramp at 4.4°C/min from 20°C to 700°C and a cooling to 70°C at the rate of -4.4°C/min. Below 

100°C, the cooling rate is limited by the cooling capacity of the equipment. The films were deposited 

from the ceramic CGO target on 4 x 1 cm2 silicon samples. A set of samples was deposited at 20°C 

and the other at 600°C with the parameters corresponding respectively to CO and HO as given in 

Table 7. 

The Figure 26 shows the stress/temperature curves for the two types of samples: 
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Figure 26: Total stress with temperature for CGO films deposited at 20°C or at 600°C.  

 

Both the CGO film deposited at 20°C and the film deposited at 600°C are under a compressive state of 

stress of -1 GPa after deposition. For depositions at 600°C, the loss of oxygen ions during the cooling 

in the sputtering chamber can be a reason for this state of stress as it was the case for YSZ thin films. 

Then during annealing, oxygen ions are incorporated into the film decreasing its volume and creating a 

tensile stress (Figure 26). Comparing the stress/temperature curves of the samples deposited at 20°C 

and 600°C brings some experimental evidences. First, the slope calculated from the linear part of the 

stress/temperature curves (in MPa/°C, see Figure 26) increases with decreasing compressive residual 

in the films. This slope is due to the stress induced by the thermal mismatch which is proportional to 

the elastic modulus of the films as discussed earlier. In oxides, the elastic modulus decreases with the 

increasing concentration of oxygen vacancies [28]. A steeper curve means that less oxygen vacancies 

are present. The modulus for the different CGO films and after different anneals can be calculated 

using otherwise standard parameters (νCGO=0.33  and αCGO= 12 ppm/K [16]) and are listed in Table 9: 

 

Table 9: Young modulus for the different CGO films 
Deposition 

temperature [°C] 

Annealing procedure Slope [MPa/K] Elastic modulus 

[GPa] 

600°C As deposited -1.1 122 

600°C One cycle to 700°C -1.3 144 

600°C Two cycle to 700°C -1.4 156 

20°C As deposited -1.1 122 

20°C One cycle to 700°C -1.6 178 

 

This means that after annealing, the film deposited at 20°C has incorporated more oxygen ions than 

the one deposited at 600°C, and is thus stiffer. The 600°C film can indeed remove further vacancies 

during a second anneal, and increase its elastic modulus from 144 to 156 GPa (Figure 27): 
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Figure 27: Total stress with temperature for CGO films deposited at 600°C for 1st and 2nd cycles of 

annealing. 
 

 

Without annealing treatment the CGO membrane are subject to strong compressive stress as seen in 

the Figure 28. 

 

  
Figure 28: 500μm wide CGO membrane subject to compressive strain. 

 

The room temperature deposited film can incorporate oxygen ions faster than the one deposited at 

600°C. As seen in Figure 27, the film deposited at 600°C needs several annealing cycles to reach the 

elastic modulus, or oxygen ions concentration, of the sample deposited at 20°C. 

For the films deposited at room temperature, the effect of the oxygen partial pressure in the chamber 

has been studied more carefully. Three films were deposited under 3 different oxygen pressures pO2 (0 

mT, 7.5 and 10 mT). The total pressure was kept at 15 mT with addition of argon. The 

stress/temperature curves of these films are given in the Figure 29: 
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Figure 29: Stress/temperature curves for CGO thin film deposited at 25°C from a ceramic target with 

different oxygen pressure (0, 7.5 and 10 mT). The inserted graph shows the slope in MPa/°C of the cooling 
ramp for the different oxygen pressures. 

 

The change of stress during the cooling was measured for the 3 films and the elastic modulii 

calculated as previously are given in Table 10: 

 

Table 10: Young modulus for the CGO films sputtered at different oxygen pressures. 
Deposition 

temperature [°C] 

Oxygen pressure 

during deposition [mT] 

Slope [MPa/°C] Elastic modulus 

[GPa] 

20°C 0 -1.8 200 

20°C 7.5 -1.6 178 

20°C 10 -0.4 44 

 

The elastic modulus is higher for the film deposited without oxygen and then decreases as pO2 

increases. During the annealing, the films deposited at low pO2 can incorporate more oxygen than the 

film deposited in pure argon. The film deposited at high temperatures or high pO2 are more susceptible 

to incorporate oxygen ions during their depositions. Then during cooling, the films deposited at 500°C 

loose oxygen and become compressive. When annealed to 700°C, these samples can incorporate more 

oxygen than the film deposited at high pO2.  

To understand better how the two types of films incorporate oxygen during annealing we calculate the 

Arrhenius plot of the chemically induced stress with 1/T as in paragraph 3.2.3. As seen in the Figure 

30, there are two different activation energies related to this phenomenon: 
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Figure 30: Arrhenius plots of the chemical stress (in MPa) for the annealing of CGO thin films deposited 

at 530°C compared with YSZ film deposited at 430°C. 
 

For a better understanding of the mechanisms of oxygen ion diffusion, we compare CGO films with 

YSZ. As in YSZ, it is supposed that incorporation of oxygen ions relieve the stress by filling 

vacancies. The increase of the elastic modulus with the annealing cycles clearly confirms this 

phenomenon. In YSZ, the activation energy that has been observed is smaller than in the CGO (0.5 eV 

in place of 1.2 eV for the films deposited at high temperatures). In CGO, the oxygen vacancies can be 

trapped either by Ce+3 or Gd+4 ions. As said before, the change of valency is not possible in YSZ, as 

the zirconium ions cannot have a valency of +III. For divalent ions, like Ce, the negatively charged 

defect can be the cation. In YSZ, after deposition, a major part of the oxygen vacancies are not 

associated with Y3+ ions because these cations are already associated with the vacancies induced by 

the doping with yttria. In CGO, the oxygen vacancies can be trapped by the Ce+3 ions. Therefore the 

activation energy for the diffusion of these free vacancies, or the converse ions diffusion, should be 

higher than in YSZ as shown in Figure 31:  
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Figure 31: Proposed ionic potentials of the YSZ (a) and CGO (b). The activation energies for ionic 

conduction vary with the type of next cation. 
 

The activation energy for the ionic conduction of CGO that was measured in this work (see paragraph 

3.3.3) and of the literature are in the range of 0.75 eV [29, 30]. As in YSZ, we claim that this is the 

energy required to move an oxygen vacancy away from a Gd3+ ion as all the free vacancies were filled 

during the annealing treatment of the film before conduction measurements. 

 

 

3.3.3. Electrical characterization of CGO thin films 

 

The CGO films were deposited on silicon 4 x 1 cm2 samples covered with a 1 μm thick wet oxide 

layer. Two CGO thin films with composition of Ce0.7Gd0.3O2-x and Ce0.8Gd0.2O2-x were prepared by 

reactive magnetron sputtering with the parameters given in Table 8. The Ce0.7Gd0.3O2-x was deposited 

from the ceramic target and the Ce0.8Gd0.2O2-x from the metallic target (see Table 6). Platinum 

electrodes (100 nm thick) were sputtered in the Nordiko with parameters given in Table 5 at both ends 

of the sample. The conductivity of the 200 nm CGO layers was measured in the plane of the film 

between the two electrodes separated by 1 mm. The platinum wires used for the contact were attached 

on the Pt electrodes with a commercial Pt paste. Then the paste was sintered at 500°C during 1 hour. 

The measurements were held in a tubular furnace in oxygen with the method explained in 3.1.3.4.  

The Arrhenius plots are given in the Figure 32. The conductivity of the 80/20 films is higher than for 

70/30 films. The 80/20 CGO has a conductivity of 0.5 S/m at 550°C and the 70/30 film of 0.06 S/m at 

600°C. The adhesion between the Pt paste and the very smooth Pt electrodes limits the measurements 

to this range of temperatures. For the operation of the μSOFC, the conductivity of the 80/20 film was 

sufficient and comparable to the literature value at this temperature (0.53 S/m [30]). The activation 

energies for the 80/20 film is lower than the values reported in the literature (0.72 eV [29] and 0.78 eV 
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[30]). Albeit, CGO was considered as a very good ionic conductor at low temperatures [9, 31], the 

hopping conduction due to the reduction of Ce ions in H2 makes it very difficult to use in thin film 

form for SOFC applications. CGO thin films with columnar grain boundaries can be reduced through 

their entire thickness and it results in electronic leakage in the cell. Thus CGO was abandoned and 

replaced by YSZ. 

 

 

 
Figure 32: Arrhenius plots of the CGO thin films conductivity. The Ce0.7Gd0.3O2-x film was deposited from 

the ceramic target Ce0.8Gd0.2O2-x from the metallic target. 
 

Ce0.8Gd0.2O2-x conductivity was measured by impedance spectroscopy at different temperatures (70°C, 

200°C, 300°C 400°C and 500°C) in air. The impedance spectra are obtained with an HP 4194A 

Impedance Analyzer as described in 3.1.3.3. The sample is in the form of a cylindrical capacitor with a 

diameter of 2 mm and a thickness of 300 nm with Pt electrodes deposited as explained in the 

paragraph 3.2.4.  

In the Nyquist plot, the curve for each temperature are semicircles. The resistance of the film was 

obtained by the method described in 3.1.3.3. 
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Figure 33: Impedance spectroscopy measurement of the Ce0.8Gd0.2O2-x at different temperatures. 

 

An Arrhenius plot of R// for the different temperatures permits to calculate an activation energy of 0.56 

eV for the conductivity in the CGO film. This value is slightly higher that the one measured by DC in 

the plane of the film. 

No further investigation has been carried on the CGO films as the cells fabricated with these films 

show zero OCV. It is assumed that the reduction at the anode side leads to large electronic conduction 

across the film. 

 

 

3.4. LSCO thin film cathode 
 

3.4.1. Growth conditions and microstructure characterization 

 

Strontium doped lanthanum cobaltite films, referred to as LSCO were also deposited by reactive 

magnetron sputtering from a La0.32Sr0.68CoO3 ceramic target prepared by sintering. This set of films is 

deposited on small silicon samples (4 x 1 cm2) covered by 1 μm of SiO2 grown by wet oxidation. The 

deposition parameters were adapted from the work of Masumuto et al. [32] and are given in Table 11: 

 

Table 11: Deposition conditions for the LSCO thin films. 
Pressure 

[mT] 

Ar flow 

[sccm] 

O2 flow 

[sccm] 

RF power 

[W] 

RF voltage 

[V] 

Temperature 

[°C] 

Rate 

[nm/min] 

Dist. T-S. 

[mm] 

15 0 20 100 - 550 0.5 100 

 

After being deposited the LSCO films were cooled for 3 hours in the chamber at the base pressure of 

~5 x 10-6 bar. 



 91

The LSCO films will serve as dense and thin cathode for the μSOFC. Thus the low rate of deposition 

is not a critical issue. X-ray diffraction shows that the LSCO film has no preferential orientation (see 

Figure 34). The low intensity of the different peaks is due to the low thickness of the sample (50 nm).  

 

 
Figure 34: X-ray diffraction pattern of a 50nm thick LSCO deposited on amorphous SiO2. 

 

 

3.4.2. Electrical characterization 

 

The LSCO films were deposited with the conditions of Table 11 on silicon 4 x 1 cm2 samples covered 

with a 1 μm thick wet oxide layer. Platinum electrodes (100 nm thick) were sputtered in the Nordiko 

with parameters given in Table 5 at both ends of the sample. The conductivity of the 200 nm LSCO 

layers was measured in the plane of the film between the two electrodes separated by 1 mm. The 

platinum wires used for the contact were attached on the Pt electrodes with a commercial Pt paste. 

Then the paste was sintered at 500°C during 1 hour. The measurements were held in a tubular furnace 

in oxygen with the method explained in 3.1.3.4. The Arrhenius plot of the LSCO conductivity is given 

in Figure 35: 
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Figure 35: Arrhenius plot of the in-plane conductivity of the LSCO film measured in oxygen. 

 

Reaching 9 x 103 S/m at 650°C the conductivity of the LSCO film is higher than expected. The 

activation energy amounts to 0.72 eV. 

 

 

3.5. Ni-CGO composite thin films 
 

As explained in Chapter 1, the morphology of the electrode is very important for the efficiency of the 

cell. The anode should be permeable to the fuel, i.e. porous, and conduct ions and electrons. Thus, a 

porous film composed of an electronically conduction phase (nickel) and of an ionically conducting 

one (CGO) is a very good candidate for the anode. For this purpose, porous composite films of nickel 

and CGO were co-deposited by reactive magnetron sputtering at high pressure by rotating the 

substrate over the two targets. 

 

3.5.1. Study of the morphology of porous composite nickel-CGO thin films 

 

Nickel-CGO porous composite films were deposited by co-sputtering in the Nordiko tool. The CGO 

deposition was made from a metallic target as reported previously in paragraph 3.3. The nickel was 

deposited by using a commercial nickel foil provided by Goodfellow. The films were grown by 

sequential deposition of the CGO film during the time A and of nickel during the time B or by rotating 

the substrate over the two targets at a given rotation speed ωrot. During rotation the effective deposition 

time t is equal for the two targets and depends of ωrot and of the sputtering tool geometry. In our case, 

the diameter of the substrate holder D is 80 cm and the diameter of the target d is 10 cm, thus: 
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 0.04rot
rot

dt
D

ω ω
π
×

= = ×
×

 (3.35) 

 

These films were deposited on small silicon samples (4 x 1 cm2).  

During the first set of experiments, only the CGO and Ni deposition times were varied in order to 

obtain the optimal microstructure. In some cases the substrate was rotated over the targets at the speed 

of 6 rpm. All the parameters for this set of depositions are reported in Table 12: 

 

Table 12: Deposition conditions for composite Ni-CGO films. 
Press. 

[mT] 

Ar flow 

[sccm] 

RF power 

CGO [W] 

DC power 

Ni [W] 

Temperature 

[°C] 

Rot. speed 

[rpm] 

Time A-B 

[min] 

Dist. T-S 

[mm] 

50 30 100 50 25 6 1-60 100 

 

The different obtained morphologies were studied by SEM cross-section and surface images. All these 

results are reported in Figure 37 according to the CGO and Ni deposition time. As the nickel 

deposition rate τNi (in nm/min) is higher than the rate of CGO τCGO, the composition, in volumic 

percent of CGO cCGO or of Ni cNi, of the film not only depends on the respective deposition times: 

 

 1 1 ( )CGO Ni CGO CGO Ni CGOc c t tτ τ= − = × = − ×  (3.36) 
 

The rate of deposition of the film τNi is equal to: 

 

 film CGO CGO Ni Nit tτ τ τ= × + ×  (3.37) 
 

And when the substrate is rotating at a speed ω the rate of film deposition is given by: 

 0.04 ( )film rot Ni CGOτ ω τ τ= × × +  (3.38) 
 

With the parameters given in Table 12, the rate of the CGO deposition was of 1-2 nm/min and the rate 

of nickel was of 15 nm/min. At the end of this paragraph, it will be shown how it is possible to control 

the composition of the film by increasing the power applied to the CGO target. Obviously, the pure 

nickel films were the thickest for a given deposition time. These films grow with a columnar porous 

microstructure, which appears only after some tens of nanometres. As shown in the simulations of 

Enomoto and Taguchi [33], the porosity increases with time of deposition for columnar growth. In this 

model a transient behaviour between a flat growth and columnar growth has been elucidated by 

introducing two basic parameters: 

 

• The sticking coefficient B of incoming atoms to the growing film 
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• The coefficient of surface diffusion A of adatoms on the film 

 

When A decreases or B increases the film tend to form a columnar microstructure because the adatoms 

are almost immobile after they hit the surface and cannot rearrange themselves. To obtain porous 

films, a high argon pressure of 50 mT and room temperature were used in order to reduce the energy 

of incident atoms. Thus there is little adatom mobility on the surface of the film and therefore the 

grains tend to grow in the direction of the available coating flux [34]. This low mobility also favours 

the creation of voids in place of grain boundaries and, at high deposition rates, this effect is further 

increased by the grain self-shadowing that tends to disturb the growth [35]. Thus, the size of the pores 

increases through the thickness of the film even if they are not present at the beginning of the growth 

as seen in Figure 36. 

 

 
Figure 36: Deposition of pure nickel. At the beginning of the growth a non porous zone is formed. After 

~150 nm, the pores appears at grain boundaries and their size increases through the layer. 
 

When the CGO deposition time is sufficient, an intermediate CGO layer is formed between two 

consecutive nickel layers as seen in Figure 39, Figure 41 and Figure 43. Hence, the nickel columnar 

growth is stopped and the films show a lamellar structure. Thus the porosity that appears only after 

several tens of nanometres is reduced as seen in Figure 40 compared to Figure 43. Within these films, 

the CGO deposition time was sufficient to form a thin continuous ceramic layer on the nickel and to 

stop the columnar growth. As the rate of CGO deposition is lower, the microstructure is less disturbed 

and smoother. Consequently the pure CGO film shows a dense columnar microstructure without any 

porosity as in the Figure 44. Nevertheless, when the nickel and CGO deposition times are sufficient, it 
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is possible to grow a lamellar structure with some porosity as the pores appear in the nickel layer when 

it is sufficiently thick (Figure 43). 

Figure 37 summarizes all the observations made in this chapter. When the nickel deposition time is 

sufficient over approximately 4 minutes, the films are porous even for high CGO deposition time (top 

of the graph). When the CGO time is above 2 minutes, the structure is columnar and porous (left of the 

graph). The lamellar structure appears when the CGO deposition time is sufficient compared to Ni 

time (bottom right of the graph). A continuous line indicates the zone where the nickel and CGO time 

are equal. The deposition made at 6 rpm is on the bottom of this line, at this speed the CGO cannot 

form a continuous layer on the nickel and the microstructure is porous and non lamellar. For long 

CGO deposition times compared to nickel, the films are dense and non lamellar (bottom right of the 

graph). The SEM images showing the different type of microstructure are given below. 

 

 

 
Figure 37: Microstructure of the Ni-CGO composite thin films in function of the CGO and nickel 

deposition times. 
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Figure 38: Deposition with 5 min CGO and 2.5 min 
Ni 

 
Figure 39: Deposition with 10 min CGO and 5 min 
Ni 

 
Figure 40: Deposition of pure Ni (60 min) 

 
Figure 41: Deposition with 5 min CGO and 1 min Ni 

 
Figure 42: Deposition at rotating speed of 6 rpm 

 
Figure 43: Deposition with 1 min CGO and 1 min Ni 
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Figure 44: Deposition of pure CGO (60 min.) on Pt. 

 

 

 

3.5.2. Study of the composition of porous composite CGO-Ni thin films 

 

The CGO-Ni film composition was investigated by changing the power applied on the two different 

targets or by covering a part of the CGO target with a Ni foil. The surface covered by the foil is a band 

passing through the centre of the CGO metallic target and covering 5% or 15% of the target total 

surface. All the films were sputtered on silicon small samples (4 x 1 cm2) covered by 1 μm of SiO2 

grown by wet oxidation. 

First, the influence of the power applied on the CGO metallic target on the composition was evaluated. 

These samples were deposited at room temperature with a 200 W RF bias on the nickel target and a 

pulsed DC bias applied to the CGO metallic target as shown in the Table 13. During the depositions 

the substrate was rotated over the two targets at a speed of 6 rpm.  

 

Table 13: Deposition conditions for the second set of Ni-CGO composite thin films.  
 Press. 

[mT] 

Ar flow 

[sccm] 

O2 flow 

[sccm] 

RF power 

Ni [W] 

DC power 

CG met 

[W] 

Temp. 

[°C] 

Rot. speed 

[rpm] 

Dep. time 

[min] 

Dist. T-S 

[mm] 

A 50 20 20 200 75 25 6 120 100 

B 50 20 20 200 100 25 6 120 100 

C 50 20 20 200 150 25 6 120 100 

D 50 20 20 200 200 25 6 120 100 

 

In this case, the DC bias was applied to the CGO metallic target to improve the rate of deposition of 

the CGO compared to the rate of Ni. To avoid sparks onto the CGO target the field was applied by 

pulses using a Spark. This method is often used to deposit aluminium nitride films from a metallic Al 

target [36, 37]. 
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As shown the %at. of CGO in the films increases with the applied power on the CGO target. Between 

100W and 150W the CGO content increases drastically from 6 at% to 60 at%. This regime should be 

elucidated more carefully as the ideal composition for CGO/Ni anodes is of 30%. Nevertheless, this 

work proves that the composition can be tuned by adjusting the applied power on the CGO metallic 

target. 

 

 
Figure 45: Ni-CGO composite thin film composition (in %at. of CGO) related to the power applied on the 

CGO metallic target. 
 

In a second time, the composition of the films was investigated by depositing Ni/CGO films from the 

CGO metallic target partially covered by a thin Ni foil. In this case, the substrate is static and the rate 

of deposition is better than with the previous rotating method. The film composition and the schematic 

coverage of the CGO target by the Ni foil are given in Figure 46. To obtain 30 at%. of CGO in the 

film, the Ni foil should be placed on the border of the CGO metallic target and cover 8% of the total 

target surface. Theses results also show that the plasma is not homogenous, mainly because of the 

magnetron, and that the film content thus also depends on the position of the nickel foil. The Ni at%. 

in the film can be reduced by decreasing the size of the foil or by moving it away from the centre of 

the target where the sample is placed. 
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Figure 46: Composition of the Ni-CGO film (in %at.) according to the position and surface of the Ni foil 
placed onto the CGO metallic target. A) Ni foil at 1.9 cm of the target centre with a thickness of 2 cm, B) 
foil at 1.9 cm of the target centre with a thickness of 1 cm and C) foil at 4.5 cm of the target centre with a 

thickness of 1 cm. 
 

 

 

3.5.3. Electrical characterization of the Ni-CGO thin films 

 

The Ni-CGO films were deposited on silicon 4 x 1 cm2 samples covered with a 1 μm thick wet oxide 

layer with parameter given in Figure 46 (sample B). The thin film contains 30% of CGO and 70° of 

nickel. The DC conductivity was measured in the furnace in pure argon as explained in 3.1.3.1. 

Platinum electrodes (100 nm thick) were sputtered in the Nordiko with parameters given in Table 5 at 

both ends of the sample. The conductivity of Ni-CGO layers was measured in the plane of the film 

between the two electrodes separated by 1 mm. The platinum wires used for the contact were attached 

on the Pt electrodes with a commercial Pt paste. Then the paste was sintered at 500°C during 1 hour. 

Figure 47 shows the Arrehnius plot of the conductivity. As for ionic conductors the conductivity 

increases with the temperature and has a activation energy of 0.7 eV during heating and 0.5 eV during 

cooling. In this case, the activation energy is required for the electrons to pass from the nickel 

conduction band to the one of CGO. The maximal conductivity at 700°C is of 12 x 103 S/m. The large 

conduction during cool down can be possibly ascribed to the reduction of CGO. 
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Figure 47: Arrhenius plot of the in-plane conductivity of a Ni-CGO film measured in pure Ar. 

 

 

3.6. Porous platinum electrodes 
 

3.6.1. Growth conditions and microstructure characterization 

 

Porous platinum films were deposited from a commercial Pt target (4” diameter and 1 mm thickness) 

from Goodfellow. These films were deposited at high pressure and with the substrate holder rotating at 

6 rpm. This set of films is deposited on small silicon samples (4 x 1 cm2) covered by 1 μm of SiO2 

grown by wet oxidation. The conditions of deposition are reported in Table 14. 

 

Table 14: Deposition conditions for the porous Pt films. 
Press. 

[mT] 

Ar flow 

[sccm] 

O2 flow 

[sccm] 

DC power 

[W] 

Rot. speed 

[rpm] 

Temperature 

[°C] 

Rate 

[nm/min] 

Dist. T-S. 

[mm] 

100 50 0 100 6 25 ? 100 

 

As for Ni/CGO composite film the porosity was enhanced by reducing the mobility of the adatoms 

onto the film surface. The temperature of the substrate was kept to 25°C and the Ar pressure was high 

(100 mT) to reduce mean free path of ions in the plasma and thus their remaining energy at the surface 

of the film. With a low impact energy it is possible to avoid backscattering of ions and reduce their 

mobility on the surface. As explained by Enomoto and Taguchi [33] and already depicted in the 

paragraph 3.5.1, these parameters favour a columnar and porous microstructure as shown in Figure 48:  
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Figure 48: Cross section view of the porous platinum deposited on silicon 

 

 

3.7. Summary 
 

YSZ thin films were deposited by means of reactive magnetron sputtering onto bare, oxidized, and 

platinized silicon substrates at 530°C. The films were dense and crack free, and (111)-textured, also on 

amorphous silicon oxide the films. By applying a bias to the substrate and by decreasing its 

temperature to 20°C, it was possible to form (200) porous and nanocrystalline YSZ even on the 

YSZ(111) dense layer. Two and three layer YSZ stacks ((111)/(200) or (111)/(200)/(111)) have been 

deposited. The columnar grain boundaries of the (111) layer are interrupted at the interface between 

two consecutive layers. This microstructure is used to avoid electrical leakage due to grain boundary 

conduction through the electrolyte. 

The ionic conductivity across YSZ films was measured as a function of temperature in air. At 500°C 

the conductivity amounts to 5.5 x 10-3 S/m, and is thus sufficient for SOFC operation. The activation 

energy was measured as 0.92 eV, a value that is slightly smaller than reported in literature for 8YSZ.  

During annealing in air, the mechanical stress of (111) YSZ thin shows very strong anomalies. It was 

possible to explain these by variable oxygen vacancy concentrations. After deposition at 500°C, 

during cooling in reduced oxygen pressure, oxygen vacancies are created resulting in a compressive 

stress. When the films are post-annealed in air up to 700°C, the vacancies are filled by oxygen ions 

and the volume of the film is reduced. Thus the annealing permits to annihilate the compressive stress 

due to vacancies. It was found that this process is diffusion limited, thus controlled by the diffusion of 

oxygen ions into the film and not by oxygen up-take at its surface. The activation energy for the 

diffusion of 0.6 eV during this process is smaller than the energy derived from ionic conductivity 

measurements. We propose that the reduction in the process chamber leads to a kind of "free" oxygen 

vacancies compensated by electron charges, and not by dopant cations, as is the case for the vacancies 
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intentionally stabilized by Y+3 doping. The additional, free vacancies are much more mobile than the 

ones paired with cationic defects.  Such a behavior was predicted in the literature. During stress 

measurement, the concentration of vacancies trapped by Y3+ does not change, and thus does not affect 

the stress. Stress measurements thus allow to assess the free vacancies with their lower activation 

energy. Conductivity measurements during the first heating cycle revealed an anomaly that could be 

well ascribed to a space charge effect induced by the free vacancies. Finally, after an annealing in air, 

the YSZ films have low stress at room temperature, and resist better to thermal cycling. 

The ionic conductivity of the CGO has been measured as a function of temperature in air. At 500°C 

the conductivity is of 0.5 S/m and sufficient for SOFC operation. The activation energy of 1.2 eV is 

slightly smaller than the literature value. The ability of the Ce ions to be reduced from +IV to +III 

causes electronic leakage in thin CGO films. For this reason, CGO was replaced by YSZ even though 

its ionic conduction is lower. 

CGO thin films were deposited by means of reactive magnetron sputtering onto different substrates at 

different temperature (20°C and 430°C) and gas conditions (Ar or Ar and O2). XRD analysis shows 

that the films are mostly (111) textured on platinum when deposited at high temperature. A loss of Ce 

during the deposition process has been found by EDAX analysis. To compensate this deficiency, a 

target with an excess of Ce has been used and provides films with the good stochiometry. The stress 

behaviour of the CGO films has been studied as a function of temperature. As in YSZ, the as-

deposited films contain free oxygen vacancies, but in contrast to YSZ, these ones are trapped near Ce3+ 

defects.  

The growth of Ni-CGO films by co-sputtering from a nickel and a CGO target has also been studied. It 

was possible to obtain columnar porous films with various compositions. These films can be used later 

as the anode in a μSOFC. 

LSC dense cathode and porous platinum electrodes have also been studied for use in μSOFCs.



 103

 

3.8. References 
 

1. Ohring, M., Materials science of thin films: Deposition and structure. 2002, San Diego: 

Academic Press. 

2. Hertz, J.L. and H.L. Tuller, Electrochemical Characterization of Thin Films for a Micro-Solid 

Oxide Fuel Cell. Journal of Electroceramics, 2004. 13: p. 663-668. 

3. Laffez, P., et al., Growth of La2Mo2O9 films on porous Al 2O3 substrates by radio frequency 

magnetron sputtering. Thin Solid Films, 2006. 500(1-2): p. 27-33. 

4. Yoo, Y., Fabrication and characterization of thin film electrolytes deposited by RF magnetron 

sputtering for low temperature solid oxide fuel cells. Journal of Power Sources, 2006. 160: p. 

202-206. 

5. Tsai, T. and S.A. Barnett, Bias sputter deposition of dense yttria-stabilized zirconia films on 

porous substrates. Journal of vacuum science and technology A, 1995. 13: p. 1073-1077. 

6. Nagata, A. and H. Okayama, Characterization of solid oxide fuel cell device having a three-

layer film structure grown by RF magnetron sputtering. Vacuum, 2002. 66: p. 523-529. 

7. LaO, G.J., et al., Microstructural features of RF-sputtered SOFC anode and electrolyte 

materials. Journal of Electroceramics, 2004. 13: p. 691-695. 

8. Hiboux, S. and P. Muralt, Mixed titania-lead oxide seed layers for PZT growth in Pt(111): a 

study on nucleation, texture and properties. Journal of the European Ceramic Society, 2004. 

24: p. 1593-1596. 

9. Steele, B.C.H. and A. Heinzel, Materials for fuel-cell technologies. Nature, 2001. 414: p. 345-

352. 

10. Ruddell, D.E., B.R. Stoner, and J.Y. Thomspon, Effect of deposition interruption and 

substrate bias on the structure of sputter-deposited yttria-stabilized zirconia thin films. Journal 

of Vacuum science and technology A, 2002. 20(5): p. 1744-1748. 

11. CRC Handbook of Chemistry and Physics. 75th ed, ed. D.R. Lide. 1994, London: CRC Press. 

12. Ingel, R.P. and D.L. III, Errors in elastic constant measurments in single crystals. Journal of 

the American Ceramic Society, 1988. 71(4): p. 261-264. 

13. Roth, W.L., et al., Structure of additives in ß''-alumina and zirconia superionic conductors. 

Solid State Ionics, 1985. 18-19: p. 1115-1119. 

14. Yamamura, Y., S. Kawasaki, and H. Sakai, Molecular dynamics analysis of ionic conduction 

mechanism in yttria-stabilized zirconia. Solid State Ionics, 1999. 126: p. 181-189. 

15. Cormack, A.N., Mass transport in anion deficient fluorite oxides. Materials Science Forum, 

1986. 7: p. 177-186. 



 104

16. Atkinson, A., Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell 

electrolytes. Solid State Ionics, 1997. 95: p. 249-258. 

17. Lubomirsky, I., Mechanical properties and defect chemistry. Solid State Ionics, 2006. 177: p. 

1639-1642. 

18. Li, X. and B. Hafskjold, Molecular dynamics simulations of yttrium-stabilized zirconia. 

Journal of Physics: Condensed Matter, 1995. 7: p. 1255-1271. 

19. Quinn, D.J., Microstrucuture, residual stress and mechanical properties of thin materials for 

a microfabricated solid oxide fuel cell. 2006, Massachusetts Institute of Technology: Boston. 

20. Ochando, I.M., et al., Influence of the yttria content on the mechanical properties of Y2O3-

ZrO2 thin films prepared by EB-PVD. Vacuum, 2007. 81: p. 1457-1461. 

21. Greenberg, M., et al., Elasticity of solids with a large concentration of point defects. 

Advanced Functional Materials, 2006. 16: p. 48-52. 

22. Infortuna, A., A.S. Harvey, and L.J. Gauckler, Microstructures of CGO and YSZ thin films by 

pulsed laser deposition. Advanced Functional Materials, 2008. 18: p. 127-135. 

23. Harris, G.B., Quantitative measurements of preferred orientation in rolled uranium bars. 

Philosophy Magazine, 1952. 43: p. 113-123. 

24. Atkinson, A. and T.M.G.M. Ramos, Chemically-induced stresse in ceramic oxygen ion-

conducting membranes. Solid State Ionics, 2000. 129: p. 259-269. 

25. Wang, S., et al., Nonstoichiometry of Ce0.8Gd0.2O1.9-x. Journal of the Electrochemical 

Society, 1997. 144: p. 4076-4080. 

26. Rupp, J.L.M., A. Infortuna, and L.J. Gauckler, Thermodynamic stability of gadolinia-doped 

ceria thin film electrolytes for micro-solid oxide fuel cells. Journal of the American Ceramic 

Society, 2007. 90(6): p. 1792-1797. 

27. Sanderson, R.T., Chemical Periodicity. Physical and inorganic chemistry textbook series, ed. 

Reinhold. 1960, New York: Chapman & Hall. 

28. Wang, Y., et al., The effect of oxygen vacancy concentration on the elastic modulus of florite-

structured oxides. Solid State Ionics, 2007. 178: p. 53-58. 

29. Doshi, R., et al., Development of Solid-Oxide Fuel Cells That Operate at 500°C. Journal of 

Electrochemical Society, 1999. 146(4): p. 1273-1278. 

30. Steele, B.C.H., Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500°C. 

Solid State Ionics, 2000. 129: p. 95-110. 

31. Gauckler, L.J., et al., Solide Oxide Fuel Cells: Systems and Materials. Chimia, 2004. 58(12): 

p. 837-850. 

32. Masumoto, H., S. Hiboux, and P. Muralt, Preparation of La1-xSrxCoO3 electrodes for 

ferroelectric thin films by RF magnetron sputtering. Ferroelectrics, 1999. 225: p. 335-341. 

33. Enomoto, Y. and M. Taguchi, Modelling of columnar growth continuum ballistic deposition. 

Applied Surface Science, 2005. 244: p. 213-216. 



 105

34. Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure 

and topography of thick sputtered coatings. Journal of vacuum science and technology A, 

1974. 11(4): p. 666-670. 

35. Karabacak, T., et al., Scaling during shadowin growth of isolated nanocolumns. Physical 

Review B, 2003. 68: p. 125408-1-5. 

36. Dubois, M.-A. and P. Muralt, Properties of Aluminium nitride thin films for piezoelectric 

transducers and microwave filter applications. Appl. Phys. Lett., 1999. 4(20): p. 3032-3034. 

37. Lanz, R., M.-A. Dubois, and P. Muralt. Solidly mounted BAW filters for the 6 to 8 GHz range 

based on AlN thin film. in IEEE Ultrason. Symp. Proc. 2001. 

 



 106

 



 107

 

μSOFC fabrication and characterization 
 

 

 

4.1. Discussion of the constraints related to the fabrication of μSOFCs 
4.1.1. The role of the nickel concept 
4.1.2. Influence of the electrodes microstructure on the electrolyte resistance 

4.2. Process flow for the fabrication of the μSOFCs 
4.2.1. Overview of the process flow 
4.2.2. μSOFCs design 
4.2.3. Wafer preparation 
4.2.4. Patterning of the SiO2 mask 
4.2.5. Deposition of the platinum cathode 
4.2.6. Patterning of the platinum cathode 
4.2.7. Deposition of the electrolyte 
4.2.8. Deposition of the platinum seed layer for the nickel grid 
4.2.9. Patterning of the platinum seed layer 
4.2.10. Deposition of the nickel grid by electroplating 
4.2.11. Membrane releasing by silicon deep etching 
4.2.12. Deposition of the porous Pt electrodes 

4.3. Characterization of the μSOFCs 
4.3.1. Encountered fabrication difficulties 
4.3.2. Mechanical and thermal resistance of the μSOFCs 
4.3.3. Detection of leaking cell during the process flow 
4.3.4. μSOFC voltage and power measurement 

4.3.4.1. Experimental setup 
4.3.4.2. Open circuit voltage 
4.3.4.3. I-V curves 

4.4. Summary 

4.5. References 



 108

 

4.1. Discussion of the constraints related to the fabrication of μSOFCs 
 

As already discussed in chapter 2, the mechanical stability of the electrolyte is of primary concern. In 

addition, the electrolyte should be free of gas leaks. In this section, such issues are discussed in 

relation with the microfabrication and thin films deposition techniques. 

 

 

4.1.1. The role of the nickel grid 

 

The best possible μSOFC membrane has to satisfy at the same time two conflicting conditions: On the 

one hand its diameter should be relatively large - i.e. in the mm to cm range - and on the other hand 

should by rather thin to reduce ionic resistance and operation temperature. Due to the large thermal 

expansion mismatch between YSZ and silicon of approximately 7 ppm/K, the thickness of a free 

standing membrane with a surface of 1 mm2 should reach at least 50 μm [1], or else some support is 

needed to avoid buckling. [2]. In this work, it was decided to support the membrane with a nickel grid. 

The choice of nickel was made based on the convenient growth process by electroplating, which 

allows for a selective deposition within a resist mould, and for obtaining thicker films than by other 

methods. In addition, it is cheaper and easy to be up-scaled. Another advantage of the nickel is that it 

has been used for many years as a material for the anode of SOFCs [3]. Finally the thermal expansion 

coefficient of nickel (13 ppm/K [4]) is much better matched to the one of YSZ (10 ppm/K). 

In order to successfully develop a fabrication concept, a hierarchy of important requirements needs to 

be established. A very stringent condition can be derived for the deposition of the electrolyte layer. 

This one is not only very thin, but should also be free of cracks and pores. As a consequence, this layer 

must be deposited on a flat and pore free surface, especially if physical deposition techniques are used 

(sputtering, PLD, evaporation). CVD techniques may accept somewhat less strict conditions. In any 

case, a polished wafer surface is a very good starting point for the deposition of the electrolyte layer. 

This approach implies, however, that the supporting structure must be mounted on top of the 

electrolyte layer (which is contrast to earlier work and patents [1-9]). Alternatively, one could apply a 

chemical-mechanical polishing step after moulding a reinforcement structure into a substrate, and then 

deposit the electrolyte layer. This procedure is not only more expensive, it would also restrict the 

temperature of the oxygen anneal after electrolyte deposition in case nickel is used as supporting 

structure. For these reasons we thus pursued the approach according to the criteria: 

 

 1) Profit from smooth wafer to deposit dense and crack free electrolyte layer 

 2) Apply nickel grid after all high temperature oxygen anneals are done 
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This approach resulted in the design as given in Figure 1. Nevertheless, one compromise needed to be 

done: Since we wanted to have the cathode contact on the same side as the anode contact, a patterned 

cathode needs to be deposited before the electrolyte layer. Hence at least at one side of the membrane, 

there is a step where the continuous cathode contact layer ends (to the left in Figure 1). As further 

explained in the following, there are additional variants:  

 

1) The cathode contact layer may also form a mesh as current collector below the electrolyte 

(as in Figure 1).  

2) A thermal oxide layer is introduced between silicon and cathode to avoid conduction 

 through the silicon.  

3) A continuous mixed conducting cathode layer is introduced below the electrolyte layer. 

 

 
Figure 1: Cross section scheme of the μSOFC. 

 

The porous electrodes are deposited at the end of the process after the membranes have been released. 

In this case the advantage of having a very large membrane aperture is clear. Albeit the hole in the Si 

is 380 μm deep, large aperture permits to sputter the porous cathode directly on the electrolyte from 

the backside. 

To measure the voltage of the cell, electrical contacts are required. For they are made of metals, it was 

decided to place them on the anode side, where no oxidation takes place. This construction requires a 

via in the PEN to reach the cathode contacts. Since the electrolyte was difficult to etch and since the 

large dimensions of the cell do not require a critical alignment of the cathode contact, the electrolyte 

was deposited through a shadow mask covering the contact cathode area. 

First grids were designed with a hexagonal pattern. The side dimension of the hexagon was 50 μm 

long, the diameter was 100 μm and the grid’s linewidth was of 5 μm. After the releasing of the 

membrane by Si dry etching, the electrolyte usually shows some strain at the border of the silicon 

hole, as can be seen in Figure 2: 
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Figure 2: View of the strain near the border of a membrane supported by an hexagonal Ni grid. 

 

As seen in Figure 3, the hexagonal nickel grid can support all the layers comprised in the PEN stack. 

The grid also adapts its shape to the strain at the border of the silicon hole. Albeit the nickel grid is 

very ductile, the large strains near the border of the silicon hole created some cracks in the electrolyte 

in less than 5% of the grid cells. 

 

 
Figure 3: SEM cross view of the nickel supporting the electrolyte, a Pt current collector and a LSC 

cathode (top left). 
 

To minimize this effect, a spiderweb pattern was chosen in accordance to the central symmetry of the 

silicon hole. The cell dimensions are critical to prevent formation of cracks due to the thermal stress. 

The grid is made of concentric circles of increasing diameter. The circle radius is increased in steps of 

50 μm as shown in Figure 4. The number of radial intersections is increased with the diameter of the 

circles in order to keep the size of the outer arc of the cell below 90 μm. An outer ring made of nickel 
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covers the border of the silicon hole, thus avoiding the buckling of the electrolyte at this place. This 

ring is 200 μm wide. For a 500 nm thick membrane the maximal aperture should be of 15 μm 

according to the equation 2.3. But this calculation applied to flat membranes and the nickel grid steps 

increase the maximal aperture by a factor 150 [10]. Thus, a maximal aperture of 90 μm is relatively 

conservative. 

 

 

 
Figure 4: Schematic view of the spider web nickel grid. 

 

Optical profilometry analysis shows that the thickness of the grid is relatively constant on the scale of 

a cell as seen in Figure 5, but variations of 30% are observed across the wafer. This difference is due 

to the non-uniform the electrical current distribution over the wafer and can be corrected by a more 

careful study of the platinum wire design. 

 

 
Figure 5: Profile of the large spiderweb nickel grid 
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A cross section of the nickel grid supporting the electrolyte has been obtained by cutting the sample 

with a focused ion beam (Nova 600 Nanolab from FEI). Figure 6 obtained with gallium ions, shows 

the trapezoidal shape of the nickel grid section. This particular shape is due to the photoresist (S1818 

from Shipley) mould that yields inclined walls. The electrolyte surface covered by the nickel is smaller 

than the mean section of the grid, thus the structure is stronger than if its walls were vertical. The only 

disadvantage of this shape is that, during the deposition of a porous anode, some parts of the 

electrolyte will not be covered and thus the total TPB will be slightly reduced. Some artefacts due to 

the redeposition of the etched material are seen on the nickel grid sides and on the electrolyte. The ion 

milling also renders the nickel surface rougher as seen on the upper surface of the grid. The contrast 

obtained with the ion beam shows the structure of the nickel grains. At the beginning of the growth a 

mushy zone with smaller grains is formed. Then the grains grow and form columns that are oriented 

along the radii of the grid section. 

 

 
Figure 6: Image of the nickel grid cross section obtained with the Ga ions, after cut of the sample with 

FIB. 
 

 

4.1.2. Influence of the electrode microstructure on the electrolyte resistance 

 

The power of the cell is mainly dependant on the ohmic losses occurring in the electrolyte and in the 

electrodes as seen in paragraph 1.4.4. In the simplest case, the resistance of the electrolyte Rode is 

proportional to the ratio of its thickness h and its ionic conductivity σion. In this case, it is considered 

that the surface of the electrolyte is homogeneously active and this assumption is generally true for 

thick electrolytes. In the case of thin films, the microstructure of the electrodes has a very important 

effect on the electrolyte resistance. The density of triple phase line and the capacity of the electrodes to 
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conduct oxygen ions can improve the conductivity. At 500°C, the diffusion length in YSZ is limited to 

the regions where ions can diffuse from the cathode to the anode. If the particles of the electrode have 

a diameter d and are separated by a distance b larger than the diffusion length, the active surface of the 

electrode is reduced and its resistance increases. Figure 7 shows the diffusion path through the 

electrolyte for different particle type and distribution: 

 

 
Figure 7: Diffusion path trough the electrolyte for different types of electrodes. a) both electrodes are ionic 
conductors and well aligned, b) electrodes only conducts electrons and c) electrodes conduct ions but are 

not well aligned. 
 

This situation can be modeled simply by the following equation given by Fleig [11]: 
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This model is only valid for particles that are homogenously sized and distributed over the whole 

membrane. The simulated curves in Figure 8 show that the fineness of the microstructure is only 

important for a given thickness of the electrolyte hcrit: 

 

 
Figure 8: Resistance of the electrolyte versus thickness for different electrode morphologies. 
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Thus for μSOFCs with electrolyte thickness under 500 nm, it is important to work with fine-grained 

electrodes to avoid resistive losses. With thick electrolytes such as in large SOFCs, there is no 

advantage of having a very fine microstructure as the resistance only depends on h and is proportional 

to h/σion. For small values of h the resistance reaches a threshold equal to: 
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This limit gives the value of h at which the behavior of the resistance starts to depend on the 

microstructure of the electrode: 
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For thin film electrolyte with (h = 500nm), the resistance of the electrolyte starts to deviate from the 

linear law when b=2d=750 nm. Thus in 500 nm thick electrolytes, grain size of electrode in the range 

of hundreds of nanometer are very favorable. On the contrary, for thick self-supported electrolytes 

SOFC (h > 150 μm [12]), a fine particle size is not required. In the case of μSOFC, h is in the 

micrometer range thus the parameters b and d can affect the resistance very much and in this case it is 

better to have a particle size in the nanometer range. The coverage of the electrolyte also plays an 

important role. As shown in Figure 9, the electrolyte resistance, for an electrolyte thickness of 500 nm 

and a distance of 150 nm between the particles, decreases drastically when the coverage increase from 

15 % to 40 % (i.e. when d goes from 0.15 b to 0.4 b): 

 

 
Figure 9: Electrolyte resistance for an electrolyte thickness of 500 nm versus the microstructure of the 

electrode characterized by the distance between the particles b and their size d. 
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For the μSOFCs fabricated during this work, porous platinum electrodes as described in the paragraph 

3.6, were used to enhance the TPB length and thus reduce the cell resistance. These platinum 

electrodes have a mean grain size dpt of 20 nm and the grains are spaced by bpt 25 nm. By using the 

equation (4.2), it can be calculated that with these electrode microstructure and by assuming a 

conductivity σion of 5.5 x 10-3 S/m, the total resistance only increases by 6% of the value that can be 

obtained with full covering mixed conducting electrodes. With a coarser microstructure (e.g. b = 1 μm 

and d =1.5 μm), the resistance would be increased by 250 %. 

 

 

4.2. Process flow for the fabrication of the μSOFCs 
 

4.2.1. Overview of the process flow 

 

The process flow comprises 4 photolithographic masks and 2 shadow masks used during the 

deposition of the electrolyte and of the porous anode. The process includes 4 photolithography steps, 

the deposition of 5 different layers by sputtering and one by electroplating and 4 etching steps. All 

these steps will be described briefly in this paragraph with illustrations and parameters. A more 

detailed description of all these technical steps can be found in the literature for example in [13]. A 

schematic overview of the process flow is given in Figure 10 and Figure 11. In this summary, basics 

steps such has photolithography and photoresist removal are ignored and film deposition and 

patterning are combined in the same image. After the process flow overview, the different μSOFCs 

designed and developed in this work are reviewed with critical dimensions and characteristics. And 

finally each step is shortly described and its important parameters are summarized. 
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Figure 10: Schematic view of the process flow for the fabrication of μSOFCs. 
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Figure 11: Schematic view of the process flow for the fabrication of μSOFCs( continued). 
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4.2.2. μSOFCs design  

 

The different parts contained in the μSOFC will be briefly described as well as their respective 

functions. All these components can be found in the cross section scheme of the cell on Figure 1. 

 

1. The device is supported by a silicon wafer 380 μm thick. 6 cells and their connections are 

disposed on one wafer. At the end of the process the PEN membranes are released by removal 

of the silicon wafer underneath them. 

2. The electrolyte is made of YSZ or CGO and serves as ionic conductor for oxygen ions from 

the cathode to the anode of the cell. It should be as thin as possible to reduce the resistance but 

also crack and pinhole free to prevent gas mixing and electronic short cut. In this work, the 

thickness of the electrolyte is comprised between 500 and 700 nm. 

3. The contacts for the cathode are made of a 100 nm thick layer of platinum. It serves as 

connections for the experimental setup and is linked to the current collector on the cathode 

side. 

4. The current collector on the cathode side is a grid made of platinum (100 nm thick). It collects 

the electrons created by the reduction of the oxygen ions. 

5. The contacts for the anode have the same role as on the cathode side. They are made of nickel 

and are connected to the nickel grid. 

6. The nickel grid serves as support for the thin PEN membrane and as current collector on the 

anode side.  

7. The porous anode and cathode are made of platinum with a thickness of less than 50 nm. They 

must be permeable to gas and form a percolated network to conduct electrons to the nickel 

grid. They increase the cell efficiency by increasing the triple phase line length. In some 

versions, a dense and thin LSC layer has been used in place as cathode. 

 

All the cells fabricated during this work have a cross section comparable to Figure 1. Variations of the 

size and of the nickel grid pattern lead to four different μSOFC designs: 

 

1. Large cell of 5 mm diameter with a spider web Ni grid 

2. Small cell of 0.5 mm diameter with a spider web Ni grid 

3. Array of 7 x 7 small cells of 0.5 mm diameter with a spider web Ni grid 

4. Large cell of 5 mm diameter with a hexagonal Ni grid 

 

The schematic views of these different cells are given in Figure 12. 
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Figure 12: Design of the 4 differents types of μSOFC: a) Large cell with spiderweb grid, b) Small cell with 

spiderweb grid, c) Array of 49 small cells with spider web grid, d) Large cell with hexagonal grid. 
 

Each design has 4 contacts: 2 for the anode, on the top and on the bottom of the cell, and 2 for the 

cathode on the left and on the right. The platinum wires are pasted on the contacts for cell 

measurements. Thus, the contacts cover a large surface (2.5 x 5 mm2) and are connected to the cell by 

lines of platinum for the cathode and by the nickel gird for the anode. With the spiderweb grid, the 

cathode has he same pattern as the nickel grid and they are superimposed. With hexagonal grid, the 

cathode has the same hexagonal shape as the Ni grid, with the addition of the diagonals of the 

hexagons as seen in Figure 13: 
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Figure 13: Pictures of the cell with spider web and hexagonal patterns. The places were the cathode and 

anodes are superimposed are indicated. 
 

In the case of the small spiderweb cells, the cathode contacts have a different shape to minimize the 

resistance in the thin Pt film (100 nm). In this case, the wires are replaced by a large surface as seen in 

Figure 12 b. The anode contacts are with the Ni grid and thus they have the same thickness of 

approximately 5 μm. To prevent peel off due to the stress accumulation over a large area, they also 

have the form of a grid. This grid has a square pattern with a linewidth of 10 μm and spacing of 

20 μm. 

To avoid the etch of the electrolyte, it is deposited through a hard mask. This mask is made of a thin 

stainless steel foil with a thickness 0.3 mm. This mask has 6 apertures with dimensions of 5 mm x 10 

mm corresponding to the 6 devices mounted on the wafer. As seen in Figure 12, the electrolyte is thus 

patterned and covers a region comprising the Si hole and the position of the two anode contacts that 

will be deposited later onto it. The contacts of the cathode remain uncovered and accessible for 

electrical measurement. 

The 4 designs are mainly differentiated by the size and shape of the Ni grid. Some cells have a 

diameter of 5 mm and are covered by a hexagonal or a spider web grid. Smaller cells, with a diameter 

of 0.5 mm, have been fabricated to minimize the influence of the electrolyte film quality on the cells 

performances. Arrays of 7 x 7 small 0.5 mm cells have also been fabricated. This design was expected 

to be a solution in the case of the large 5 mm cells were not supporting the ramping to 500°C.  

 

 

4.2.3. Wafer preparation 

 

Double side polished (100)-oriented silicon wafers with a thickness of 380 μm are used for this 

process. They are covered by 1.5 μm of amorphous SiO2 grown by wet oxidation which will later 

serve as mask for the silicon dry etching. 
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4.2.4. Patterning of the SiO2 mask 

 

The goal of this step is to pattern the back side of the wafer to obtain a 1.5 μm thick SiO2 mask that 

will serve during the Si dry etch. On the front side, the SiO2 is thinned down to 200 nm to prevent 

electrical leakage in the Si wafer during μSOFC operation.  

For this purpose, a photoresist layer (S1818 from Shipley) is spun (Rite Track) on the wafer back side, 

exposed through a photolithographic mask #1 (MA6 aligner from Karl Suess) and developed (in 

MD351 from Shipley, with Rite Track) to obtain a 3.5 μm thick mask. The other parameters for 

photolithography are collected in Table 1: 

 

Table 1: Parameters for photolithography. 
Thickness [μm] Spin [rpm] Bake [°C]/[s] Exposition 

[s]/[mW/cm2] 

Development 

[s] 

Post bake 

[°C]/[s] 

3.5 3500 115/120 16/10 45 115/60 

 

The silicon oxide then is wet etched in a buffered solution of hydrofluoric acid (BHF) to thin down the 

SiO2 layer to 200 nm on both sides. Further parameters are given in Table 2: 

 

Table 2: Parameters for SiO2 wet etch 
Thickness [μm] Solution Time [min] Rate [nm/min] Temperature 

[°C] 

3.5-0.2 NH4F(40%):HF(50%), 7:1 17 77 25 

 

Finally, the remaining 200 nm of SiO2 on the back side are removed by dry etch in Alcatel 601E. The 

parameters are given in the Table 3: 

 

Table 3: Parameters for SiO2 dry etch 
Thickness 

[nm] 

Power 

[W] 

Biais [W] Gas Time [s] Rate 

[nm/min] 

Temperature 

[°C] 

~200 1800 90 C4F8  

200 sccm 

~45 340 25 

 

Finally, the photoresist is removed in a chemical solution and then by using an oxygen plasma (Tepla). 
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4.2.5. Deposition of the platinum cathode 

 

The platinum cathode was deposited onto the 200 nm of silicon oxide remaining on the front side of 

the wafer. A thin titanium layer serves as adhesion layer. Both layers were deposited in a multi-

chamber sputtering tool (Spider from Pfeiffer). The important parameters for this process are given in 

the Table 4: 

 

Table 4: Deposition parameters for the titanium/platinum layers 
Layer Thickness 

[nm] 

DC power [W] Argon flow [sccm] Time [s] Rate 

[nm/min] 

Temperature 

[°C] 

Titanium 5 1000 15 10 120 300 

Platinum 100 (50) 1000 15 22 270 300 

 

This layer serves as a primary cathode and also as current collector from the centre of the cell to the 

contact. The Pt thickness was reduced to 50 nm for the last devices. 

 

 

4.2.6. Patterning of the platinum cathode 

 

The platinum cathode is patterned by mean of dry etching and with using of photoresist mask. The 

photolithography is done with the parameters given in Table 1 and by using the mask #2. The Ti/Pt 

film is etched by using chlorine chemistry (dry etcher from STS) and important parameters can be 

found in the Table 5: 

 

Table 5: Parameters for Ti/Pt dry etch 
Thickness 

[nm] 

DC power [W] Gas flows [sccm] Time [s] Rate 

[nm/min] 

Selectivity with 

PR [°C] 

100-0 1000 Cl2, 15/Ar, 10 360 ~35 1/8 

 

This platinum layer has the same spiderweb or hexagonal pattern as the nickel grid. More information 

about its design can be found in the paragraph 4.1.1. After the process, the photoresist is removed as in 

paragraph 4.2.4. 

 

 

4.2.7. Deposition of the electrolyte 

 

The electrolyte can be in a form of a CGO layer, YSZ layer or multilayer of YSZ (2 or 3). The 

parameters for these depositions and the films microstructure and properties are given in chapter 3. 
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The electrolyte is sputtered through a hard mask made of stainless steel to keep an access for the 

cathode contacts. 

 

 

4.2.8. Deposition of the platinum seed layer for the nickel grid 

 

The platinum seed layer was deposited onto the electrolyte on the front side of the wafer. A thin 

titanium layer serves as adhesion layer. Both layers were deposited in a multi-chamber sputtering tool 

(Spider from Pfeiffer). The important parameters for this process are given in the Table 4. This layer 

serves as electrical connections to the border of the wafer where the electrical potential for 

electroplating is applied. The nickel grid will grow on the parts of this layer that are not covered by the 

photoresist mould. 

 

 

4.2.9. Patterning of the platinum seed layer 

 

The platinum cathode is patterned by means of dry etching and with using of photoresist mask. The 

photolithography is done with the parameters given in Table 1 and by using the mask #3. The Ti/Pt 

film is etched by using chlorine chemistry (dry etcher from STS) and important parameters can be 

found in the Table 5. 

 

 

4.2.10. Deposition of the nickel grid by electroplating 

 

The nickel grid is deposited in a photoresist mould from a commercial nickel speed bath with the 

following composition: nickel sulfamate 600g/l, nickel chloride 10g/l, boric acid 40 g/l and additives 

(Commercial Ni-speed bath). The mould is made in photoresist with the mask #4 and parameters of 

Table 1. The mask #4 is the negative of mask #3, as the Pt seed layer is used as electrical conductor to 

deposit the grid. 

 

Table 6: Parameters for the Ni electroplating 
Thickness 

[μm] 

DC current 

[mA] 

Current density 

[mW/cm2] 

Time 

[min] 

Rate 

[nm/min] 

Temperature 

[°C] 

~5 50 ~30 15 35 45 

 

The residual stress in the nickel grid is very important for the sustainability of the cell. The layers 

made with a commercial Ni-speed bath normally have a compressive state of stress [14]. The stress 
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was measured as a function of the temperature of the bath (30 to 60°C) and the current density (5 to 50 

mA/cm2). The measurements were made on metallic foil covered on one side by a zinc layer and on 

the other side by an isolating polymer layer. The bending of the bimorph indicates the stress value in 

arbitrary units. As shown in Figure 14, the compressive stress is reduced by decreasing the 

temperature and increasing the current density. Thus to obtain a near zero state of stress, the free 

standing grids were deposited at 45°C and 30 mA/cm2. The effect of the latter parameters on the films 

roughness has not been elucidated as they are not interesting for this application. 

 
Figure 14: Measured map of the compressive residual stress in deposited Ni films as a function of the 

temperature and of the current density. 
 

 

4.2.11. Membrane releasing by silicon deep etching 

 

The deep reactive etching of the silicon wafer releases the thin μSOFC membrane by plasma (Alcatel 

601E). Thus, the control of this process, especially the duration, is critical. The Bosch process with 

sequential pulses of CF6 and C4F8 gas permits to obtain very deep cavities with a very good aspect 

ratio [15]. The high selectivity of this process with SiO2, has two advantages: 

 

1. The oxide is a very good mask. The equivalent thickness of photoresist required to etch the 

same thickness of Si is of 4 μm, but the photoresist is less homogeneous and can stick to the 

substrate holder. 

2. The remaining 200 nm of silicon oxide are a very good etch stop. As the process is not fully 

homogeneous in the bottom of the hole it permits to fully remove the Si everywhere without 

attacking the electrolyte. 
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The parameters used for this process are given in Table 7: 

 

Table 7: Parameters for the dry reactive etching of the silicon with the Bosch process 
Thickness 

[μm] 

Power [W] Substrate 

bias [W] 

Gas pulses Time 

[min] 

Rate 

[μm/mi

n] 

Selectivity 

with SiO2 

Temperature 

[°C] 

~380 1800 90 C4F8/SF6 

8/300 sccm 

45-50 7-10 ~400 25 

 

After the removal of the Si, the 200 nm of SiO2 are dry etched in the same tool. The parameters used 

for this process are given in Table 8. 

 

Table 8: Parameters for the dry reactive etching of the silicon oxide 
Thickness 

[nm] 

Power 

[W] 

Biais [W] Gas Time [s] Rate 

[nm/min] 

Temperature 

[°C] 

~200 1800 90 C4F8  

200 sccm 

~45 340 25 

 

After this step the wafer is cut in 6 parts of 2.5 x 2.5 cm2, each of them containing one μSOFC. 

 

 

4.2.12. Deposition of the porous Pt electrodes 

 

The porous platinum electrodes are deposited with the Nordiko sputtering tool with the parameters 

given in paragraph 3.6.1. The cathode is deposited through the Si hole on the backside of the wafer. 

The anode is deposited on the nickel grid. A shutter mask made of a thin (0.3 mm) steel foil is used to 

cover the cathode contacts and prevent electrical shortcut between the anode and the cathode. 

 

 

4.3. Characterization of the μSOFCs 
 

4.3.1. Encountered fabrication difficulties 

 

The quality of the YSZ sputtered electrolyte has always been a problem leading to electrical leakage in 

the cells. In contrast to CGO, sputter deposition of YSZ was much more prone to produce particles 

that were leading to pinholes in the film. Proof was that smaller capacitors were much more reliable 

than large ones. This can be possibly explained by a stronger charging of YSZ covered shields anodes, 
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leading to higher arcing risks. A further reason might be a too high water pressure in the sputter 

chamber. Its base pressure was only of 5 x 10-6 mbar and it also serves to deposit a large variety of 

materials including lead zirconate titanate. With an up to date industrial sputtering tool dedicated to 

YSZ, the film quality could certainly be improved. 

The adhesion of the nickel grid was strongly dependent on the quality of the platinum seed layer and 

of the electroplating bath quality. Some stress studies have demonstrated that the Ni-speed bath 

described in paragraph 4.2.10 was developed to obtain film under compressive stress [14]. This is an 

advantage for metallic coatings but not for free standing structures. It would be preferable to use 

another type of bath leading to a tensile stress. As it was not possible for clean room compatibility 

reasons, we decided to adapt the deposition parameters with the existing bath in order to reduce the 

compressive stress in the electroplated films. The platinum seed layer has to be deposited on a 

titanium thin adhesion layer of approximately 3 nm. To ensure thermal stability the deposition 

temperature should be close to the operation temperature of the cell. In the Spider sputtering tool, the 

maximal deposition temperature is of 350°C. The quality of the layer can then be improved with an 

annealing. The chemical stability of the Ti layer can be enhanced by adding a TiO2 layer onto it to 

prevent Ti diffusion in the platinum. Albeit, as far as we know, the diffusion of Ti has never been a 

problem for our devices, this TiO2 layer can be easily implemented. 

When releasing the membrane by deep reactive silicon etching the 200 nm SiO2 layer serves as etch 

stop. Albeit the selectivity of the process is very good, membranes can be fully released before starting 

the SiO2 etch. As the etching rate is dependent on membrane size and not homogenous over the 

surface of the wafer, several inspections with optical microscope are required during the last five 

minutes of the process. Then as the silicon oxide and the YSZ membrane are transparent it is difficult 

to control the removal of the SiO2 layer. Experience has shown that the YSZ is very resistant to the 

C4F8 gas so we prone to over etch the oxide layer.  

 

 

4.3.2. Mechanical and thermal resistance of the μSOFCs 

 

The μSOFC with a diameter of 5 mm and supported by a spiderweb nickel grid have been successfully 

fabricated as seen in Figure 15:  
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Figure 15: Spiderweb μSOFC with a diameter of 5 mm. 

 

This type of cell can resist several thermal cycles up to 550°C, under operation condition with a flow 

of oxygen (10 sccm) on the anode and a mix of hydrogen (10 sccm) and argon (10 sccm) on the 

cathode. Inspections with the help of an optical microscope have proven that the electrolyte was not 

cracked. The two main reasons for this mechanical and thermal stability are: 

 

1. The support of the nickel grid 

2. The relatively low stress change with temperature (+/- 100 MPa up to 500°C) of the YSZ after 

annealing as explained in the paragraph 3.2.3. 

 

After this annealing treatment even small YSZ membranes of 0.5 mm diameter that are not supported 

by a nickel grid can survive silicon deep etching. On the contrary, CGO membranes with a diameter of 

0.6 mm were already cracking at 350°C and already subject to large strain even at room temperature 

Figure 16. Apart from the electrical leakage, this bad mechanical stability was another reason to 

exclude CGO. 
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Figure 16: 600 μm diameter CGO membranes with a thickness of 500 nm after heating to 350°C (left) and 

after silicon removal at 25°C (right) 
 

 

4.3.3. Detection of leaking cell during the process flow 

 

In this paragraph, we show a method to control the quality of the electrolyte film before the end of the 

process flow. Two types of defects can lower the OVC:  

 

1. Pinholes leading to metallic shorts: They show large leakage currents even at room 

temperature. Such pinholes are much rarer on smaller devices. Bad devices with pinholes can 

be removed from further process before Ni grid plating and membrane liberation.  

2. Thermally activated grain boundary diffusion of electrons: This effect can only be observed at 

high temperature and thus only detected at the end of the fabrication process. 

 

Measurements of the capacity C and losses tanδ of the YSZ films at room temperature have been 

carried out. The capacity C can be written in complex form as: 

 

 '(1 tan )C C i δ= −  (4.4) 
 

The total parallel resistance Rp of the film capacity C’ can be expressed by the dielectric losses 

1/ωC’tanδ (linearly decreasing with frequency) and the leakage Rl (constant with frequency). 
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If Rp is plotted against the frequency f (2πω) for films deposited on platinum (as in 3.2.4), Rp linearly 

decreases with the frequency showing only dielectric losses (Figure 17). For bad devices, Rp is 

constant with f indicating an electronic leakage through the film and thus the cells present a very low 

OCV. For better devices, Rp is constant at low frequencies and then decreases linearly with f. In this 
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case, the cell OCV reaches 200 to 280 mV. As we use the same deposition parameters for YSZ on Pt 

test samples and on devices, we suspect that leakage in the films is due to the micro-cracks induced by 

the patterned cathode mesh on which YSZ is grown. 

 
Figure 17: Resistance of the devices and of cylindrical YSZ capacitors with the frequency 

 

By this simple capacity measurement it is possible to eliminate bad devices before the end of the 

process flow. Nevertheless, this method is not sufficient to insure the quality of the μSOFCs as these 

measurements are done at room temperature. It is also impossible to put a wafer in a furnace or to fix 

platinum wires onto it before the end of the process flow as clean room work requires a minimum of 

contamination and dust. 

 

 

4.3.4. μSOFC voltage and power measurement 

 

4.3.4.1. Experimental setup 
 

The μSOFC voltage and power output are tested in a furnace capable of heating up to 1200°C (B150 

from Nabertherm). 4 platinum wires with a diameter of 0.5 mm (from Goodfellow) are flattened by 

using an hydraulic press and then stuck to the sample. Each of the wire is glued by using an alumina 

cement (from Zircar). Pt paste (Heraeus LPA 88/11 S) is applied between the contact and the wire to 

improve the conductivity. Then the sample is pressed between two pieces of alumina with a ceramic 

tissue (from Goodfellow). Two quartz pipes are mechanically clamped on both sides of the samples to 

provide the oxygen for the cathode and the fuel for the anode Figure 19. The flows of argon, oxygen 

and hydrogen are controlled with 3 flowmeters (MKS 1179) and a flow controller (MKS 647B). Most 

of the experiments were performed under pure oxygen at the cathode and a mix of argon and hydrogen 
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at the anode. A Pt/PtRh thermocouple is placed in the quartz tube on the anode side near the sample 

holder and another one is placed in the furnace near the sample holder. 

The open circuit voltage of the cell was measured with a digital multimeter (Hewlett Packard 34401A) 

placed in parallel with the cell. 

 

 
Figure 18: Schematic view of the fuel cell measurement setup 

 

 
Figure 19: View of the experimental setup in the furnace and of the electrical connections onto the μSOFC 

(top left). 
 

The current versus voltage curves (I-V curves) are measured by using the electrical montage of Figure 

20: 
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Figure 20: Scheme of the electrical montage for I-V curves measurements. 

 

A digital multimeter (Hewlett Packard 34401A) was placed in parallel with the cell to measure the 

voltage. A variable resistance (1 Ω-10 MΩ) was used as a load and placed in series with the cell and 

an electrometer (Keithley 617) that was measuring the current. The different points of the curves were 

obtained by changing progressively decreasing the resistance of the load. 

 

 

4.3.4.2. Open circuit voltage 

 

Open circuit voltage was measured on several fuel cells with different types of electrolytes and 

electrodes. The maximal OCV that was obtained at 500°C and is of 850 mV for a small spider web 

cell (diameter 0.5 mm) with an electrolyte composed of two YSZ layers respectively (111) and (200) 

oriented and porous platinum electrodes (~20 nm thick). The anode was exposed to pure hydrogen (6 

sccm) and the cathode to pure oxygen (6 sccm). For comparison, the OCVs of all the cells tested 

during this work are summarized in Figure 21: 

 

 
Figure 21: OCV of the different types of fuel cell fabricated. 

 



 132

This summary clearly show that the OCV increases when the cell has a bilayer electrolyte and that it 

was not possible to obtain a voltage when the electrolyte was only composed of CGO. We suppose 

that the thin layer of CGO was reduced by hydrogen and becomes electronically conducting.  

The OCV of the cell that reaches 850 mV in H2, was first measured under a pure flow of argon at the 

anode (6 sccm) and a flow of oxygen (6 sccm) at the cathode during ramping up from 20°C to 420°C. 

A maximal voltage of 120 mV is obtained at 390°C in this case (Figure 22): 

 

 
Figure 22: Voltage versus the temperature of the furnace. The anode is exposed to pure argon (6 sccm) 

and the cathode to pure oxygen (6 sccm). The electrolyte was composed of a YSZ bilayer (111)/(200) (250 
nm/250 nm) 

 

As explained in the first chapter, the OCV of the cell can be related to the oxygen pressures at the 

cathode pc(O2) and at the anode pa(O2): 
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Thus it is possible to calculate pa(O2) by assuming that pc(O2)=1 atm. In this case the pressure is of 

1x10-4 atm. This value can be reached in pure argon [16]. This curve also shows that in absence of 

hydrogen a low electronic leakage is obtained. 

 

 

4.3.4.3. I-V curves 

 

I-V curves of the best cell were obtained as explained in the paragraph 4.3.4.1. As seen in the Figure 

23, the maximal power density at 500°C was of 19 μW/cm2 and is a thousand times lower than 
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expected. Nevertheless, the I-V behaviour of the cell looks normal and we suppose that a high internal 

resistance due to the design of the cathode current collector is responsible for this low power. 

 

 
Figure 23: I-V curves with the cell power (left) and power density (right) 

 

It was possible to estimate the value of the internal resistance due to the design. The platinum line 

between the cell and the cathode contact was 4 mm long, 100 nm thick and 5 μm wide as seen in 

Figure 24. 

 

 
Figure 24: Schematic view and dimensions of the platinum contact line between the cell and the cathode 

contact. 
 

 

At 500°C the resistivity of the platinum is of 28.7 x 10-8 Ωm [17]. Thus, the cell has a resistance of 2.3 

kΩ that lowers its output current. This internal resistance is higher than the resistance of the electrolyte 

(diameter 0.5 mm, thickness 500 nm and YSZ conductivity 5.5 x 10-3 S/m) that is in the range of 400 

to 500 Ω. This design problem has been solved increasing the size of this connection as seen in Figure 
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12 b. Unfortunately all the cells fabricated with design contain a three layer YSZ electrolyte, with a 

total thickness of 700 nm, that show cracks at 500°C as seen in Figure 25.  

 

 
Figure 25: Cracks in YSZ three layers membrane after 1 hour under SOFC operation conditions. 

 

The combination of a two layer electrolyte with the new design will lead to better power output. 

 

 

4.4. Summary 
 

An innovative concept for μSOFCs based on silicon microfabrication has been proposed, developed 

and tested. The thin and brittle electrolyte membrane is supported by a nickel grid grown by 

electroplating on a platinum seed layer. The dimensions of the grid cells have been designed to 

prevent buckling or cracking of the membrane during temperature cycling up to 600°C. The 

mechanical stability of the grid and its adhesion to the electrolyte are good up to 600°C during several 

cycles. Thus membranes with a diameter of 5 mm, a thickness of less than 1 μm that are supported by 

a nickel grid resist thermal cycles from room temperature to 600°C. Apart from these large 5 mm 

cells, smaller cells with various grid designs have also been fabricated. The advantage of the smaller 

cell with a diameter of 0.5 mm is to limit the probability of having a defect through the electrolyte that 

can cause severe performances drops. Prior to membrane release, the PEN elements were qualified by 

impedance spectroscopy. In addition, YSZ electrolytes in a form of a multi layer have also been used 

to avoid electrical leakage through the cell along grain boundaries or pinholes. 

A cell with a bilayer YSZ electrolyte, with a total thickness of 500 nm, has been fabricated. To 

enhance the TPB length, platinum porous layers (20 nm thick) with a fine microstructure were 
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deposited on both electrodes. The grain size of this layer is in the range of 10 to 30 nanometers. 

Calculations have proven that the microstructure of the electrodes only lowers the cell resistance if the 

grains are finer than the electrolyte thickness. With such electrode microstructures, calculations show 

that the total resistance only increases by 6% of the value that can be obtained with full covering 

mixed conducting electrodes. 

The functionality of the fuel cell has been demonstrated by the measurement of an OCV of 850 mV 

with the anode exposed to a reducing atmosphere (pure H2) and the cathode exposed to pure oxygen 

gas at 500°C. I-V curves of the best cell were obtained. The maximal power density at 500°C was of 

19 μW/cm2 and is a thousand times lower than expected. The reason for this low power has been 

elucidated and is due to the high resistance (2.3 kΩ) of the platinum connections between the cell and 

the cathode. Newly designed cells to correct this defect have been tested. Unfortunately, the chosen 

three-layer electrolyte was less stable than the two-layer one and cracked during fuel cell operation  
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Conclusion and outlooks 

 

 

 

 

 

 

 

 

 

 

 

 

Micro solid oxide fuel cells are promising devices for extending considerably the autonomy and 

energy efficiency of portable power supplies. Although proposed for the first time 18 years ago, it is 

only during the last few years that development and research efforts have been undertaken. This work 

is part of this effort. Its goal was to use thin film and silicon microfabrication technologies to fabricate 

SOFCs with a volume of cubic centimetres. This work was mainly divided into two parts. The first 

one was related to the deposition of the thin films composing the PEN by reactive magnetron 

sputtering and to the characterization of these materials. The second deals with the fabrication and the 

performance evaluation of this micro-fabricated solid oxide fuel cell device mounted on a silicon 

wafer.  

 

One of the key issues in µSOFCs is the lowering of the operation temperature. This is firstly required 

for the application in a small device that should not be too hot for a safe use. Secondly, it means also 

to enter in a new temperature range for solid ionic materials, since most of the knowledge was related 

to high-temperature applications above 900 °C. Thirdly, a lower temperature is also a key enabler to 

bring micro technology and thin films into the game. Large SOFC power generators still suffer from 

insufficient robustness against aging. The high operation temperatures are indeed very demanding 

with regard to materials stability. The considerable lowering of operation temperature in combination 

with a miniaturization of the device may relaxes aging issues because all the degradation mechanisms 

are based on thermally activated processes. The fourth issue is a key challenge: the maximally allowed 

PEN membrane thickness is less than a micrometer in order to avoid too high internal resistances. This 
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imposes very stringent conditions on electrolyte density and mechanical stability. In this work, both of 

these issues are studied.  

 

We have proposed to integrate a nickel grid as mechanical support for the fragile PEN membrane as 

an innovative solution to obtain large active surfaces of some square millimetres. This grid also has 

the function of anode current collector. Our concept is more than a simple down scaling of the existing 

SOFC technology, it is a new approach based on silicon microfabrication techniques and thin film 

sputtering. We showed that the integration of a μSOFC on a silicon wafer is possible and that it opens 

a solution for batch processing and thus cost efficiency. As to processes, we demonstrated that the 

sputtering method is very versatile and capable of depositing thin films with various morphologies and 

compositions and with sufficiently high conductivity, thus useful for PEN fabrication. It was for 

example possible to deposit a porous platinum electrode on a dense YSZ electrolyte. The materials 

choice turned out to be more limited than originally expected. We learned that for the thin layers, as 

required for the electrolytes, only materials with an extrinsic type of oxygen vacancy stabilization do 

work. Multivalent ions such as Ce in CGO tend to form free electrons to compensate for oxygen 

vacancies. We showed that CGO was unable to produce an OCV when it was the only electrolyte 

layer. This is most probably due to the exposure to reducing conditions at the anode side, leading to a 

too high concentration of free electrons reaching the cathode through the few 100 nm thick electrolyte 

layer. Finally, the only electrolyte material that so far showed good OCV's was YSZ, in which the 

vacancy concentration is balanced by the Y dopant concentration, and none of the cations changes 

valency. The first YSZ membranes showed small OCV's of the order to 200 mV. A substantial 

improvement was achieved by using double layers interrupting grain boundaries crossing the entire 

film thickness, leading finally to an OCV of 850 mV. 

 

In the final version, YSZ thin films were deposited by means of reactive magnetron sputtering onto 

oxidized silicon substrates at 530°C. The films are (111) oriented, with a dense and crack free 

columnar microstructure. A second type of microstructure was achieved with the help of RF bias 

applied at room temperature. These conditions resulted in a nanocrystalline film of preferential (200) 

texture, exhibiting a porosity of about 25 %. This film could be grown also on dense YSZ(111) films 

and was used to interrupt grain growth of the latter. Two and three YSZ layers stacks ((111)/(200) or 

(111)/(200)/(111)) were investigated.  

 

The ionic conductivity of the YSZ was studied as a function of temperature in air. The achieved 5.5 x 

10-3 S/m at 500°C are sufficiently high for SOFC operation, and compatible with an electrolyte 

thickness of 500 nm. The activation energy for ionic conduction was measured as 0.92 eV. As-

deposited films showed some problems with respect to mechanical stress and conduction. An 
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annealing in oxygen at 700 °C was needed to obtain films with reproducible conductivity and low 

stress. 

 

A detailed analysis of mechanical stress as a function of temperature, carried out in air to allow for 

oxygen exchange, lead to the conclusion that the YSZ films are partially reduced after deposition, and 

contain 2 to 4 % more oxygen vacancies than defined by the Y content. Their concentration was 

mostly given by the equilibrium with the partial oxygen concentration during cool down within the 

chamber. It was possible to derive the concentration directly from the final stress, knowing the mass 

action laws for reduction, and the strain per oxygen vacancy. The anomalous hysteretic stress vs. 

temperature behaviour could be explained by oxygen vacancy loss, or in other words, the refilling of 

the excess vacancies. A anneal of one hour in air at 700°C was found to be sufficient for removing 

these excess vacancies, and in addition to reduce the large compressive stress to practically zero. A 

model was developed explaining the observed stress change in terms of diffusion processes. The 

activation energy for the excess vacancy diffusion was determined as 0.6 eV. This is much less than 

the 1.07 eV reported for the vacancies trapped by the Y3+ point defect. Obviously, vacancies that are 

not paired with cationic defects need less thermal activation. This was predicted in the literature based 

on model calculations, even postulating a smaller activation energy. However, charge compensating 

electrons were not accounted for in this work. Our study shows that stress measurements are useful to 

analyze changing defect concentrations, and their diffusion processes. Most interestingly, the excess 

vacancies lead also to an anomaly in the conductivity, when the films were heated up for the first time. 

 

The CGO thin films were deposited by means of reactive magnetron sputtering onto different 

substrates at different temperature (20°C and 430°C) and gas conditions (Ar or Ar and O2). XRD 

analysis shows that the films are mostly (111) textured on platinum when deposited at high 

temperature. The target had to be enriched with Ce to compensate for Ce loss during sputtering. The 

stress behaviour of the CGO films has been studied as a function of temperature. As in YSZ, the as-

deposited films contain free oxygen vacancies, but in contrast to YSZ, these ones are trapped near Ce3+ 

defects, and this show much larger diffusion activation energy of 1.2 eV. The ionic conductivity of the 

CGO has been measured as a function of temperature in air. At 500°C, the conductivity amounts to 0.5 

S/m and is sufficient for SOFC operation. The activation energy is slightly smaller than the literature 

values. The ability of the Ce ions to be reduced from +IV to +III causes electronic leakage in thin 

CGO films used as electrolyte in μSOFCs. As mentioned above, CGO was found to be too leaky for 

achieving any OCV. 

 

This work included as well electrode thin films. Dense LSCO cathodes, porous platinum and porous 

Ni-CGO composite anodes were developed and investigated. The growth of Ni-CGO films by co-

sputtering from a nickel and a CGO target was studied as anode material. It was possible to obtain 
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columnar porous films with various compositions. LSC dense cathode and porous platinum electrodes 

were studied for use as cathode material. To enhance the TPB length, platinum porous layers (20 nm 

thick) with a fine microstructure were deposited on both electrodes. The grain size of this layer is in 

the range of 10 to 30 nanometres. Calculations show that pore and grain size of the electrode must be 

smaller than the electrolyte thickness in order to profit plainly from the TPB enhancement. With the 

realized microstructure, we expect a resistance that is only 6% larger than the one of an ideal, dense, 

mixed conducting cathode layer. 

 

An innovative concept for μSOFCs based on silicon microfabrication has been proposed, developed 

and investigated. The thin and brittle electrolyte membrane is supported by a nickel grid grown by 

electroplating on a platinum seed layer. The dimensions of the grid cells have been designed to 

prevent buckling or cracking of the membrane during temperature cycling up to 600°C. The 

mechanical stability of the grid and its adhesion to the electrolyte were found to be good up to 600°C 

during several cycles. Even membranes of 5 mm diameter resisted to thermal cycles from room 

temperature to 600°C. Apart from these large 5 mm cells, smaller cells with various grid designs have 

been fabricated. For the final devices, smaller cells of 0.5 mm diameter were fabricated to limit the 

probability of pinholes in the electrolyte.  

 

The best cell so far fabricated in this work contained a 500 nm thick bilayer YSZ electrolyte. The 

functionality of the fuel cell has been demonstrated by the measurement of an OCV of 850 mV with 

the anode exposed to a reducing atmosphere (pure H2) and the cathode exposed to pure oxygen gas at 

500°C. The maximal power density at 500°C was determined as 19 μW/cm2. Although this looks very 

disappointing, the result is nevertheless encouraging as a high series resistance of 2.3 kΩ in the 

cathode connection line was identified as main reason for current limitation. Newly designed cells 

should be free of this problem. 

 

The perspectives for μSOFCs are encouraging. Since the beginning of this thesis, literature reported 

that solid oxide fuel cells can operate even at low temperatures (400°C to 600°C) and they are capable 

of power density outputs up to 400 mW/cm2. All of these demonstrators are fuelled with hydrogen. 

The next step to hydrocarbons (i.e. butane) is not yet demonstrated. No one made a test with carbon 

monoxide. In this work cells tested with CO never showed an OCV. The next step is to fabricate a 

complete system with a viable PEN, a gas tank, a reformer and a start-up system. The group of Prof. 

Poulikakos (ETH Zürich) from the ONEBAT project has proven that reforming of the methane of 

butane is possible at 500°C and that such a reformer can be implemented in a µSOFC system. Some 

solutions for thermal insulation have also been demonstrated in the frame of the ONEBAT project. For 

the moment, the major disadvantage of large SOFC systems is the long start up time. In portable 
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applications, such as laptops or power tools, is less the time but the question how to do it. The heating 

of the PEN by burning the fuel can be a good solution but also opens safety questions. The use of 

ohmic heating systems requires electrical energy. A solution can be a hybrid SOFC/Li-ion system that 

can store a part of the energy produced by the cell and use it to restart it afterwards. Finally, the safety 

of the gas tank should be studied even if the cell is fuelled by methane and includes a reformer. In the 

case of hydrogen storage encouraging technology already permits to fabricate safe SOFC powered 

cars, but the question of the size reduction is still open.  

 

There are indeed still many open questions. The micro-fabricated solid oxide fuel cell is in a very early 

stage and it is not yet foreseeable when it will reach the market. It is difficult to predict whether a good 

price vs. performance ratio will be obtained. A large effort of a large company or consortium is needed 

to develop a viable product. Hopefully, the growing interest in clean energy will liberate resources to 

finance higher efforts in µSOFC development. 
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A.1. Pulsed laser deposition 
 

Pulsed laser deposition (PLD) has been largely limited to laboratory investigations of small areas thin 

films [1]. PLD has the capability of producing stochiometric multicomponent films [2]. In the PLD 

chamber, a target of the material to be deposited is irradiated with a pulsed laser beam of wavelength 

comprised between 200 and 400 nm. The target is usually a small disk of ceramic prepared by 

sintering of powders. It should be dense to avoid droplet ejection and have small grain to enhance the 

film stochiometry. The absorbed beam energy is converted into thermal, chemical and mechanical 

energy causing ablation of the target’s surface. The created plume contains neutral atoms, molecules, 

ions, electrons, atoms cluster and even molten droplets. The laser beam enters the chamber trough a 

UV transparent window after being focalised on the target by a lens. The plume is highly directional 

and perpendicular to the target. The geometry of the chamber is very important as the laser beam 

should be focalised on the target and the substrate should be directly in the plume. The target is 

rotating to slow down its degradation. The substrate is heated to a temperature up to 1000°C to 

improve the film cristalinity. Oxygen and nitrogen gases are often introduced in the chamber to 

promote film adhesion or maintain stoichiometry. The working pressure is usually of hundreds of 

militorrs. The main parameters for PLD are: the gas pressure in the chamber, the gas composition, the 

substrate temperature, the laser fluence (thousands of mJ/cm2) and its frequency (10-50 Hz). 

 

 
Figure 1: Schematic representation of a pulsed laser deposition system 

 

PLD has been widely used to deposit cathodes such as lanthanum perovskites [3-6]. Most of the PLD 

films are dense and ideal for YSZ [7] or CGO electrolytes [8, 9]. Nevertheless, it is also possible to 

deposit porous electrodes by this method [10]. 
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A.2. Chemical vapour deposition 
 

The chemical vapour deposition CVD is a very versatile method that can produce pure, dense and 

homogenous films, monolayers, multicomponent films and even 3D structures such as carbon 

nanotubes. It has been used for several applications including coating, semiconductors and 

optoelectronics [11]. In CVD, the species to be deposited onto the substrate are not ejected from a 

target. A reactive gas is introduced in the chamber and transports the precursors of the desired 

materials onto the substrate. The gas directly decomposes onto the substrate or reacts with some other 

gases to form a film. The different gases are mixed together before entering the reaction chamber 

where the substrate is located. A set of reactions activated by the heating occurs when the reactive 

mixture flows along the substrate. In plasma enhanced chemical vapour deposition PECVD a plasma 

discharge is used to activate the reactions. Some other methods including light assisted decomposition 

and flame pyrolisis also exist [1]. CVD does not require high vacuum but processing under low 

pressure helps to reach high film purity. The major drawback of CVD is the difficulty to form 

multicomponent stochiometric films because the precursors have different vaporisation rates. 

 

 
Figure 2: Schematic representation of a chemical vapour deposition system 

 

CVD dense films are very useful for electrolytes such as YSZ [12, 13] and it has the desirable ability 

to of depositing dense film on porous electrodes [14] or to prepare YSZ-NiO porous anode cermets 

[15]. Another advantage of CVD is its capacity to deposit thicker film than sputtering and pulsed laser 

deposition methods [16]. 

 

 

A.3. Liquid-precursor based techniques 
 

Wet-chemical solutions are used to produce thin films for coatings or microelectronics. The solution is 

applied on the substrate by spraying, painting, spinning or dipping. Some of these methods require 
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subsequent baking to evaporate the solvent. In this paragraph, only the spray deposition and the sol-gel 

methods will be explained. Wet deposition techniques require less infrastructure than vacuum based 

ones and are therefore less expansive. 

 

 

A.3.1. Spray deposition 

 

In all this kind of methods, a wet chemical solution of the desired product is atomized to generate a 

fine aerosol and then sprayed onto a substrate. As in CVD, the droplets evaporate or decompose onto 

the surface of the heated substrate, usually laying on a hot plate [16-18]. This method was formerly 

used to produce small particles of ceramic powders. 

 

 
Figure 3: Schematic view of a generic spray deposition system 

 

Several improvements have been realized and allow obtaining better films properties. By applying an 

electrical potential to the surface of the conducting solution it is possible to control the size 

distribution of droplets. Electrostatic spray deposition (ESB) produces very porous and regular 

structure and is widely use for SOFCs [19].  

The sprayed solution can be burnt into a flame or in a plasma [20] to sinter particles before they reach 

the substrate. The flame spray deposition method to produce electrolytes or cathodes [21]. 

Pressurized gas is also used to atomize the precursor solution. This method permits to deposit PEN 

component such as YSZ and CGO electrolytes [22]. 

 

 

A.3.2. Sol-gel techniques 

 

Sol-gel precursor solution is spun onto the substrate and then heated on a hot plate to evaporate the 

solvent. The thickness of the film is proportional to the number of deposition steps and can reach up to 

10 μm. After some steps, the film is annealed in a furnace to crystallize the desired phase. In some 

ceramic layers, gradients of concentration appear in the thickness of the film this problem is solved by 
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using solutions with different concentrations. Sol-gel is an easy and cheap method but it should be 

automatized to improve the production rate. In the field of SOFCs, sol-gel film have been used for all 

the PEN elements [23, 24]. 
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A.4. Rotation of the stiffness tensors 
 

This paragraph is mainly adapted from the book of Nye [25]. The Hook’s law states that the 

deformation εkl is proportional to the stress Sij. The proportion factor is a fourth-rank tensor called the 

stiffness cijkl. 

 

 ij ijkl klS c ε=    

 

The symmetry of the strain and stress tensors permits to write c in a form of a 6 x 6 matrix. In this 

case, S and ε are 6 components vectors. The relation between the tensor of stiffness cijkl and the 

simplified matrix cmn is: 

 

 ijkl mnc c=
  

With i,j,k,l =1,2,3 and m,n=1,2,3,4,5,6 
 

Note that the relation between the compliance sijkl tensor and its simplified matrix form is more 

complicated, as it includes 2 and 4 factors for some components [25]. 

In the case of a cubic symmetry, the cij matrix has only three different non zero components (c11, c12 

and c44): 

 

 

1 111 12 12

2 211 12

3 311

4 444

5 544

6 644

0 0 0
. 0 0 0
. . 0 0 0
. . . 0 0
. . . . 0
. . . . .

S c c c
S c c
S c
S c
S c
S c

ε
ε
ε
ε
ε
ε

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

  

 

As our YSZ films are (111) textured, we need to rotate the compliance tensor to obtain the value of c 

in the plane of the film. The new (001) axis will be oriented as the former (111) direction. The full 

rotation matrix aij is given below: 

 

1 1 1
2 6 3

1 1 1
2 6 3

2 10
6 3

ija

⎛ ⎞
⎜ ⎟
⎜ ⎟

−⎜ ⎟=
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

  



 149

 

Every single component of the new tensor c’ijkl of stiffness can be calculated by using this relation and 

by obeying Einstein’s notation: 

 

 'ijkl im jn ko lp mnopc a a a a c=   
 

This relation can only be applied to the tensor and not to the simplified matrix. With the real values of 

the constant in the old referential (c11 =410 GPa, c12=110 GPa and c44=60 GPa), we calculate the c’mn 

simplified matrix: 

 

 9

320 140 170 42 0 0
. 320 170 42 0 0
. . 290 0 0 0

' 10
. . . 120 0 0
. . . . 120 42
. . . . . 90

mnc Pa

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟

= ×⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

  

 

By inverting the matrix c’mn we obtain the compliance of the film s’mn: 

 

 11 1

5.25 1.41 2.25 2.36 0 0
. 5.25 2.25 2.36 0 0
. . 6.08 0 0 0

' 10
. . . 1 0 0
. . . . 1 4.71
. . . . . 1.33

mns Pa− −

− − −⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟

= ×⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

  

 

In the plane of the film the compliance coefficients are respectively s’11 and s’22. As the grains are 

(111) textured but randomly oriented in the plane of the substrate, the stiffness of the film is the mean 

value of s’11 and s’22. In this case, these two coefficients are equals and the film in-plane stiffness 

constant Yfilm is simply: 

 

 
22

1 192'filmY GPas= =   

 

Finally by definition the Poisson’s ratio of the film νfilm is: 

 

 12

11

0.28film
s
s

ν = − =   
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