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Content

• Experimental facility: 2D flume
• Experimental observations: origin of fluctuations?
• Model: Birth-death, emigration-immigration Markov model
• Comparison with data
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011303; Boehm et al., Phys. Rev. E 69 (2004) 061307; Ancey et al., Phys. Rev. E 74

(2006) 011302; Ancey et al. in press in J. Fluid Mech.]
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A toy (for big boys)

2D Flume Experiments

• Slope from 7% to 15%
• Flow rate range: 6–21 beads/s
• bed equilibrium
• 8000 images at 140 Hz (approx. 60 s.)
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Representative of flow conditions usually met?

0 2 4 6 8 10 12

0.1

1

10

 

 
y/
k s

u/u
*

 q=8.6×10
-3
 m

2
/s  tanθ=0.1  B=8.43

 q=6.7×10
-3
 m

2
/s  tanθ=0.1  B=8.15

 q=8.6×10
-3
 m

2
/s  tanθ=0.05  B=8.66

 q=6.7×10
-3
 m

2
/s  tanθ=0.05  B=8.53

 

0.01 0.1 1
10

-3

10
-2

10
-1

10
0

 

 

data tan θ 
   7.5%

10%

12.5%

15%

κ s
 φ
s

empirical formulae

 Meyer-Peter

 Fernandez-Luque

 φ
s
 = 2(Sh-0.056)

3/2

Sh

 Velocity profile Saltating contribution

• Hydraulic conditions: flow controlled by bottom for shallow
flow (h/(2a) = O(1)), otherwise by sidewalls

• When the bed-load discharge is computed with the saltating
contribution alone, we retrieve empirical laws.
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Mobile and fixed bed

Experiment A: flat bed. Experiment B: corrugated bottom.
Experiment D: disordered mobile bed.
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Effect of the bed on the solid discharge
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Experiment A: flat bed. Experiment B: corrugated bottom. Experiments C and D: mobile
bed.
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Effect of the bed on the solid discharge (2)
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Autocorrelation function and pdf of the solid discharge Experiment
A: flat bed. Experiment B: corrugated bottom. Experiments C and D: mobile bed.
Exchanges with the bed cause longer autocorrelation time and wider fluctuations.
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Times series (experiment C: mobile bed)
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Some key observations
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Negative binomial distribution rather than binomial distribution

• variance > mean wide fluctuations
• long correlation time

⇛ Existence of long range fluctuations?
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Model for stationary beds
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Assumptions: (1) the number of particles included in the observation window is
distributed according to a Poisson distribution, (2) the streamwise components of particle
velocity is Maxwellian, (3) the particle velocity distribution is independent of the particle
number (because flow is dilute).

Pṅ(ṅ|L) =

∞
∑

k=1

e−µµk

k!
√

2πk

L

σu

exp

[

− (Lṅ − kū)2

2kσ2
u

]

where σ2
u is the particle velocity variance (streamwise component), ū its average, and µ

is the average number of particles moving in the observation window.
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Model for mobile beds
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qs: solid discharge per unit width [m2/s], ṅ: solid discharge in
terms of beads/s, L: window length, vp: particle volume, N :
number of particles within the window, ui: particle velocity
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Model for mobile beds (2): Einstein’s theory revisited

Let us consider a closed sys-
tem with N particles.
(a) Succession of resting (ui =

0) and moving (ui > 0) phases
for a single particle.
(b) Superimposition of N teleg-
rapher’s processes.
(c) The number of moving par-
ticles is computed as the sum
of the state variables; the wait-
ing time for a single particle
is defined as the time period
elapsed between two events of
the same type.
Issue: the sum of N Bernoulli
variables follows a binomial
distribution: no chance to gen-
erate thick tails...
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Model (3)

To compute N , we consider the following exchanges:

• A moving bead enters the window at rate λ0 > 0 from the left
(immigration). The corresponding probability of arrival of a particle
in the time interval [t, t + ∆t) is independent of t and N , and we
can write

P (n → n + 1; ∆t) = λ0∆t + o(∆t).

• Moving beads leave the window independently at rate ν > 0

(emigration). The transition probability is

P (n → n − 1; ∆t) = nν∆t + o(∆t).
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Model (4)

• Two processes enable entrainment of particles from the bed
(birth): a particle can be dislodged from the bed by the water
stream at rate λ1 > 0; or a moving bead can destabilize a
stationary one and set it moving. This occurs at rate µ for any
moving bead within the observation window. The corresponding
transition probabilities are respectively

P (n → n+1; ∆t) = λ1∆t+o(∆t), P (n → n+1; ∆t) = µn∆t+o(∆t).

• A moving bead can settle (i.e., come to rest) within the window,
independently at rate σ for each moving bead (death). The
transition probability is thus

P (n → n − 1; ∆t) = nσ∆t + o(∆t).
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Model (5): master equation

We arrive at

P (n; t + ∆t) =α(n + 1)∆tP (n + 1; t) + P (n − 1; t){λ + (n − 1)µ}∆t+

P (n; t){1 − ∆t(λ + nα + nµ)} + o(∆t),

for n = 1, 2 . . ., and

P (0; t + ∆t) = αP (1; t)∆t + P (0; t)(1 − λ∆t) + o(∆t),

for n = 0, with α = σ + ν and λ = λ1 + λ0. On rearranging the terms
and letting ∆t → 0, we obtain

∂

∂t
P (n; t) = (n+1)αP (n+1; t)+(λ + (n − 1)µ) P (n−1; t)−(λ + n(α + µ))P (n; t),

∂P (0, t)

∂t
= αP (1; t) − λP (0; t).
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Model (6): General solution

We introduce the probability generating function

G(z, t) =

∞
∑

n=0

znP (n; t),

and find

G(z, t) =

(

α − µ

(Kµ − µ)z + α − Kµ

)n+λ/µ (

(Kα − µ)z + α(1 − K)

α − µ

)n

,

where K = e−t(α−µ) corresponds to the autocorrelation function
for flows at equilibrium.
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Steady state solution

For steady flow conditions, the number of particles within the
observation window forms a stationary random process whose
probability distribution

Ps(n) = NegBin(n; r, p) =
Γ(r + n)

Γ(r)n!
pr(1 − p)n, n = 0, 1, . . . ,

with r = λ/µ and p = 1 − µ/α, Γ the gamma function. The mean is
λ/(α − µ) and the variance is

varN =
λα

(α − µ)2
.

For µ = 0, we obtain Gs(z) = e−λ(z−1)/α, corresponding to the Poisson
distribution of rate r′ = λ/α,

Ps(n) =
(r′)n

n!
e−r′

, n = 0, 1, . . . .
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Steady state solution (2)

Under stationary conditions, the autocorrelation function of the number
of particles in motion within the window may be written as

corr{N(0), N(τ)} = ρ(τ) =
E[N(τ)N(0)] − E[N(0)]2

Var(N0)
, τ > 0.

The mean of N(τ)N(0) can be expressed as E[N(0)E{N(τ)} | N(0)],
in which the conditional mean of N(τ) given N(0) appears; this can be
obtained from G

E{N(τ) | N(0) = n} =

(

∂G

∂z

)

z=1

= nK + λ
1 − K

α − µ
.

We find that

ρ(τ) = e−τ/tc ,

where tc = 1
α−µ > 0 is the autocorrelation time.

Intermittent motion and sediment transport: experimental and theoretical insights – p. 19/26



Velocity of a single particle
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We use the energy balance equation to compute the particle velocity of
a single rolling particle,

m′gūp sin θ + P̄d = P̄c,

where m′ = m − 4πρfa3/3 is the buoyant mass, P̄d = F̄d · ūp is the
power of drag forces supplied to the particle, where
F̄d = Cdπa2|uf − up|(uf − up) is the drag force, with Cd the drag
coefficient.
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Comparison with experiment (1)
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Comparison with experiment (2)
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Comparison with experiment (3)
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Comparison with experiment (4)
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of the saltating velocity with the mean fluid velocity.
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Comparison with experiment (4)
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power supplied by gravity to the control volume

Pg =

∫

V

ρg · udV = ρgqwL sin θ,

the turbulent power

Pt = ρgqwL sin θ − N̄ F̄Dūp.
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A few words of conclusion

• Idealized hydraulic conditions, but not too unrealistic ;
• Wide fluctuations cooperative aspects between particle,

non trivial fluid-solid coupling ;
• Solid discharge: strong dependence on N , weak

dependence on up ;

• Main shortcoming: autocorrelation time shorter in
experiments than in theory.
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