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Societal motivation: property damage

Airolo (TI, 11 Feb. 1951); Montroc (Chamonix, France, 9 Feb. 1999).

Avalanches cause substantial property damage on average every 10 years.
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Hazard mapping

Geschinen (VS): catastrophic avalanche of 23 Feb. 1999 and
avalanche maps (zoning)
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A wide range of volumes

Natural flows exhibit a wide range of flow and material features.
Avalanche volume: from a few cubic meters to 106 m3 (or more)
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Rheology

Snow: wide range of physical characteristics and rheological
properties
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Scientific objectives

Much of our work is concerned with a better understanding of
gravity-driven, time-dependent flows over irregular topographies
and involving complex fluids. We work on the laboratory scale by
carrying out experiments with different materials, which are
assumed to account for some essential features of natural
materials, while being simpler to characterize and handle.
Our goals: with our experiments on model fluids, we would like
to address and answer the following point

• Can we derive a compact set of governing equations that describe the behavior of
an avalanching mass of material down a slope?

• For complex flow geometries, is flow dynamics controlled by rheological properties
or flow self-organization (levee, front, etc.)? Do other processes (mass balance,
segregation, boundary conditions) play an essential part?

• Is there any link between the physical/rheological properties for a bulk material at

rest (i.e., quasi-static to low-deformation domain) and those exhibited by the same

material in a flow?
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Laboratory versus field investigation

Our philosophy is well summarized by Iverson

“The traditional view in geosciences is that the best test of a
model is provided by data collected in the field, where processes
operate at full complexity, unfettered by artificial constraints. (...)
If geomorphology is to make similarly rapid advances, a new
paradigm may be required: mechanistic models of geomorphic
processes should be tested principally with data collected during
controlled, manipulative experiments, not with field data
collected under uncontrolled conditions.”

Iverson, R.M., How should mathematical models of geomorphic processus to be

judged?, in Prediction in Geomorphology, edited by P.R. Wilcock, and R.M. Iverson, pp.

83–94, American Geophysical Union, Washington, D.C., 2003.
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Avalanches in the laboratory: the dam-break problem

Experiments: Carbopol (polymeric gel)

colored in blue.

Small-scale experiments: balance bet-
ween pressure gradient, inertia, and vis-
cous dissipation

• rheological behavior: imposed
(and controlled rheometrically).

• initial and boundary conditions:
known and controlled.
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Measurement system: 3D surface reconstruction

Steve Cochard’s thesis, Sébastien Wiederseiner, Martin Rentschler, & Nicolas Andreini
(EPFL/ENAC/LHE).
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Governing equations: a shallow world

Most models used for computing the behavior of an avalanching
mass are based on the shallow-flow approximation:
ǫ = H/L ≪ 1.
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x = 0
hg

There are two approaches
• Flow-depth averaged equations: historical approach used by Saint-Venant (floods),

Savage & Hutter (granular flows), Iverson & Denlinger, Mangeney & Bouchut and
many others...

• Lubrication approximation: pioneering work conducted by Reynolds and

subsequent authors (boundary layer theory), renewed interest with the work done

by Mei & Liu, Huppert, Balmforth & Craster.
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Shallow-flow equations

A versatile set of equations

∂h

∂t
+

∂hū

∂x
= E − D,

∂hū
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∂hū2

∂x
= ρgh − kgh
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−

τb

ρ
,

with β Boussinesq coefficient (usually set to unity), k a pressure coefficient, and τb the

bottom shear stress, E and D entrainment and deposition rates.
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xτb

Information is averaged when deriving the governing equations, which makes it difficult

to properly define the coefficients that come up in the final equations.
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Strength and weakness

The shallow-water equations offer a reasonably accurate
physical framework for describing a host of natural phenomena.
The governing equations are now well “tamed” by numerical
methods. Numerical schemes for 1D and 2D models are
reasonably fast and make it possible to simulate complex flows
(e.g., tsunamis) on large scales.
However, when dealing with geophysical flows on steep slopes,
we are faced with many issues:

• tracking the front position;
• computing the internal dissipation and account for it through τp;
• taking additional terms induced by irregular topography into account;
• evaluating mass balance and its effect on the bulk dynamics;
• estimating the change in the bulk composition (e.g., segregation) and local

rheology.
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Lubrication approximation

Starting with the Cauchy equations (mass and momentum
balance equations), we scale the variables

ũ = u/U∗, x̃ = x/L∗, ỹ = y/(ǫL∗), p̃ = p/P∗, p̃ = p/P∗, . . .

with ǫ = H∗/L∗ and make a power ǫ-expansion of the scaled
variables: ũ = ũ0 + ǫũ1 + . . .. Collecting together the terms
associating the same power of ǫ, we end up with a hierarchy of
equations. For instance, we have

ǫRe
du

dt
= 1 − ǫ cot θ

∂p

∂x
+ ǫn+1 ∂σxx

∂x
+

∂σxy

∂y
, (1)

ǫ2Re
dv

dt
= − cot θ

(

1 +
∂p

∂y

)

+ ǫ
∂σxy

∂x
+ ǫn ∂σyy

∂y
, (2)
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Lubrication approximation (continued)

To order ǫ0, we have to solve

0 = 1 +
∂σ0, xy

∂y
, (3)

0 = −1 −
∂p0

∂y
, (4)

a much simpler set of equations than the full governing
equations! In the limit of Re → 0 and to order ǫ, we obtain

0 = − cot θ
∂p0

∂x
+

∂σ1, xy

∂y
, (5)

0 = − cot θ
∂p1

∂y
+

∂σ0, xy

∂x
, (6)
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Application to Newtonian avalanches

To leading order, the governing equation for h writes

∂h

∂t
+

∂h3

∂x
︸︷︷︸

convection

=
∂

∂x

(

h3 ∂h

∂x

)

︸ ︷︷ ︸

diffusion

. (7)

Analytical solutions can be worked out in terms of similarity
solutions at late and early times: h(x,t) = t−nH(ξ,t) ξ = x/tn,
n = 1/3 (late time solution) or n = 1/5 (early time solution).
Depending on the initial conditions, convergence towards the
similarity solution can be slow.
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Application to Newtonian avalanches (continued)
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Flow-depth profiles provided by numerical solutions (solid line) of the nonlinear diffusion
equation for θ = 6˚ at dimensionless times t = 1, 2, 4, 8, 16, 32, 64, 128, and 256. In
subplot (a), we plotted the analytical approximation obtained by composing the inner and
outer similarity solutions (dashed line). In subplot (b), the analytical solution
corresponding to pure convection is reported.
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Application to Newtonian avalanches (continued)
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Normalized front position (xf /ξf )3 as a function of time in a log-log representation: the
experimental curves (dashed line marked with symbols) related to θ = 6˚ , 12˚ , 18˚ , and
24˚ slopes are indicated. The solid line represents the theoretical curve (x/ξf )3 = t

corresponding to the outer similarity solution.
Fluid: glycerol µ ∼ 345 Pa.s (molten toffee)
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Application to Newtonian avalanches (continued)
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Flow-depth profiles h(η,t) normalized by the maximum flow depth hmax for θ = 6˚ (a),
θ = 12˚ (b), θ = 18˚ (c), and θ = 24˚ (d) at different dimensionless times. We also
plotted the composite solutions (thick line).
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Application to viscoplastic avalanches

The same techniques can be applied to viscoplastic materials.
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Variation in the front position with time for θ = 24˚ . Experiments done with Carbopol at
various concentrations. Dashed curves: theoretical prediction given by a zero-order
nonlinear convection equation (modeling the behavior of an avalanching mass of
Herschel-Bulkley fluid).
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Application to viscoplastic avalanches (continued)
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Variation in the front position with
time for θ = 12˚ . Experiments done
with Carbopol at various concentra-
tions. Dashed curves: theoretical pre-
diction given by a zero-order nonli-
near convection equation (modeling
the behavior of an avalanching mass
of Herschel-Bulkley fluid).
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Summary

• We investigate the “dam-break” problem (confined/open slope) with various fluids.
• With Newtonian fluids, similarity solutions exist at short and long terms.

Surprisingly enough, there was a systematic delay between experimental data and
similarity forms. On the steepest slope (inclination in excess of 12◦), agreement
became poor.

• With viscoplastic fluids, there is no similarity solutions, but the governing equations
can be simplified a great deal, making it possible to work out ‘simple’ numerical
solution (nonlinear convection/diffusion problem).

• Experiments with granular suspensions (dry or saturated) are currently conducted.
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