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École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

andre.schiper@epfl.ch

Abstract

This paper presents an approach to automatic verifica-
tion of asynchronous round-based consensus algorithms.
We use model checking, a widely practiced verification
method; but its application to asynchronous distributed al-
gorithms is difficult because the state space of these algo-
rithms is often infinite. The proposed approach addresses
this difficulty by reducing the verification problem to small
model checking problems that involve only single phases
of algorithm execution. Because a phase consists of a fi-
nite number of rounds, bounded model checking, a tech-
nique using satisfiability solving, can be effectively used to
solve these problems. The proposed approach allows us to
model check some consensus algorithms up to around 10
processes.

1. Introduction

Model checking, a method for formally verifying state
transition systems, has now become popular, because it al-
lows the fully automatic analysis of designs. This paper
presents an approach to model checking of asynchronous
consensus algorithms. Consensus is central to the con-
struction of fault-tolerant distributed systems. For exam-
ple, atomic broadcast, which is at the core of state machine
replication, can be implemented as a sequence of consen-
sus instances [3]. Other services, such as view synchrony
and membership, can also be constructed using consen-
sus [16, 25]. Because of the importance, much research has
been being devoted to developing new algorithms for this
problem.
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is difficult, because these algorithms usually induce an infi-
nite state space, making model checking infeasible. Sources
of infinite state spaces include unbounded round num-
bers and unbounded message channels. In our previous
work [26], we succeeded in model checking several asyn-
chronous consensus algorithms by adopting a round-based
computation model, called the Heard-Of (HO) model [6],
and by devising a finite abstraction of unbounded round
numbers. The scalability, however, still needs to be ad-
dressed, because the system size that can be model checked
is rather small, typically three or four processes.

In this paper we present a different approach for the ver-
ification of asynchronous consensus algorithms. Our ap-
proach divides the verification problem into several prob-
lems that can be solved by model checking. Importantly,
these model checking problems can be solved by only an-
alyzing single phases of the execution of the consensus al-
gorithm. Because of this property of the problems, bonded
model checking [9] can be very effectively used. Through
case studies, we show that the time and memory space re-
quired for verification can be significantly reduced, result-
ing in increasing the size of systems that can be verified.

Related Work Several attempts have been reported to
model check consensus algorithms. The TLA specifica-
tions of some Paxos algorithms [15, 23] were debugged
with the aid of TLC, the TLA model checker. The mod-
els that were model checked consisted of two or three pro-
cesses and a small number of rounds [22]. In [27], an
approach to automatic discovery of consensus algorithms
was proposed. This approach depends on a procedure that
determines if a given decision rule satisfies the required
safety properties of a single phase of a “full-information
exchange” consensus algorithm. This procedure cannot be
used for liveness verification or to verify an entire consen-
sus algorithm. In [17], a synchronous consensus algorithm
was model checked for three processes. Studies on model
checking of shared memory-based randomized consensus
algorithms can be found in [7, 20]. Model checking of
Byzantine agreement protocols was studied in [1] and [19].



A synchronous system model was assumed in [1]. In [19]
an asynchronous algorithm was verified but manual proof
was used with combination of model checking.

The verification approach proposed in this paper can be
viewed as a variation of k-induction. Although in differ-
ent contexts, combining bounded model checking and k-
induction was studied in, for example, [10].

Roadmap This paper is structured as follows: Section 2
describes the HO model and the consensus problem. Sec-
tion 3 and Section 4 describe our proposed model checking
techniques for verification of safety and liveness, respec-
tively. Section 5 proposes automatic procedures for val-
idating two important assumptions used in the safety and
liveness verification. Section 6 shows the results of case
studies. Section 7 concludes the paper.

2. Consensus in the Heard-Of Model

The HO model [6] is a communication-closed round
model that generalizes the asynchronous round model by
Dwork et al. [12] with some features of [14] and [24].
Let Π = {1, 2, · · · , n} be the set of processes. An al-
gorithm proceeds in phases, each of which consists of
k (≥ 1) rounds.1 An algorithm comprises, for each process
pand each round r, a sending function Sr

p and a transition
functionT r

p . In each round r, every process p sends mes-
sages according to Sr

p(sp), where sp is the state of p. Then,
p makes a state transition according to T r

p (Msg, sp), where
Msg is the collection of all messages that p has received in
round r.

In the HO model both synchrony degree and faults are
represented in the form of transmission faults. We denote
by HO(p, r) (⊆ Π) the set of processes from which p re-
ceives a message in round r: HO(p, r) is the “heard of” set
of p in round r. A transmission fault is a situation where
q ̸∈ HO(p, r) while q sent (or was supposed to send) a
message to p in round r. Transmission faults can occur if
messages missed a round due to the asynchrony of commu-
nication and processing, or if a process or a link is faulty.

Consensus is the problem of getting all processes to
agree on the same decision. Each process is assumed to
have a proposed value at the beginning and is required to
eventually decide on a value proposed by some process. In
the HO model, consensus is specified by the following three
conditions:

Integrity Any decision value is the proposed value of some
process.

Agreement No two processes decide differently.
Termination All processes eventually decide.

1In [3] and [21], a round is decomposed in phases. “Round” and
“phase” are swapped here to use the classical terminology [12].

Algorithm 1 The LastVoting (Paxos) algorithm [6]
1: Initialization:
2: xp ∈ V al, initially vp {vp is the proposed value of p.}
3: votep ∈ V al ∪ {?}, initially ?

{V al is the set of values that may be proposed.}
4: commitp a Boolean, initially false
5: readyp a Boolean, initially false
6: tsp ∈ N, initially 0 {N is the set of non-negative integers.}

7: Round r = 4ϕ − 3 :
8: Sr

p :

9: send ⟨xp , tsp⟩ to Coord(p, ϕ)

10: T r
p :

11: if p = Coord(p, ϕ) and number of ⟨ν , θ⟩ received > n/2 then
12: let θ be the largest θ from ⟨ν , θ⟩ received
13: votep := one ν such that ⟨ν , θ⟩ is received
14: commitp := true

15: Round r = 4ϕ − 2 :
16: Sr

p :

17: if p = Coord(p, ϕ) and commitp then
18: send ⟨votep⟩ to all processes

19: T r
p :

20: if received ⟨v⟩ from Coord(p, ϕ) then
21: xp := v ; tsp := ϕ

22: Round r = 4ϕ − 1 :
23: Sr

p :

24: if tsp = ϕ then
25: send ⟨ack⟩ to Coord(p, ϕ)

26: T r
p :

27: if p = Coord(p, ϕ) and number of ⟨ack⟩ received > n/2 then
28: readyp := true

29: Round r = 4ϕ :
30: Sr

p :

31: if p = Coord(p, ϕ) and readyp then
32: send ⟨votep⟩ to all processes

33: T r
p :

34: if received ⟨v⟩ from Coord(p, ϕ) then
35: DECIDE(v)
36: if p = Coord(p, ϕ) then
37: readyp := false
38: commitp := false

For most consensus algorithms, integrity is trivially sat-
isfied; thus we limit our discussion to the verification of
agreement and termination. Note that in the HO model the
termination property requires all processes to decide. Dis-
cussion of the reason for this specification can be found in
[5, 6].

The above computation model can naturally be ex-
tended to represent coordinator-based algorithms. Let
Coord(p, ϕ) denote the coordinator process of process p
in phase ϕ. The sending function and the state transition
function are now represented as Sr

p(sp, Coord(p, ϕ)) and
T r

p (Msg, sp, Coord(p, ϕ)), where ϕ is the phase that round
r belongs to. The LastVoting algorithm (Algorithm 1) is
an example of a coordinator-based consensus algorithm [6].
This algorithm can be viewed as an HO model-version of
Paxos [21]. LastVoting is also close to the 3S consensus
algorithm [3].
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Since there is no deterministic consensus algorithm in a
pure asynchronous system, some synchrony condition must
be assumed to solve the problem. In the HO model such
a condition is represented as a predicate over the collec-
tions of HO sets (HO(p, r))p∈Π,r>0 and of coordinators
(Coord(p, ϕ))p∈Π,ϕ>0. For example, the following predi-
cate specifies a sufficient condition for the LastVoting algo-
rithm to solve consensus:

∃ϕ0 > 0,∃co ∈ Π,∀p ∈ Π :
(co = Coord(p, ϕ0))
∧ (|HO(co, 4ϕ0 − 3)| > n/2)
∧ (|HO(co, 4ϕ0 − 1)| > n/2)
∧ (co ∈ HO(p, 4ϕ0 − 2)) ∧ (co ∈ HO(p, 4ϕ0))

(1)

In words, phase ϕ0 is a synchronous phase where: all pro-
cesses agree on the same coordinator co; co can hear from
a majority of processes in the first and third rounds of that
phase; and every process can hear from co in the second and
fourth rounds. If such a phase ϕ0 occurs, then all processes
will make a decision at the end of this phase. This condi-
tion is required only for termination. Agreement can never
be violated no matter how bad the HO set is. For simplic-
ity, in the paper we limit our discussion to verification of
such algorithms — algorithms that are always safe, even in
completely asynchronous runs.

3. Verification of Agreement

In this section, we present our approach to the verifica-
tion of agreement. The verification of termination is dis-
cussed in Section 4.

Our reasoning consists of two levels. Section 3.1
presents the phase-level reasoning, which shows that agree-
ment verification can be accomplished by examining only
single phases of algorithm execution. Section 3.2 then de-
scribes how model checking can be used to analyze the sin-
gle phases at the round level.

3.1. Phase Level Analysis

At the upper-level of our reasoning, we perform a phase-
wise analysis, rather than round-wise. We define a config-
uration as a (n + 1)-tuple consisting of the states of the n
processes and the phase number. Let C be the set of all pos-
sible configurations; that is,

C = S1 × · · · × Sn × N+

where Sp is a set of states of a process p and N+ is
a set of positive integers. Given a configuration c =
(s1, · · · , sn, ϕ) ∈ C, we denote by ϕ(c) the phase num-
ber ϕ of c. It should be noted that the state of a process is
a value assignment to the variables of the process. Hence

ci ci+1ci-1 ci+2

c1 ck+1c2 ck

Phase iPhase i-1 Phase i+1

Figure 1. Transitions of configurations at the
phase level (top) and at the round level (bot-
tom).

any set of configurations can be represented by a predicate
over the process variables of all processes and ϕ; that is,
the predicate represents a set of configurations for which it
evaluates to true. We therefore use the notions of a set of
configurations and of such a predicate interchangeably.

Let V al be the set of values that may be proposed. We
define a ternary relation R ⊆ C × 2V al × C as follows:
(c, d, c′) ∈ R iff the system can transit from the configu-
ration c at the beginning of phase ϕ(c) to the next config-
uration c′ at the beginning of the next phase ϕ(c′) while
deciding the values in d during phase ϕ(c). By definition
ϕ(c) + 1 = ϕ(c′) if (c, d, c′) ∈ R.

Let Init be the set of the configurations that can occur
at the beginning of phase 1. We define a run as an infinite
sequence c1d1c2d2 · · · (ci ∈ C, di ⊆ V al) such that c1 ∈
Init and (ci, di, ci+1) ∈ R for all i ≥ 1. We let Run
denote the set of all runs. Let Reachable be a set of all
configurations that can occur in a run; that is, Reachable =
{c | ∃c1d1c2d2 · · · ∈ Run, ∃i ≥ 1 : c = ci}. We say that a
configuration c is reachable iff c ∈ Reachable. Agreement
holds iff:

∀c1d1c2d2 · · · ∈ Run :
∣∣∣ ∪

i>0

di

∣∣∣ ≤ 1 (2)

The key feature of our verification approach is that it can
determine whether Formula (2) holds or not without explor-
ing all runs. In doing this, the notion of univalence plays a
crucial role. A configuration is said to be univalent if there
is only one value that can be decided from this configura-
tion [13]. If the configuration is univalent and v is the only
value that can be decided, then the configuration is said to
be v-valent. Formally:

Definition 1 (Univalence) A configuration ci is v-valent iff∪
j≥i dj = ∅ or

∪
j≥i dj = {v} holds for every sequence

cidici+1di+1 · · · such that ∀j ≥ i : (cj , dj , cj+1) ∈ R.

By definition, any configuration next to a v-valent configu-
ration is also v-valent. That is, we have:
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Lemma 1 If c is a v-valent configuration, then any c′ such
that (c, d, c′) ∈ R is v-valent.

In the proposed verification approach, we assume that
some property, represented by U(v) and Inv, holds on the
algorithm under verification. U(v) is shown below. The
assumption for Inv will be described later. Indeed, we will
have to validate U(v) and Inv.

Assumption 1 (U(v)): For any v ∈ V al, U(v) is a set of
configurations such that if c ∈ U(v)∩Reachable, then c is
v-valent. In other words, any configuration in U(v) is either
(i) reachable and v-valent or (ii) unreachable.

Example 1 In many consensus algorithms, a majority quo-
rum of processes is used to “lock” a decision value. This is
also true of the LastVoting algorithm. A reachable config-
uration is v-valent if a majority of processes have the same
estimate v for the decision value and have greater times-
tamps than the other processes. Thus we have:

U(v) :=

∃Q ⊆ Π :
{

|Q| > n/2 ∧
∀p ∈ Q : (xp = v ∧ ∀q ∈ Π\Q : tsp > tsq)

The following theorem states that agreement holds if,
whenever some processes decide in a phase, the decided
values are the same (say v), and the configuration at the be-
ginning of the next phase is in U(v).

Theorem 1 Agreement holds if:

∀c ∈ Reachable : ∀(c, d, c′) ∈ R :
d = ∅ ∨ ∃v ∈ V al : (d = {v} ∧ c′ ∈ U(v)) (3)

Proof We show that for any c1d1c2d2 · · · ∈ Run, (3) im-
plies that for any l ≥ 1, either (i)

∪
0<i≤l di = ∅ or (ii) for

some v ∈ V al,
∪

0<i≤l di = {v} and cl ∈ U(v), meaning
that (2) holds. The proof is by induction on l.

Base case: (3) implies that either d1 = ∅ or d1 = {v} ∧
c2 ∈ U(v) for some v ∈ V al.

Inductive step: Suppose that the above (i) or (ii) holds
for some l ≥ 1. If (i) holds for l, then dl+1 = ∅ or dl+1 =
{v}∧cl+1 ∈ U(v) for some v ∈ V al. Hence (i) or (ii) holds
for l + 1. If (ii) holds for l, then dl+1 = ∅ or dl+1 = {v}
since cl ∈ U(v). Also cl+1 ∈ U(v) by Lemma 1. Thus (ii)
also holds for l + 1. ¤

It should be noted that Formula (3) only refers to indi-
vidual phase-level transitions from Reachable, rather than
to runs. This property is critical for reducing the verifica-
tion problem to a model checking problem of single phases.
However, directly checking this formula would do little
good, because roughly speaking, obtaining Reachable is
as hard as examining all runs.

The key here is that Reachable can be substituted by its
over-approximation. An over-approximation of the set of
reachable states is usually referred to as an invariant.

Definition 2 (Invariant) A set of configurations is an in-
variant iff it contains all reachable configurations.

We assume that an invariant Inv is available:

Assumption 2 (Inv): A set Inv of configurations is an in-
variant; that is, Reachable ⊆ Inv.

Example 2 It is easy to see that for LastVoting, the fol-
lowing predicate is always true at the beginning of every
phase ϕ:

Inv := ∀p ∈ Π :
{

commitp = false
∧ readyp = false ∧ tsp < ϕ

Theorem 2 Agreement holds if:

∀c ∈ Inv : ∀(c, d, c′) ∈ R :
d = ∅ ∨ ∃v ∈ V al : (d = {v} ∧ c′ ∈ U(v)) (4)

Proof Because Reachable ⊆ Inv, (4) implies (3). By
Theorem 1, (3) implies agreement. ¤

This theorem leads directly to the following verification
steps:

Step A1: Check if (4) holds or not.
Step A2: If (4) holds, then agreement holds. Otherwise,

further analysis is needed because in this case (i) the
consensus algorithm is incorrect or (ii) U(v) or Inv
are too small or too large, respectively.

3.2. Model Checking of Single Phases

This section shows how model checking can be used to
determine if Formula (4) holds or not. Model checking is
the process of exploring a state transition system to deter-
mine whether or not a given property holds. Since our prob-
lem involves only single phases, we only need to consider
k consecutive state transitions of the consensus algorithm,
where k is the number of rounds per phase (see Section 2).

The behavior of the system in a single phase,
say phase Φ, can be represented as a tuple
(c1ho1dv1c2ho2dv2 · · · ckhokdvkck+1, Coord), where

• ci (1 ≤ i ≤ k) is the configuration at the beginning of
the i-th round of the phase, i.e., round k ∗ (Φ− 1) + i,
while ck+1 corresponds to the first round of the next
phase (see Figure 1). Hence Φ = ϕ(c1) = ϕ(c2) =
· · · = ϕ(ck) and Φ + 1 = ϕ(ck+1).

• hoi = (HO(1, k(Φ−1)+i)), · · · ,HO(n, k(Φ−1)+
i))) is a collection of n HO sets – one per process – in
the i-th round.

• dvi = (dvi
1, · · · , dvi

n), where dvi
p ∈ V al ∪ {?} for

any p ∈ Π, is the collection of values decided by each
process in the i-th round. If a process p does not decide
in the round, then dvi

p =?.
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• Coord = (Coord(1,Φ), · · · , Coord(n,Φ)) is a col-
lection of n coordinators – one per process – in
phase Φ.

We call such a tuple a one-phase execution iff it is con-
sistent with the given consensus algorithm.2 By defini-
tion, (c, d, c′) ∈ R iff there is a one-phase execution
(c1ho1dv1 · · · ckhokdvkck+1, Coord) such that c = c1,
c′ = ck+1, and d =

( ∪
p∈Π,1≤i≤k{dvi

p}
)
\{?}.

We denote by X the set of all one-phase executions that
need to be examined to check (4): Since we are concerned
with the phase that starts with a configuration in Inv, a one-
phase execution (c1ho1dv1 · · · ckhokdvkck+1, Coord) is in
X iff c1 ∈ Inv.

Our model checking problem is described as follows:
Given (i) an algorithm to be verified, (ii) U(v), and (iii)
Inv, determine if the following condition holds for all
(c1ho1dv1 · · · ckhokdvkck+1, Coord) ∈ X:

d = ∅ ∨ ∃v ∈ V al : (d = {v} ∧ ck+1 ∈ U(v)) (5)

where d =
( ∪

p∈Π,1≤i≤k{dvi
p}

)
\{?}.

Clearly (4) holds iff (5) holds for all one-phase executions
in X .

This model checking problem is unique in that it only
concerns exactly k consecutive transitions. Because of this,
bounded model checking [9] can be most effectively used to
solve this problem. As the name suggests, bounded model
checking searches state transitions of bounded length. This
restriction allows the model checking problem to be reduced
to the satisfiability problem for a set of constraints in some
logic. The satisfiability problem is the problem of determin-
ing whether or not values can be assigned to variables such
that all constraints evaluate to true. Bounded model check-
ing can often be used only for finding defects near the initial
states; but in our case it can allow complete verification be-
cause it is already known that the depth of the search space
is exactly k.

Most of the work on bounded model checking is based
on propositional logic. In contrast, in our case the con-
straints are boolean combinations of linear (in)equalities
and boolean expressions with integer and boolean variables.
The variables involved in the constraints are:

• Variables that represent the values of the process vari-
ables at each configuration ci (1 ≤ i ≤ k + 1). If
the process variable is boolean, so is the correspond-
ing representing variable; otherwise the representing
variable is integer.

• An integer variable Φ, which represents the phase
number; that is, Φ = ϕ(c1) = ϕ(c2) = · · · = ϕ(ck).

2Here whether c1 is reachable or not is irrelevant. In other words, a
one-phase execution specifies how the system would behave in a phase,
provided that the phase begins with c1.

• Boolean variables hoi
p,q(p, q ∈ Π, 1 ≤ i ≤ k), which

represent whether p hears of q in the i-th round. That
is, q ∈ HO(p, k(Φ − 1) + i) iff hoi

p,q = true.
• Integer variables dvi

p(p, q ∈ Π, 1 ≤ i ≤ k), which rep-
resent the value that is decided by p in the i-th round.

• Integer variables Coordp(p ∈ Π), which represent the
coordinator of p in phase Φ.

It should be noted that any one-phase execution is uniquely
represented as a value assignment to these variables.

Example 3 For the LastVoting algorithm, the variables in-
volved in model checking are: xi

p, votei
p, ts

i
p (integer) and

commitip, readyi
p (boolean) for p ∈ Π, 1 ≤ i ≤ 5; Φ (inte-

ger); hoi
p,q (boolean) for p, q ∈ Π, 1 ≤ i ≤ 4; dvi

p (integer)
for p ∈ Π, 1 ≤ i ≤ 4; Coordp (integer) for p ∈ Π.

In order to check (5), we proceed as follows. We con-
sider two set of constraints on the above variables:

• X , which represents all one-phase executions in X .
That is, X represents exactly the value assignments to
variables corresponding to a one-phase execution in X .

• U , which represents the value assignments to variables
that correspond to a one-phase execution in X that
does not meet (5).

X is derived from the consensus algorithm and Inv,
while U is derived from U(v). Note that X and U can
only be simultaneously satisfied by a value assignment cor-
responding to a one-phase execution that (i) belongs to X
and (ii) for which (5) does not hold. Therefore every one-
phase execution in X meets (5) iff X ∪ U is unsatisfiable.

Step A1 and Step A2 can now be replaced with Step B1
and Step B2, respectively.

Step B1: Check the satisfiability of:

X ∪ U

This check can be done by an off-the-shelf Satisfiabil-
ity Modulo Theories (SMT) solver, such as Yices [11].

Step B2: If no satisfying value assignment exists, then ev-
ery one-phase execution in X satisfies (5), meaning
that (4) holds. As a result, it is guaranteed that agree-
ment holds. On the other hand if there is a satisfying
assignment, further analysis is needed to obtain a con-
clusive answer (see Step A2).

We now show how to construct X and U .

Constraints X : X is composed as follows:

X := Dom ∪ T 1 ∪ T 2 ∪ · · · ∪ T k ∪ I,

where Dom, T i and I are as follows:
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Dom: Dom restricts the domains of the variables. We
represent the set V al of possible proposed values by the set
of all positive integers and ? by zero. For the LastVoting
algorithm, Dom consists of the following constraints:

• ∀p ∈ Π,∀i, 1 ≤ i ≤ 5: xi
p > 0 ∧ votei

p ≥ 0 ∧ tsi
p ≥ 0

• Φ > 0
• ∀p ∈ Π,∀i, 1 ≤ i ≤ 4: dvi

p ≥ 0
• ∀p ∈ Π : 1 ≤ Coordp ≤ n

T i: T i represents the i-th round of the algorithm; T i is
satisfiable iff the system’s states – represented by the vari-
able values at the beginning of the ith and i+1-th rounds
– are consistent with the algorithm under verification. For
example:

T 3 :=
∀p ∈ Π :

x3
p = x4

p

∧ vote3
p = vote4

p

∧ ts3
p = ts4

p

∧ commit3p = commit4p
∧ ite(Coordp = p ∧∨

Q∈Maj

∧
q∈Q

(Coordq = p ∧ ts3
q = Φ ∧ ho3

p,q = true),

ready4
p = true, ready3

p = ready4
p)

∧ dv3
p = 0

where Maj ≡ {Q | Q ⊆ Π, |Q| > n/2}. The first
four terms express that process variables xp, votep, tsp and
commitp do not change in the third round. The ite term3

represents how variable readyp is updated: It specifies that
readyp will be updated to true if p considers itself the
coordinator and receives messages from a majority of pro-
cesses who consider the coordinator to be p (see lines 24–27
of Algorithm 1). The last term expresses that no decision is
made in the third round.

I: I enforces that c1 ∈ Inv. For example, consider Inv
shown in Example 2 that refers to phase Φ. In this case we
have:

I := ∀p ∈ Π :
{

commit1p = false
∧ ready1

p = false ∧ ts1
p < Φ

Constraints U: The negation of (5) is:

d ̸= ∅ ∧ ∀v ∈ V al : ¬(d = {v} ∧ ck+1 ∈ U(v))

where d =
( ∪

p∈Π,1≤i≤k{dvi
p}

)
\{?}. If v ̸∈ d, then d ̸=

{v}, which allows us to replace V al with d:

d ̸= ∅ ∧ ∀v ∈ d : ¬(d = {v} ∧ ck+1 ∈ U(v))
3ite(a, b, c) = b if a = true; ite(a, b, c) = c, otherwise.

U consists of constraints that represent the above formula.
For example, consider U(v) given in Example 1. Then U
consists of the conjunction of the following constraints:

•
∨

p∈Π,1≤i≤k

dvi
p ̸= 0

• ∀p ∈ Π,∀i, 1 ≤ i ≤ k:

(dvi
p ̸= 0) −→

¬


∧

q∈Π,1≤j≤k

(dvj
q = dvi

p ∨ dvj
q = 0)

∧
∨

Q∈Maj

∧
q∈Q

 xk+1
q = dvi

p

∧
∧

q′∈Π\Q

tsk+1
q > tsk+1

q′




Basically, the second constraint means that some process
has decided (dvi

p ̸= 0) while the configuration is not univa-
lent (¬(...)).

4. Verification of Termination

As stated in Section 2, in the context of the HO model,
the condition for termination is specified by a predicate over
the collections of HO sets and coordinators.

In this section we consider a condition of the form:

∃ϕ > 0 : P sync(ϕ)

where P sync(ϕ) is a predicate over the HO sets and the co-
ordinators in phase ϕ such that:

• P sync(ϕ) is invariant under phase changes; that is, for
any ϕ, ϕ′ > 0, we have P sync(ϕ) = P sync(ϕ′) if the
HO sets and the coordinators in phases ϕ and ϕ′ are
identical. Because of this property we henceforth de-
note P sync(ϕ) as P sync.

• P sync is not the constant false.

For example, Condition (1) in Section 2 is of this form. The
verification method described here determines whether the
given algorithm always terminates in a phase where P sync

holds.
Let Rsync ⊆ C × 2Π × C be a ternary relation such that

(c, π, c′) ∈ Rsync iff whenever phase ϕ(c) meets P sync,
a one-phase execution from c to c′ is possible in which π
is the set of processes that decide. Hence termination is
satisfied if:4

∀c ∈ Reachable : (∀(c, π, c′) ∈ Rsync : π = Π) (6)

Theorem 3 Termination holds if:

∀c ∈ Inv : (∀(c, π, c′) ∈ Rsync : π = Π) (7)

4Note that we exclude the exceptional case where no (c, π, c′) ∈
Rsync exists for some c, because P sync is not the constant false.
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Proof Because Reachable ⊆ Inv (Assumption 2), (7) im-
plies (6). ¤

Whether (7) holds or not can be determined us-
ing bounded model checking, as was done for agree-
ment verification: Let Xsync be the set of all one-
phase executions that start with a configuration in Inv,
and can occur if P sync holds for the phase. That is,
(c1ho1dv1 · · · ckhokdvkck+1, Coord) ∈ Xsync iff:

• c1 ∈ Inv (hence Xsync ⊆ X); and
• P sync holds for the HO sets, ho1, ho2, · · · , hok, and

the coordinators, Coord.

Hence (c, π, c′) ∈ Rsync iff there is a one-phase execution
(c1ho1dv1 · · · ckhokdvkck+1, Coord) ∈ Xsync such that
c = c1, c′ = ck+1, and π = {p | ∃i, 1 ≤ i ≤ k : dvi

p ̸= ?}.
The problem we want to solve is to deter-

mine if the following condition (8) holds for all
(c1ho1dv1 · · · ckhokdvkck+1, Coord) ∈ Xsync:

∀p ∈ Π,∃i, 1 ≤ i ≤ k : dvi
p ̸= ? (8)

In words, (8) states that every process decides in some
round of a phase where P sync holds. By definition, (7)
holds iff (8) holds for all executions in Xsync.

The problem of deciding whether all one-phase execu-
tions in Xsync satisfy (8) is reduced to the satisfiability
problem, as was done in Section 3.2. The constraints to
be checked are:

X ∪ Sync ∪ Term

where:

• Sync represents P sync. Sync consists of constraints
over hoi

p and Coordp (p ∈ Π, 1 ≤ i ≤ k) and is
satisfied iff P sync holds for the HO sets and the coor-
dinators represented by hoi

p and Coordp. As a result,
X ∪ Sync represents Xsync.

• Term is satisfied by a value assignment corresponding
to a one-phase execution iff it does not meet (8); that
is, some process exists that does not decide in the exe-
cution. Term is composed of only a single constraint:

Term :=
∨
p∈Π

∧
1≤i≤k

dvi
p = 0

The constraints X ∪ Sync ∪ Term can be simultaneously
satisfied by, and only by, a value assignment correspond-
ing to a one-phase execution that (i) is in Xsync and (ii)
for which (8) does not hold. Therefore every one-phase ex-
ecution in Xsync satisfies (8) iff no satisfying assignment
exists. As a result, termination can be verified as follows:

Step C1: Check the satisfiability of X ∪ Sync ∪ Term.

Step C2: If no satisfying value assignment exists, then ev-
ery one-phase execution in Xsync satisfies (8), mean-
ing that (4) holds. It is therefore guaranteed that ter-
mination holds. On the other hand, if the constraints
are satisfiable, then it means that (i) the algorithm is
incorrect or (ii) Inv is too large. In this case further
analysis is required to obtain a conclusive answer.

Example 4 Consider condition (1) for termination of
LastVoting. We have:

Sync :=
∨
p∈Π



p = Coord1 = · · · = Coordn

∧
∨

Q∈Maj

∧
q∈Q

ho1
p,q = true

∧
∨

Q∈Maj

∧
q∈Q

ho3
p,q = true

∧
∧
q∈Π

ho2
q,p = true

∧
∧
q∈Π

ho4
q,p = true


5. Validating Inv and U(v)

So far we have assumed that U(v) (see Example 1) and
Inv (see Example 2) satisfy Assumption 1, respectively As-
sumption 2 (see Section 3.1). Here we present automatic
procedures that can check that U(v) and Inv indeed sat-
isfy the corresponding assumptions. We show that with
some minor modifications, the model checking technique
described in the previous sections can be used for this pur-
pose.

5.1. Validating Inv

Here we remove Assumption 2; that is, it is not known
whether or not Inv is an invariant.

Theorem 4 Suppose that Inv is a set of configurations.
Inv is an invariant if the following two conditions hold:

Init ⊆ Inv (9)
∀c ∈ Inv : (∀(c, d, c′) ∈ R : c′ ∈ Inv) (10)

Proof By induction we show that for any c1d1c2d2 · · · ∈
Run, ci ∈ Inv for any i ≥ 1. By definition of Run, c1 ∈
Init. By (9) c1 ∈ Inv. Suppose that ci ∈ Inv for some
i ≥ 1. Then ci+1 ∈ Inv by (10). ¤

Test of (9) Testing (9) can be done by searching a config-
uration that is in Init but not in Inv. This can be conducted
by checking the satisfiability of the following constraints on
a configuration c1:

Dom ∪ INIT ∪ I

where:
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• INIT specifies that c1 ∈ Init.
• I specifies that c1 ̸∈ Inv. I is the negation of I, see

Section 3.2.

Condition (9) holds iff no satisfying assignment exists.

Test of (10) Testing whether (10) holds or
not can be done by determining if for all
(c1ho1dv1 · · · ckhokdvkck+1, Coord) ∈ X:

ck+1 ∈ Inv

This problem can be reduced to the satisfiability problem of
the following constraints:

X ∪ I ′

where I ′
is satisfied iff ck+1 ̸∈ Inv. Thus if there is no

satisfying solution, then every one-round execution in X
ends with a configuration in Inv, i.e., (10) holds.

I ′
is almost identical to I, except that (i) every first-

round version variable var1 in I is now replaced with its
k + 1-th version vark+1 and (ii) Φ is replaced with Φ + 1.

Example 5 Consider the LastVoting algorithm for exam-
ple. In this case we have:

INIT :=

∧
p∈Π

(
vote1

p =? ∧ commit1p = false
∧ ready1

p = false ∧ ts1
p = 0

)
∧ Φ = 1

For the Inv given in Example 2 that refers to phase Φ, we
have:

I := ¬
∧
p∈Π

(
commit1p = false
∧ready1

p = false ∧ ts1
p < Φ

)

I ′
:= ¬

∧
p∈Π

(
commitk+1

p = false
∧readyk+1

p = false ∧ tsk+1
p < Φ + 1

)

5.2. Validating U(v) with Assumption 2

Here we remove Assumption 1; that is, it is not known
that U(v) represents v-valent configurations. However, we
assume that Inv correctly represents an invariant; that is,
Reachable ⊆ Inv (Assumption 2).

Theorem 5 Suppose that v ∈ V al and U(v) is a set of
configurations. Any c ∈ U(v) ∩ Reachable is v-valent if:

∀c ∈ Inv : ∀(c, d, c′) ∈ R :
c ∈ U(v) −→ d ∈ {∅, {v}} ∧ c′ ∈ U(v) (11)

Proof It suffices to show that when (11) holds, for any
ci (i ≥ 1) in any run c1d1c2d2 · · · ∈ Run, if ci ∈ U(v),
then ci is v-valent. Since Reachable ⊆ Inv, ci ∈ Inv for
any i ≥ 1. If ci ∈ U(v), then because of (11), di = ∅ or
di = {v} and ci+1 ∈ U(v). By induction, for any j ≥ i,
dj = ∅ or dj = {v}. Hence ci is v-valent. ¤

Again, bounded model checking can be used to check
if (11) holds for all v ∈ V al. The problem to be solved
is to determine whether or not for any one-phase execution
(c1ho1dv1 · · · ckhokdvkck+1, Coord) ∈ X , the following
condition holds:

∀v ∈ V al :
c1 ∈ U(v) −→ (d = ∅ ∨ d = {v}) ∧ ck+1 ∈ U(v)

(12)
where d =

( ∪
p∈Π,1≤i≤k{dvi

p}
)
\{?}.

The problem is reduced to the satisfiability problem of:

X ∪ V

where V is satisfied by a one-phase execution in X iff it
does not meet (12). Therefore if X ∪ V is unsatisfiable,
then (12) holds for any execution in X , ensuring that any
c ∈ U(v) ∩ Reachable is v-valent.

The variables that occur in V are: process variables at
c1 and ck+1; Φ; dvi

p for all p ∈ Π, i, 1 ≤ i ≤ k; and an
auxiliary integer variable V that represents v in (12).

Example 6 For U(v) shown in Example 1, we have:

V := (V > 0)∧

¬



∨
Q∈Maj

( ∧
p∈Q

x1
p = V ∧

∧
q∈Π\Q

ts1
p > ts1

q

)
−→∧

p∈Π,1≤i≤k

(dvi
p = V ∨ dvi

p = 0)

∧
∨

Q∈Maj

∧
p∈Q

(
xk+1

p = V ∧
∧

q∈Π\Q

tsk+1
p > tsk+1

q

)



6. Case Studies

In this section we present the results of applying the pro-
posed approach to two consensus algorithms:

• LastVoting (Paxos) [6], see Algorithm 1.
• Hybrid-1(α), an improved version of the Fast Paxos

algorithm [23], presented in [4], see Algorithm 2.

For LastVoting, the condition for termination is specified
by (1) in Section 2, while U(v) and Inv are given in Exam-
ples 1 and 2.

Similarly to LastVoting, Hybrid-1(α) is always safe if
α ≤ ⌊n/4⌋. The condition for termination is specified in
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Table 1. Properties for Hybrid-1(α)
(a) Condition for Liveness

∃ϕ > 0,∃co ∈ Π,∀p ∈ Π :
ȷ

|HO(p, r)| > max(n/2, 2α) ∧ co = Coord(p, ϕ)
∧ ∀i, 0 ≤ i ≤ 2 : co ∈ HO(p, 3ϕ − i)

(b) U(v) and Inv

U(v) :=

∃Q ⊆ Π :

ȷ

|Q| ≥ n − α ∧
∀p ∈ Q : (xp = v) ∧ ∀p ∈ Π\Q : (tsp = 0)

∨

∃Q ⊆ Π :

ȷ

|Q| > n/2 ∧
∀p ∈ Q : (xp = v ∧ ∀q ∈ Π\Q : tsp > tsq)

Inv := ∀p ∈ Π : voteToSendp = false ∧ tsp < ϕ

Table 1(a); U(v) and Inv are given in Table 1(b). Hybrid-
1(α) combines a fast phase and an ordinary phase of Fast
Paxos into the same phase. In the first round of Phase 1, if
a process has received the same estimate from n − α pro-
cesses, then the process can immediately decide (line 12).
To prevent processes from deciding different values in later
rounds (line 33), if n − α or more processes have the same
proposed value, then it must be guaranteed that no process
having a different estimate will be allowed to update its
timestamp. That is, when at least n − α processes have the
same estimate v and the remaining processes have a times-
tamp equal to zero, the system must be v-valent. The first
term of the U(v) in Table 1(b) states this formally.

Experiments: The experiments were performed on a
Linux workstation with an Intel Xeon processor 2.2GHz
and 4Gbyte memory. We used the Yices [11] satisfiability
solver. For both algorithms, we conducted the four kinds
of checks, namely agreement, termination, U(v), and Inv,
up to n = 11. Table 2 shows the execution time required
for these checks. Notation “t.o.” (timeout) indicates that the
check was not completed within 5 hours.

No satisfiable solution was found in any of the checks.
Therefore Table 2 shows that for the two algorithms (i) U(v)
and Inv meet Assumption 1 up to n = 8, Assumption 2 up
to n = 11, and (ii) agreement and termination are guaran-
teed up to n = 8 and n = 11, respectively.

Traditional approach: For comparison, we evaluated a
different approach in which the whole state space of an al-
gorithm is explored with an existing model checker. Specif-
ically we verified LastVoting against the agreement property

Algorithm 2 The Hybrid-1(α) algorithm (α ≤ ⌊n/4⌋)
1: Initialization:
2: xp ∈ V al, initially vp {vp is the initial value of p}
3: votep ∈ V al ∪ {?}, initially ?
4: voteToSendp a Boolean, initially false
5: tsp ∈ N, initially 0

6: Round r = 3ϕ − 2 :
7: Sr

p :

8: send ⟨xp , tsp, Coord(p, ϕ)⟩ to all processes

9: T r
p :

10: if (ϕ = 1) and #⟨−,−,−⟩ ≥ n − α then
11: if n − α messages received are equal to ⟨x,−,−⟩ then
12: DECIDE(x)
13: if p = Coord(p, ϕ) and

#⟨−,−, p⟩ received > max(n/2, 2α) then
14: if the messages received are all equal to ⟨−, 0, p⟩

and, except at most α, are equal to ⟨x, 0, p⟩ then
15: votep := x
16: else
17: let θ be the largest θ from ⟨−, θ, p⟩ received
18: votep := one x such that ⟨x, θ, p⟩ is received
19: voteToSendp := true

20: Round r = 3ϕ − 1 :
21: Sr

p :

22: if p = Coord(p, ϕ) and voteToSendp then
23: send ⟨votep⟩ to all processes

24: T r
p :

25: if received ⟨v⟩ from Coord(p, ϕ) then
26: xp := v ; tsp := ϕ

27: Round r = 3ϕ :
28: Sr

p :

29: if tsp = ϕ then
30: send ⟨ack, xp⟩ to all processes

31: T r
p :

32: if ∃v s.t. # ⟨ack, v⟩ received > n/2 then
33: DECIDE(v)
34: voteToSendp := false

with three model checkers: NuSMV [8], SPIN [18], and
ALV [2].

SMV and SPIN are the two best known model check-
ers. NuSMV is one of the latest implementations of SMV.
Although SMV and SPIN can only deal with finite state
systems, the abstraction technique proposed in [26] allows
one to model check the whole state space with these model
checkers. In model checking with SPIN we made an ex-
tensive optimization to reduce the state space. Specifically
we completely removed the information on HO sets from
the state space, by specifying all possible behaviors as non-
deterministic ones. This optimization does not work for
SMV because HO sets are already compactly represented
by the data structure used in SMV. ALV is a well known
model checker that can analyze infinite state systems with
unbounded integer variables. It does not require any finite
state abstraction, while the same optimization as with SPIN
was performed to avoid explicit representation of HO sets.

Table 3 presents the maximum number of processes that
each of the model checkers was able to handle without run-
ning out of memory or time (5 hours) together with the time

9



Table 2. Execution time (in seconds)
LastVoting Hybrid-1(⌊n/4⌋)

n 4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11
agreement 0.1 0.3 0.6 5.0 10 139 312 11066 0.1 0.8 2.2 57 539 11848 t.o. t.o.
termination 0.0 0.1 0.1 0.5 1.0 3.6 7.6 32 0.0 0.1 0.3 1.1 3.2 13 28 121

U(v) 0.1 0.6 1.7 104 2356 t.o. t.o. t.o. 0.3 2.3 8.2 142 16650 t.o. t.o. t.o.
Inv 0.0 0.1 0.1 0.4 0.9 2.7 5.2 29 0.0 0.1 0.3 0.8 2.7 10 26 92

Table 3. Traditional approach on LastVoting
with different model checkers

Model Checker n Time (sec)
NuSMV [8] 4 167
SPIN [18] 3 2922
ALV [2] 3 1921

needed to model check the largest model. Comparing Ta-
bles 2 and 3 one can clearly see that the proposed approach
scales much better than the approach using existing model
checkers. This improvement can be explained by the fact
that our approach can avoid explosive growth of the search
space by limiting it to single phases.

7. Conclusion

We proposed a novel approach to automatic verification
of asynchronous consensus algorithms. Using the notions
of univalence and invariant, we reduced agreement and ter-
mination verification to the problem of model checking only
single phases of the algorithm. This unique property of
the model checking problem allowed us to effectively use
bounded model checking. As case studies we applied the
proposed approach to two consensus algorithms and me-
chanically verified that they satisfy agreement up to 8 pro-
cesses and termination up to 11 processes. Comparing the
performance of the traditional model checking approach
showed that the performance improvement was significant.
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