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PARABOLICITY OF MANIFOLDS

MARC TROYANOV

ABSTRACT. This Paper is an introduction to the study of an invariant of Rie-
mannian manifolds related to the non-linear potential theory of the p-Laplacian
and which is called its parabolic or hyperbolic type. One of our main focus
is the relationship between the asymptotic geometry of a manifold and its
parabolic type.

1. INTRODUCTION

A Riemann surface is called parabolic if it admits no positive Green function, and
hyperbolic otherwise: one of the classical problems of complex analysis is the so
called type problem for Riemann surfaces, which can be stated as follow: Give
criteria for a Riemann surface to be parabolic. This problem began to be system-
atically investigated in the thirties by Ahlfors, Nevanlinna and Myrberg among
others. An extended presentation of this theory can be found in the 1970 book of
Sario and Nakai [25].

An analogous theory has been developed for discrete groups and graphs as well as
for Riemannian manifolds. In view of applications to the theory of quasi-regular
mapping, a conformally invariant theory has also been developed in which the Green
function is related to the conformal Laplacian on the manifold.

These theories can be given a uniform treatment by introducing the notions of p-
hyperbolicity and p-parabolicity for a Riemannian manifold or a graph (see [13],
[18] and [32]).

The purpose of this paper is to give an introduction to the notion of p-parabolicity
of manifolds and to the main geometric criteria for the type problem. We also
show that, for a manifold M with bounded geometry, we can define an invariant
dpar(M) € R (the parabolic dimension of M) such that M is p-parabolic if p >
dpar(M) and M is p-hyperbolic if p < dper(M). We have included proofs when
they are short, new or hard to find in the literature.

This paper is by no mean a complete exposition of the subject. In particular,
relations with probability theory, with the p—module of families of curves, with
Sobolev inequalities and with quasi-regular mappings have been left aside. One
may consult [9], [33], [3] and [26] for expositions of complementary subjects.
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2. SOME EXAMPLES

A Riemannian manifold is p-hyperbolic (1 < p < c0) if it contains a compact set of
positive p-capacity and p-parabolic otherwise; we discuss at length this definition
in the next two sections. In this section, we informally give a list of examples of p-
hyperbolic and p-parabolic manifolds; in each case, their parabolicity /hyperbolicity
is an easy consequence of the results contained in the present paper.

To start with, observe that compact manifolds without boundary are trivially p-
parabolic for all 1 < p < oo (one could call them the elliptic objects of the theory).

If a set £ C M of positive Hausdorff s-dimensional measure is removed from an
n-dimensional manifold M; the resulting manifold M \ E is p-hyperbolic for all
(n—3s) < p < co. In particular, if E contains an open set, then M \ E is p-
hyperbolic for all 1 < p < oo and if E C M is any non empty subset, then M \ E
is p-hyperbolic for all n < p < oco.

A complete manifold with finite volume is p-parabolic for all 1 < p < oco. A
complete manifold with polynomial growth of degree d is p-parabolic for all p > d.
For instance a complete n-dimensional manifold with non negative Ricci curvature
is p-parabolic for all p > n.

Conversely, a manifold of isoperimetric dimension d, is p-hyperbolic for all p < d, in
particular a complete simply connected manifold with sectional curvature K < —1
is p-hyperbolic for all p < oco.

For manifolds with bounded geometry, we can introduce an invariant dpar € [1, 00],
called its parabolic dimension, such that the manifold M is p-parabolic if p >
dpar (M) and p-hyperbolic if p < dpar(M). This is a quasi-isometric invariant. If a
manifold M is the universal cover of a compact manifold N, then dp,, (M) is the
growth degree of the fundamental group 71 ().

For instance the Euclidean space R™ has parabolic dimension n and the hyperbolic
space H" has parabolic dimension oco.

Let us finally stress that n-parabolicity is a quasi-conformaly invariant property of
n-dimensional Riemannian manifolds (and is therefore also called conformal parabol-
icity).

3. CAPACITIES
We recall in this section some basic facts about capacities.
Definition Let (M, g) be Riemannian manifold, @ C M a connected domain in

M and D C Q a compact set. For 1 < p < 0o, the p—capacity of D in (Q is defined
by:

Capy(D, ) := inf {/ |dulP - u € Wy P(Q)NCY(Q), u>1 on D }
Q

where the Sobolev space W?(Q) is the closure of C2(Q), the space of compactly
supported C' functions, with respect to the Sobolev norm

[ullyp = llullze + [lldull|Ls -
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Remarks In the above definition, a simple truncation argument shows that one
may restrict oneself to functions u € Wy (Q) N CY(Q) such that 0 < u < 1.

We can extend this definition to arbitrary sets A C €2 by a min-max procedure:

first, for an open set U C (1, one defines
Capp (U, Q) := sup Capp(D, Q) ;

UDD compact

and then, for an arbitrary set A,

Capp(A4,Q) = AcUicrg open Cap, (U, Q).

We begin by a very simple observation:

Lemma 3.1. Suppose Q C M has finite volume. If Cap,(D,Q) = 0, then Cap,(D,2) =
0 foralll <g<p.

Proof This is a direct consequence of Holder’s inequality
a/p
/ |du|? < (Vol(Q))(p_Q)/p (/ |du|”>
Q Q

The following properties of capacities are well known (see eg. [12], [21] and [6]).

O

Theorem 3.2. Capacities enjoy the following properties.

i) Capp(D, ) = inf{ Cap, (U, )| U is open and D C U CC Q};

11) O C Qy = Capp(D,Ql) > Capp(D,Qg);

11) D1 C D2 = Capp(Dl, Q) < Capp(Dg, Q),

.V) Capp(D1 U DQ, Q) S Capp(Dl, Q) + Capp(Dg, Q) — Capp(D1 n DQ, Q),
)
)

—_—.

v) If U CC Q is open, then Cap,(U, Q) = Cap,(0U, Q);
vi) If DC Qi C Q- CU;Q = Q, then Capp(D, Q) = lim Capy (D, €2;).
d
We also define a local notion of sets with zero capacity:

Definition A set E C M (not necessarily compact) is said to be a null set for the
p—capacity, or a p—polar set, if for every pair of open balls By CC By we have

Capp,(EN By, B2) =0.
The set F is said to be of local positive p—capacity otherwise.
The property of being a p—polar set is local and independent of the choice of a

Riemannian metric.
The next lemma is an immediate consequence of Lemma 3.1.

Lemma 3.3. If E is a p—polar set, then E is also a g—polar set for all ¢ < p.

O
Further properties of null sets are now listed (see [12]):

Theorem 3.4. Null sets for the p—capacity in a Riemannian manifold M of di-
mension n have the following properties :
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i) If E is bounded and Capy(E,U) = 0 for some relatively compact open
neighbourhood U, then E is a p—polar set;
ii) A countable union of p—polar sets is a p—polar set;
ili) p—polar sets have zero (n-dimensional) measure;
iv) If there is a constant C < oo such that for all open sets U D E we have
Capp(E,U) < C, then E is a p—polar set.

O

There is an important relation between capacities and Hausdorff dimension:

Theorem 3.5. Let E C M be a bounded set of Hausdorff dimension s (0 < s <
n—1). Then E is a p—polar set for 1 < p < (n—s) and E is a set of local positive

p—capacity if p> (n—s).
A proof can be found in [12, pp. 43-48]. O

Proposition 3.1. A closed set E C M is a p-polar set if and only if for every
neighbourhood U of E and every e > 0, there exists a function u € C*(M) such that
i) the support of u is contained in M \ E;
i) 0<u<l;
iii) u=1on M\ U,
iv) [|dulP <e.

Proof Let E C M be a p-polar set. We first assume that E is bounded, then for
each bounded neighbourhood U of E, we have Cap,(E,U) = 0.

From the first assertion of Theorem 3.2, we know that there exists a function
v € C§(U) such that v =1 in a neighbourhood of E , 0 <v <1, and [ |dv|P <.
The function v € C*(M) defined by

(z) = 1—v(z) ifzel,
BRI | ifze M\U

has the desired properties.

Suppose now that £ C M is an unbounded p-polar subset, and let U O F be some
neighbourhood. We can decompose E as a countable union of disjoint bounded
sets £ = U2, E;. For each ¢, we can find a bounded neighbourhood U; such that

E; C U; C U and such that the covering {U;} is locally finite (i.e. each compact
subset of M meets only finitely many U;).

We just proved that for each 4, there exists u; € Ct(M) satisfying

i) the support of u; is contained in M \ E; ;
i) 0<u; <1;
ili) u; =1on M\U; ;
iv) [|du;|P < 27Ple.
The function

o0
u = H Ujg
i=1
satisfies the conditions of the proposition.

To prove the converse direction, we choose a pair of balls By C By, C M and a
smooth function ¢ : M — [0, 1] such that ¢ = 1 on By and supp(y) C Bs. Let us set
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¢ := ||dg|| L. Now choose a neighbourhood U of E such that Vol(UNBs;) < e and a
function u : M — [0, 1] satisfying (¢)—(iv). Let us define the function w : M — [0, 1]
by

w:=min{p, 1 —u},

then w = 1 on a neighbourhood of EN B; and supp(w) C By NU, therefore

Hdw”LP(Bz) < ||d(1 — u)||LP(B2ﬂU) + ||d(pHLP(B2ﬂU) .
But [|d(1 —w)| 1, = ldull, < e'/P and
lde|| o oty < sup(ld]) (Vol(U N Ba))'/? < ce'/?,
thus
HdeLp(Bz) < (14 c)el/p,

It follows that Cap,(E N By, By) = 0.
O

Let us also mention that p—polar sets are exceptional sets in the theory of Sobolev
functions (see [12, th. 2.42]).

If a domain ©Q C M is not relatively compact, then the condition Cap,(D,Q) =0
does not imply that D is a p—polar set. In fact, we have the following important
result :

Proposition 3.2. Let Q be a connected domain in (M, g) and Dy CC Dy CC Q) be

compact sets. Suppose that D1 has non empty interior and that Capp(D1,2) = 0.
Then Capp(D2,2) = 0.

We sketch below the proof of this proposition in order to illustrate the kind of
potential theoretical arguments needed (compare [12, pp. 179-181]).

We will need a few properties of p-harmonic functions. These are continuous func-
tions v : Q — R, which are weak solutions to the equation

Apu=0.

Where A, the p—Laplacian on (M, g), is the Euler-Lagrange operator associated
to the functional [ |du|P; that is

(3.1) Apu = —div(|VulP~2Vu) .

Proof of Proposition 3.2 By monotonicity of the p—capacity, we may suppose
that D1 and Dy are the closure of smooth domains (otherwise shrink D; and enlarge
D»), we may also assume Dy CC Ds.

Choose an exhaustion of {2 by bounded smooth domains Uj; :

DiccDyccUy ccUycc...U,ccn.

Then, by [12, p. 106 and p. 332] there exists a unique continuous solution
u; : Ui — R to the Dirichlet problem
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u; =1 on D ;
(3.2) u; =0 on 0U;;
APUZO OIlUi\Dl.

The maximum principle [12, p.111] implies the following;:
) 0<u <1
ii) the infimum ¢ := infp, (u1) of uq on Dg is > 0;
ili) w;y1 > u; on U; (since w41 > u; = 0 on 9U;).

In particular, u; > ¢ > 0 on D5 for all i.

We also know by [12, th. 5.28 and 5.29 pp. 106-107] that u; is an extremal function,
that is

Capp(Dl,Ui) :/ |duz|p
Ui

Define now the function v; : @ — R by v; = u;/c on U; and 0 on Q \ U;. Then
v; > 1 on Dy, therefore

1
Capp(D2,9) < lim / |dv;|P = — lim / |du; [P
1— 00 Q — 00 U7,

cP i

1 . 1
= — lim Capp(D1,U;) = - Capp(D1,Q) =0.

CcF 1—oo

The above Proposition has the following consequence

Corollary 3.1. If Cap, (D, ) = 0 for some compact subset D C @ with non empty
interior, then Capp(D’,Q) =0 for every compact subset D' C (.

O
The meaning of this result is that whether or not a ball in (M,g) has positive
p—capacity is a property of the manifold M and not of the ball. A manifold with
this property is said to be p—parabolic.

4. PARABOLICITY

Definition Let Q be a connected domain in a Riemannian manifold (M, ¢g) and
p a real number > 1. We say that ) is p—parabolic if there exists a compact set
D C Q with non empty interior such that Cap,(D,2) = 0.

And we say that € is p—hyperbolic if there exists a compact set D C 2 with non
empty interior such that Cap,(D,2) > 0.

Remark This is a dichotomy: every domain is either p—parabolic or p—hyperbolic.
Indeed, Corollary 3.1 says that Q is p—parabolic if and only if Cap,(D’,Q) =0
for all compact subsets D’ C .

We first observe that hyperbolicity is preserved when passing to a subset.

Lemma 4.1. If (N, g) is a p—hyperbolic manifold, then every open domain Q C N
is also p—hyperbolic.
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Proof Suppose that ) is p—parabolic. Then there exists a ball B C €2 such that
Cap,(B,Q) = 0, hence Cap,(B, N) = 0 and N is thus p—parabolic. O
A domain is p-parabolic if it is possible to approximate the function 1 by functions
with compact support and small p—energy:

Proposition 4.1. The domain  is p—parabolic if and only if there exists a se-
quence of functions u; € C}(2) such that 0 < u; < 1, u; — 1 uniformly on every

compact subsets of Q0 and
/|duj|p —0.
Q

Proof Suppose Capp(D,2) = 0 where D C  is compact with non empty interior.
Choose an exhaustion

DcDiCDyC---Q
of © by compact subsets. By Proposition 3.2, we know that Cap,(D;,2) = 0
for all j; hence we can find a function u; € C§(£2) such that u; = 1 on D; and
Jo ldu? < 1/j. We have constructed the desired sequence u;.

Conversely, suppose that there exists a sequence u; € Cg(£2) with the stated prop-
erties. Then we can find a ball B C €2 and jo € N such that u; > % on B for all
J > jo. It follows that Cap,(B, ) = 0. O

The concept of parabolicity is also related to the existence of a Green function via
the following result due to Ilkka Holopainen [13, th. 5.2]. (sees also [18]).

Theorem 4.2. Let Q) be a domain in a Riemannian manifold (M,g). Then the
following are equivalent:
i) Q is p—parabolic;
ii) there is no non constant positive p—superharmonic function on ;
ili) there is no positive Green function for the p—Laplacian A, on ).

(Recall that the p—Laplacian is the operator Apu = div(||Vu||P~2?)Vu, and that a
function w is p—superharmonic if Apu < 0.)
O

Remark Without the positivity condition, there always exists a Green function
on a complete manifold, at least for p = 2 (see [19]).

When p = 2, we also have the following connection with Brownian motion (Beurling-
Deny criterion):

Theorem 4.3. The Brownian motion on a domain Q C (M, g) is recurrent if and
only if Q0 is 2—parabolic.

A proof can be found in [1, p.44] or [9, th. 5.1]. O
The next result provides us with a large supply of examples of parabolic and hy-
perbolic (incomplete) manifolds.

Theorem 4.4. Let E C M be a subset in a Riemannian manifold M.

(A) If E C M has local positive p— capacity, then Q := M \ E is p—hyperbolic.

(B) If M is p—parabolic and E C M is a p—polar set, then Q := M \ E is
p—parabolic.
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Proof We first prove (A). Suppose that € is p—parabolic. By Proposition 4.1,
we can find a sequence of functions u; € C}(Q2) such that 0 < u; < 1, uj — 1
uniformly on every compact subsets of Q and [, |du;|? — 0.

But, by Proposition 3.1, this implies that £ C M is a p-polar set.

To prove (B), observe that by Proposition 4.1, and because M is p—parabolic, there
exists a sequence v; € C§(M) such that 0 < v; < 1, v; — 1 uniformly on every
compact subsets of M and [, [dv;[P — 0.

Since F is a p—polar set, Proposition 3.1 implies the existence of another sequence
w; + M — [0,1], of smooth functions with support in M \ E, such that w; — 1
uniformly on every compact subsets of M \ E and [}, |[dw;[? — 0.

Now set u; := vjw; : 8 — R. Since the sequence {u;} clearly satisfies all conditions
of Proposition 4.1, we deduce that  is p—parabolic. O

Corollary 4.1. Let M be a closed Riemannian manifold and E C M a set of
Hausdorff dimension s (0 < s <n =dim(M)). Then Q := M \ E is p—parabolic if
1 < p<n—s and p—hyperbolic for p >n — s.

Proof This is a direct consequence of the previous Theorem and Theorem 3.5. [

Other criteria for parabolicity are discussed in [7].

5. GEOMETRIC ESTIMATES

5.1. Capacity in term of hypersurface integrals. In order to give some useful
geometric estimates for capacities, we associate to each pair D CC 2 C M the
class A(D, Q) of functions h :  — R such that
i) h is continuous, locally Lipschitz, non constant and bounded below;
ii) DC{zreQ:h(x)=ro:=minh};
iii) if r < suph then {z € Q: h(z) < r} is compact.

The p—fluz of a function h € A(D, ) is the function @y, ,, : [ro,71) — R defined by

Dy (1) = /6 VAP do(a).

where Q, := {z € Q: h(z) < r} and [rg,r1) is the range of h (i.e. 79 := minh € R
and r; :==suph € RU {o0}) and do is the (n — 1)-dimensional Hausdorff measure.
Note that €2, is a bounded domain if 7y < r < r;. When p = 1, then ®, , is simply
the area :
By 1(r) = ap(r) = / do(x).
o9,
For a function h € A(D, ) of class C?, we also have by the divergence formula,

Ppp(r) = /{m [Vh|P~*(Vh,n)do = —/ (Aph)dvol .

Qr
We next define Q,(h) (for p > 1) to be the following integral.

Qp(h) = </ @hyp(r)llpdr>1p .

The next result is similar to the result of §2.2.2 in [21].
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Theorem 5.1. Let D CC Q2 C M and p > 1, then

Capp(D, ) = he/zI(llf) ) Qp(h).

We will need in the proof the following version of the coarea formula (see [6, p. 118]

or 21, p. 37]):
/{h>t} g(z) |Vh(z)| dx = /t (/{h_s} g(a:)da(a:)) ds

which holds if g : 2 — R is integrable and h : 2 — R is locally Lipshitz.
Proof Fix e > 0 and let u € C& (©) be a function such that 0 < u <1, u =1 on
D and Capy,(D,Q) > [, |du|? —e.

Set h(z) := 1 — u(x), then h € A(D,Q). We have ro := minh = 0 and r :=
max h = 1. By the coarea formula

/Q|du|p :/Q|dh|p = /01 </BQ |Vh(3:)|p_1da(x)) dr

1
= / Dy, (r)dr .
0

Thus, we have from lemma 5.2 below

1 1 f 1-p
Capy(D,Q) + ¢ > [ |dul’ = / ‘I’h,pv)d@(/ @h7p<r>”dr> = Qy(h),
Q 0 70

and, since € is arbitrary, we have

> i .
Capp(D, Q) 2 nf Qp(h)

To see the reverse inequality, we choose some function h € A(D, Q). We then fix
some number s € (g, r1] and define a function us : @ — R by

1 if h(z) <rp ;
h(@) dt ,
’LLS(I)— 1—75l0 W 1fr0§h(x)§s;
0 if r(z) >s;

where

s -1
Yo 1= (/ @h,p(t)l/l—fjdo :
0

Then ug is Lipschitz with compact support on 2 and we have a.e.

Vs Prp(h(2)) 1P |Vh(z)| if ro < h(z) < s ;
0 else .

[Vus () = {

We thus have



10 MARC TROYANOV

/ |V |[Pda = 75/ B, (h(x))P 1P|V h(z)Pdx
Q Q:\Qr

2 [ onytnay ([ Vhio)P o) ) dr

0

= 75/ Oy p(r)/ 1 Pdr = A2
ro
Thus
Capp(D, Q) g/ |du|P = 75—1
Q

for every s < r1. By continuity, we have

lim 75‘1 =Qp(h),

s—Tq

and the theorem follows. O

Lemma 5.2. Let m(r) be any positive bounded function and p > 1. Then

</01 m(r)llpdr>1_p < /01 m(r)dr .

Proof By Holder inequality, we have

= () it ([ () o) ([ )

Raising this inequality to the power p, one obtains the desired inequality. (I

B =

The functional @, has the following important invariance property :

Proposition 5.1. Let A : RU {oo} — RU {0} be any locally Lipschitz monotonic
function. Then for any h € A(D,Q), we have

Q@p(Aoh)=@Qp(h).

Proof Let h € A(D,Q). The function A defines a homeomorphism A : [rg,r] —
[to, 1] such that \'(r) > 0 a.e.
Set h:= Ao h, then ®; (A(r)) = X (1)~ '@}, (r), whence

tl 1 1 1
/ (I);I’p(t)ﬁdt = / @h,p(r)ﬁdr.
to

To

O
Corollary 5.1. In the computation of Qu(h), we may assume |Vh(z)| <1 a.e.
Proof Choose a smooth positive function ¢ : R — R such that R
|[Vh(z)| < ¢(h(x)) a.e. Now set A(r) = f:o w‘éi). Then h := \oh satisfies |[Vh(x)| =
N () [Vh(a)| = ——[Vh(a)| <1, and @y (F) = Qp(1h). =

©(s)
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5.2. The case p = 1. For p = 1, Theorem 5.1 must be replaced by the following
Proposition 5.2. Let D CC Q C M, then
Cap; (D, Q) = inf Area(9U)

where the infimum is taken over all the sets U CC Q with finite perimeter containing

D.

Proof Choose a function u : Q@ — [0, 1] with compact support and such that « = 1
on D. By the coarea formula we have

1
/ |du| = / Area(0Uy)dt > iItlf Area(0Uy)
Q 0

where Uy := {x € Q| u(z) > t}; hence Cap;i(D, ) > inf Area(dU).

To see the reverse inequality, we consider a regular domain U CC 2 containing D.
The characteristic function xy € BV(€2) and we can therefore (see [21, p. 298])
find a sequence of functions u; € C§°(£2) such that u; =1 on D and

Area(0U) = (xu) = lim [ |du;,]
i—oo Jq
hence Capy(D, ) < inf Area(oU). O

5.3. Manifold with warped cylindrical end. A Riemannian manifold M is said
to have a warped cylindrical end if there exists a compact Riemannian manifold
(N,gn) and a compact subset D CC M such that M \ D = N x; [1,00) is the
warped product of N and [1, 00) (i.e the direct product with the Riemannian metric
a2 + F(t)gn).

Let us denote by D, C M the subset Dy :=DU{(y,s)|lye N and s<t}.

Proposition 5.3. For 1 <r < R < oo we have

R I-p
Cwbﬂi»DR>=Vbn_mN></'f@ﬁLaﬁ>

For instance the p-capacity of a spherical ring in R™ is given by

RY — Tu)lp

v

Capp(Eru BR) = Qn-1 (

where a,,_; is the area of the unit sphere S"~! and v = ’1’:1’: if p#n and

Cap,,(By, Br) = an_1 (log(R/r))" ™"

Corollary 5.2. M is p-parabolic if and only if

/100 FO) T dt = oo
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O
For instance the Euclidean space R” is p-parabolic for p > n and p-hyperbolic for
p<n.

Proof of the Proposition Let us choose the function h € A(D,, Dg) defined by
h(z) =1if z € D and h(z) =t if v = (y,t) € N x {t}. Then |Vh(x)| =1 for all
x € M\ D and the p-flux of h is equal to the area:

@y, (1) = Area(dD,.) = Vol,,_1(N) f(t)" 1.

One thus obtains from Theorem 5.1
R R
Capy (D, Dr) < Qy(h) = Vol _1 () ( / f(t)ﬁdt) .

To prove the converse inequality, let us consider an arbitrary function u € C§(Dg)
such that v =1 on D,. We have for any y € N

R
/ Ju(y, 1) it

1= ot

R
< / Vuly, ) dt

using Holder’s inequality one gets

/TR |Vu(y,t)| dt = /TR (|Vu(y,t)| f(t)("*U/p) (f(t)(lfn)/p) dt

(r—1)/p

R 1/p R
(/ |Vu<y,t>|”f<t><"—l>dt> (/ f(t)“‘")/(”‘”dt> ,

(1-p)

1

IN

IN

1.e. . .
/ Vuly, ) (&) Vdt > </ f(t)“”)/(p”dt>

for all y € N. Integrating this inequality over N gives us

R (1_17)
/ |Vul? dz > Vol,,_1(N) < / f(t)(ln)/(pl)dt>
DR T

Since w is an arbitrary test function, we conclude that
— n— 1-p
Capy(D,, D) > Vol,_1(N) ( IR r)= dt) . O

5.4. Isoperimetric Profile. Let Q C (M, g) be open and D C Q compact.
Choose a function h € A(D,Q), and set Q, := {z € Q : h(xz) < r}. Let [ro,r1) be
the range of h and note v(r) = v (r) := Vol(Q,.), vo = v(ro) and vy = v(ry).

The function v(r) defines an absolutely continuous homeomorphism

v (ro,71) — (vo,v1). The inverse function is given by r(v) = sup{r| Vol(Q,) < v}
and the derivative of v is given by the coarea formula:

dv / do
5.1 — = i
( ) dr a0, |Vh|

We denote by a(r) = ap(r) := Area(0df2,). The area may then be expressed
in function of the volume v and we denote by a(v) = a(r(v)) the corresponding
function.
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Proposition 5.4. Ifp > 1, then

Q) > (/ i(v) ™ du) o

Proof We have by Holder inequality

ah(r)z/ da:/ \Vh|"F |Vh| 7 do
o0 o0

-
p—1

% do’ P
([ e ([
(ff)' | o0, VR

p

Raising this inequality to the power e and using (5.1), we obtain

1

P dv -t
a5 2 w075 ()

Integrating the last inequality gives

Q= ( | 70 (4) d) -(/ ()™ d) |
O

Definition A function P : [0,V) — R is an isoperimetric profile for Q C (M, g)
(V =Vol(£2)) if there exist constants C,n > 0 such that n <V and

P(Vol(D)) < C Area(dD)
for all a compact regions D C Q with Vol(D) > n.
Remark The reason for the constant 7 in the above definition is that the isoperi-

metric ratio of small domains in a Riemannian manifold is comparable to the isoperi-
metric ratio of small domains in Euclidean space and thus of little interest.

Theorem 5.3. Suppose that the domain Q C (M, g) admits an isoperimetric profile
P:[0,V) — R such that

v dv
y PP/ =%
(1 <p<oo). Then Q is p—hyperbolic.

Proof Let D C ) be a compact set with volume 7. For any function h € A(D, Q)
we define a(v) as in Proposition 5.4. We clearly have a(v) > &P(v). Thus

v1 P /( 1) v dv
2 — or/(p—
/ a(v)Trdv <I:=C / P D < 0.

vo n

From Proposition 5.4 and Theorem 5.1, we obtain

Capy(D,Q) > I'"7 > 0.
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5.5. Area and Volume growth. Let us first treat the case of 1—parabolicity.

Lemma 5.4. Q is 1-parabolic if and only if there exists an exhaustion

GiCGyC---CCQ
by domains such that liminf Area(9G;) = 0.

Proof By Proposition 5.2, we see that for a ball B C 2,
Cap, (D, ) = inf Area(9G)
where G runs through all domains such that D C G CC Q.

Corollary 5.3. A complete manifold M with finite volume is 1-parabolic .
Proof Choose a base point zo € M and define v(r) = Vol(B(zo,r)) and a(r)

Area(dB(zo,r)). By equation (5.1) we have 2 = a(r).

Suppose that M is 1—hyperbolic. Then, by Lemma 5.4, we have

liminf S = liminf a(r) >0,

T—00 T T—00

but this implies lim, o v(r) = .

d

We next see how the growth of area gives us an upper bound for the capacity:
Choose a function h € A(D,Q) (where D C § is a compact subset) and note

ap(r) = Area(09,.).

Proposition 5.5.

Q) = (vl ([ an(r) T d) |

Proof Suppose |Vh(z)| < ¢ for almost all z, then

Dy (1) < Pl / do = P! an(r),
Q.

1 1—
Qp(h) <Pt (/ ah(r)ﬁ dr) ’ .

and thus

This proposition has the obvious

Corollary 5.4. Let M be a complete manifold such that

° dr B
a(r /- —

where a(r) = Area(0B(xo,7)), Then M is p—parabolic.

O

Remarks 1) It follows from Corollary 5.2 that for manifolds with warped cylin-
drical ends, this condition is not only necessary but also sufficient for M to be

p-parabolic.
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2) This corollary is false for non complete manifolds. For instance a half plane
M = {|(z,y)|z > 0} C R? (with its Euclidean metric) is p—hyperbolic for all p.

Yet in this example,
/ < dr
= >
a(r)

Corollary 5.5. Let M be a complete manifold such that

< dr
v(r)l/q_oo’

where v(r) = Vol(B(zg,r)), then M is p-parabolic for all p > q.

Proof This is an immediate consequence of the previous corollary and the next
lemma together with Equation (?7). O

Lemma 5.5. Let f : [0,00) — R be a positive, strictly monotonic function such
that limy_,o f(t) = +00. Fixp>q>1 and e > 0. Then

p—1

[Tuorrasa ([T woa)

A=) (G5%) Cr@F T i g
log ( f(€)) if a=p

where

8=

Proof of the lemma  Observe that f'(t) > 0 for all . We have by Hoélder
inequality:

/ Ty Vra = / T @)V e) T

p—1

IN

(/eoo (f(t)) P/ f’(t)dt>; (/600 ()" ®D f'(t)dt> ;

| @ poi=a

But

Example If M is a complete manifold such that
Vol(B(zg,7) <crd,
then M is p—parabolic for all p > ¢. In particular R™ is p—parabolic for p > n.

Similarly to Corollary 5.5, we have

Corollary 5.6. Let M be a complete manifold such that
/OO r 1/(P—1)dr Cw
Vol(B(xo, ) o
then M is p-parabolic.

A proof can be found in §5.2 of [33].
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6. DISCRETIZATION

6.1. Potential Theory on Graphs. We start with a list of definitions from dis-
crete potential theory. For more information, one may consult [5], [26] or [31].

A graph X is a set V = V(X) together with a non reflexive, symmetric relation ~.
The elements of V(X)) are the vertices of the graph (X, ~). The vertice y is said
to be a neighbour of x if z ~ y.

An unoriented edge is an unordered pair {z,y} of neighbour vertices. An oriented
edge is an ordered pair € = [z, y] of neighbour vertices. The edge [y, z] is called the
reversed edge of &= [z, y] and is denoted by —é&. We denote by «(€) = z the origin
of e and w(€) = y its end.

We may think of an unoriented edge as a segment between two neighbour vertices
and of an oriented edge as an arrow.

We will note S(X) the set of unoriented edges of X and A(X) the set of oriented
edges. There is an obvious (2 to 1) map A(X) — S(X). A (global) orientation of
the graph is a section S(X) — A(X) of this map.

A path in the graph X is a finite sequence x1, %o, ...x, of vertices such that z; ~
Zi+1. The cardinal n of this sequence is called the length of the path.
The graph X is connected if there is a path connecting any pair of vertices.

If x,y € V(X), we denote by p(z,y) the length of the shortest path joining x to y
(and p(z,y) = 0 if x = y). Observe that p(z,y) =1 iff  ~ y. If X is a connected
graph, (V(X), p) is a metric space.

The degree deg(x) of a vertice is the cardinal of the set of its neighbours.
We say that the graph X has bounded geometry if it is connected, V(X)) is finite or
countable and deg(z) < N for all z € V(X) where N = N(X) < 0.

A 0-cochain (or a function) on the graph X is simply a function u : V(X) — R,
and 1-cochain (or a 1-form) is a function 7 : A(z) — R such that n(—é) = —n(é).
We denote by Q°(X) and Q!(X) the space of 0-cochains and 1-cochains on X.

The differential of a O-cochain u € Q°(X) is the 1-cochain du defined by
du([z,y]) = uly) —u(z).
The codifferential (or divergence) of a 1-cochain 7 is the 0-cochain dn defined by

sn() =>_n(ly,«]) .

y~z

Observe that if € Q1(X) has finite support, then

Z dn(z) =0.

zeV(X)
If n and £ are 1-cochains, their (pointwise) scalar product is the 0-cochain

(€)= 3 3 &llysalnlly.a])

Yy~
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If 7 or £ has finite support, then the global (L?) scalar product is
1
€z = > &) = B > @@
z€V (z) geA(X)

Remark If ¢ € Q}(X) and e € S(X), then &(e) is only defined up to multiplication
by £1. However, if £,n € Q}(X) and e € S(X), then the product £(e) n(e) is well
defined, and we may write

€= 3 &) nle).

eeS(X)
We may turn Q'(X) into a Q°(X)-module where the action is defined by

(- 0) (2, y)) = 5 ([, )
The operator § satisfies the Leibniz rule:

6(u-n)(x) = w(z)on(x) + (du,n)(z) .
A consequence is that if u or  has finite support, a summation by parts shows that

Do u@)dn(e) == Y (dup)(a)=— Y dule)nle),

€V (x) z€V(z) eesS(X)
hence the operators d and —9 are formal adjoint.

The (pointwise) norm of a 1-cochain 7 € Q!(X) is the 0-cochain ||n|| defined by

1/2
[0l (x) =/ {n,m) () = (Z n([y,fr])2> :

Yy~

Let X be a graph and p € [1,00) a real number. The p-energy (or p—Dirichlet
integral) of a 0-cochain u € Q°(X) is the sum

p/2
Dp(u)= > |du(@)|? = (Z(U(y)—U(ﬂﬂ))2> :

zeV(x) zeV(x) \y~zx

The Euler-Lagrange operator associated to the p—energy is the p-Laplacian
A, QY(X) — Q°%X) defined by

Ap(u) = =0(|dul|P~*du).

6.2. Parabolicity of Graphs. Let X be connected graph and A C X a finite set.
Definition For p > 1, the p—capacity of A is defined by:

Capy (A, X) :=inf{D,(u) : u € Q°(X), u > 1on A, and u has finite support }.
Remark By truncation, one may restrict oneself to functions u € Q°(X) such
that 0 < u < 1.

The proof of the following lemma is not difficult (it can be found in [32, th. 3.1]).

Lemma 6.1. Let A and A’ be two finite non empty subsets of X, then Capy(4,X) =
0 if and only if Capy(A’, X) = 0.
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O
Definition A graph X is p—parabolic if Cap,(A,X) = 0 for all finite subsets
A C X. Otherwise, X is p—hyperbolic.

Proposition 6.1. Let X be a graph with bounded geometry. If X is p—parabolic,
then X is also g—parabolic for all g > p.

Proof Let A C V() be any finite set. For all €, we can find a function u € Q°(X)
with finite support, such that v > 1 on A and D,(u) < e. We may furthermore
assume that 0 < u(z) <1 for all z € V(X).

Let N be such that deg(z) < N for all z, and observe that

1/2
R <Z<u<y> —u<x>>2> <1

Yy~
du( || du(
thus, if ¢ > p, then (” u(@) ) < |du( > This implies
) <

N@—»)/2p (1)
and the result follows. O

Remark Yamasaki has proved the above proposition without the assumption that
X has finite geometry (see [32, th. 5.1]).

6.3. Manifold with bounded geometry. A manifold M has bounded geometry
if every ball of radius p (= some fixed positive number) is geometrically close to a
standard ball in Euclidean space. The exact definition may depend on the actual
needs of the theory.

In the present context, it is sufficient to agree on the following

Definition A Riemannian manifold M has bounded geometry if it has a positive
injectivity radius and its Ricci curvature is bounded below.

For instance compact manifold have bounded geometry, and any Riemannian cov-
ering space of a manifold with bounded geometry also has bounded geometry.
Observe that a manifold with bounded geometry is necessarily complete.

Let us also recall that two metric spaces X and Y are (roughly) quasi-isometric to
each other if there exist a map f: X — Y and constants A > 1, ¢ >0 and ¢ > 0
such that

i) %d(xl,xg) —c<d(f(x1), f(x2)) < Md(z1,z2) + ¢ for all 21,29 € X;

ii) every ball of radius € in Y contains a point of f(X).

Definition A discretization of Riemannian manifold M is a graph X which is
quasi-isometric to M.

By the work of Kanai and Holopainen, we know that p—parabolicity is stable under
quasi-isometry:
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Theorem 6.2. (A) Let X and Y be two quasi-isometric graphs. Assume that
X and Y have bounded geometry. Then X is p—parabolic if and only if Y is
p—parabolic.

(B) Let the graph X be a discretization of the manifold M. Assume that M and X
have bounded geometry. Then M is p—parabolic if and only if X is p—parabolic.

(C) Every Riemannian manifold M with bounded geometry admits a discretization
X, which is a graph with bounded geometry.

(D) Let M and N be two quasi-isometric Riemannian manifolds. Assume that
M and N have bounded geometry. Then M is p—parabolic if and only if N is
p—parabolic.

Proof The proof of (A) and (B) can be found in [15] for p = 2 and [14, section
5] for all p. The proof of (C) can be found in [15, lemma 2.4 and 2.5]. The last
statement is a consequence of the first three. (Il

We are now able to extend Proposition 6.1 to Riemannian manifolds with bounded

geometry.

Theorem 6.3. Let M be p—parabolic Riemannian manifolds with bounded geom-
etry. Then M is also q—parabolic for all ¢ > p.

Proof Let X be a discretization (with bounded geometry) of M. By part (A) of
the previous theorem, we know that X is p—parabolic, and by Proposition 6.1, X
is g—parabolic for all ¢ > p. Using again statement (A) above, we conclude that
M is g—parabolic. ([

Remark This theorem is false without the condition that M has bounded geom-

etry. For instance, in the example given by Corollary 4.1, the behaviour is opposite

to the behaviour of manifolds with bounded geometry described in Theorem 6.3.
7. DIMENSION AT INFINITY OF A MANIFOLD

In this section, (M, g) is a complete manifold.

Definition The manifold M is said to satisfy an isoperimetric inequality of order
k if there exist constants C,0 > 0 (6 < Vol(M)) such that for all bounded regular
domain D CC M with Vol(D) > §, we have

Vol(D)*=1) < C Area(dD)*.
And M is said to be open at infinity if
Vol(D) < C Area(dD).

The isoperimetric dimension of (M, g) is then the number
disop(M, g) = sup{ k > 0] M satisfies an isoperimetric inequality of order k} .
Definition The growth degree of a complete manifold (M, g) is the number
dgr (M, g) = inf{m > 1| lim inf vlr) < oo},
: r—oo M

where v(r) = Vol(By,,) is the volume of the sphere centered at some base point
xo € M.
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The invariants dgr(M,g) and disop(M, g) are known to be stable under quasi-
isometries (see [15]).

The results of section 4 imply the next proposition:

Proposition 7.1. Let (M, g) be a complete manifold. If p < disop(M), then M is
p—hyperbolic, and if p > dg. (M), then M is p—parabolic. (If M is open at infinity,
then M is p—hyperbolic for all p.)

O
Definition The parabolic dimension of M is the number
dper(M) =inf{p > 1: M is p—parabolic} .
If M is p—hyperbolic for all p, then we set dpe. (M, g) = .

Proposition 7.2. If M has bounded geometry, then the parabolic dimension can
also be defined as

dpar (M) =sup{p > 1: M is p—hyperbolic} .
Proof This follows from Theorem 6.3. O

If (M, g) be a connected complete Riemannian manifold. Then Proposition 7.1 says
that

disop(M, g) < dpar(M, g) < dgr (M, g) -
It is not difficult to construct a manifold for which these inequalities are strict (for
instance a manifold with successive large and small parts as in the figure).

However, this will not be the case if the manifold has a large group of isometries.

Theorem 7.1 (Coulhon, Saloff-Coste). Let (M, g) be the universal cover of a con-
nected compact manifold N. Then

disop(Ma g) = %ar(Ma g) = dgr (Ma g) .
The proof can be found in [4]. O
In fact, these numbers are equal to the growth degree of 71 (N) (cf. [23]).

The previous theorem also holds for manifolds which satisfy a Poincaré inequality
and a volume doubling condition (th. 3 of [4]).

Let us conclude this section by mentioning that there are several other notions of
dimension at infinity for manifolds (see [2]).



PARABOLICITY OF MANIFOLDS 21

8. CONFORMAL PARABOLICITY

Let g and go be two conformally equivalent metrics on a n—dimensional manifold
M,ie. g = Ago for some smooth function A : M — R

The volume forms dvol, and dvoly, are related by
dvoly = A" dwvoly, .

If o is a 1-form on M, then its norm for both metrics are related by |a|, = A~ alg,,
we thus see that the expression

|duly dvoly, = |dul, dvolg, .

is a conformal invariant for all function w on M. This is of course also the case for
n—capacities and we conclude that

Proposition 8.1. n—parabolicity is a conformally invariant property of manifolds.

O
A n—parabolic (hyperbolic) manifold is also called conformally parabolic (hyper-
bolic).

We may now formulate a version of the so called Ahlfors-Gromov Lemma (see [10,
p. 198], [11, p. 85] and [33] for other versions).

Theorem 8.1 (Ahlfors-Gromov Lemma). Let (M, go) be a complete n dimensional
Riemannian manifold such that disep(M,g0) > n. Then dg-(M,g) > n for all
metric g conformally equivalent to go.

Proof (M, go) is n—hyperbolic, hence (M, g) also (by conformal invariance of n—
parabolicity), whence d..(M, g) > n. O

This result is the basis for a description of the possible volume growth of the various
metrics within a conformal class, see [8] and [33].
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