
Siberian Adv. Math. 1999 vol. 9 (4) pp. 125-150

PARABOLICITY OF MANIFOLDS

MARC TROYANOV

Abstract. This Paper is an introduction to the study of an invariant of Rie-
mannian manifolds related to the non-linear potential theory of the p-Laplacian
and which is called its parabolic or hyperbolic type. One of our main focus
is the relationship between the asymptotic geometry of a manifold and its
parabolic type.

1. Introduction

A Riemann surface is called parabolic if it admits no positive Green function, and
hyperbolic otherwise: one of the classical problems of complex analysis is the so
called type problem for Riemann surfaces, which can be stated as follow: Give
criteria for a Riemann surface to be parabolic. This problem began to be system-
atically investigated in the thirties by Ahlfors, Nevanlinna and Myrberg among
others. An extended presentation of this theory can be found in the 1970 book of
Sario and Nakai [25].

An analogous theory has been developed for discrete groups and graphs as well as
for Riemannian manifolds. In view of applications to the theory of quasi-regular
mapping, a conformally invariant theory has also been developed in which the Green
function is related to the conformal Laplacian on the manifold.

These theories can be given a uniform treatment by introducing the notions of p-
hyperbolicity and p-parabolicity for a Riemannian manifold or a graph (see [13],
[18] and [32]).

The purpose of this paper is to give an introduction to the notion of p-parabolicity
of manifolds and to the main geometric criteria for the type problem. We also
show that, for a manifold M with bounded geometry, we can define an invariant
dpar(M) ∈ R (the parabolic dimension of M) such that M is p-parabolic if p >
dpar(M) and M is p-hyperbolic if p < dpar(M). We have included proofs when
they are short, new or hard to find in the literature.

This paper is by no mean a complete exposition of the subject. In particular,
relations with probability theory, with the p−module of families of curves, with
Sobolev inequalities and with quasi-regular mappings have been left aside. One
may consult [9], [33], [3] and [26] for expositions of complementary subjects.
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2. Some Examples

A Riemannian manifold is p-hyperbolic (1 ≤ p < ∞) if it contains a compact set of
positive p-capacity and p-parabolic otherwise; we discuss at length this definition
in the next two sections. In this section, we informally give a list of examples of p-
hyperbolic and p-parabolic manifolds; in each case, their parabolicity/hyperbolicity
is an easy consequence of the results contained in the present paper.

To start with, observe that compact manifolds without boundary are trivially p-
parabolic for all 1 ≤ p < ∞ (one could call them the elliptic objects of the theory).

If a set E ⊂ M of positive Hausdorff s-dimensional measure is removed from an
n-dimensional manifold M ; the resulting manifold M \ E is p-hyperbolic for all
(n − s) < p < ∞. In particular, if E contains an open set, then M \ E is p-
hyperbolic for all 1 ≤ p < ∞ and if E ⊂ M is any non empty subset, then M \ E
is p-hyperbolic for all n < p < ∞.

A complete manifold with finite volume is p-parabolic for all 1 ≤ p < ∞. A
complete manifold with polynomial growth of degree d is p-parabolic for all p ≥ d.
For instance a complete n-dimensional manifold with non negative Ricci curvature
is p-parabolic for all p ≥ n.

Conversely, a manifold of isoperimetric dimension d, is p-hyperbolic for all p < d, in
particular a complete simply connected manifold with sectional curvature K ≤ −1
is p-hyperbolic for all p < ∞.

For manifolds with bounded geometry, we can introduce an invariant dpar ∈ [1,∞],
called its parabolic dimension, such that the manifold M is p-parabolic if p >
dpar(M) and p-hyperbolic if p < dpar(M). This is a quasi-isometric invariant. If a
manifold M is the universal cover of a compact manifold N, then dpar(M) is the
growth degree of the fundamental group π1(N).
For instance the Euclidean space R

n has parabolic dimension n and the hyperbolic
space H

n has parabolic dimension ∞.

Let us finally stress that n-parabolicity is a quasi-conformaly invariant property of
n-dimensional Riemannian manifolds (and is therefore also called conformal parabol-
icity).

3. Capacities

We recall in this section some basic facts about capacities.

Definition Let (M, g) be Riemannian manifold, Ω ⊂ M a connected domain in
M and D ⊂ Ω a compact set. For 1 ≤ p < ∞, the p−capacity of D in Ω is defined
by:

Capp(D, Ω) := inf

{
∫

Ω

|du|p : u ∈ W 1,p
0 (Ω) ∩ C0

0 (Ω), u ≥ 1 on D

}

where the Sobolev space W 1,p
0 (Ω) is the closure of C1

0 (Ω), the space of compactly
supported C1 functions, with respect to the Sobolev norm

‖u‖1,p := ‖u‖Lp + ‖|du|‖Lp .
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Remarks In the above definition, a simple truncation argument shows that one
may restrict oneself to functions u ∈ W 1,p

0 (Ω) ∩ C0
0 (Ω) such that 0 ≤ u ≤ 1.

We can extend this definition to arbitrary sets A ⊂ Ω by a min-max procedure:
first, for an open set U ⊂ Ω, one defines

Capp(U, Ω) := sup
U⊃D compact

Capp(D, Ω) ;

and then, for an arbitrary set A,

Capp(A, Ω) := inf
A⊂U⊂Ω open

Capp(U, Ω) .

We begin by a very simple observation:

Lemma 3.1. Suppose Ω ⊂ M has finite volume. If Capp(D, Ω) = 0, then Capq(D, Ω) =
0 for all 1 ≤ q < p.

Proof This is a direct consequence of Hölder’s inequality
∫

Ω

|du|q ≤ (Vol(Ω))
(p−q)/p

(
∫

Ω

|du|p
)q/p

�

The following properties of capacities are well known (see eg. [12], [21] and [6]).

Theorem 3.2. Capacities enjoy the following properties.

i) Capp(D, Ω1) = inf{Capp(U, Ω1)|U is open and D ⊂ U ⊂⊂ Ω};
ii) Ω1 ⊂ Ω2 ⇒ Capp(D, Ω1) ≥ Capp(D, Ω2);
iii) D1 ⊂ D2 ⇒ Capp(D1, Ω) ≤ Capp(D2, Ω);
iv) Capp(D1 ∪ D2, Ω) ≤ Capp(D1, Ω) + Capp(D2, Ω) − Capp(D1 ∩ D2, Ω);
v) If U ⊂⊂ Ω is open, then Capp(Ū , Ω) = Capp(∂U, Ω);
vi) If D ⊂ Ω1 ⊂ Ω2 · · · ⊂ ∪iΩi = Ω, then Capp(D, Ω) = lim

i→∞
Capp(D, Ωi).

�

We also define a local notion of sets with zero capacity:

Definition A set E ⊂ M (not necessarily compact) is said to be a null set for the
p−capacity, or a p−polar set, if for every pair of open balls B1 ⊂⊂ B2 we have

Capp(E ∩ B1, B2) = 0 .

The set E is said to be of local positive p−capacity otherwise.

The property of being a p−polar set is local and independent of the choice of a
Riemannian metric.
The next lemma is an immediate consequence of Lemma 3.1.

Lemma 3.3. If E is a p−polar set, then E is also a q−polar set for all q ≤ p.

�

Further properties of null sets are now listed (see [12]):

Theorem 3.4. Null sets for the p−capacity in a Riemannian manifold M of di-
mension n have the following properties :
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i) If E is bounded and Capp(E, U) = 0 for some relatively compact open
neighbourhood U , then E is a p−polar set;

ii) A countable union of p−polar sets is a p−polar set;
iii) p−polar sets have zero (n-dimensional) measure;
iv) If there is a constant C < ∞ such that for all open sets U ⊃ E we have

Capp(E, U) ≤ C, then E is a p−polar set.

�

There is an important relation between capacities and Hausdorff dimension:

Theorem 3.5. Let E ⊂ M be a bounded set of Hausdorff dimension s (0 < s <
n− 1). Then E is a p−polar set for 1 < p < (n− s) and E is a set of local positive
p−capacity if p > (n − s).

A proof can be found in [12, pp. 43–48]. �

Proposition 3.1. A closed set E ⊂ M is a p-polar set if and only if for every
neighbourhood U of E and every ǫ > 0, there exists a function u ∈ C1(M) such that

i) the support of u is contained in M \ E;
ii) 0 ≤ u ≤ 1;
iii) u ≡ 1 on M \ U ;
iv)

∫

|du|p ≤ ǫ .

Proof Let E ⊂ M be a p-polar set. We first assume that E is bounded, then for
each bounded neighbourhood U of E, we have Capp(E, U) = 0.
From the first assertion of Theorem 3.2, we know that there exists a function
v ∈ C1

0 (U) such that v = 1 in a neighbourhood of E , 0 ≤ v ≤ 1, and
∫

|dv|p ≤ ǫ .
The function u ∈ C1(M) defined by

u(x) =

{

1 − v(x) if x ∈ U,
1 if x ∈ M \ U

has the desired properties.

Suppose now that E ⊂ M is an unbounded p-polar subset, and let U ⊃ E be some
neighbourhood. We can decompose E as a countable union of disjoint bounded
sets E = ∪∞

i=1Ei. For each i, we can find a bounded neighbourhood Ui such that
Ei ⊂ Ui ⊂ U and such that the covering {Ui} is locally finite (i.e. each compact
subset of M meets only finitely many Ui).

We just proved that for each i, there exists ui ∈ C1(M) satisfying

i) the support of ui is contained in M \ Ei ;
ii) 0 ≤ ui ≤ 1 ;
iii) ui ≡ 1 on M \ Ui ;
iv)

∫

|dui|p ≤ 2−piǫ .

The function

u =

∞
∏

i=1

ui

satisfies the conditions of the proposition.

To prove the converse direction, we choose a pair of balls B1 ⊂ B2 ⊂ M and a
smooth function ϕ : M → [0, 1] such that ϕ = 1 on B1 and supp(ϕ) ⊂ B2. Let us set
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c := ‖dϕ‖L∞ . Now choose a neighbourhood U of E such that Vol(U ∩B2) < ǫ and a
function u : M → [0, 1] satisfying (i)–(iv). Let us define the function w : M → [0, 1]
by

w := min {ϕ, 1 − u} ,

then w = 1 on a neighbourhood of E ∩ B1 and supp(w) ⊂ B2 ∩ U , therefore

‖dw‖Lp(B2) ≤ ‖d(1 − u)‖Lp(B2∩U) + ‖dϕ‖Lp(B2∩U) .

But ‖d(1 − u)‖Lp = ‖du‖Lp ≤ ǫ1/p and

‖dϕ‖Lp(B2∩U) ≤ sup(|dϕ|) (Vol(U ∩ B2))
1/p ≤ c ǫ1/p ,

thus

‖dw‖Lp(B2)
≤ (1 + c)ǫ1/p.

It follows that Capp(E ∩ B1, B2) = 0.
�

Let us also mention that p−polar sets are exceptional sets in the theory of Sobolev
functions (see [12, th. 2.42]).

If a domain Ω ⊂ M is not relatively compact, then the condition Capp(D, Ω) = 0
does not imply that D is a p−polar set. In fact, we have the following important
result :

Proposition 3.2. Let Ω be a connected domain in (M, g) and D1 ⊂⊂ D2 ⊂⊂ Ω be
compact sets. Suppose that D1 has non empty interior and that Capp(D1, Ω) = 0.
Then Capp(D2, Ω) = 0.

We sketch below the proof of this proposition in order to illustrate the kind of
potential theoretical arguments needed (compare [12, pp. 179–181]).

We will need a few properties of p-harmonic functions. These are continuous func-
tions u : Ω → R, which are weak solutions to the equation

∆pu = 0 .

Where ∆p, the p−Laplacian on (M, g), is the Euler-Lagrange operator associated
to the functional

∫

|du|p; that is

(3.1) ∆pu = −div(|∇u|p−2∇u) .

Proof of Proposition 3.2 By monotonicity of the p−capacity, we may suppose
that D1 and D2 are the closure of smooth domains (otherwise shrink D1 and enlarge
D2), we may also assume D1 ⊂⊂ D2.
Choose an exhaustion of Ω by bounded smooth domains Ui :

D1 ⊂⊂ D2 ⊂⊂ U1 ⊂⊂ U2 ⊂⊂ . . . Uk ⊂⊂ Ω .

Then, by [12, p. 106 and p. 332] there exists a unique continuous solution
ui : Ūi → R to the Dirichlet problem
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(3.2)











ui = 1 on D1 ;

ui = 0 on ∂Ui ;

∆pu = 0 on Ui \ D1 .

The maximum principle [12, p.111] implies the following:

i) 0 ≤ ui ≤ 1;
ii) the infimum c := infD2(u1) of u1 on D2 is > 0;
iii) ui+1 ≥ ui on Ui (since ui+1 ≥ ui = 0 on ∂Ui).

In particular, ui ≥ c > 0 on D2 for all i.
We also know by [12, th. 5.28 and 5.29 pp. 106–107] that ui is an extremal function,
that is

Capp(D1, Ui) =

∫

Ui

|dui|p .

Define now the function vi : Ω → R by vi = ui/c on Ui and 0 on Ω \ Ui. Then
vi ≥ 1 on D2, therefore

Capp(D2, Ω) ≤ lim
i→∞

∫

Ω

|dvi|p =
1

cp
lim

i→∞

∫

Ui

|dui|p

=
1

cp
lim

i→∞
Capp(D1, Ui) =

1

cp
Capp(D1, Ω) = 0 .

�

The above Proposition has the following consequence

Corollary 3.1. If Capp(D, Ω) = 0 for some compact subset D ⊂ Ω with non empty
interior, then Capp(D′, Ω) = 0 for every compact subset D′ ⊂ Ω.

�

The meaning of this result is that whether or not a ball in (M, g) has positive
p−capacity is a property of the manifold M and not of the ball. A manifold with
this property is said to be p−parabolic.

4. Parabolicity

Definition Let Ω be a connected domain in a Riemannian manifold (M, g) and
p a real number ≥ 1. We say that Ω is p−parabolic if there exists a compact set
D ⊂ Ω with non empty interior such that Capp(D, Ω) = 0.

And we say that Ω is p−hyperbolic if there exists a compact set D ⊂ Ω with non
empty interior such that Capp(D, Ω) > 0.

Remark This is a dichotomy: every domain is either p−parabolic or p−hyperbolic.
Indeed, Corollary 3.1 says that Ω is p−parabolic if and only if Capp(D

′, Ω) = 0
for all compact subsets D′ ⊂ Ω.

We first observe that hyperbolicity is preserved when passing to a subset.

Lemma 4.1. If (N, g) is a p−hyperbolic manifold, then every open domain Ω ⊂ N
is also p−hyperbolic.
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Proof Suppose that Ω is p−parabolic. Then there exists a ball B ⊂ Ω such that
Capp(B, Ω) = 0, hence Capp(B, N) = 0 and N is thus p−parabolic. �

A domain is p-parabolic if it is possible to approximate the function 1 by functions
with compact support and small p−energy:

Proposition 4.1. The domain Ω is p−parabolic if and only if there exists a se-
quence of functions uj ∈ C1

0 (Ω) such that 0 ≤ uj ≤ 1, uj → 1 uniformly on every
compact subsets of Ω and

∫

Ω

|duj |p → 0 .

Proof Suppose Capp(D, Ω) = 0 where D ⊂ Ω is compact with non empty interior.
Choose an exhaustion

D ⊂ D1 ⊂ D2 ⊂ · · ·Ω
of Ω by compact subsets. By Proposition 3.2, we know that Capp(Dj , Ω) = 0
for all j; hence we can find a function uj ∈ C1

0 (Ω) such that uj ≡ 1 on Dj and
∫

Ω |du|p ≤ 1/j. We have constructed the desired sequence uj.

Conversely, suppose that there exists a sequence uj ∈ C1
0 (Ω) with the stated prop-

erties. Then we can find a ball B ⊂ Ω and j0 ∈ N such that uj ≥ 1
2 on B for all

j ≥ j0. It follows that Capp(B, Ω) = 0. �

The concept of parabolicity is also related to the existence of a Green function via
the following result due to Ilkka Holopainen [13, th. 5.2]. (sees also [18]).

Theorem 4.2. Let Ω be a domain in a Riemannian manifold (M, g). Then the
following are equivalent:

i) Ω is p−parabolic;
ii) there is no non constant positive p−superharmonic function on Ω;
iii) there is no positive Green function for the p−Laplacian ∆p on Ω.

(Recall that the p−Laplacian is the operator ∆pu = div(‖∇u‖p−2)∇u, and that a
function u is p−superharmonic if ∆pu ≤ 0.)

�

Remark Without the positivity condition, there always exists a Green function
on a complete manifold, at least for p = 2 (see [19]).

When p = 2, we also have the following connection with Brownian motion (Beurling-
Deny criterion):

Theorem 4.3. The Brownian motion on a domain Ω ⊂ (M, g) is recurrent if and
only if Ω is 2−parabolic.

A proof can be found in [1, p.44] or [9, th. 5.1]. �

The next result provides us with a large supply of examples of parabolic and hy-
perbolic (incomplete) manifolds.

Theorem 4.4. Let E ⊂ M be a subset in a Riemannian manifold M .

(A) If E ⊂ M has local positive p−capacity, then Ω := M \ E is p−hyperbolic.

(B) If M is p−parabolic and E ⊂ M is a p−polar set, then Ω := M \ E is
p−parabolic.
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Proof We first prove (A). Suppose that Ω is p−parabolic. By Proposition 4.1,
we can find a sequence of functions uj ∈ C1

0 (Ω) such that 0 ≤ uj ≤ 1, uj → 1
uniformly on every compact subsets of Ω and

∫

Ω
|duj |p → 0 .

But, by Proposition 3.1, this implies that E ⊂ M is a p-polar set.

To prove (B), observe that by Proposition 4.1, and because M is p−parabolic, there
exists a sequence vj ∈ C1

0 (M) such that 0 ≤ vj ≤ 1, vj → 1 uniformly on every
compact subsets of M and

∫

M
|dvj |p → 0.

Since E is a p−polar set, Proposition 3.1 implies the existence of another sequence
wj : M → [0, 1], of smooth functions with support in M \ E, such that wj → 1
uniformly on every compact subsets of M \ E and

∫

M
|dwj |p → 0.

Now set uj := vjwj : Ω → R. Since the sequence {uj} clearly satisfies all conditions
of Proposition 4.1, we deduce that Ω is p−parabolic. �

Corollary 4.1. Let M be a closed Riemannian manifold and E ⊂ M a set of
Hausdorff dimension s (0 < s < n =dim(M)). Then Ω := M \ E is p−parabolic if
1 < p < n − s and p−hyperbolic for p > n − s.

Proof This is a direct consequence of the previous Theorem and Theorem 3.5. �

Other criteria for parabolicity are discussed in [7].

5. Geometric Estimates

5.1. Capacity in term of hypersurface integrals. In order to give some useful
geometric estimates for capacities, we associate to each pair D ⊂⊂ Ω ⊂ M the
class Λ(D, Ω) of functions h : Ω → R such that

i) h is continuous, locally Lipschitz, non constant and bounded below;
ii) D ⊂ {x ∈ Ω : h(x) = r0 := min h};
iii) if r < suph then {x ∈ Ω : h(x) ≤ r} is compact.

The p−flux of a function h ∈ Λ(D, Ω) is the function Φh,p : [r0, r1) → R defined by

Φh,p(r) =

∫

∂Ωr

|∇h(x)|p−1dσ(x) ,

where Ωr := {x ∈ Ω : h(x) < r} and [r0, r1) is the range of h (i.e. r0 := minh ∈ R

and r1 := suph ∈ R ∪ {∞}) and dσ is the (n − 1)-dimensional Hausdorff measure.

Note that Ωr is a bounded domain if r0 < r < r1. When p = 1, then Φh,p is simply
the area :

Φh,1(r) = ah(r) =

∫

∂Ωr

dσ(x) .

For a function h ∈ Λ(D, Ω) of class C2, we also have by the divergence formula,

Φh,p(r) =

∫

∂Ωr

|∇h|p−2〈∇h,n〉dσ = −
∫

Ωr

(∆ph) d vol .

We next define Qp(h) (for p > 1) to be the following integral.

Qp(h) =

(
∫ r1

r0

Φh,p(r)
1

1−p dr

)1−p

.

The next result is similar to the result of §2.2.2 in [21].
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Theorem 5.1. Let D ⊂⊂ Ω ⊂ M and p > 1, then

Capp(D, Ω) = inf
h∈Λ(D,Ω)

Qp(h) .

We will need in the proof the following version of the coarea formula (see [6, p. 118]
or [21, p. 37]):

∫

{h>t}

g(x) |∇h(x)| dx =

∫ ∞

t

(

∫

{h=s}

g(x)dσ(x)

)

ds

which holds if g : Ω → R is integrable and h : Ω → R is locally Lipshitz.
Proof Fix ǫ > 0 and let u ∈ C1

0 (Ω) be a function such that 0 ≤ u ≤ 1, u = 1 on
D and Capp(D, Ω) ≥

∫

Ω
|du|p − ǫ.

Set h(x) := 1 − u(x), then h ∈ Λ(D, Ω). We have r0 := minh = 0 and r1 :=
maxh = 1. By the coarea formula

∫

Ω

|du|p =

∫

Ω

|dh|p =

∫ 1

0

(
∫

∂Ωr

|∇h(x)|p−1dσ(x)

)

dr

=

∫ 1

0

Φh,p(r)dr .

Thus, we have from lemma 5.2 below

Capp(D, Ω) + ǫ ≥
∫

Ω

|du|p =

∫ 1

0

Φh,p(r)dr ≥
(
∫ r1

r0

Φh,p(r)
1

1−p dr

)1−p

= Qp(h) ,

and, since ǫ is arbitrary, we have

Capp(D, Ω) ≥ inf
h∈Λ(D,Ω)

Qp(h) .

To see the reverse inequality, we choose some function h ∈ Λ(D, Ω). We then fix
some number s ∈ (r0, r1] and define a function us : Ω → R by

us(x) =



















1 if h(x) ≤ r0 ;

1 − γs

∫ h(x)

r0

dt

Φh,p(t)1/p−1
if r0 ≤ h(x) ≤ s ;

0 if r(x) ≥ s ;

where

γs :=

(
∫ s

r0

Φh,p(t)
1/1−pdt

)−1

.

Then us is Lipschitz with compact support on Ω and we have a.e.

|∇us(x)| =

{

γs Φh,p(h(x))1/1−p|∇h(x)| if r0 ≤ h(x) ≤ s ;

0 else .

We thus have



10 MARC TROYANOV

∫

Ω

|∇us|pdx = γp
s

∫

Ωs\Ωr0

Φh,p(h(x))p/1−p|∇h(x)|pdx

= γp
s

∫ s

r0

Φh,p(h(x))p/1−p

(
∫

∂Ωr

|∇h(x)|p−1dσ(x)

)

dr

= γp
s

∫ s

r0

Φh,p(r)
1/1−pdr = γp−1

s

Thus

Capp(D, Ω) ≤
∫

Ω

|du|p = γp−1
s

for every s < r1. By continuity, we have

lim
s→r1

γp−1
s = Qp(h) ,

and the theorem follows. �

Lemma 5.2. Let m(r) be any positive bounded function and p > 1. Then

(
∫ 1

0

m(r)
1

1−p dr

)1−p

≤
∫ 1

0

m(r)dr .

Proof By Hölder inequality, we have

1 =

∫ 1

0

(

1

m(r)

)
1
p

m(r)
1
p dr ≤

(

∫ 1

0

(

1

m(r)

)
1

p−1

dr

)

p−1
p (

∫ 1

0

m(r)dr

)

1
p

.

Raising this inequality to the power p, one obtains the desired inequality. �

The functional Qp has the following important invariance property :

Proposition 5.1. Let λ : R∪ {∞} → R∪ {∞} be any locally Lipschitz monotonic
function. Then for any h ∈ Λ(D, Ω), we have

Qp(λ ◦ h) = Qp(h) .

Proof Let h ∈ Λ(D, Ω). The function λ defines a homeomorphism λ : [r0, r1] →
[t0, t1] such that λ′(r) > 0 a.e.

Set h̃ := λ ◦ h, then Φh̃,p(λ(r)) = λ′(r)p−1Φh,p(r), whence

∫ t1

t0

Φh̃,p(t)
1

1−p dt =

∫ r1

r0

Φh,p(r)
1

1−p dr .

�

Corollary 5.1. In the computation of Qp(h), we may assume |∇h(x)| ≤ 1 a.e.

Proof Choose a smooth positive function ϕ : R → R such that
|∇h(x)| ≤ ϕ(h(x)) a.e. Now set λ(r) =

∫ r

r0

ds
ϕ(s) . Then h̃ := λ◦h satisfies |∇h̃(x)| =

λ′(h(x))|∇h(x)| =
1

ϕ(s)
|∇h(x)| ≤ 1, and Qp(h̃) = Qp(h). �
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5.2. The case p = 1. For p = 1, Theorem 5.1 must be replaced by the following

Proposition 5.2. Let D ⊂⊂ Ω ⊂ M , then

Cap1(D, Ω) = inf Area(∂U)

where the infimum is taken over all the sets U ⊂⊂ Ω with finite perimeter containing
D.

Proof Choose a function u : Ω → [0, 1] with compact support and such that u = 1
on D. By the coarea formula we have

∫

Ω

|du| =

∫ 1

0

Area(∂Ut)dt ≥ inf
t

Area(∂Ut)

where Ut := {x ∈ Ω|u(x) ≥ t}; hence Cap1(D, Ω) ≥ inf Area(∂U).
To see the reverse inequality, we consider a regular domain U ⊂⊂ Ω containing D.
The characteristic function χU ∈ BV (Ω) and we can therefore (see [21, p. 298])
find a sequence of functions uj ∈ C∞

0 (Ω) such that uj = 1 on D and

Area(∂U) = 〈χU 〉 = lim
j→∞

∫

Ω

|duj |

hence Cap1(D, Ω) ≤ inf Area(∂U). �

5.3. Manifold with warped cylindrical end. A Riemannian manifold M is said
to have a warped cylindrical end if there exists a compact Riemannian manifold
(N, gN ) and a compact subset D ⊂⊂ M such that M \ D = N ×f [1,∞) is the
warped product of N and [1,∞) (i.e the direct product with the Riemannian metric
dt2 + f2(t)gN ).

Let us denote by Dt ⊂ M the subset Dt := D ∪ {(y, s) |y ∈ N and s < t} .

Proposition 5.3. For 1 ≤ r ≤ R ≤ ∞ we have

Capp(Dr, DR) = Voln−1(N)

(

∫ R

r

f(t)
n−1
1−p dt

)1−p

For instance the p-capacity of a spherical ring in R
n is given by

Capp(Br, BR) = αn−1

(

Rν − rν

ν

)1−p

.

where αn−1 is the area of the unit sphere Sn−1 and ν = n−p
1−p if p 6= n and

Capn(Br, BR) = αn−1 (log(R/r))
1−n

.

Corollary 5.2. M is p-parabolic if and only if
∫ ∞

1

f(t)
n−1
1−p dt = ∞
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�

For instance the Euclidean space R
n is p-parabolic for p ≥ n and p-hyperbolic for

p < n.

Proof of the Proposition Let us choose the function h ∈ Λ(Dr, DR) defined by
h(x) = 1 if x ∈ D and h(x) = t if x = (y, t) ∈ N × {t}. Then |∇h(x)| = 1 for all
x ∈ M \ D and the p-flux of h is equal to the area:

Φh,p(r) = Area(∂Dr) = Voln−1(N) f(t)n−1.

One thus obtains from Theorem 5.1

Capp(Dr, DR) ≤ Qp(h) = Voln−1(N)

(

∫ R

r

f(t)
n−1
1−p dt

)1−p

.

To prove the converse inequality, let us consider an arbitrary function u ∈ C1
0 (DR)

such that u ≡ 1 on Dr. We have for any y ∈ N

1 =

∣

∣

∣

∣

∣

∫ R

r

∂u(y, t)

∂t
dt

∣

∣

∣

∣

∣

≤
∫ R

r

|∇u(y, t)| dt ,

using Hölder’s inequality one gets

1 ≤
∫ R

r

|∇u(y, t)| dt =

∫ R

r

(

|∇u(y, t)| f(t)(n−1)/p
)(

f(t)(1−n)/p
)

dt

≤
(

∫ R

r

|∇u(y, t)|p f(t)(n−1)dt

)1/p(
∫ R

r

f(t)(1−n)/(p−1)dt

)(p−1)/p

,

i.e.
∫ R

r

|∇u(y, t)|p f(t)(n−1)dt ≥
(

∫ R

r

f(t)(1−n)/(p−1)dt

)(1−p)

for all y ∈ N . Integrating this inequality over N gives us

∫

DR

|∇u|p dx ≥ Voln−1(N)

(

∫ R

r

f(t)(1−n)/(p−1)dt

)(1−p)

Since u is an arbitrary test function, we conclude that

Capp(Dr, DR) ≥ Voln−1(N)
(

∫ R

r f(t)
n−1
1−p dt

)1−p

. �

5.4. Isoperimetric Profile. Let Ω ⊂ (M, g) be open and D ⊂ Ω compact.
Choose a function h ∈ Λ(D, Ω), and set Ωr := {x ∈ Ω : h(x) < r}. Let [r0, r1) be
the range of h and note v(r) = vh(r) := Vol(Ωr), v0 = v(r0) and v1 = v(r1).

The function v(r) defines an absolutely continuous homeomorphism
v : (r0, r1) → (v0, v1). The inverse function is given by r(v) = sup{r

∣

∣Vol(Ωr) < v}
and the derivative of v is given by the coarea formula:

(5.1)
dv

dr
=

∫

∂Ωr

dσ

|∇h| .

We denote by a(r) = ah(r) := Area(∂Ωr). The area may then be expressed
in function of the volume v and we denote by ã(v) = a(r(v)) the corresponding
function.
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Proposition 5.4. If p > 1, then

Qp(h) ≥
(
∫ v1

v0

ã(v)
p

1−p dv

)1−p

.

Proof We have by Hölder inequality

ah(r) =

∫

∂Ωr

dσ =

∫

∂Ωr

|∇h|
p−1

p |∇h|
1−p

p dσ

≤
(
∫

∂Ωr

|∇h|p−1 dσ

)
1
p

·
(
∫

∂Ωr

dσ

|∇h|

)

p−1
p

.

Raising this inequality to the power p
1−p and using (5.1), we obtain

ah(r)
p

1−p ≥ Φh,p(r)
1

1−p

(

dv

dr

)−1

.

Integrating the last inequality gives

Qp(h) ≥
(
∫ r1

r0

a
p

1−p

h (r)

(

dv

dr

)

dr

)1−p

=

(
∫ v1

v0

ã(v)
p

1−p dv

)1−p

.

�

Definition A function P : [0, V ) → R is an isoperimetric profile for Ω ⊂ (M, g)
(V = Vol(Ω)) if there exist constants C, η > 0 such that η < V and

P (Vol(D)) ≤ C Area(∂D)

for all a compact regions D ⊂ Ω with Vol(D) ≥ η.

Remark The reason for the constant η in the above definition is that the isoperi-
metric ratio of small domains in a Riemannian manifold is comparable to the isoperi-
metric ratio of small domains in Euclidean space and thus of little interest.

Theorem 5.3. Suppose that the domain Ω ⊂ (M, g) admits an isoperimetric profile
P : [0, V ) → R such that

∫ V

η

dv

[P (v)]p/(p−1)
< ∞ ,

(1 < p < ∞). Then Ω is p−hyperbolic.

Proof Let D ⊂ Ω be a compact set with volume η. For any function h ∈ Λ(D, Ω)
we define a(v) as in Proposition 5.4. We clearly have a(v) ≥ 1

C P (v). Thus

∫ v1

v0

a(v)
p

1−p dv ≤ I := Cp/(p−1)

∫ V

η

dv

[P (v)]p/(p−1)
< ∞ .

From Proposition 5.4 and Theorem 5.1, we obtain

Capp(D, Ω) ≥ I1−p > 0 .

�
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5.5. Area and Volume growth. Let us first treat the case of 1−parabolicity.

Lemma 5.4. Ω is 1-parabolic if and only if there exists an exhaustion

G1 ⊂ G2 ⊂ · · · ⊂⊂ Ω

by domains such that lim inf
i→∞

Area(∂Gi) = 0.

Proof By Proposition 5.2, we see that for a ball B ⊂ Ω,

Cap1(D, Ω) = inf Area(∂G) ,

where G runs through all domains such that D ⊂ G ⊂⊂ Ω. �

Corollary 5.3. A complete manifold M with finite volume is 1-parabolic .

Proof Choose a base point x0 ∈ M and define v(r) = Vol(B(x0, r)) and a(r) =
Area(∂B(x0, r)). By equation (5.1) we have dv

dr = a(r).
Suppose that M is 1−hyperbolic. Then, by Lemma 5.4, we have

lim inf
r→∞

dv

dr
= lim inf

r→∞
a(r) > 0 ,

but this implies limr→∞ v(r) = ∞. �

We next see how the growth of area gives us an upper bound for the capacity:
Choose a function h ∈ Λ(D, Ω) (where D ⊂ Ω is a compact subset) and note
ah(r) = Area(∂Ωr).

Proposition 5.5.

Qp(h) ≤ (‖∇h‖L∞
)p−1

(
∫ r1

r0

ah(r)
1

(1−p) dr

)1−p

.

Proof Suppose |∇h(x)| ≤ c for almost all x, then

Φh,p(r) ≤ cp−1

∫

∂Ωr

dσ = cp−1 ah(r) ,

and thus

Qp(h) ≤ cp−1

(
∫ r1

r0

ah(r)
1

(1−p) dr

)1−p

.

�

This proposition has the obvious

Corollary 5.4. Let M be a complete manifold such that
∫ ∞ dr

a(r)1/(p−1)
= ∞

where a(r) = Area(∂B(x0, r)), Then M is p−parabolic.

�

Remarks 1) It follows from Corollary 5.2 that for manifolds with warped cylin-
drical ends, this condition is not only necessary but also sufficient for M to be
p-parabolic.
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2) This corollary is false for non complete manifolds. For instance a half plane
M := {|(x, y)| x > 0} ⊂ R

2 (with its Euclidean metric) is p−hyperbolic for all p.
Yet in this example,

∫ ∞ dr

a(r)
= ∞ .

Corollary 5.5. Let M be a complete manifold such that
∫ ∞ dr

v(r)1/q
= ∞ ,

where v(r) = Vol(B(x0, r)), then M is p-parabolic for all p ≥ q.

Proof This is an immediate consequence of the previous corollary and the next
lemma together with Equation (??). �

Lemma 5.5. Let f : [0,∞) → R be a positive, strictly monotonic function such
that limt→∞ f(t) = +∞. Fix p ≥ q ≥ 1 and ǫ > 0. Then

∫ ∞

ǫ

(f(t))
−1/q

dt ≤ A

(
∫ ∞

ǫ

(f ′(t))
1/(1−p)

dt

)

p−1
p

where

A =







(

q
p−q

)
1
p

( f(ǫ))
1
p
− 1

q if q > p

log ( f(ǫ)) if q = p

Proof of the lemma Observe that f ′(t) > 0 for all t. We have by Hölder
inequality:
∫ ∞

ǫ

(f(t))
−1/q

dt =

∫ ∞

ǫ

(f(t))
−1/q

(f ′(t))
−1 · f ′(t)dt

≤
(
∫ ∞

ǫ

(f(t))
−p/q

f ′(t)dt

)
1
p
(
∫ ∞

ǫ

(f ′(t))
−p/(p−1)

f ′(t)dt

)

p−1
p

.

But
∫ ∞

ǫ

(f(t))
−p/q

f ′(t)dt = A.

�

Example If M is a complete manifold such that

Vol(B(x0, r) ≤ c rq ,

then M is p−parabolic for all p ≥ q. In particular R
n is p−parabolic for p ≥ n.

Similarly to Corollary 5.5, we have

Corollary 5.6. Let M be a complete manifold such that
∫ ∞( r

Vol(B(x0, r)

)1/(p−1)

dr = ∞ ,

then M is p-parabolic.

A proof can be found in §5.2 of [33].
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6. Discretization

6.1. Potential Theory on Graphs. We start with a list of definitions from dis-
crete potential theory. For more information, one may consult [5], [26] or [31].

A graph X is a set V = V (X) together with a non reflexive, symmetric relation ∼.
The elements of V (X) are the vertices of the graph (X,∼). The vertice y is said
to be a neighbour of x if x ∼ y.

An unoriented edge is an unordered pair {x, y} of neighbour vertices. An oriented
edge is an ordered pair ~e = [x, y] of neighbour vertices. The edge [y, x] is called the
reversed edge of ~e = [x, y] and is denoted by −~e. We denote by α(~e) = x the origin
of e and ω(~e) = y its end.

We may think of an unoriented edge as a segment between two neighbour vertices
and of an oriented edge as an arrow.

We will note S(X) the set of unoriented edges of X and A(X) the set of oriented
edges. There is an obvious (2 to 1) map A(X) → S(X). A (global) orientation of
the graph is a section S(X) → A(X) of this map.

A path in the graph X is a finite sequence x1, x2, . . . xn of vertices such that xi ∼
xi+1. The cardinal n of this sequence is called the length of the path.
The graph X is connected if there is a path connecting any pair of vertices.

If x, y ∈ V (X), we denote by ρ(x, y) the length of the shortest path joining x to y
(and ρ(x, y) = 0 if x = y). Observe that ρ(x, y) = 1 iff x ∼ y. If X is a connected
graph, (V (X), ρ) is a metric space.

The degree deg(x) of a vertice is the cardinal of the set of its neighbours.
We say that the graph X has bounded geometry if it is connected, V (X) is finite or
countable and deg(x) ≤ N for all x ∈ V (X) where N = N(X) < ∞.

A 0-cochain (or a function) on the graph X is simply a function u : V (X) → R,
and 1-cochain (or a 1-form) is a function η : A(x) → R such that η(−~e) = −η(~e).
We denote by Ω0(X) and Ω1(X) the space of 0-cochains and 1-cochains on X .

The differential of a 0-cochain u ∈ Ω0(X) is the 1-cochain du defined by

du([x, y]) = u(y) − u(x) .

The codifferential (or divergence) of a 1-cochain η is the 0-cochain δη defined by

δη(x) =
∑

y∼x

η([y, x]) .

Observe that if η ∈ Ω1(X) has finite support, then
∑

x∈V (X)

δη(x) = 0 .

If η and ξ are 1-cochains, their (pointwise) scalar product is the 0-cochain

〈ξ, η〉(x) =
1

2

∑

y∼x

ξ([y, x])η([y, x]) .
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If η or ξ has finite support, then the global (L2) scalar product is

(ξ |η)L2 :=
∑

x∈V (x)

〈ξ, η〉(x) =
1

2

∑

~e∈A(X)

ξ(~e) η(~e) .

Remark If ξ ∈ Ω1(X) and e ∈ S(X), then ξ(e) is only defined up to multiplication
by ±1. However, if ξ, η ∈ Ω1(X) and e ∈ S(X), then the product ξ(e) η(e) is well
defined, and we may write

(ξ |η)L2 :=
∑

e∈S(X)

ξ(e) η(e) .

We may turn Ω1(X) into a Ω0(X)-module where the action is defined by

(u · η)([x, y]) = u(x)+u(y)
2 η([x, y]) .

The operator δ satisfies the Leibniz rule:

δ(u · η)(x) = u(x)δη(x) + 〈du, η〉(x) .

A consequence is that if u or η has finite support, a summation by parts shows that
∑

x∈V (x)

u(x)δη(x) = −
∑

x∈V (x)

〈du, η〉(x) = −
∑

~e∈S(X)

du(e)η(e) ,

hence the operators d and −δ are formal adjoint.

The (pointwise) norm of a 1-cochain η ∈ Ω1(X) is the 0-cochain ‖η‖ defined by

‖η‖ (x) =
√

〈η, η〉 (x) =

(

∑

y∼x

η([y, x])2

)1/2

.

Let X be a graph and p ∈ [1,∞) a real number. The p-energy (or p−Dirichlet
integral) of a 0-cochain u ∈ Ω0(X) is the sum

Dp(u) =
∑

x∈V (x)

‖du(x)‖p =
∑

x∈V (x)

(

∑

y∼x

(u(y) − u(x))2

)p/2

.

The Euler-Lagrange operator associated to the p−energy is the p-Laplacian
∆p : Ω0(X) → Ω0(X) defined by

∆p(u) = −δ(‖du‖p−2du) .

6.2. Parabolicity of Graphs. Let X be connected graph and A ⊂ X a finite set.

Definition For p ≥ 1, the p−capacity of A is defined by:

Capp(A, X) := inf{Dp(u) : u ∈ Ω0(X), u ≥ 1 on A, and u has finite support }.

Remark By truncation, one may restrict oneself to functions u ∈ Ω0(X) such
that 0 ≤ u ≤ 1.

The proof of the following lemma is not difficult (it can be found in [32, th. 3.1]).

Lemma 6.1. Let A and A′ be two finite non empty subsets of X, then Capp(A, X) =
0 if and only if Capp(A

′, X) = 0.
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�

Definition A graph X is p−parabolic if Capp(A, X) = 0 for all finite subsets
A ⊂ X . Otherwise, X is p−hyperbolic.

Proposition 6.1. Let X be a graph with bounded geometry. If X is p−parabolic,
then X is also q−parabolic for all q ≥ p.

Proof Let A ⊂ V (x) be any finite set. For all ǫ, we can find a function u ∈ Ω0(X)
with finite support, such that u ≥ 1 on A and Dp(u) ≤ ǫ. We may furthermore
assume that 0 ≤ u(x) ≤ 1 for all x ∈ V (X).

Let N be such that deg(x) ≤ N for all x, and observe that

‖du(x)‖√
N

=
1√
N

(

∑

y∼x

(u(y) − u(x))2

)1/2

≤ 1

thus, if q ≥ p, then

(‖du(x)‖√
N

)q

≤
(‖du(x)‖√

N

)p

. This implies

Dq(u) ≤ N (q−p)/2Dp(u) ,

and the result follows. �

Remark Yamasaki has proved the above proposition without the assumption that
X has finite geometry (see [32, th. 5.1]).

6.3. Manifold with bounded geometry. A manifold M has bounded geometry
if every ball of radius ρ (= some fixed positive number) is geometrically close to a
standard ball in Euclidean space. The exact definition may depend on the actual
needs of the theory.

In the present context, it is sufficient to agree on the following

Definition A Riemannian manifold M has bounded geometry if it has a positive
injectivity radius and its Ricci curvature is bounded below.

For instance compact manifold have bounded geometry, and any Riemannian cov-
ering space of a manifold with bounded geometry also has bounded geometry.
Observe that a manifold with bounded geometry is necessarily complete.

Let us also recall that two metric spaces X and Y are (roughly) quasi-isometric to
each other if there exist a map f : X → Y and constants λ ≥ 1, c ≥ 0 and ǫ ≥ 0
such that

i) 1
λd(x1, x2) − c ≤ d(f(x1), f(x2)) ≤ λd(x1, x2) + c for all x1, x2 ∈ X ;

ii) every ball of radius ǫ in Y contains a point of f(X).

Definition A discretization of Riemannian manifold M is a graph X which is
quasi-isometric to M .

By the work of Kanai and Holopainen, we know that p−parabolicity is stable under
quasi-isometry:
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Theorem 6.2. (A) Let X and Y be two quasi-isometric graphs. Assume that
X and Y have bounded geometry. Then X is p−parabolic if and only if Y is
p−parabolic.

(B) Let the graph X be a discretization of the manifold M . Assume that M and X
have bounded geometry. Then M is p−parabolic if and only if X is p−parabolic.

(C) Every Riemannian manifold M with bounded geometry admits a discretization
X, which is a graph with bounded geometry.

(D) Let M and N be two quasi-isometric Riemannian manifolds. Assume that
M and N have bounded geometry. Then M is p−parabolic if and only if N is
p−parabolic.

Proof The proof of (A) and (B) can be found in [15] for p = 2 and [14, section
5] for all p. The proof of (C) can be found in [15, lemma 2.4 and 2.5]. The last
statement is a consequence of the first three. �

We are now able to extend Proposition 6.1 to Riemannian manifolds with bounded
geometry.

Theorem 6.3. Let M be p−parabolic Riemannian manifolds with bounded geom-
etry. Then M is also q−parabolic for all q ≥ p.

Proof Let X be a discretization (with bounded geometry) of M . By part (A) of
the previous theorem, we know that X is p−parabolic, and by Proposition 6.1, X
is q−parabolic for all q ≥ p. Using again statement (A) above, we conclude that
M is q−parabolic. �

Remark This theorem is false without the condition that M has bounded geom-
etry. For instance, in the example given by Corollary 4.1, the behaviour is opposite
to the behaviour of manifolds with bounded geometry described in Theorem 6.3.

7. Dimension at infinity of a manifold

In this section, (M, g) is a complete manifold.

Definition The manifold M is said to satisfy an isoperimetric inequality of order
k if there exist constants C, δ > 0 (δ < Vol(M)) such that for all bounded regular
domain D ⊂⊂ M with Vol(D) > δ, we have

Vol(D)(k−1) ≤ C Area(∂D)k.

And M is said to be open at infinity if

Vol(D) ≤ C Area(∂D).

The isoperimetric dimension of (M, g) is then the number

disop(M, g) = sup{k > 0| M satisfies an isoperimetric inequality of order k} .

Definition The growth degree of a complete manifold (M, g) is the number

dgr(M, g) = inf{m > 1
∣

∣ lim inf
r→∞

v(r)

rm
< ∞} ,

where v(r) = Vol(Bx0,r) is the volume of the sphere centered at some base point
x0 ∈ M .
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The invariants dgr(M, g) and disop(M, g) are known to be stable under quasi-
isometries (see [15]).

The results of section 4 imply the next proposition:

Proposition 7.1. Let (M, g) be a complete manifold. If p ≤ disop(M), then M is
p−hyperbolic, and if p ≥ dgr(M), then M is p−parabolic. (If M is open at infinity,
then M is p−hyperbolic for all p.)

�

Definition The parabolic dimension of M is the number

dpar(M) = inf{p ≥ 1 : M is p−parabolic} .

If M is p−hyperbolic for all p, then we set dpar(M, g) = ∞.

Proposition 7.2. If M has bounded geometry, then the parabolic dimension can
also be defined as

dpar(M) = sup{p ≥ 1 : M is p−hyperbolic} .

Proof This follows from Theorem 6.3. �

If (M, g) be a connected complete Riemannian manifold. Then Proposition 7.1 says
that

disop(M, g) ≤ dpar(M, g) ≤ dgr(M, g) .

It is not difficult to construct a manifold for which these inequalities are strict (for
instance a manifold with successive large and small parts as in the figure).

However, this will not be the case if the manifold has a large group of isometries.

Theorem 7.1 (Coulhon, Saloff-Coste). Let (M, g) be the universal cover of a con-
nected compact manifold N . Then

disop(M, g) = dpar(M, g) = dgr(M, g) .

The proof can be found in [4]. �

In fact, these numbers are equal to the growth degree of π1(N) (cf. [23]).

The previous theorem also holds for manifolds which satisfy a Poincaré inequality
and a volume doubling condition (th. 3 of [4]).

Let us conclude this section by mentioning that there are several other notions of
dimension at infinity for manifolds (see [2]).
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8. Conformal Parabolicity

Let g and g0 be two conformally equivalent metrics on a n−dimensional manifold
M , i.e. g = λ g0 for some smooth function λ : M → R+.

The volume forms d volg and d volg0 are related by

d volg = λn d volg0 .

If α is a 1-form on M , then its norm for both metrics are related by |α|g = λ−1|α|g0 ,
we thus see that the expression

|du|ng d volg = |du|ng0
d volg0 .

is a conformal invariant for all function u on M . This is of course also the case for
n−capacities and we conclude that

Proposition 8.1. n−parabolicity is a conformally invariant property of manifolds.

�

A n−parabolic (hyperbolic) manifold is also called conformally parabolic (hyper-
bolic).

We may now formulate a version of the so called Ahlfors-Gromov Lemma (see [10,
p. 198], [11, p. 85] and [33] for other versions).

Theorem 8.1 (Ahlfors-Gromov Lemma). Let (M, g0) be a complete n dimensional
Riemannian manifold such that disop(M, g0) > n. Then dgr(M, g) ≥ n for all
metric g conformally equivalent to g0.

Proof (M, g0) is n−hyperbolic, hence (M, g) also (by conformal invariance of n−
parabolicity), whence dcr(M, g) ≥ n. �

This result is the basis for a description of the possible volume growth of the various
metrics within a conformal class, see [8] and [33].
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