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Summary. We present Large-Eddy Simulations (LES) of the turbulent compress-
ible flow in curved ducts of square cross section. The aim is to investigate the influ-
ence of the curvature radius Rc on the flow and the heat transfer. We consider three
different curvature radii : 4Dh, 7Dh and 11Dh (Dh hydraulic diameter). We observe
a rise in the number of streamwise vortices of Görtler type on the unstable concave
wall when the curvature radius decreases. The main effect is a strong intensification
of the secondary flows with the reduction of Rc: a rise of 100 % of the intensity
between the smaller and the higher case of the curvature radius. We determine the
influence of Rc on heat transfer by considering the case of convex wall heating. Due
to the modification of the secondary flows, we observe an enhancement of the heat
flux for the smaller value of the curvature radius, specially close to the sidewalls.

1 Introduction

The prediction of heat and mass transport processes in curved ducts is of in-
terest for engineering applications like compressors, turbines, cooling ducts of
rocket engines. Several experimental and numerical investigations have been
performed to study the turbulent flow within a curved duct without any heat-
ing: [1, 2, 3, 4, 5, 6, 7]. These works have brought to light the destabilizing
effect of the concave wall when the convex wall has conversely a stabilizing
action. Resulting from this centrifugal instability, vortices, called Görtler vor-
tices, appear on the concave wall. The combination of these vortices and of the
pressure gradient between the concave and the convex wall leads to the devel-
opment of an intense cross-stream flow. For numerical studies, the difficulty
lies in the correct prediction of this cross-stream flow (called secondary flow)
and of the related turbulence characteristics. When heat transfer and curved
effect are combined, experiments are fewer. Johnson and Launder (1985) [8]
investigate a heated square-sectioned U-bend and show that the heat transfer
is enhanced on the concave wall and reduced on the convex side compared to
a flat wall as found by Mayle et. al (1979) [9]. Hébrard et al. (2004) [10] and
Münch and Métais (2005) [11], [12] study the combined effect of curvature
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and heating in a closed duct for turbulent flow using the same numerical code
as in the present study. Flows in curved duct are characterized by the Dean
number defined as De = Re

√
Dh/(2Rc), where Rc is the curvature radius. We

here perform Large Eddy Simulation (LES) in different curved square ducts
with or without heating to investigate the influence of the curvature radius on
the flow and the heat transfer. When the curvature radius is decreased, the
main observations are a rise of the secondary flow intensity and consequently
an enhancement of the heat flux on the heated convex wall.

2 Numerical Methods

The computer code used for our calculations solves the LES modified three
dimensional compressible Navier Stokes equations in curved square ducts (see
[13]).

The subgrid-scale model is the selective structure function model pro-
posed by Lesieur and Métais (1996) [14]. To close the system formed by the
momentum and energy equations , we use three supplementary relations. The
Sutherland empirical law describes the molecular viscosity variation with tem-
perature. The gas is considered as an ideal gas with the corresponding equation
of state and the Prandtl number is equal to 0.7. The system of equations in
generalized coordinates is solved by means of the corrector-predictor McCor-
mack scheme with a compact extension devised by Kennedy and Carpenter
(1997) [15]. The scheme is second order in time and fourth order in space.

One original feature of the present computation is that a fully developed
turbulent state is achieved at the duct inlet. To provide this fully turbulent
inlet boundary condition in the curved duct, a LES of a longitudinally periodic
duct of sufficient length, with all its walls at an imposed temperature Tw, is
carried out at the same time. This longitudinally straight periodic duct is
linked to the spatially growing duct through the characteristics conditions
proposed by Poinsot and Lele (1992) [16]. At the outflow of the curved duct,
we also used these conditions by imposing the pressure. The wall boundary
conditions are no-slip. The flow is characterized by a Reynolds number equal
to 6000, a Mach number equal to 0.5, and the turbulent Prandtl number equal
to 0.6.

We use curvilinear coordinates, s in the streamwise direction, n in the
direction normal to the curved wall and z in the spanwise direction. The
origin of the n coordinate is taken on the concave wall. The different lengths
are normalized by the hydraulic diameter Dh. The origin O is taken at the
inflow on the concave side. The geometry of the duct is represented in figure
1. We carried out simulations of three different curved ducts differing by their
curvature radius Rc, the length of the straight inflow and the outflow are
fixed. We consider the three cases : Rc = 11Dh,7Dh and 4Dh corresponding
with a Dean number equal to 1300, 1600 and 2100 respectively. The curvature
angle θ is taken equal to 45 degrees in the three cases.
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Fig. 1. Geometry of computational domain

Nonuniform numerical meshes are used with 160 ∗ 50 ∗ 50, 128 ∗ 50 ∗ 50
and 104 ∗ 50 ∗ 50 in the s, n and z directions for Rc = 11Dh,7Dh and 4Dh

respectively. In the n and z directions, an hyperbolic-tangent stretching is
utilized : the first node close to the wall is situated at 1.8 wall units. The
reader can refer to Salinas and Métais (2002) [13] for further details.

3 Non-heated ducts

In this part, the temperature on the walls of the curved ducts is imposed to be
equal to Tw. One of the appropriate ways to characterize flows in curved duct
is to consider the secondary flows. In rectilinear ducts of square cross sections,
a secondary transverse flow perpendicular to the bulk flow and denominated as
Prandtl’s second kind, appears near the duct corners. Eight counter rotating
vortices, two in each corner, developed. Their intensity is relatively weak :
2% of the bulk velocity. Further downstream of the duct, curvature effects
are present and new instabilities appear. The pressure gradient between the
concave and the convex wall now gives rise to two intense secondary vortices
called Ekman vortices [17]. We will focus our attention on this Prandtl’s first
kind secondary flow. In figure 2 a), we plot the maximum of the secondary
flow intensity, Imax defined as the norm of V + W, in each cross section as a
function of the streamline coordinates. We observe that the intensity grows in
the three cases in the curved part and decreases progressively in the oblique
outflow. The peak of the three curves is reached in the second half of the
curved part. The influence of the curvature radius is clearly noticeable. Imax

becomes higher when the curvature radius decreases, reaching more than 40
% for Rc = 4Dh.

To explain the growth of the intensity and dependence on the curva-
ture radius, we have to consider the pressure coefficient, Cp, defined as
Cp = (p − pi)/ρU2

b , where pi designates the pressure at the duct inlet. We
plot the pressure coefficient in the three cases on both curved walls as a func-
tion of the streamline coordinates 2 b). In the curved part, Cp increases on
the concave wall while it decreases on the convex side, as noticed by Chang
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Fig. 2. a) Imax as a function of s, b) Cp on the concave and the convex walls:
Rc = 11Dh, Rc = 7Dh, . . . . . Rc = 4Dh. The first vertical line cooresponds
with the beginning of the curved part. The next three lines correspond to the end
of the curved part for the three ducts.

et. al [7], Kim and Patel [4]. It creates a radial pressure gradient between the
two curved wall, quasi constant, in response to the centrifugal forces. Close
to the sidewalls, the velocity tends to zero whereas the pressure distribution
does not vary: a secondary flow from the concave to the convex wall develops.
We observe that the radial pressure gradient is stronger for the smaller value
of the curvature radius: this explains the rise of a stronger secondary flow.

We now discuss the influence of this rise of intensity on the secondary
flow pattern. On figure 3, we show half cross sections, taking into account
the symmetry plane z/Dh = 0.5, of the mean secondary flow in the three
cases at the duct outflow. We observe the existence of one of the Ekman
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Fig. 3. Half cross sections of secondary flow at the outflow in the case a) Rc = 4Dh,
b) Rc = 7Dh and c) Rc = 11Dh



LES of the turbulent flow in curved ducts 5

recirculating cells mentioned above. When Rc decreases, the center of this
cell is driven toward the core region. In the case Rc = 11Dh, the center is
indeed located at n/Dh = 0.8 when it is placed at n/Dh = 0.7 for Rc = 4Dh.
Since the secondary flows grow in intensity, the Ekman cell is larger inducing
a translation of its centre.

Another way to characterize this type of flow is to investigate the vortices.
We use the Q criterion to bring out the instantaneous coherent structures in
our wall shear flow, see Hunt et al. [18]. On figure 4, we show iso surfaces of
positive Q with Q = 0.7U2

b /D2
h (where Ub is the bulk velocity) in the curved

part for each of the three configurations. The vortices on the concave wall
are quasi longitudinal vortices originating from the straight inflow. On the
concave part of the wall, they are submitted to the centrifugal instability, we
observe that these coherent structures are more numerous and more intensified
when the curvature radius decreases. The mean streamwise vorticity values
are almost three times higher for the case Rc = 4Dh than for Rc = 11Dh. This
is attributable to the reinforcement of the centrifugal instability for smaller
radii.

c)

b)

a)

Fig. 4. Iso surfaces of Q = 0.7 close to the concave wall in the curved part of the
case a) Rc = 4Dh, b) Rc = 7Dh and c) Rc = 11Dh

4 Heated ducts

Now, we discuss the influence of the curvature radius on the heat transfer.
We neglect gravitational effects and all the changes are due to compressibility.
We simulate the three previous cases with a temperature on the convex wall
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taken equal to twice the temperature on the three other walls. On figure 5, we
represent half-cross sections of the mean secondary flow and iso values of the
mean temperature at the end of the curved duct. The iso-values are plotted
with a step of 0.1Tw. We observe that the secondary flow drives hot fluid from
the heated convex wall to the core region in the three cases. Closer to the
sidewalls, the secondary flow bring cold fluid toward the convex wall. At this
station, the intensity of the secondary flow is higher for the smaller value of
Rc (cf. fig 2 a). We observe that the pocket of hot fluid develops farther from
the heated wall in the normal direction when the curvature radius decreases.
The ejection of hot fluid in the core region is stronger. Another aspect is the
stronger transfer of cold fluid toward the heated wall for Rc = 4Dh. On figure
5 a), the iso values of temperature are less spaced apart in the vicinity of the
convex wall, which means effectively that the temperature varies faster in this
region for Rc = 4Dh. In the z/Dh direction, the pocket of hot fluid is larger
for the larger curvature radius. The Ekman cell’s center is localized closer to
the sidewalls for Rc = 11Dh, the cold fluid remains close to the wall.
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Fig. 5. Half cross sections of secondary flow and iso values of the mean temperature
[step:0.1] at the outflow in the case a) Rc = 4Dh, b) Rc = 7Dh and c) Rc = 11Dh

To corroborate these observations, we plot in the next figure 6, the Nusselt
number on the convex heated wall as a function of the streamline coordinate
and for z/Dh = 0.5 a) and z/Dh = 0.25 b). The Nusselt number is defined
as:

Nu = Hw/(κ(Tw)Tw/Dh) (1)

with Hw the wall heat flux defined as:

Hw = κ(T )
∂T (s, n, z)

∂n
] n

Dh
=1 (2)
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Fig. 6. Nu in the plane a) z/Dh = 0.5 and b)z/Dh = 0.25 and c) Nug as a function
of s/Dh with Rc = 11Dh, Rc = 7Dh, . . . . . Rc = 4Dh. The vertical lines
correspond to beginning and the end of the curved part for the three ducts.

We also represent its mean value in the direction z/Dh, Nug on figure 6 c).
For both values of z/Dh, the Nusselt number decreases in the straight inflow
part due to the thermal boundary layer development. In the curved part, Nu
continues to decrease for the three values of Rc in the symmetry plane. The
middle plane is indeed the siege of an intense ejection of hot fluid from the
heated wall associated with a weak temperature gradient and a weak heat flux.
The heat flux decrease is faster for smaller radius indicating that the heat flux
intensity is directly linked with the strength of the secondary flow. In the plane
z/Dh = 0.25, we observe a rise of the heat flux starting from the middle of
the curved part. It can be explained by the development of the secondary flow
close to the sidewalls which drives cold fluid toward the heated convex wall
and therefore gives rise to important temperature gradients. In the oblique
outflow, Nu increases for both values of z/Dh. In the symmetry plane, this
is due to the weakening of the Ekman cells as observed in figure 2 a). In the
z/Dh = 0.25 plane, the progressive growth of the heat flux is attributable to
the impact of cold fluid brought from the duct core towards the heated wall on
the external side of the Ekman cells. These cells are concentrated near the duct
corner at the beginning of the curvature and progressively move towards the
duct core as we move downstream, inducing a progressive displacement of the
impact region away from the duct corner. Note that the transverse variations
of the heat flux are important since,for instance in the case of Rc = 4Dh, at
s/Dh = 6, Nu is of the order of 10 in the middle plane and 40 for z/Dh = 0.25.
In figure 2 c), we can note the global large values of the Nusselt number after
the curved part. It can be explained by the large impact region of cold fluid
compared with the small region of ejection of hot fluid. The diminution of the
curvature radius induces a strong increase of the Nusselt number but also a
raise of the transverse variation.

5 Conclusion

Large Eddy Simulations are carried out to investigate the influence of the
curvature radius, Rc on flow in curved duct. When Rc decreases, we observe
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a rise of the intensity of the secondary flow connected to the enhancement of
the radial pressure gradient between the two curved walls. The two Ekman
cells which develop close to the convex wall are larger in size for small Rc

and their centre is thus moved toward the core region. We also observe some
modifications on the unsteady vortices of Görtler type which develop on the
concave side : their number increases with a reduction of Rc. In this study,
we also investigate the influence of Rc on the heat transfer when heating is
applied on the convex wall. We observe an increase of the Nusselt number
with the reduction of Rc, specially close to the sidewalls where the secondary
flow drive cold fluid toward the heated wall: Nu is almost twice as high when
the curvature radius is twice as small.
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