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LearningBimodal Structurein Audio-Visual Data
GianlucaMonaci, PierreVandergheynst andFriedrichT. Sommer

Abstract—A novel model is presented to learn bimodally
informative structur es fr om audio-visual signals. The signal is
representedas a sparsesum of audio-visual kernels.Each kernel
is a bimodal function consisting of synchronous snippets of an
audio waveform and a spatio-temporal visual basis function. To
represent an audio-visual signal, the kernels can be positioned
independently and arbitrarily in spaceand time. The proposed
algorithm uses unsupervised learning to form dictionaries of
bimodal kernels fr om audio-visual material. The basis functions
that emerge during learning capture salient audio-visual data
structur es. In addition it is demonstrated that the learned
dictionary can be used to locate sourcesof sound in the movie
frame. Speci�cally, in sequencescontaining two speakers the
algorithm can robustly localize a speaker even in the presence
of severe acoustic and visual distracters.

I . BACKGROUND AND SIGNIFICANCE

To smoothly interact with our environment we must be
ableto analyzeandunderstandcomplex relationshipsbetween
the inputs to different sensorymodalities.Not surprisingly,
this behavioral requirementof multimodal processingis re-
�ected by correspondingobservationsin brainresearch.A fast
growing bodyof experimentalevidencesuggeststhatdifferent
sensorymodalitiesin the brain do not operatein isolationbut
exhibit interactionsat variouslevelsof sensoryprocessing[1–
8]. Also the �elds of signal processingand computervision
have recently seen the development of perception-inspired
audio-visualfusionalgorithms.Examplesincludemethodsfor
speech-speaker recognition [9] and speaker detectionaided
by video [10,11], audio �ltering and separationbasedon
video [12–16],or audio-visualsoundsourcelocalization[17–
26].

Typically, algorithms for audio-visualfusion exploit syn-
chronous co-occurrencesof transient structures in the dif-
ferent modalities. In their pioneering work, Hershey and
Movellan [17] localized sound sourcesin the image frame
by computing the correlation betweenacousticenergy and
intensitychangein singlepixels.Recently, moresophisticated
featurerepresentationshavebeenproposed,for example,audio
featuresderived from audio energy [20,21,23] or cepstral
representations[11,18,19,22] and video featuresbasedon
pixel intensities[19,20,23] or on temporalsignalchanges[11,
18,19,21,22]. Anotherline of researchrelevant for this work
is sparsecodingof audioor video signalswith overcomplete
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Fig. 1. An audio-visualfunctioncomposedof anaudio[Top] andavideopart
[Bottom] which aretime locked.Videoframesarerepresentedasa succession
of images.

baseswhich hasbeenshown to yield excellentresultsin signal
compressingandde-noising[27–32].Recently, thesemethods
have beenproposedfor analyzingaudio-visualsignals[16,24,
25].

The methodsof audio-visualsignal analysismentionedso
far can be characterizedby the two following steps.First,
�x edandprede�nedunimodalfeaturesareusedto encodethe
essentialstructuresin the audio and video streamseparately.
Second,correlationsbetweenthe resultingfeaturerepresenta-
tions of audioandvideo signalareanalyzed,for exampleby
estimatingjoint distributions of audio-visualfeatures[11,19,
20,22,23], using CanonicalCorrelationAnalysis (CCA) [18,
21] or detectingtemporalcoincidencesof audio-visualstruc-
tures[16,24,25].

Alternatively, we have recently suggesteda different ap-
proachto sensorfusion [26]. The ideais to analyzetheaudio-
visual data jointly by extracting typical templatesof audio-
visual features,seeFig. 1 for an example. Thesetemplates
representsynchronoustransient structuresthat co-occur in
both modalities.Simple templatematchingcan then be used
for solving sensorfusion tasks,suchas speaker localization.
Theaudio-visualtemplatein Fig. 1 wasextractedfrom amovie
showing a speaker: theaudiopart is thewaveformof a spoken
digit in English, while the correspondingvideo part shows
a moving edgethat could representthe lower lip during the
utteranceof the digit. The direct extraction of audio-visual
templatesis interestingbecauseit focuseson relevantbimodal
structurerather than �rst computingthe full representations
in both modalities separatelyand then analyzing the joint
statisticsof features.However, the ef�ciency of the algorithm
in [26] was limited becausethe template extraction and
matchingis brittle in thepresenceof accidentalsuperpositions
of separatetransientstructures.

Here we present a novel model of audio-visual fusion
that combinesthe advantagesof joint bimodal signal anal-
ysis [26] and sparsecoding, e.g. [27–32]. To combine the
two approacheswe build on previous work that used un-
supervisedlearning of ef�cient sparsecodes to understand
responsepropertiesof neuronsin various sensorysystems.
Ef�cient coding (redundancyreduction) has served as an
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important computationalobjective for unsupervisedlearning
on sensoryinput [33]. This principle led to the design of
learning algorithms capableof matching the responsesof
the visual system,e.g. [34,35], and of the auditory system,
e.g.[36]. Learningmethodsusedin theseapproachestypically
get their input from local datapatches,andasa consequence
the emerging featuresare usually redundantwith respectto
translation, rotation or scale. Recently, a family of sparse
generative modelshave arisen,motivatedby the observation
that natural stimuli typically exhibit characteristicsthat are
shift-invariant, that is, they can occur and re-occur at any
spatio-temporallocation. The original sparsecoding models
have beenthusextendedin many differentwaysto build shift-
invariantsparsecodesfor sound[37–41], images[41–43] and
video [44].

In the model we propose,the bimodal signal structureis
capturedby a shift-invariant sparsegenerative model. The
bimodalsignal structure is the audio-visualsignalcomponent
that is informative for sensorfusion.Conversely, signalstruc-
ture that is uncorrelatedin both modalitiesis lessinformative
andthereforeonly incompletelyencoded.Thenew modeluses
unsupervisedlearningfor forming anovercompletedictionary
adaptedto ef�ciently and sparselyencodethe informative
signalcomponent.It will bedemonstratedthatthenew method
avoids the problemsof templatematchingusedin [26] and
thus has signi�cantly improved performancefor speaker lo-
calizationin movies.

The paperis organizedas follows: SectionII describesthe
proposedaudio-visualsignal model. SectionIII presentsthe
Audio-Visual MatchingPursuitalgorithmfor codingbimodal
signals. Section IV introduces the algorithms for learning
bimodaldatastructure.In SectionV experimentalresultsbased
on synthetic and natural audio-visualdata are shown. Sec-
tion VI concludesthe paperwith a summaryof the achieved
results and with the outline of future developmentsof this
approach.

I I . CONVOLUTIONAL GENERATIVE MODEL FOR

AUDIO-V ISUAL SIGNALS

Audio-visual data is a quite unequalcouples = (a; v) of
signals.First, the dimensionsdiffer: while the audio signal
is a 1-D streama(t), the video sequenceis a 3-D signal
v(x; y; t) with (x; y) the pixel position. Second,becausethe
temporalresolutionof auditory and visual perceptiondiffers
by ordersof magnitude,theaudiosignalis usuallysampledat
much higher rate (typically 6–60 kHz) than the video signal
(typically 15–60Hz).

Extending the sparsecoding approachfor movies [44],
onecan formulatea generative model for audio-visualsignal
as a linear sum of audio-visual kernels or atoms � k =
(� (a)

k (t); � (v)
k (x; y; t)) taken from a dictionary D = f � k g.

Eachatom consistsof an audio and a video componentwith
unitary`2 normeach.In therepresentationof theaudio-visual
signalanatomcanbeplacedin any point in spaceandtime.To
placean audio-visualfunction � at a spatio-temporalposition
(p;q; r ) we introducethe shift operatorT(p;q;r ) :

T(p;q;r ) � =
�

� (a) (t � r ); � (v) (x � p;y � q; t � r )
�

: (1)

Fig. 2. Schematicrepresentationof the audio-visualcode.The signal s =
(a(t ); v(x; y; t )) [Bottom] is modeledasasumof kernels� k = (� ( a )

k ; � ( v )
k ),

� ( a )
k beinga 1-D audiofunction and� ( v )

k a 3-D video function.Eachkernel
is localized in spaceand time and may be applied at any spatio-temporal
positionT within the signal [Top].

Note that theshift operatorshiftsaudioandvisual component
of � by the sameamountof time r and thus relative timing
is preserved. Using the shift operator, an audio-visualsignal
canbe expressed:

s �
KX

k=1

n kX

i =1

ck i T(p;q;r ) k i
� k ; (2)

whereT(p;q;r ) k i
is usedascompactnotationfor T(pk i ;qk i ;r k i ) .

The index nk is thenumberof instancesthekernel� k is used
and the pair ck i = (c(a)

k i
; c(v)

k i
) speci�es the weights for the

audioandthe visual componentsof � k at instancei . The use
of two coef�cients per instanceallows us to use the same
kernel function irrespective of the relative power of audio
and visual signal. This invariancein the coding is important
becauseaudio-videopatternsmaybestereotypedalthoughthe
relative intensitiesin the two modalitiescanvary.

Typically [34,35,37,44,45], the free parametersin Eq. (2)
are adjusted by two interleaved optimization procedures:
sparsecoding and learning. Sparse coding: To representa
particularsignals with Eq.(2) thetranslationT(p;q;r ) k i

andthe

coef�cients c(a)
k i

andc(v)
k i

haveto bechosenin orderto optimize
the approximationof the signal. In addition, to provide a
sparsecode,the coef�cients have also to satisfya sparseness
constraint,for example,have few non-zeroentriesor have a
kurtotic,heavy-taileddistribution centeredat zero[27–32,34].
Learning: The ef�ciency of the describedcoding procedure
with Eq. (2) can be optimizedby adaptingthe dictionary of
audio-visualkernels� k = (� (a)

k (t); � (v)
k (x; y; t)) to the data.

The model is schematicallyillustratedin Fig. 2.

I I I . SPARSE CODING

A. SimultaneousMatching Pursuit algorithm

In thecodingproceduredescribedby Eq.(2) thecoef�cients
and spatio-temporaltranslationsof dictionary elementshave
to be determinedto approximatea given audio-visualinput.
It hasbeenshown in general,that �nding the optimal sparse
representationof arbitrarysignalsis a NP-hardproblem[46].
There are many approximatemethods to encodea signal



3

given a certaindictionary[27,29,39,44,47]. Becauseof their
computationalcomplexity however, most of thesetechniques
are too slow for high dimensionalsignals like audio-visual
data.

MatchingPursuit(MP) algorithm[27] is a simple,relatively
fastiterative methodto build signalapproximationsin Eq. (2)
by selectingat eachsteponeatomfrom thedictionaryandby
using the selectedatomto improve the signalapproximation.
More formally, the two stepsinvolved in each iteration of
convolutional MP canbe describedas follows:

1) Projection step: For a selectedatom � n taken from
dictionary D, coef�cients cn and position T(p;q;r )n are
determinedandusedto computea signalapproximation
sn 2 span(T(p;q;r )n � n : n 2 f 0; : : : ; N � 1g) and a
residualRn s = s � sn .

2) Selection step: Based on a similarity criterion
C(Rn s; � ) betweenthe currentresidualand dictionary
elements,thebestmatchingatomis selectedfor thenext
projectionstep.

Here we will use an extension to audio-visual signals of
MatchingPursuit.MP hasbeensuccessfullyusedto compute
sparsecodesfor unimodalaudiosignals[37] andimages[35].
Tropp et al. have recently proposedSimultaneousOrthog-
onal MP (S-OMP), an MP algorithm for jointly encoding
multichannelsignals[48]. However S-OMPwasdesignedfor
signalsof the sametype, while for capturingthe bimodally
informative structurein audio-visualdata the methodhas to
be extended.To overcomeS-OMP limitations we introduce
herethe Audio-Visual MatchingPursuitmethod(AV-MP).

B. Audio-Visual Matching Pursuit

Our motivationin this studyis thequestionwhetherpercep-
tual effectsof sensorfusioncouldbemodeledby joint encod-
ing of audio-visualsignals.Thegeneralideais thatif codingof
bothchannelsis not independent,onemodalitycouldin�uence
and thereby alter and improve the encoding of the other
modality. Sucha crossmodalin�uence might explain effects
of sensoryfusion, suchas crossmodaldenoising,crossmodal
alterationsof perception(e.g. McGurk effect [6], bouncing
illusion [5]), sourcelocalization,etc. In audio-visualsignals
somesignal structuresare more important for sensorfusion
thanotherstructures.Speci�cally, transientsubstructuresthat
co-occursynchronouslyin both modalitiesareparticularlyin-
dicative of commonunderlyingphysicalcauses,they arewhat
Barlow coined“suspiciouscoincidences”[49]. As anexample,
think of a spokensyllablein theaudiosignaloccurringin syn-
chrony with a person's lip movementin thevideo.Conversely,
transientsignals that are uncorrelatedacrossmodalities are
lessinformative for multimodalsignalanalysis.Thus,although
codingandlearningcouldbedesignedsothatEq. (2) captures
the entire structurein the signal, the goal here is to design
a generative model for simultaneouslycapturingthe bimodal
signalstructurethat is informative in sensorfusion.

Becauseaudio and video signals have different dimen-
sionality and different temporalsamplingrate, plain S-OMP
cannot encodethem. Another extension that is required in
order to capturethe bimodally informative signal structure,

is to introduce the concept of synchrony between audio-
visual eventsin the coding.The next paragraphdescribesthe
core algorithm of Audio-Visual Matching Pursuit (AV-MP).
Subsequently, in Sec. III-B 2 we describepossiblesimilarity
measuresto combine the audio and video projections for
selectingaudio-visualatomsin AV-MP.

1) The core algorithm: In MP the coding is basedon
the best match betweenthe signal and the translatedkernel
function. Since in digital signalsthe different modalitiesare
sampledat different ratesover time, we de�ne a discretized
versionof thetranslationoperatorT in Eq. (1) that temporally
shifts the two modalities by different integer number of
samples.The discreteaudio-visual translation T is de�ned
as

T ( � ( a ) ;� ( v ) )
(p;q;r ) =

�
T� ; T(p;q;� )

�
= T(p;q;�;� ) (3)

with

� = nint (r =� (a) ) 2 Z

� = nint (r =� (v) ) 2 Z:

Here � (a) and � (v) denote the audio and video temporal
samplingrates,respectively. T� andT(p;q;� ) arethetranslation
operatorsfor shifting the audio and visual signalsby � and
(p;q; � ) samplesrespectively. The nearestinteger function is
denotedby nint (�). In practicethe audiois sampledat higher
rates than the video, i.e. � (v) > � (a) , and thereforeevery
video framecorrespondsto aboutF = nint (� (v) =� (a) ) audio
samples1. Thus, the shift operator in Eq. (3) is somewhat
“sloppy” in preservingaudio-visualsynchrony since it shifts
the audiokernelat much�ner stepsthanthe visual kernel.In
fact thefollowing relationshipholdsbetweenaudiotranslation
� andvideo temporaltranslation� :

� = F � (� � 1) + � offset ; with 1 � � offset � F:

However, this sloppinesscoincideswell with humanpercep-
tion and therebyintroducesa desiredquasi invariancein the
representation,aswill be explainedin the next section.

Audio-Visual Matching Pursuit (AV-MP) approximatesa
multimodalsignals = (a; v) with successive projectionsonto
the audio-visualdictionaryD. Let us initialize R0s = s; then
the �rst stepof AV-MP decomposess as

R0s =
�

ĉ(a)
0 T� 0 � (a)

0 ; ĉ(v)
0 T(p;q;� )0 � (v)

0

�
+ R1s (4)

with

ĉ(a)
0 = ha;T� 0 � (a)

0 (t)i

ĉ(v)
0 = hv; T(p;q;� )0 � (v)

0 (x; y; t)i :

In Eq. (4) R1s is the residual after projecting s in the
subspacespanned by T(p;q;�;� )0 � 0. The pair of values
(ha;T� 0 � (a)

0 i ; hv; T(p;q;� )0 � (v)
0 i ) representsthe pair of coef-

�cients ĉ0 = (ĉ(a)
0 ; ĉ(v)

0 ). The function � 0 and its spatio-
temporal translation T(p;q;�;� )0 are chosenmaximizing the
similarity measure C(R0s; � ).

1In our experiments,valuesof the samplingratesare � ( a ) = 1=8000 for
audio signalsat 8 kHz and � ( v ) = 1=29:97 for videosat 29.97 framesper
second(fps), andconsequentlyF = 267.
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Recursively applying this procedure,after N iterationswe
canapproximates with ŝ as

ŝ =
KX

k=1

n kX

i =1

ĉk i T(p;q;�;� ) k i
� k ; (5)

where we split the sum over n = 0; : : : ; N � 1, into two
sumsover k andi , with N =

P K
k=1 nk . Thealgorithmcanbe

stoppedeitheraftera �x ednumberN of iterationsor whenthe
maximumvalueof the similarity measureC betweenresidual
and dictionaryelementsfalls below a certainthreshold.Note
thatthenumberof iterationsis equalto thenumberof nonzero
coef�cients in the signal representation.Thus, a given `0

sparsenesscanbe enforcedsimply by limiting the numberof
iterations.

2) Similarity measurefor audio-visual coding: The crit-
ical questionfor processingaudio-visualsignals is how to
de�ne the similarity measureC in the selectionstepof AV-
MP. It is importantthat the selectionstepre�ects somebasic
propertiesof human perception.From psychophysics it is
known that relative shifts betweenaudio and visual signals
that are smaller than the duration of a video frame are
essentiallyimperceptibleand do not seemto affect audio-
visual integration [4,50,51]. Thus, the selection of audio-
visualkernelsshouldalsobeunaffectedby small relative time
shifts. Fortunately, the “sloppiness”of the shift operatorin
Eq. (3) we describedearlierallows this perceptive invariance
to be introducedin theselectionstepasfollows. As described
in Sec.III-B 1, for eachvideoframethereareF corresponding
audiosamples.The �rst video frameis associatedwith audio
samplesfrom 1 to F , the secondwith audio samplesfrom
F + 1 to 2F andso on. Thus � 2 [F � (� � 1) + 1; F � � ] .

We de�ne then the similarity measureC� for AV-MP as

C� (Rn s; � ) = khRn a;T� � (a) ik � +khRn v; T(p;q;� ) �
(v) ik � (6)

subjectto � 2 [F � (� � 1) + 1; F � � ] :

At eachiteration AV-MP selectsthe audio-visualkernel � n

and its spatio-temporaltranslationT(p;q;�;� ) that maximize
Eq. (6). Note that the two addendsin Eq. (6) are de�ned
at different time resolutionsbut the time shifts � and � are
linked by the simple constraint in Eq. (6). This constraint
expressesthe fact that for eachvideo translation� thereare
F possibleaudio translations� associated.Thus, for each
value of � we have to check the F correspondingvalues
of � 2 [F � (� � 1) + 1; F � � ], and select the couple of
translationsthatmaximizesEq. (6). More formally, translation
indexes � and � areselectedas:

f � ; � g = argmax
� 2 Z; � 2 [F �( � � 1)+1 ;F �� ]

C� (Rn s; � ) ;

where C� is expressedby Eq. (6). Interestingly, a similar
constraintwas introducedin the learning algorithm [38] to
avoid the selectionof slightly shifted audio featureshaving
high correlationwith themselves.

The sum in Eq. (6) representsthe ` � norm of the matches
betweenthe audio and visual atomsand the residual.In the
literature,differentvaluesof � have beenusedin simultaneous
sparseapproximationalgorithms.For example, the `1 norm

Fig. 3. C� responsesfor valuesof p going from 0.1 to in�nity . The plots
are in polar coordinateson a plane whoseaxes representaudio and video
projectionsasin Eq. (6). Audio andvideoprojectionsvary de�ning a circular
sectorof unitary radius.C1 (continuousred line) favors audio-visualkernels,
C1 favors unimodalkernels(blue dotted-dashed),while C2 attributesequal
chancesto unimodalandmultimodalcoding(greendashed).

was usedin [48,52], while `2 norm was usedin [53]. [54]
proposedseveral algorithmsthat used`2 and `1 norms.To
understandthe consequencesof thesedifferent choicesof �
we representthe audio and video matchesin a polar plane,
theaudiomatchalongthe0� directionandvideomatchalong
the 90� direction.Eachpair of audio and video matchesis a
point on this plane.To assesshow different � valuesaffect
the weighingbetweenunimodalandbimodalmatches,Fig. 3
shows the geodesiclines for differentC� , with � in the range
from 0.1 to in�nity , on the unit circle in the planeof audio
andvideo matches.Three� valuesstandout: C2 (dashedline
in Fig. 3) is constantwhich meansthat this measureweighs
unimodal matches(0� and 90� ) and bimodal matches(45� )
evenly. C1 (continuousline) favors the selectionof kernels
that contribute energy to both audio and video signal over
kernelsthatcontributeenergy exclusively to onemodality. C1

(dotted-dashed)favors the selectionof kernelsthat contribute
mainly to a single modality. Valuesof � larger than 2 seem
usefulto encourageunimodalcodingeven morestronglythan
C1 . However, values� < 1 cannotbe usedto put stronger
emphasison bimodalcodingthanC1, for � < 1 theC� curves
become�atter andmoreresemblantto C2. To summarize,the
settingof � caneitherpromoteindependentunimodalencoding
or bimodalencodingof audio-visualstructure.Sincewe want
to model events that are essentiallymultimodal (i.e. that are
re�ected by relevant signalstructuresin both audioandvideo
streams),we will useandcomparethesimilarity measuresC1

andC2.

IV. LEARNING

The AV-MP algorithm provides a way to encodesignals
given a set of audio-visual kernel functions. To optimize
the kernel functions to a given set of audio-visual data
we comparetwo algorithms that have been successfulfor
unimodal data: gradient-basedmethod[44] and the K-SVD
algorithm[45]. TheGradientAscentmethodhasbeenusedto
demonstratethat biologically plausiblecodescan be learned
from natural statistics,such as acousticstimuli [37], static
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natural images[34,35] and time-varying visual stimuli [44].
TheK-SVD algorithm,which is similar in principle,hasbeen
introducedmorerecentlyandhasbeenreportedto exhibit fast
convergence[45].

A. GradientAscentLearning

Following [37,44], onecanrewrite Eq. (2) in probabilistic
form as p(sjD ) =

R
p(sjD ; c)p(c)dc, with p(c) a sparse

prior on the usageof dictionary elements.It is commonto
approximatethe integral by the maximumof the integrant(its
mode),i.e.

p(sjD ) =
Z

p(sjD ; c)p(c)dc � p(sjD ; c?)p(c?) : (7)

Here the optimal code c? is approximatedby the AV-MP
decompositionof the signal,ĉ. Note that in this casep(ĉ) is a
prior on the`0 sparsenessof therepresentationthat is imposed
by limiting the numberof AV-MP iterations.Assuming the
noise in the likelihood term, p(sjD ; ĉ), to be Gaussianwith
variance� 2

N , the log probability canbe expressed:

logp(sjD ) �
� 1
2� 2

N











s �

KX

k=1

n kX

i =1

ĉk i T(p;q;�;� ) k i
� k












2

: (8)

Thekernelfunctionscanbeupdatedthroughgradientascent
on Eq. (8):

@log(p(sjD ))
@� k

�
� 1
2� 2

N

@
@� k

(

s�
KX

k=1

n kX

i =1

ĉk i f s� ŝgT( p;q ;�;� ) k i

) 2

=
1

� 2
N

n kX

i =1

ĉk i f s � ŝgT( p;q ;�;� ) k i

; (9)

wheref s � ŝgT( p;q ;�;� ) k i
indicatesthe residualerror over the

extentof kernel� k at positionT(p;q;�;� ) k i
. Thusthe functions

� k areupdatedwith a “delta” learningrule, that is, theproduct
of neuralactivity andresidual.

To summarize,the GradientAscentmethod(GA) suggests
the following iterative updateof the kernel functions:

� k [j ] = � k [j � 1] + � � � k ;

where j indexes the learning algorithm iteration and � is a
constantlearningrate. � � k is the updatestep:

� � k =
�

� � (a)
k ; � � (v)

k

�

=

 
n kX

i =1

ĉ(a)
k i

f a� âgT� k i
;

n kX

i =1

ĉ(v)
k i

f v� v̂gT( p;q ;� ) k i

!

: (10)

After eachupdatestepthe`2 normof theaudio-visualkernels
componentsarenormalizedto 1.

B. TheK-SVDAlgorithm

Like GA, K-SVD learnsthebasisfunctionsmaximizingthe
approximatelog probability of Eq. (8) (actually it minimizes
� logp(sjD )). The ideahereis to updateonly oneatom� k at

a time, togetherwith its correspondingcoef�cient. Then the
penaltyterm in Eq. (8) canbe rewritten as:











s�

X

k

X

i

ĉk i Tk i � k












2

=













s�

X

j 6= k

n jX

i =1

ĉj i Tj i � j �
n kX

i =1

ĉk i Tk i � k














2

=











Ek �

n kX

i =1

ĉk i Tk i � k












2

; (11)

wherethesubscript(p;q; � ; � ) of thetranslationoperatorT
hasbeenomittedto simplify thenotation.In Eq.(11),Ek is the
representationerrorwhenthek-th kernelis removed,while the
secondtermis a weighedcombinationof function� k . K-SVD
however doesnotminimizethis function,sincethiswould lead
to a “non sparse”solution becauseno sparsityconstraintis
imposedon thecoef�cients at this dictionaryupdatestep[45].
Instead,K-SVD minimizesa penaltytermthat is estimatedby
taking into accountonly thosesignalportionsover which the
kernel � k is placed,so that at the updatestepthe numberof
nonzerocoef�cients canonly decrease.TheK-SVD algorithm
learnsthe kernel functions� k minimizing






 R (m )

k � � (m )
k ĉ(m )

k








2
; (12)

wherem, m = a;v denotesthemodality. R (m )
k 2 RL ( m ) � n k is

the residualmatrix whosecolumnsarevectorsof lengthL (m )

obtainedby reshapingthe nk residualsf m � bmk gT( p;q ;�;� ) k i
,

wherethe notationis the sameof previous paragraph.̂c(m )
k 2

R1� n k is a row vectorof thecoef�cients and� (m )
k 2 RL ( m ) � 1

is the column vector representingthe k th kernel in modality
m.

Eq. (12) is easily minimized by computing the sin-
gular value decomposition (SVD) of R (m )

k , R (m )
k =

U (m )
k S(m )

k V (m )T

k , where S(m )
k has the same dimension of

R (m )
k , with nonnegative diagonalelementsin decreasingorder

(i.e. S(m )
k (1; 1) > S(m )

k (2; 2) > : : :). Eq. (12) is minimizedby
updatingthe coef�cients ĉ(m )

k with the �rst columnof V (m )
k ,

V (m )
k ( : ; 1)T , multiplied by S(m )

k (1; 1), andthefunction � (m )
k

with the �rst columnof U (m )
k , U (m )

k ( : ; 1).
To summarize,K-SVD iteratively updatesthe basisfunc-

tions using the rule

� k =
�

reshape(U (a)
k ( : ; 1)); reshape(U (v)

k ( : ; 1))
�

;

wherethe reshape(�) operatorrearrangesthe column vectors
in order to obtain the correctkerneldimensions.At the same
timethecoef�cients correspondingto � k arealsoupdated.Due
to the form of the solution, eachkernel componentremains
normalized.

Two majordifferencesbetweenGA andK-SVD algorithms
should be emphasized.First, K-SVD updateseach function
with theprincipalcomponentof the residualerrorsat position
T(p;q;�;� ) k i

over the extent of � k (discardingthe contribution
of � k ), while GA computesat eachiteration an incremental
updatethat is the weighedsum of the residuals.Second,the
K-SVD algorithmsweepsthroughthekernelsandusesalways
the updatedcoef�cients as they emerge from precedingSVD
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Fig. 4. Syntheticexample.The top plot is the spectrogramof the audiopart, consistingof threesinepulsesat different frequencies.The bottomplot shows
the video part consistingof 30 video frames.The sequenceshows four black geometricshapeson a white background.Thereare � ve eventsembeddedin
this sequence,oneaudio-onlystructure(red dashedbox), two visual-onlystructures(purpledotted)and two audio-visualstructures(blue continuous).

steps,while GA updatesthecoef�cients only at thesuccessive
codingsteps.This shouldlead to a fasterconvergenceof the
algorithm[45].

V. SIMULATION EXPERIMENTS

In this section we demonstratethe proposedframework
on synthetic and natural sequences.To illustrate how the
proposedaudio-visualsparsecoding model works we start
with a simple syntheticexample. In the secondexperiment
we show that the learningalgorithmis capableof discovering
salient audio-visualpatternsfrom training data. Finally, we
will demonstratethat by detecting the learned multimodal
patternsin audio-visualsequencesexhibiting severe acoustic
and visual distractersit is possibleto robustly localize the
audio-visualsources.

A. ExperimentI: SyntheticData

We build a 30 frames long audio-visual sequence:the
soundtrackconsistsof threesinewavesatdifferentfrequencies
(Fig. 4 [Top]), while thevideoshows four simpleblackshapes,
static or moving on a white background(Fig. 4 [Bottom]).
The sequencerepresentsthreepossibleaudio-visualpatterns:
audio-onlystructure(red dashedbox), visual-only structures
(purpledotted)andaudio-visualstructures(blue continuous).

The AV-MP algorithm is used to learn an audio-visual
dictionaryof 10 functionsfor this scene.The kernelshave an
audiocomponentlasting1602samplesanda videocomponent
of size8� 8 pixelsand6 framesin time. After few iterations,
the algorithm yields to learn two audio-visualfunctions that
are shown in Fig. 5 (the remaining8 were not trained).For
brevity, only the resultsare shown that were obtainedwith
similarity measureC1 andGradientAscentfor learning.

It is obvious that the learnedaudio-visualbasesshown in
Fig. 5 representthe two crossmodalstructureshighlightedin
blue in Fig. 4. Kernel1 representsthe audio-visualpatternon
frames26–27,with the static rectangleand the synchronous
sine wave, while kernel 2 representsthe moving squarewith
the short sinusoidalpulseassociatedappearingon frames8–
12. This experimentdemonstratesthat our learningalgorithm
canextract meaningfulbimodal structuresfrom data.The al-
gorithmfocuseson audio-visualstructures,suppressingaudio-
only andvideo-onlycomponents.

B. ExperimentII: Audio-Visual Speech

The next experiment demonstratesthe capability of AV-
MP to recover audio-visualpatternsin natural signals.The

Fig. 5. The two audio-visualkernels learnedfor the syntheticsequence
shown in Fig. 4. Audio componentsareon the top andvideo componentson
thebottom(eachimageis a videoframe).Time is displayedon thehorizontal
axes.

performanceis assessedusingtwo differenttraining sets.The
�rst, S1, consistsof � ve audio-visualsequencesrepresenting
the mouth of one speaker uttering the digits from zero to
nine in English.Themouthregion hasbeenmanuallycropped
form the �rst portion of sequences01m of the individuals
sectionof the CUAVE database[55]. DatasetS2 is composed
of six clips representingthe mouth of six different persons
pronouncingthe digits from zero to nine. The mouthshave
beenmanuallycroppedfrom randomsequencesof theCUAVE
database.Training audio tracks are sampledat 8 kHz and
the gray-scalevideosare at 29.97 fps and at a resolutionof
35 � 55 pixels. The total length of the sequencesis 1310
video frames (approximately44 seconds)for S1 and 1195
video frames(approximately40 seconds)for S2. The audio
signal is directly encodedwhile the video is whitenedusing
the proceduredescribedin [44] to speedup the training.

For eachtraining set we learn four dictionariesusing the
similarity measuresC1 or C2 for codingandGA or K-SVD for
learning.Thedictionarieslearnedon S1, denotedasD1C1 ;GA ,
D1C2 ;GA , D1C1 ;K , D1C2 ;K , should representcollectionsof
basis functions adaptedto a particular speaker, while those
learnedon S2, D2C1 ;GA , D2C2 ;GA , D2C1 ;K , D2C2 ;K , aim at
beingmore“general” setsof audio-videoatoms.

Dictionariesare initialized with thirty randomaudio-visual
kernels with an audio componentof 2670 samplesand a
video componentof size12� 12� 10. Sinceall training and
test sequenceshave the samespatial dimensionof 35 � 55
pixels, we de�ne the sparsity � of an audio-visual signal
representationas the numberof atomsN usedto encodeit
divided by the duration in frames of its video component,
i.e. � = N=# Frames. For coding, the signal is decomposed
with AV-MP using N = 180 audio-visualatomsfor S1 and
N = 160for S2, sothat for bothdatasets� = 0:13. Notethat
very few elementsare usedto representthe signalsbecause
we are interestedin the audio-visualstructureinformative for
sensorfusion. For learning,we �x ed the maximum number
of iterationsto 1000 both for K-SVD and GA. For the GA
algorithm,assuggestedin [34], the learningrate� wasset to
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(a) (b)

Fig. 6. (a) Evolution of audioandvideo SNR with the numberof functions
used for the approximation.The x axis is in logarithmic scale to ease
readability. The plot is for onesequenceandonedictionary (D2C 1 ;K ). The
arrow indicatesthesparsitylevel usedfor learning,� = 0:13. (b) Summaryof
audio-visualcodingbehavior. Pointsrepresentthe � ve testsequenceencoded
with four different dictionaries.The SNR of the audio approximationis on
the x axis and the SNR of the video approximationis on the y axis. Each
dictionaryis identi�ed by a differentmarker. Similarity measureC1 provides
better audio-visualapproximationresults(points on the upper right part of
the plot) thanC2 methods(pointson the left of the �gure).

5.0 for the �rst 333 iterations,then2.5 for the successive 333
and �nally 1 for the remainder.

Using a 2Ghz processorwith 1Gb of RAM, our Matlab
codetakes about150 hours to learn a dictionary on S2 and
slightly longeronS1. However, wewantto stressthatlearning
is in generalan of�ine procedure;henceit is not dramaticif
the algorithm is complex. Furthermore,the computationcan
be considerablyacceleratedusingmulti-threadingon a multi-
core architecture.Matlab now supportsmulti-threadingand
every PC has several CPUs. The computationalbottleneck
of the algorithm is the projection of dictionary elementson
the training signalat the codingstep.Sincetheseprojections
arecomputedas productsof the Fourier transformsof atoms
and signal, and multi-threadingsigni�cantly speedsup the
computationof theFouriertransform,thelearningcanbemade
much faster. On informal testswe have measureda speed-up
factorcloseto 4 on a 4 CPUsarchitecture.

1) Coding quality and learning convergence: Here we
investigate how the behavior of AV-MP dependson the
choiceof the similarity measure(C1 versusC2) and on the
learning strategy (GA or K-SVD). First we measuredthe
coding ef�cacy of the learneddictionaries.We use the four
dictionarieslearnedon the moregeneraldatasetS2 to encode
� ve audio-visualsequencesrepresentingmouthsutteringdigits
in English.Thesesequenceshave the samecharacteristicsof
thoseusedfor learning:resolutionof 35� 55 pixelsandlength
between150 and195 frames.

Figure6 (a) shows the audioandvideo SNR asa function
of the AV-MP iterations (results for one test sequenceand
dictionary D2C1 ;K ). The arrow indicatesthe sparsitychosen
for learning,� = 0:13. Thesparsenesslevel is chosento focus
onbimodallyinformativeaudio-visualstructure.Obviously the
SNR valuesare far from acceptablefor encodingthe entire
audio-visualsignal.In fact,theplot shows thatit requires3000
iterations to achieve a representationof the entire signal at
moderatequality.

Each test sequenceis approximatedwith AV-MP using a
numberof kernelssuchthatfor all decompositionsthesparsity
is � = 0:13, as shown in Fig. 6 (a). The scatterplot in

(a) (b)

Fig. 7. Evaluationof differentalgorithmicsettingsfor learningaudio-visual
codes.The plots show the evolution of the `2 norm of the residualversusthe
learningiterationnumber. (a) Resultsusing180audio-visualfunctionsfor the
decompositionand (b) resultsusing 360 audio-visualfunctions(only curves
for matchingmeasureC1 areshown).

Figure6 (b) summarizesthe SNR valuesfor audioandvideo
modalitiesfor the� ve testclips andthefour dictionaries.Each
point in theplot representsonesequence.Differentdictionaries
are representedusingdifferentmarkers: circles for D2C1 ;GA ,
trianglesfor D2C1 ;K , squaresfor D2C2 ;GA andupside-down
trianglesfor D2C2 ;K .

Although the low SNR valueswould not allow complete
signalreconstruction,they canbeusedto comparethedifferent
encodingmethods.D2C2 ;GA has the lowest SNR values in
both audio and visual components(squaresgroupedaround
the lower left corner of the plot). This low performance
is presumablydue to the considerablysmaller number of
functionsconstitutingthis dictionary(seeTableI). Compared
to D2C2 ;GA the dictionary D2C2 ;K achieves higher SNR
for the video componentbut even lower SNR for the audio
component(upside-down triangleson the upper left corner).
Interestingly the dictionaries trained with the measureC1

(D2C1 ;GA and D2C1 ;K ) have the best overall performance,
they occupy the upperright cornerin the scatterplot (circles
andtriangles).Therelative performancesdepictedin Fig. 6 (b)
are also representative for other sparsenesslevels (data not
shown). This comparisonsuggeststhat the similarity measure
C1 encouragesthe encodingof joint audio-visualstructures
andprovidesbetterapproximationresultsthantheC2 methods.

Next the learningconvergenceof thedifferentalgorithmsis
assessedby trackingthe evolution of the `2 norm of the error
betweentraining signalsand their reconstructions(Eq. (8)).
Figure 7 (a) shows the error decreaseduring learning when
dictionariesarelearnedon datasetS1. In the codingstep,the
signal is decomposedwith AV-MP using N = 180 audio-
visual atoms(� = 0:13). The error decreasesfasterwith K-
SVD, no matterwhich similarity measure,C1 or C2, is used
(this resultalsoholdsfor S2). Figure7 (b) shows convergence
results for GA and K-SVD (similarity measuresC1) in a
regime of reducedsparseness,when the approximationuses
N = 360 kernels (� � 0:26). In this regime the K-SVD
error drops as quickly as in the caseof higher sparseness,
with N = 180, whereasGA reducesthe error initially more
slowly. However, after 50 learning iterations the GA error
drops below the plateau of the K-SVD error and reaches
errorvaluesthataresigni�cantly lower asK-SVD. Thus,these
resultscon�rm thatK-SVD is a very fastandef�cient learning
method.Nevertheless,in someregime of sparsenessandwith
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Function Video Audio Perceived Audio

1 “zero”

2 “one”

3 “one”

4 “thr ee”

5 “four”

6 “four”

7 “four”

8 “�ve”

9 “�ve”

10 “�ve”

11 “six, eight”

12 “seven”

13 “nine”

14 “nine”

15 “na”

16 “r o”

17 “sev”

18 “sev”

Fig. 8. Eighteenlearnedaudio-visualkernelsfor D2C 1 ;GA . Video componentsare on the secondcolumn and are representedas a successionof video
frames.Audio componentsareon the third column.Time is displayedon the horizontalaxes.The meaningof the perceived audiocomponentis given in the
forth column.

enoughlearning iterations, the softer and less “aggressive”
learningmethodGA canoutperformK-SVD.

2) Learnedstructuresin dictionaries: For all methodswe
startedthetrainingwith adictionaryof 30 randomlyinitialized
kernels.It dependedon the methodhow many kernelswere
actuallyselectedfor codingandultimatelytrained.Thereforea
�rst importantcharacterizationof the methodsis the effective
dictionarysize,that is, how many kernelsweretrainedduring
learning,seeTableI. Anotherindicatorof the“goodness”of a
dictionaryis thenumberof recognizablestructuresin thedata
that are capturedby dictionary elements.Here we consider
only theaudiopart,andcountthepercentageof wordspresent

in the dataset(digits in English from zero to nine) that are
recoveredby the learningalgorithm(Table I).

It is obviousthatK-SVD yieldsgenerallylargerdictionaries.
Further, for any given training set and learning methodthe
similarity measureC1 yields larger dictionariesthan C2. All
methodsproduce dictionaries with elementsthat represent
intelligible digits or parts of digits and capturea high per-
centageof data structures(the ten digits). The percentage
valuesof GA learningare somewhat higher than for K-SVD
learning.As anexample,Fig. 8 shows a selectionof elements
from dictionaryD2C1 ;GA . Visual basisfunctionsarespatially
localized and oriented edge or line detectorsmoving over
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Fig. 9. (a) Sampleframe of one test sequence.The white crosscorrectly pinpointsthe position of the estimatedaudio-visualsource.(b) Averagemotion
on the clip in (a): gray-levels representthe temporalmeanover the whole sequenceof the absolutevalueof the differencebetweensuccessive frames.Black
pixels indicatethusno motion. Observingonly the visual motion it is not possibleto localize the soundsource.(c) Audio signalwith the speechof the real
speaker (blue line) andnoisesignalwith SNR = 0 dB (dashedred line). The testaudio track is the sumof the two waveforms.

GA K-SVD
C1 C2 C1 C2

S1 22 - 100% 13 - 80% 28 - 90% 26 - 80%
S2 18 - 80% 10 - 60% 29 - 80% 21 - 70%

TABLE I
SUMMARY OF THE DICTIONARIES CHARACTERISTICS: NUMBER OF

KERNELS (FIRST NUMBER) AND PERCENTAGE OF AUDIO DIGITS PRESENT
IN THE DATA CAPTURED IN THE DICTIONARY.

time. They representparts of the mouthsmaking distinctive
movementsduring the speech.The audiocomponentscanbe
perceived asintelligible speechsignals,a few representa part
of a digit. If the samedigit is capturedby several kernels
they usuallycorrespondto differentaudiocharacteristics,like
length or frequency content (e.g. functions 8, 9 and 10 all
feature a “�ve” ), or different associatedvideo components
(e.g. functions 13 and 14). Curiously, function 11 captures
two digits, “six” and“eight”, oneaftertheother. This might be
dueto the fact that the audio-visualrepresentationof number
“six” hasboth low acousticenergy and small corresponding
lip motion and thus it is associatedwith the numberthat re-
occursmoreoften after it in the database,i.e. “eight”.

It hasto be emphasizedthat the set of functionsshown in
Fig. 8 is qualitatively different from the dictionary, learned
with another method (MoTIF, see below) on the same
dataset[26]. Theaudio-visualkernelsthatour AV-MP method
producesaremoreheterogeneousanddistributedin spaceand
time. The algorithm in [26], due to de-correlationconstraints
betweenatoms,learnssomespuriousaudio-visualkernelsthat
do not representany real data structure.It should be also
emphasizedthat the kernelslearnedhereare invariant under
temporaland spatial shifts, while those learnedin [26] are
only time-invariant.

Overall, the AV-MP algorithm –unlike the older methods–
seemsto re�ect the informative audio-visualstructurein the
data.The reasonfor this improvementis presumablybecause
AV-MP integrateslearning and coding in a way that is sta-
tistically moreconsistentandalsobiologically moreplausible
than in the previous model [26].

3) Audio-visual speaker localization: There is biological
evidencethat auditory-visualintegrationplaysa major role in
soundsourcelocalization[2]. Audio-visualsourcelocalization
is also one of the primary objectives of crossmodalsignal

analysisand it hasseveral practicalapplications[17–26]. In
this experimentwe show that by utilizing the learnedkernels
in audio-visualsequencesexhibiting strongacousticandvisual
distracters,it is possibleto robustly localize the audio-visual
source.This allows us to quantify the performancesof the
proposedapproachand to compare them to those of our
previous method[26].

For the localization task we build challenging clips us-
ing movie snippetsfrom the groups sectionof the CUAVE
dataset[55]. Thetestsequencesconsistof two personsin front
of thecameraarrangedasin Fig. 9 (a).Oneperson(theoneon
theleft here)is utteringdigits in English,while theotheroneis
mouthingexactly thesamewords. As illustratedby Fig. 9 (b),
both personspronouncethe samewords at the sametime,
making it impossibleto identify the soundsourceobserving
only visual motion (strong visual distracter). In addition,
severenoiseis mixedwith theaudiotrack,introducingastrong
acousticdistracter (for an exampleseeFig. 9 (c)).

Audio-visual �ltering for localization: The learned audio-
visual kernelsare detectedon the test sequencesto pinpoint
the audio-visualsound sourceapplying the procedureused
in [26]. Theaudiotrackof thetestclip is �ltered with theaudio
componentof eachlearnedfunction. For eachaudio function
thetemporalpositionof themaximumprojectionis keptanda
window of 31 framesaroundthis time position is considered
in the video. This restrictedvideo patch is �ltered with the
correspondingvideo componentandthe spatio-temporalposi-
tion of maximumprojectionbetweenvideo signal and video
kernel is kept. Thus, for each learnedaudio-visualfunction
we obtain the location of the maximum projection over the
imageplane.The maximalocationson the video framesare
groupedinto clustersusinga hierarchicalclusteringalgorithm,
as describedin [26]2. The centroidof the clustercontaining
the largestnumberof points is the estimatedlocation of the
soundsource.Themouthcenterof thecorrectspeakerhasbeen
manuallyannotatedon the test sequences.The soundsource
locationis consideredto becorrectlydetectedif it falls within
a circle of radius25 pixels centeredin the labeledmouth.

2TheMATLAB functionclusterdata.m wasused.Clustersareformed
when the distancebetweengroups of points is larger than 25 pixels. We
testedseveral clusteringthresholdsand the resultsshowed that localization
performancesdo not critically dependon this parameter.



10

Audio-visual speechdictionaries: Localizationis performed
with the eight AV-MP dictionariesdescribedin the previous
section.Performancesarecomparedwith thoseof ourprevious
algorithm,multimodalMoTIF [26]. TheMoTIF algorithmex-
tractstypical templatesfrom audio-visualdatasetsrepresenting
synchronousco-occurringaudio and video events.Although
not a generative model (meaningthat the coding is not taken
into accountduring the learning process),the MoTIF algo-
rithm demonstratedto achieve excellent localization results
in challenging audio-visual sequences[26], out-performing
previously proposedmethods[24,25]. The algorithmsin [24,
25] have shown state-of-the-artlocalization results on the
CUAVE databasewhen comparedto the work of Nock and
colleagues[19] on the samedata,andthey have only recently
been slightly outperformedby more complex methodsthat
moreover required training [22] or face detection[23]. The
MoTIF methodrepresentsthus a valid baselinefor assessing
the performancesof the proposedframework.

Using the MoTIF algorithm we learn two audio-visual
dictionaries,D1M oT and D2M oT . D1M oT and D2M oT are
learnedon the datasetsused in Sec. V-B, S1 and S2 re-
spectively. ThusD1M oT representsa setof functionsadapted
to one speaker, while D2M oT is intended to be a more
generalaudio-videodictionary. Thedictionarieshave thesame
characteristicsof thoselearnedhere,thatis, they arecomposed
of the samenumberof audio-visualbasis functions of size
12� 12� 10 videosamplesand2670audiosamples.Learning
with MoTIF is fasterthan with the methodproposedin this
paper:it takes about2 hoursto build one of the dictionaries
using a 2Ghz processorwith 1Gb of RAM. There are two
goodreasonsfor that.First, in this paperwe do not usesmall
signalpatchesfor trainingasit is donefor MoTIF [26], but we
considerthe whole audio-visualdatasetto learntemporaland
positioninvariantbasisfunctions.This clearlyslows down the
computation.Secondly, we learn here a whole audio-visual
code at once, while MoTIF learns the basis functions one
after the other imposing a de-correlationconstrainton the
learningobjective. While beingcomputationallyef�cient, this
strategy producesartifactsin the resultingsetof audio-visual
functions[26].

Audio-visual test set: Testsequencescontainaudiotracksat
8 kHz andgray-level video componentsat 29.97fps andat a
resolutionof 240� 360pixels.For testingweuseninedifferent
video sequencesbuilt employing clips taken from the groups
sectionof the CUAVE database[55]. Threeaudio-visualclips
show personstalking, the Speakers in Fig. 10 (a)-(c), and
are extracted respectively from clips g01 (�rst connected
utterance),g01 (secondutterance)andg04 (�rst utterance)of
CUAVE. Threevideosshow personsonly mouthingdigits, the
Distracters in Fig. 10 (d)-(f), and are extractedrespectively
from the �rst part of clips g08, g17 and g20 of CUAVE. In
all clips Speaker and Distracter pronouncethe samewords,
except for Speaker2 who pronouncesthe samedigits but in a
different order. Speaker1 is the samesubject whose mouth
was used to build datasetS1; however, training and test
sequencesaredifferent.DatasetS2 is madeof six clips, each
onefeaturingthe mouthof onesubjectin Fig. 10.

(a) Speaker1 (b) Speaker2 (c) Speaker3

(d) Distracter1 (e) Distracter2 (f) Distracter3

Fig. 10. The threespeakers usedfor testing(a)-(c) and the threesubjects
usedasvideo distracters(d)-(e).

Audio noisewith averageSNRof 0, -5 and-10 dB is mixed
with the audio track. The SNR is calculatedconsideringthe
signalas is, i.e. the speechwith interveningsilences.We use
two types of noise: additive white Gaussiannoise and the
signalof amalevoicepronouncingnumbersin English(shown
in Fig. 9 (c)). This secondaudio distracterhas very similar
characteristicsto the target speechas it is the speechof the
male speaker in sequenceg12 of the groups sectionof the
CUAVE database.In addition, we test a no-noisecondition
for eachvideo sequence,obtainingthusseven differentaudio
test conditions.Consideringall the possiblecombinationsof
audioandvideodistracters,we usea test-setof 63 sequences.
We want to stressthat no previous work in the �eld considers
sucha broadandchallengingtestset.

Localization results: Figure 9 (a) shows a sampleframe of
onetestsequencewherethewhitecrossindicatestheestimated
position of the sound source over the image plane using
D1C1 ;GA . Indeedthe found locationcoincideswith themouth
of the actualspeaker. Localizationresultsare summarizedin
Table II. Valuesare in percentageof correct detectionover
the whole test set of 63 audio-visualsequences.Localization
performancesachieved by the dictionarieslearnedusing AV-
MP are clearly superior to thoseobtainedusing the audio-
visual dictionarieslearnedwith the MoTIF algorithm.

Gradient Ascent used with C1 achieves the best perfor-
manceswith both S1 andS2 datasets.All methodsproposed
in this paper obtain perfect localization results when using
the more generaltraining set S2. Overall, all combinations
of matchingmeasuresand learningmethodsallow to obtain
very accuratelocalization results,showing the robustnessof
the proposedframework. The learnedcodescan detectsyn-
chronousaudio-visualpatterns,allowing con�dent localization
of soundsourcein complex multimodalsequences.

It is interestingto comparemorein detailstheperformances
of the AV-MP algorithm and of the MoTIF method.For AV-
MP we use the best settings,i.e. dictionariesD1C1 ;GA and
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AV-MP
MoTIFGA K-SVD

C1 C2 C1 C2
S1 100 % 95.2 % 98.4 % 96.8 % 38.9 %
S2 100 % 100 % 100 % 100 % 27.2 %

TABLE II
SUMMARY OF THE SOURCE LOCALIZATION RESULTS FOR AV-MP (ALL

TESTED LEARNING SETTINGS) AND MOTIF. RESULTS IN PERCENTAGE OF
CORRECT LOCALIZATION.

D2C1 ;GA . Localizationresultsexpressedin termsof percent-
age of correct speaker localization for the two methodsare
shown in Fig. 11. Bars are groupedaccordingto the speaker
in the sequence.Bars expresslocalization accuracy for the
four dictionariesandfor the two typesof acousticnoise.Each
bar is the averageresult over 12 sequencesobtainedusing
the threevideo distractersandthe four audionoiselevels.As
alreadyunderlined,usingD1C1 ;GA andD2C1 ;GA the speaker
is correctly localized in all testedconditions.On the other
hand, D1M oT and D2M oT exhibit poor localization perfor-
manceson sucha challengingdatabase.The only exceptions
are sequencesinvolving Speaker1 analyzedusing D1M oT .
This is not surprisingsincethe audio-visualspeechusedfor
training D1M oT is extracted from sequencesof Speaker1.
Sequencesinvolving Speaker2 can be better interpretedthan
thosefeaturingSpeaker3, which again is not surprisingsince
Speaker2 is not uttering the digits in the sameorder of the
Distracters. These sequenceshave thus a lower degree of
visual noise. The most challenging audio distracter is the
addedspeech,which is very similar to the targetaudiosignal.
TheseresultsstronglyindicatethatusingAV-MP, thealgorithm
learns audio-visual featuresthat are more robust to strong
acousticandvisualnoiseandthat it is ableto generalizebetter
to differentspeakers.

VI . SUMMARY

We have investigatedalgorithmsto extract bimodally infor-
mative datastructuresfrom audio-visualtraining. The paper
containsthe following new results:

I Audio-Visual Matching Pursuit (AV-MP) is described,
a method for coding audio-visualsignals and learning
bimodalstructurein audio-visualdatathat is informative
for taskssuch as speaker localization and other fusion
tasks.

I Different audio-visualsimilarity measures and different
learningalgorithmsare implementedin AV-MP andcom-
pared in their ability to encodeand learn characteristic
audio-visualstructurein syntheticandnaturaldata.

I AV-MP is tested in a challenging speaker localization
task with audio and visual distracters and compared
to the MoTIF algorithm. All testedversionsof AV-MP
outperformMoTIF signi�cantly.

Applications of the proposedapproachcan range from
robust crossmodalsourcelocalization,to audio-visualsource
separation[16] or joint encodingof multimediastreams.

The presentedmodel can be extendedintroducingthe no-
tion of scale invariancein the representation.If in the test

Fig. 11. Comparisonbetweentheaveragespeaker localizationperformances
using the dictionaries learned with the AV-MP method (D1C 1 ;GA and
D2C 1 ;GA ) and with the MoTIF algorithm (D1M oT and D2M oT ). Bars
are groupedaccordingto the speaker presentin the sequence.Bars express
localizationaccuracy for the two audio noiseconditions(uniformly colored
bars–additive white Gaussiannoise–andcheckedbars–addedspeech–)using
the four learneddictionaries(�rst four bars–MoTIF– andlast four bars–AV-
MP–).Eachbaris theaverageresultover 12 sequencesobtainedusing3 video
distractersand4 audionoiselevels (no noise,SNR = 0, -5, -10 dBs).Results
are in percentageof correctlocalization.The improvementobtainedwith the
proposedmethodis evident.

sequencesshown here the mouth regions had signi�cantly
different dimensions,or if the speechwas pronouncedat
a different enoughrate, the localization performancewould
probablydegradebecauseof the �x ed space-timescaleof the
audio-visualcode.To accountfor spatialand temporalscale
invariancea more complex architectureof the one presented
herewill berequired.Sucharchitecturewill probablyinvolvea
multi-layer hierarchicalmodel of audio-visualrepresentation,
in the line of recent studieson image [56,57] and speech
modelling[58]. Furthermore,a hierarchicalframework seems
appropriateto de�ne a model with a slow-varying layer ac-
countingfor audio-visualsynchrony and�ner layerscapturing
audioandvideo details.

Interestingly, the framework developed here relies upon
techniquesthathave beensuccessfullyemployedfor modeling
unimodalperceptualmechanisms[35,37,44]. Thus,it is anin-
triguing possibility thatour modelmight relateto mechanisms
of audio-visualperception.It is unresolved what computation
is performedby early audio-visualinteractionsthat have been
recentlyreportedin different species[1–4]. The audio-visual
learningmodelpresentedherecanprovide a startingpoint for
biologically constraintmodels that study the computational
function of early audio-visualinteractions.
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