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Abstract—A novel model is presented to learn bimodally
informative structures from audio-visual signals. The signal is
representedas a sparsesum of audio-visual kernels. Each kernel
is a bimodal function consisting of synchronous snippets of an
audio waveform and a spatio-temporal visual basis function. To
representan audio-visual signal, the kernels can be positioned
independently and arbitrarily in spaceand time. The proposed
algorithm uses unsupervised learning to form dictionaries of
bimodal kernels from audio-visual material. The basis functions
that emerge during learning capture salient audio-visual data
structures. In addition it is demonstrated that the learned
dictionary can be usedto locate sourcesof sound in the movie
frame. Speci cally, in sequencescontaining two spealers the
algorithm can robustly localize a spealer even in the presence
of severe acousticand visual distracters.

|. BACKGROUND AND SIGNIFICANCE

To smoothly interact with our ervironment we must be
ableto analyzeandunderstanatomple relationshipsetween
the inputs to different sensorymodalities. Not surprisingly
this behaioral requirementof multimodal processingis re-
ected by correspondingpbsenationsin brainresearchA fast
growing body of experimentalevidencesuggestshatdifferent
sensorymodalitiesin the brain do not operatein isolation but
exhibit interactionsat variouslevels of sensoryprocessing1—
8]. Also the elds of signal processingand computervision
have recently seenthe developmentof perception-inspired
audio-visualfusion algorithms.Examplesnclude methodsfor
speech-spea&k recognition [9] and spealer detectionaided
by video [10,11], audio Itering and separationbasedon
video [12-16], or audio-visualsoundsourcelocalization[17—
26].

Typically, algorithmsfor audio-visualfusion exploit syn-
chronous co-occurencesof transient structues in the dif-
ferent modalities In their pioneering work, Hershe and
Movellan [17] localized sound sourcesin the image frame
by computing the correlation betweenacousticenegy and
intensitychangein single pixels. Recently more sophisticated
featurerepresentationsave beenproposedfor example,audio
featuresderived from audio enegy [20,21,23] or cepstral
representation$l11,18,19,22] and video featuresbasedon
pixel intensitieg19, 20,23] or on temporalsignalchange$11,
18,19,21,22]. Anotherline of researctrelevant for this work
is sparsecoding of audio or video signalswith overcomplete
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Fig.1. An audio-visuafunctioncomposeaf anaudio[Top] andavideopart
[Bottom] which aretime locked. Video framesarerepresentedsa succession
of images.

basesvhich hasbeenshawn to yield excellentresultsin signal
compressin@ndde-noising[27—-32]. Recently thesemethods
have beenproposedor analyzingaudio-visualsignals[16, 24,

25].

The methodsof audio-visualsignal analysismentionedso
far can be characterizedby the two following steps.First,
x edandprede nedunimodalfeaturesareusedto encodethe
essentialstructuresin the audio and video streamseparately
Second correlationsbetweenthe resultingfeaturerepresenta-
tions of audioand video signal are analyzed for example by
estimatingjoint distributions of audio-visualfeatures[11,19,
20,22,23], using CanonicalCorrelationAnalysis (CCA) [18,
21] or detectingtemporalcoincidencesf audio-visualstruc-
tures[16,24,25].

Alternatively, we have recently suggesteda different ap-
proachto sensoifusion [26]. Theideais to analyzethe audio-
visual datajointly by extracting typical templatesof audio-
visual features,see Fig. 1 for an example. Thesetemplates
representsynchronoustransient structuresthat co-occur in
both modalities.Simple templatematchingcan then be used
for solving sensorfusion tasks,suchas spealker localization.
Theaudio-visuatemplatein Fig. 1 wasextractedfrom amovie
shaving a spealer: the audiopartis the waveformof a spolen
digit in English, while the correspondingvideo part shavs
a moving edgethat could representhe lower lip during the
utteranceof the digit. The direct extraction of audio-visual
templatess interestingbecausét focuseson relevantbimodal
structureratherthan rst computingthe full representations
in both modalities separatelyand then analyzing the joint
statisticsof features However, the ef ciency of the algorithm
in [26] was limited becausethe template extraction and
matchingis brittle in the presencef accidentakuperpositions
of separatdransientstructures.

Here we presenta novel model of audio-visual fusion
that combinesthe adwantagesof joint bimodal signal anal-
ysis [26] and sparsecoding, e.g. [27—32]. To combine the
two approacheswe build on previous work that used un-
supervisedlearning of efcient sparsecodesto understand
responsepropertiesof neuronsin various sensorysystems.
Ef cient coding (redundancyreductior) has sened as an



important computationalobjectve for unsupervisedearning
on sensoryinput [33]. This principle led to the design of
learning algorithms capable of matching the responsesof
the visual system,e.g. [34,35], and of the auditory system,
e.g.[36]. Learningmethodsusedin theseapproachegypically

gettheir input from local datapatchesandasa consequence

the emeping featuresare usually redundantwith respectto

translation, rotation or scale. Recently a family of sparse
generatie modelshave arisen,motivated by the obsenation

that natural stimuli typically exhibit characteristicghat are
shift-invariant, that is, they can occur and re-occur at ary

spatio-temporalocation. The original sparsecoding models
have beenthusextendedin mary differentwaysto build shift-

invariantsparsecodesfor sound[37-41],images[41-43] and
video [44].

In the model we propose,the bimodal signal structureis
capturedby a shift-invariant sparsegeneratre model. The
bimodalsignal structuie is the audio-visualsignalcomponent
thatis informative for sensorfusion. Corversely signalstruc-
ture thatis uncorrelatedn both modalitiesis lessinformative
andthereforeonly incompletelyencodedThe new modeluses
unsupervisedearningfor forming an overcompletedictionary
adaptedto efciently and sparselyencodethe informative
signalcomponentlt will bedemonstratethatthe nev method
avoids the problemsof templatematchingusedin [26] and
thus has signi cantly improved performancefor spealer lo-
calizationin movies.

The paperis organizedas follows: Sectionll describeghe
proposedaudio-visualsignal model. Sectionlll presentsthe
Audio-Visual Matching Pursuitalgorithmfor coding bimodal
signals. Section IV introducesthe algorithms for learning
bimodaldatastructureln SectionV experimentaresultsbased
on synthetic and natural audio-visualdata are shovn. Sec-
tion VI concludesthe paperwith a summaryof the achieved
resultsand with the outline of future developmentsof this
approach.

Il. CONVOLUTIONAL GENERATIVE MODEL FOR
AUDIO-VISUAL SIGNALS

Audio-visual datais a quite unequalcouples = (a;v) of
signals. First, the dimensionsdiffer: while the audio signal
is a 1-D streama(t), the video sequences a 3-D signal
v(x; y;t) with (x;y) the pixel position. Second,becausehe
temporalresolutionof auditory and visual perceptiondiffers
by ordersof magnitudethe audiosignalis usuallysampledat
much higher rate (typically 6-60 kHz) than the video signal
(typically 15-60Hz).

Extending the sparsecoding approachfor movies [44],
one canformulatea generatie model for audio-visualsignal
as a linear sum of audio-visual kernels or atoms | =
( @); (xy;t) taken from a dictionary D = f yg.
Eachatom consistsof an audio and a video componentwith
unitary ", normeach.In therepresentationf the audio-visual
signalanatomcanbe placedin ary pointin spaceandtime. To
placean audio-visualfunction at a spatio-temporaposition
(p;g; r) we introducethe shift operatorT ,.q:r):
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Fig. 2. Schematicrepresentatiorof the audio-visualcode. The signals =

(a(t); v(x; y; t)) [Bottom]is modeledasasumof kernels y = ( ,(f); (k")),
(ka) beinga 1-D audiofunctionand (k") a 3-D video function. Eachkernel
is localized in spaceand time and may be applied at ary spatio-temporal

position T within the signal [Top].

Note thatthe shift operatorshifts audioandvisual component
of by the sameamountof time r and thus relative timing
is presered. Using the shift operatoy an audio-visualsignal
canbe expressed:

X R
S CkiT(p;q;r)ki K
k=1 i=1

)

whereT(pq;r),, Is usedascompactnotationfor Ty, g, iry,)-
Theindex ni is the numberof instanceghe kernel  is used
and the pair ¢, = (c,((‘f);cﬁf)) speci es the weights for the
audioandthe visual componentof ¢ atinstancei. Theuse
of two coefcients per instanceallows us to use the same
kernel function irrespectie of the relatve power of audio
and visual signal. This invariancein the codingis important
becauseudio-videopatternsmay be stereotypedlthoughthe
relative intensitiesin the two modalitiescanvary.

Typically [34,35,37,44,45], the free parametersn Eq. (2)
are adjusted by two interleared optimization procedures:
sparsecoding and learning. Sparse coding: To representa
particularsignals with Eq. (2) thetranslationT(p;q;r)Kl andthe

coefcients c(k‘?‘) andcﬁ‘l’) have to bechoserin orderto optimize
the approximationof the signal. In addition, to provide a
sparsecode,the coefcients have alsoto satisfy a sparseness
constraint,for example, have few non-zeroentriesor have a
kurtotic, heary-tailed distribution centeredht zero[27-32,34].
Learning: The efciency of the describedcoding procedure
with Eqg. (2) can be optimized by adaptingthe dictionary of
audio-visualkernels x = (' (t); ) (x;y;t)) to the data.
The modelis schematicallyillustratedin Fig. 2.

I11. SPARSE CODING
A. Simultaneoudvatching Pursuit algorithm

In thecodingproceduradescribedy Eq. (2) the coefcients
and spatio-temporatranslationsof dictionary elementshave
to be determinedto approximatea given audio-visualinput.
It hasbeenshawvn in generalthat nding the optimal sparse
representatiomf arbitrary signalsis a NP-hardproblem[46].
There are mary approximatemethodsto encodea signal



given a certaindictionary[27,29,39,44,47]. Becauseof their
computationalcompleity however, most of thesetechniques
are too slow for high dimensionalsignalslike audio-visual
data.

MatchingPursuit(MP) algorithm[27] is a simple,relatively
fastiteratve methodto build signalapproximationsn Eg. (2)
by selectingat eachstepone atomfrom the dictionaryandby
usingthe selectedatomto improve the signalapproximation.
More formally, the two stepsinvolved in each iteration of
cornvolutional MP canbe describedas follows:

1) Projection step For a selectedatom , taken from
dictionary D, coefcients ¢, and position T(,.q;r), are
determinecandusedto computea signalapproximation
Sn 2 spar{T(pqir), n 1g) anda
residualR"s=s s,.

Selection step Based on a similarity criterion
C(R"s; ) betweenthe currentresidualand dictionary
elementsthe bestmatchingatomis selectedor the next
projectionstep.

Here we will use an extensionto audio-visual signals of
Matching Pursuit. MP hasbeensuccessfullyusedto compute
sparsecodesfor unimodalaudiosignals[37] andimages[35].
Tropp et al. have recently proposedSimultaneousOrthog-
onal MP (S-OMP), an MP algorithm for jointly encoding
multichannelsignals[48]. However S-OMP was designedor
signalsof the sametype, while for capturingthe bimodally
informative structurein audio-visualdatathe methodhasto
be extended.To overcomeS-OMP limitations we introduce
herethe Audio-Visual Matching Pursuitmethod(AV-MP).

2)

B. Audio-Misual Matching Pursuit

Our motivationin this studyis the questionwhetherpercep-
tual effectsof sensorfusion could be modeledby joint encod-
ing of audio-visuakignals.Thegeneraideais thatif codingof
bothchannelss notindependentynemodalitycouldin uence
and thereby alter and improve the encoding of the other
modality Sucha crossmodaln uence might explain effects
of sensoryfusion, suchas crossmodalblenoising,crossmodal
alterationsof perception(e.g. McGurk effect [6], bouncing
illusion [5]), sourcelocalization, etc. In audio-visualsignals
somesignal structuresare more importantfor sensorfusion
than other structures Speci cally, transientsubstructureshat
co-occursynchronouslyn both modalitiesare particularlyin-
dicative of commonunderlyingphysical causesthey arewhat
Barlow coined“suspiciouscoincidences]49]. As anexample,
think of a spolensyllablein the audiosignaloccurringin syn-
chrory with a persons lip movementin thevideo. Corversely
transientsignalsthat are uncorrelatedacrossmodalities are
lessinformative for multimodalsignalanalysis.Thus,although
codingandlearningcould be designedsothat Eq. (2) captures
the entire structurein the signal, the goal hereis to design
a generatie model for simultaneouslycapturingthe bimodal
signal structurethat is informative in sensorfusion.

Becauseaudio and video signals have different dimen-
sionality and different temporalsamplingrate, plain S-OMP
cannotencodethem. Another extensionthat is requiredin
order to capturethe bimodally informative signal structure,

is to introduce the concept of synchroly betweenaudio-
visual eventsin the coding. The next paragraphdescribeshe
core algorithm of Audio-Visual Matching Pursuit (AV-MP).
Subsequentlyin Sec.ll1l-B 2 we describepossiblesimilarity
measuresto combine the audio and video projections for
selectingaudio-visualatomsin AV-MP.

1) The core algorithm: In MP the coding is basedon
the best match betweenthe signal and the translatedkernel
function. Sincein digital signalsthe different modalitiesare
sampledat different ratesover time, we de ne a discretized
versionof thetranslationoperatorT in Eg. (1) thattemporally
shifts the two modalities by different integer number of
samples.The discrete audio-visualtranslation T is de ned

as
( (a); (V)) _

(piair) T3 T ) = Tpars ) 3)
with
= nint(r= @) 22
= nint(r= )2 z:
Here @ and ) denotethe audio and video temporal

samplingratesrespectiely. T andT,q; ) arethetranslation
operatorsfor shifting the audio and visual signalsby  and
(p;a; ) samplesrespectiely. The nearesinteger function is
denotedby nint( ). In practicethe audiois sampledat higher
ratesthan the video, i.e. (V) > (3 and thereforeevery
video frame correspondso aboutF = nint( (V)= () audio
sampled. Thus, the shift operatorin Eq. (3) is somevhat
“sloppy” in preservingaudio-visualsynchroly sinceit shifts
the audiokernelat much ner stepsthanthe visual kernel.In
factthefollowing relationshipholdsbetweernaudiotranslation
andvideo temporaltranslation :

=F ( 1)+ offset » with 1 offset F:

However, this sloppinesscoincideswell with humanpercep-
tion and therebyintroducesa desiredquasiinvariancein the
representationaswill be explainedin the next section.

Audio-Visual Matching Pursuit (AV-MP) approximatesa
multimodalsignals = (a;v) with successie projectionsonto
the audio-visualdictionary D. Let us initialize R%s = s; then
the rst stepof AV-MP decomposes as

(v)

Ros= 67T, (16" Tpgi 3o 0° *+R's (4
with
&) = T, O
6" = Wi 0”06 YiDi:

In Eq. (4) R's is the residual after projecting s in the
subspacespannedby Ti,q4.: ), o- The pair of values
(hesT o i Tipg: )o o)1) representshe pair of coef-
cients & = (6;&"). The function , and its spatio-
temporal translation T,.q.. ), are chosenmaximizing the
similarity measue C(R®s; ).

0

1in our experimentsyvaluesof the samplingratesare (2) = 1=8000 for
audio signalsat 8 kHz and (¥) = 1=29:97 for videosat 29.97 framesper
second(fps), and consequentlyF = 267.



Recursvely applyingthis procedure after N iterationswe
canapproximates with § as

X Rk
§= G Tipiai; e, ko ®)
k=1 i=1
where we split the sum ovepn = 0;:::;N 1, into two

sumsover k andi, with N = II<(=1 nk. Thealgorithmcanbe
stoppeckitheraftera x ednumberN of iterationsor whenthe
maximumvalue of the similarity measureC betweenresidual
and dictionary elementsfalls belov a certainthreshold.Note
thatthe numberof iterationsis equalto the numberof nonzero
coefcients in the signal representation.Thus, a given g

sparsenessan be enforcedsimply by limiting the numberof

iterations.

2) Similarity measurefor audio-visual coding The crit-
ical questionfor processingaudio-visualsignalsis how to
de ne the similarity measureC in the selectionstep of AV-
MP. It is importantthat the selectionstepre ects somebasic
propertiesof human perception. From psychoplgsics it is
known that relative shifts betweenaudio and visual signals
that are smaller than the duration of a video frame are
essentiallyimperceptibleand do not seemto affect audio-
visual integration [4,50,51]. Thus, the selectionof audio-
visual kernelsshouldalsobe unafectedby smallrelative time
shifts. Fortunately the “sloppiness”of the shift operatorin
Eq. (3) we describedearlier allows this perceptie invariance
to beintroducedin the selectionstepasfollows. As described
in Sec.llI-B 1, for eachvideoframethereareF corresponding
audiosamplesThe rst video frameis associatedvith audio
samplesfrom 1 to F, the secondwith audio samplesfrom
F+ 1to2F andsoon.Thus 2 [F ( 1+ L,F .

We de ne thenthe similarity measureC for AV-MP as

C (R"s; )=kmR"a;T @ik +kR"V; T(pq. ) ik (6)
subjectto 2 [F ( D+ LF ]:

At eachiteration AV-MP selectsthe audio-visualkernel |

and its spatio-temporattranslation T(,.q;. ) that maximize
Eg. (6). Note that the two addendsin Eq. (6) are de ned
at different time resolutionsbut the time shifts and are
linked by the simple constraintin Eq. (6). This constraint
expresseghe fact that for eachvideo translation thereare
F possibleaudio translations associatedThus, for each
value of  we have to check the F correspondingvalues
of 2 [F ( 1)+ 1;F ], and selectthe couple of

translationghatmaximizeskq. (6). More formally, translation
indexes and areselectedas:

f;g= arg max C (R"s; );
2Z; 2[F ( 1+1;F ]
where C is expressedby Eq. (6). Interestingly a similar

constraintwas introducedin the learning algorithm [38] to
avoid the selectionof slightly shifted audio featureshaving
high correlationwith themseles.

The sumin Eq. (6) representshe © norm of the matches
betweenthe audio and visual atomsand the residual.In the
literature differentvaluesof have beenusedin simultaneous
sparseapproximationalgorithms. For example,the “1 norm
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Fig. 3. C responsedor valuesof p going from 0.1 to in nity . The plots

are in polar coordinateson a plane whose axes representaudio and video
projectionsasin Eq. (6). Audio andvideo projectionsvary de ning a circular
sectorof unitary radius.C; (continuousred line) favors audio-visualkernels,
C;1 favorsunimodalkernels(blue dotted-dashed)yhile C, attributesequal
chancego unimodaland multimodal coding (greendashed).

was usedin [48,52], while ", norm was usedin [53]. [54]
proposedseveral algorithmsthat used™, and *; norms.To
understandhe consequencesf thesedifferent choicesof
we representthe audio and video matchesin a polar plane,
the audiomatchalongthe O directionandvideo matchalong
the 90 direction. Eachpair of audio and video matchess a
point on this plane.To assessow different valuesaffect
the weighing betweenunimodaland bimodal matchesFig. 3
shows the geodesidines for differentC , with in therange
from 0.1 to in nity , on the unit circle in the plane of audio
andvideo matchesThree valuesstandout: C, (dashedine
in Fig. 3) is constantwhich meansthat this measureweighs
unimodal matches(0 and 90 ) and bimodal matches(45 )
evenly. C; (continuousline) favors the selectionof kernels
that contribute enegy to both audio and video signal over
kernelsthatcontritute enegy exclusively to onemodality, C,
(dotted-dashedfjavors the selectionof kernelsthat contritute
mainly to a single modality Valuesof larger than2 seem
usefulto encourageinimodalcoding even more stronglythan
C: . However, values < 1 cannotbe usedto put stronger
emphasi®on bimodalcodingthanCy, for < 1theC curwes
becomeatter andmoreresemblanto C,. To summarizethe
settingof caneitherpromoteindependentinimodalencoding
or bimodal encodingof audio-visualstructure.Sincewe want
to model eventsthat are essentiallymultimodal (i.e. that are
re ected by relevant signal structuresn both audioandvideo
streams)we will useandcomparethe similarity measure€;
andC,.

IV. LEARNING

The AV-MP algorithm provides a way to encodesignals
given a set of audio-visual kernel functions. To optimize
the kernel functions to a given set of audio-visual data
we comparetwo algorithms that have been successfulfor
unimodal data: gradient-basednethod [44] and the K-SVD
algorithm[45]. The GradientAscentmethodhasbeenusedto
demonstratehat biologically plausiblecodescan be learned
from natural statistics, such as acousticstimuli [37], static



naturalimages[34,35] and time-varying visual stimuli [44].
The K-SVD algorithm,which is similar in principle, hasbeen
introducedmorerecentlyandhasbeenreportedto exhibit fast
convergence[45].

A. GradientAscentLearning

Following [37,44], gne canrewrite Eq. (2) in probabilistic
form as p(siD) =  p(sjD;c)p(c)dc, with p(c) a sparse
prior on the usageof dictionary elements.lt is commonto
approximatehe integral by the maximumof the integrant (its

mode),i.e.
z

p(siD) =  p(siD;o)p(c)de  p(siD;c’)p(c”):  (7)
Here the optimal code ¢’ is approximatedby the AV-MP
decompositiorof the signal, €. Note thatin this casep(€) is a
prior onthe ™ sparsenessf therepresentatiothatis imposed
by limiting the numberof AV-MP iterations. Assumingthe

noisein the likelihood term, p(sjD; €), to be Gaussianwith

variance 2, the log probability can be expressed:
_ 1 X Xk 2
logp(sjD) 52 S & Tipias: e, & (8)
N k=1 i=1

Thekernelfunctionscanbe updatedhroughgradientascent
on Eq. (8):

( ) 2
@ogpsip) 1@ XX
@ 22@k i, " Toass O,
1 X
- 7,%] L ck‘ fs SgT(p:q:: P (9)
i=
wheref s o) - indicatesthe residualerror over the

extentof kernel | at p'ositionT(p;q;; )i, - Thusthe functions
k areupdatedwith a“delta” learningrule, thatis, the product
of neuralactiity andresidual.
To summarizethe GradientAscentmethod(GA) suggests
the following iterative updateof the kernelfunctions:
k1=«

1]+ K

wherej indexes the learning algorithm iterationand is a
constantlearningrate. is the updatestep:
- (a). (v)
k = k k |
k Kk
= c(k?)fa agr , ; cf(‘i’)fv 0974, - (10)

i=1 i=1

After eachupdatestepthe *; normof the audio-visuakernels
componentsare normalizedto 1.

B. TheK-SVD Algorithm

Like GA, K-SVD learnsthe basisfunctionsmaximizingthe
approximatelog probability of Eq. (8) (actuallyit minimizes
logp(sjD)). Theideahereis to updateonly oneatom  at

a time, togetherwith its correspondingcoefcient. Then the
penaltytermin Eq. (8) canbe rewritten as:

2
X X 2 X X X
S ckiTki kK = S cliTJ'i j ClKiTki k
Ko i=1
2
G T x5
i=1

j6ki=1
Kk

Ex (11)
wherethe subscript(p;q; ; ) of thetranslationoperatorT
hasbeenomittedto simplify thenotation.In Eq. (11), Ey is the
representatioerrorwhenthek-th kernelis removed, while the
secondermis a weighedcombinationof function . K-SVD
however doesnot minimizethis function, sincethis would lead
to a “non sparse”solution becauseno sparsity constraintis
imposedon the coefcients at this dictionaryupdatestep[45].
Instead K-SVD minimizesa penaltytermthatis estimatedy
taking into accountonly thosesignal portionsover which the
kernel  is placed,so that at the updatestepthe numberof
nonzerocoefcients canonly decreaseThe K-SVD algorithm

learnsthe kernelfunctions ¢ minimizing
2
R e (12)
wherem, m = a;v denoteghe modality. R(km) 2 RE™ mis
the residualmatrix whosecolumnsare vectorsof lengthL (™)

obtainedby reshapinghe ny residualstm  #gr ..., .

wherethe notationis the sameof previous paragraphc(km) 2
R! "« isarow vectorof thecoefcients and (™ 2 R+ 1
is the column vector representinghe k' kernelin modality
m.

Eqg. (12) is easily minimized by computing the sin-
gular value decomposition (SVD) of R{™, R{™

T

UMMy m™ “where S{™ has the same dimension of
R(km), with nonn@ative diagonalelementsn decreasingrder
(.S (1;1) > S (2;2) > ::2). Eq. (12) is minimizedby
updatingthe coefcients ¢™ with the rst columnof v (™,
v ™ (:;1)T, multiplied by S{™ (1; 1), andthefunction (™
with the rst columnof U™, u{™(:;1).

To summarize K-SVD iteratively updatesthe basisfunc-
tions usingthe rule

« = reshap(U(?(:;1));reshap(UL(:;1) ;

wherethe reshape( ) operatorrearrangeshe columnvectors
in orderto obtainthe correctkerneldimensionsAt the same
timethecoefcients correspondingo  arealsoupdatedDue
to the form of the solution, eachkernel componentremains
normalized.

Two major differencedetweenGA andK-SVD algorithms
should be emphasizedFirst, K-SVD updateseach function
with the principal componenbf the residualerrorsat position
Tipa:; ), Overtheextentof  (discardingthe contribution
of ), while GA computesat eachiteration an incremental
updatethat is the weighedsum of the residuals.Second the
K-SVD algorithmsweepghroughthe kernelsandusesalways
the updatedcoefcients asthey emege from precedingSVD
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Fig. 4. Syntheticexample.The top plot is the spectrogranof the audio part, consistingof threesine pulsesat differentfrequenciesThe bottom plot shavs
the video part consistingof 30 video frames.The sequenceshaws four black geometricshapeson a white background Thereare ve eventsembeddedn
this sequencegne audio-onlystructure(red dashedbox), two visual-only structuregpurple dotted)and two audio-visualstructuregblue continuous).

stepswhile GA updateghe coefcients only at the successie
coding steps.This shouldleadto a fastercorvergenceof the
algorithm[45].

V. SIMULATION EXPERIMENTS

In this section we demonstratethe proposedframenork
on synthetic and natural sequencesTo illustrate how the
proposedaudio-visual sparsecoding model works we start
with a simple syntheticexample. In the secondexperiment
we shaw thatthe learningalgorithmis capableof discovering
salient audio-visualpatternsfrom training data. Finally, we
will demonstratethat by detectingthe learned multimodal
patternsin audio-visualsequencegxhibiting severe acoustic
and visual distractersit is possibleto robustly localize the
audio-visualsources.

A. Experimentl: SyntheticData

We build a 30 frames long audio-visual sequence:the
soundtraclconsistof threesinewavesat differentfrequencies
(Fig. 4 [Top]), while thevideo shaws four simpleblackshapes,
static or moving on a white background(Fig. 4 [Bottom]).
The sequenceepresentshree possibleaudio-visualpatterns:
audio-only structure(red dashedbox), visual-only structures
(purple dotted)and audio-visualstructuregblue continuous).

The AV-MP algorithm is usedto learn an audio-visual
dictionary of 10 functionsfor this scene.The kernelshave an
audiocomponentasting1602samplesanda videocomponent
of size8 8 pixelsand6 framesin time. After few iterations,
the algorithm yields to learn two audio-visualfunctions that
are shawvn in Fig. 5 (the remaining8 were not trained). For
brevity, only the resultsare shavn that were obtainedwith
similarity measureC; and GradientAscentfor learning.

It is obvious that the learnedaudio-visualbasesshawvn in
Fig. 5 representhe two crossmodaktructureshighlightedin
bluein Fig. 4. Kernell representshe audio-visualpatternon
frames26-27,with the static rectangleand the synchronous
sine wave, while kernel 2 representshe moving squarewith
the short sinusoidalpulse associatedippearingon frames8—
12. This experimentdemonstratethat our learningalgorithm
can extract meaningfulbimodal structuresfrom data.The al-
gorithmfocuseson audio-visualstructuressuppressingudio-
only andvideo-only components.

B. Experimentll: Audio-Msual Speeh

The next experimentdemonstrategshe capability of AV-
MP to recover audio-visualpatternsin natural signals. The

Kernel 1 Kernel 2

Audio

Video

Fig. 5. The two audio-visualkernelslearnedfor the synthetic sequence
shawn in Fig. 4. Audio componentsre on the top andvideo component®n
the bottom (eachimageis a video frame).Time is displayedon the horizontal
axes.

performances assessedsingtwo differenttraining sets.The

rst, S1, consistsof ve audio-visualsequencesepresenting
the mouth of one spealer uttering the digits from zero to

ninein English.The mouthregion hasbeenmanuallycropped
form the rst portion of sequencesO1lmof the individuals
sectionof the CUAVE databas¢55]. DatasetS2 is composed
of six clips representinghe mouth of six different persons
pronouncingthe digits from zero to nine. The mouthshave

beenmanuallycroppedrom randomsequencesf the CUAVE

databaseTraining audio tracks are sampledat 8 kHz and

the gray-scalevideos are at 29.97 fps and at a resolutionof

35 55 pixels. The total length of the sequencess 1310
video frames (approximately44 seconds)for S1 and 1195
video frames(approximately40 seconds)or S2. The audio
signalis directly encodedwhile the video is whitenedusing

the proceduredescribedn [44] to speedup the training.

For eachtraining setwe learn four dictionariesusing the
similarity measure€; or C, for codingandGA or K-SVD for
learning.Thedictionariedearnedon S1, denotedasD 1c, .ga ,
Dlc,.ca, Dlc,k , D1c,« , shouldrepresentollections of
basis functions adaptedto a particular spealer, while those
learnedon S2, D2C1;GA y D2C2;GA y D2C1;K , DZCZ;K , aim at
being more “general” setsof audio-videoatoms.

Dictionariesare initialized with thirty randomaudio-visual
kernels with an audio componentof 2670 samplesand a
video componenbf size12 12 10. Sinceall training and
test sequencedhave the samespatial dimensionof 35 55
pixels, we de ne the spassity  of an audio-visualsignal
representatioras the numberof atomsN usedto encodeit
divided by the durationin framesof its video component,
ie. N=# Frames For coding, the signalis decomposed
with AV-MP using N = 180 audio-visualatomsfor S1 and
N = 160for S2, sothatfor bothdatasets = 0:13. Notethat
very few elementsare usedto representhe signalsbecause
we areinterestedn the audio-visualstructureinformatie for
sensorfusion. For learning,we x ed the maximum number
of iterationsto 1000 both for K-SVD and GA. For the GA
algorithm,assuggestedn [34], the learningrate wassetto
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Fig. 6. (a) Evolution of audioandvideo SNR with the numberof functions
used for the approximation.The x axis is in logarithmic scale to ease
readability The plot is for one sequencendonedictionary (D2¢, x ). The
arrow indicatesthe sparsitylevel usedfor learning, = 0:13. (b) Summaryof

audio-visualcoding behaior. Pointsrepresenthe ve testsequencencoded
with four different dictionaries.The SNR of the audio approximationis on

the x axis and the SNR of the video approximationis on the y axis. Each
dictionaryis identi ed by a differentmarker. Similarity measureC provides
better audio-visualapproximationresults (points on the upperright part of

the plot) than C2 methods(pointson the left of the gure).

5.0for the rst 333iterations,then2.5 for the successie 333
and nally 1 for the remainder

Using a 2Ghz processomwith 1Gb of RAM, our Matlab
codetakes about150 hoursto learn a dictionary on S2 and
slightly longeron S1. However, we wantto stresghatlearning
is in generalan of ine procedureenceit is not dramaticif
the algorithm is comple. Furthermore the computationcan
be considerablyacceleratedising multi-threadingon a multi-
core architecture.Matlab now supportsmulti-threadingand
every PC has several CPUs. The computationalbottleneck
of the algorithm is the projection of dictionary elementson
the training signal at the coding step. Sincetheseprojections
are computedas productsof the Fourier transformsof atoms
and signal, and multi-threading signi cantly speedsup the
computatiorof the Fouriertransformthelearningcanbe made
muchfaster On informal testswe have measureda speed-up
factorcloseto 4 on a 4 CPUsarchitecture.

1) Coding quality and learning corvergence Here we
investicate how the behaior of AV-MP dependson the
choice of the similarity measure(C; versusC,) and on the
learning stratgly (GA or K-SVD). First we measuredthe
coding efcacy of the learneddictionaries.We use the four
dictionarieslearnedon the more generaldataseS2 to encode

ve audio-visuakequencegepresentingnouthsutteringdigits
in English. Thesesequencesave the samecharacteristicof
thoseusedfor learning:resolutionof 35 55 pixelsandlength
betweenl50 and 195 frames.

Figure 6 (a) shavs the audioandvideo SNR asa function
of the AV-MP iterations (results for one test sequenceand
dictionary D2¢, .k ). The arrov indicatesthe sparsitychosen
for learning, = 0:13. Thesparsenedgvel is choserto focus
on bimodallyinformative audio-visuaktructure Obviously the
SNR valuesare far from acceptabldor encodingthe entire
audio-visuakignal.In fact,the plot shavs thatit requires3000
iterationsto achieve a representatiorof the entire signal at
moderatequality.

Each test sequencds approximatedwith AV-MP using a
numberof kernelssuchthatfor all decompositionshe sparsity
is 0:13, as shawn in Fig. 6 (a). The scatterplot in

Fig. 7. Evaluationof differentalgorithmicsettingsfor learningaudio-visual
codes.The plots shav the evolution of the “2 norm of the residualversusthe
learningiterationnumber (a) Resultsusing 180 audio-visualfunctionsfor the
decompositiorand (b) resultsusing 360 audio-visualfunctions(only curves
for matchingmeasureC1 are shown).

Figure 6 (b) summarizeghe SNR valuesfor audioandvideo
modalitiesfor the vetestclips andthefour dictionariesEach
pointin the plot representsnesequenceDifferentdictionaries
arerepresentedising different markers: circlesfor D2¢, .ga ,

trianglesfor D2¢, .k , squaresor D2¢,.ca andupside-dan

trianglesfor D2¢, x .

Although the low SNR valueswould not allow complete
signalreconstructionthey canbeusedto comparethedifferent
encodingmethods.D2¢,.ca hasthe lowest SNR valuesin
both audio and visual componentgsquaresgroupedaround
the lower left corner of the plot). This low performance
is presumablydue to the considerablysmaller number of
functionsconstitutingthis dictionary (seeTablel). Compared
to D2¢,.ca the dictionary D2¢,x achieves higher SNR
for the video componentbut even lower SNR for the audio
component(upside-davn triangleson the upperleft corner).
Interestingly the dictionaries trained with the measureC;
(D2c,.ca and D2, x ) have the bestoverall performance,
they occupy the upperright cornerin the scatterplot (circles
andtriangles).Therelative performanceslepictedn Fig. 6 (b)
are also representatie for other sparsenestevels (data not
shown). This comparisorsuggestghat the similarity measure
C1 encourageghe encodingof joint audio-visualstructures
andprovidesbetterapproximatiorresultsthanthe C, methods.

Next the learningcornvergenceof the differentalgorithmsis
assessedly trackingthe evolution of the *, norm of the error
betweentraining signalsand their reconstructiongEq. (8)).
Figure 7 (a) shows the error decreasaluring learning when
dictionariesarelearnedon datasetS1. In the coding step,the
signal is decomposedvith AV-MP using N 180 audio-
visual atoms( = 0:13). The error decreases$asterwith K-
SVD, no matterwhich similarity measureC; or C,, is used
(this resultalsoholdsfor S2). Figure7 (b) shawvs corvergence
results for GA and K-SVD (similarity measuresC;) in a
regime of reducedsparsenessyhen the approximationuses
N 360 kernels ( 0:26). In this regime the K-SVD
error drops as quickly as in the caseof higher sparseness,
with N = 180 whereasGA reducesthe error initially more
slowly. However, after 50 learning iterations the GA error
drops belon the plateauof the K-SVD error and reaches
errorvaluesthataresigni cantly lower ask-SVD. Thus,these
resultscon rm thatK-SVD is avery fastandef cient learning
method.Neverthelessjn someregime of sparsenesandwith



Function Video Audio Perceved Audio
1 WMWM‘WWWW “zero”
2 MWMWWM “one”
3 WMMMW%WW “one”
4 WWWWWWWMWM “thr ee”
5 “WWWWWWWWW “four”
6 MWWMWMWM “four”
7 WMMWMMMWWWM “four”
8 WMMWWW “ve”
10 - e
11 M “six, eight”
12 “WMW“WWM” “seven”
13 WWWWWWW‘ “nine”
14 WMW»WW “nine”
15 *"'“W “na”
17 «WWWMMW “sev”
18 MMMMMMWW “sev”

Fig. 8.

Eighteenlearnedaudio-visualkernelsfor D2¢,.ga . Video componentsare on the secondcolumn and are representedhs a successiorof video

frames.Audio componentsre on the third column. Time is displayedon the horizontalaxes. The meaningof the perceved audiocomponenis givenin the

forth column.

enoughlearning iterations, the softer and less “aggressie”
learningmethodGA canoutperformK-SVD.

2) Learnedstructuresin dictionaries For all methodswve
startedthetrainingwith adictionaryof 30 randomlyinitialized
kernels.It dependedn the methodhow mary kernelswere
actuallyselectedor codingandultimatelytrained.Thereforea
rst importantcharacterizatiorof the methodsis the effective
dictionarysize,thatis, how mary kernelsweretrainedduring
learning,seeTablel. Anotherindicatorof the “goodness’of a
dictionaryis the numberof recognizablestructuredn the data
that are capturedby dictionary elements.Here we consider
only the audiopart,andcountthe percentag®f wordspresent

in the dataset(digits in English from zero to nine) that are
recoseredby the learningalgorithm (Table ).

It is obviousthatK-SVD yieldsgenerallylargerdictionaries.
Further for ary given training set and learning methodthe
similarity measureC; yields larger dictionariesthan C,. All
methods produce dictionaries with elementsthat represent
intelligible digits or parts of digits and capturea high per
centageof data structures(the ten digits). The percentage
valuesof GA learningare somavhat higher than for K-SVD
learning.As an example,Fig. 8 shavs a selectionof elements
from dictionaryD2¢, .ca . Visual basisfunctionsare spatially
localized and oriented edge or line detectorsmoving over
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(a) Sampleframe of one testsequenceThe white crosscorrectly pinpointsthe position of the estimatedaudio-visualsource.(b) Averagemotion

ontheclip in (a): gray-levels representhe temporalmeanover the whole sequencef the absolutevalue of the differencebetweensuccessie frames.Black

pixels indicatethus no motion. Observingonly the visual motion it is not possi

bleto localize the soundsource.(c) Audio signalwith the speechof the real

spealer (blue line) and noisesignalwith SNR = 0 dB (dashedred line). The testaudiotrack is the sum of the two waveforms.

GA K-SVD
C1 C2 Ci1 C2
S1 | 22-100% | 13-80% | 28-90% | 26 - 80%
S2 18-80% | 10-60% | 29-80% | 21- 70%
TABLE |

SUMMARY OF THE DICTIONARIES CHARACTERISTICS: NUMBER OF
KERNELS (FIRST NUMBER) AND PERCENTAGE OF AUDIO DIGITS PRESENT
IN THE DATA CAPTURED IN THE DICTIONARY.

time. They representparts of the mouthsmaking distinctive
movementsduring the speech.The audio componentsan be
perceved asintelligible speechsignals,a few represent part
of a digit. If the samedigit is capturedby several kernels
they usually correspondo differentaudio characteristicslike
length or frequeng content(e.g. functions 8, 9 and 10 all
featurea “ve” ), or different associatedvideo components
(e.g. functions 13 and 14). Curiously function 11 captures
two digits, “six” and“eight”, oneafterthe other This mightbe
dueto the fact that the audio-visualrepresentatiomf number
“six” hasboth low acousticenegy and small corresponding
lip motion andthusit is associatedvith the numberthat re-
occursmore often after it in the databasei.e. “eight”.

It hasto be emphasizedhat the set of functionsshawvn in
Fig. 8 is qualitatively different from the dictionary learned
with another method (MoTIF, see belowv) on the same
datasef26]. The audio-visualkernelsthatour AV-MP method
producesare more heterogeneouanddistributedin spaceand
time. The algorithmin [26], dueto de-correlationconstraints
betweenatoms ,learnssomespuriousaudio-visuakernelsthat
do not representary real data structure.It should be also
emphasizedhat the kernelslearnedhere are invariant under
temporaland spatial shifts, while those learnedin [26] are
only time-invariant.

Overall, the AV-MP algorithm —unlike the older methods—
seemsto re ect the informative audio-visualstructurein the
data.The reasonfor this improvementis presumablybecause
AV-MP integrateslearning and coding in a way that is sta-
tistically more consistentandalsobiologically more plausible
thanin the previous model[26].

3) Audio-visual spealer localization Thereis biological
evidencethat auditory-visualintegration playsa major role in
soundsourcelocalization[2]. Audio-visualsourcelocalization
is also one of the primary objectves of crossmodalsignal

analysisand it hasseveral practical applications[17-26]. In

this experimentwe show that by utilizing the learnedkernels
in audio-visuakequenceexhibiting strongacousticandvisual
distractersijt is possibleto robustly localize the audio-visual
source.This allows us to quantify the performanceof the
proposedapproachand to comparethem to those of our
previous method[26].

For the localization task we build challenging clips us-
ing movie snippetsfrom the groups sectionof the CUAVE
datasef55]. Thetestsequencesonsistof two personsn front
of thecameraarrangedsin Fig. 9 (a). Oneperson(the oneon
theleft here)is utteringdigitsin English,while the otheroneis
mouthingexactly the samewords As illustratedby Fig. 9 (b),
both personspronouncethe samewords at the sametime,
making it impossibleto identify the soundsourceobserving
only visual motion (strong visual distracter). In addition,
severenoiseis mixedwith theaudiotrack,introducinga strong
acousticdistracter (for an exampleseeFig. 9 (c)).

Audio-visual ltering for localization: The learned audio-
visual kernelsare detectedon the test sequences$o pinpoint
the audio-visualsound source applying the procedureused
in [26]. Theaudiotrackof thetestclip is Itered with theaudio
componenbf eachlearnedfunction. For eachaudio function
the temporalpositionof the maximumprojectionis keptanda
window of 31 framesaroundthis time positionis considered
in the video. This restrictedvideo patchis ltered with the
correspondingideo componentandthe spatio-temporaposi-
tion of maximum projection betweenvideo signal and video
kernelis kept. Thus, for eachlearnedaudio-visualfunction
we obtain the location of the maximum projection over the
image plane. The maximalocationson the video framesare
groupednto clustersusinga hierarchicalklusteringalgorithm,
as describedin [26]%. The centroid of the cluster containing
the largestnumberof pointsis the estimatedocation of the
soundsource Themouthcenterof thecorrectspealer hasbeen
manually annotatedon the test sequencesThe soundsource
locationis consideredo be correctlydetectedf it falls within
a circle of radius25 pixels centeredn the labeledmouth.

2The MATLAB functionclusterdata.m wasused.Clustersareformed
when the distancebetweengroups of points is larger than 25 pixels. We
testedseveral clusteringthresholdsand the resultsshaved that localization
performanceslo not critically dependon this parameter
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Audio-visual speechdictionaries: Localizationis performed
with the eight AV-MP dictionariesdescribedin the previous
section Performancearecomparedvith thoseof our previous
algorithm, multimodalMoTIF [26]. The MoTIF algorithmex-
tractstypical templatedrom audio-visuadatasetsepresenting
synchronousco-occurringaudio and video events. Although
not a generatre model (meaningthat the codingis not taken
into accountduring the learning process),the MoTIF algo-
rithm demonstratedo achieze excellent localization results
in challenging audio-visual sequenceg26], out-performing
previously proposednethods[24,25]. The algorithmsin [24,
25] have shawn state-of-the-artlocalization results on the
CUAVE databasenvhen comparedto the work of Nock and
colleagueg19] on the samedata,andthey have only recently
been slightly outperformedby more complex methodsthat
moreqer requiredtraining [22] or face detection[23]. The
MoTIF methodrepresentshus a valid baselinefor assessing
the performance®f the proposedramevork.

Using the MoTIF algorithm we learn two audio-visual
dictionaries,D1y o1 and D2y o1. D1y ot and D2y ot are
learnedon the datasetsusedin Sec.V-B, S1 and S2 re-
spectvely. ThusD1y ot representsa setof functionsadapted
to one spealer, while D2y, ot is intendedto be a more
generalaudio-videadictionary The dictionarieshave the same
characteristicef thoselearnedhere thatis, they arecomposed
of the samenumberof audio-visualbasisfunctions of size
12 12 10videosamplesand2670audiosamplesLearning
with MoTIF is fasterthan with the methodproposedin this
paper:it takes about2 hoursto build one of the dictionaries
using a 2Ghz processomwith 1Gb of RAM. There are two
goodreasondor that. First, in this paperwe do not usesmall
signalpatchedor trainingasit is donefor MoTIF [26], but we
considerthe whole audio-visualdataseto learntemporaland
positioninvariantbasisfunctions.This clearly slovs down the
computation.Secondly we learn here a whole audio-visual
code at once, while MoTIF learnsthe basis functions one
after the other imposing a de-correlationconstrainton the
learningobjective. While being computationallyef cient, this
stratgy producesartifactsin the resultingsetof audio-visual
functions[26].

Audio-visual test set: Testsequencesontainaudiotracksat

8 kHz and gray-level video componentsait 29.97fps andat a

resolutionof 240 360 pixels.For testingwe useninedifferent
video sequencesuilt emplgying clips taken from the groups
sectionof the CUAVE databas¢55]. Threeaudio-visualclips

shav personstalking, the Speakrs in Fig. 10 (a)-(c), and
are extracted respectiely from clips g01 (rst connected
utterance)g01 (secondutteranceland g04 ( rst utterance)f

CUAVE. Threevideosshav persononly mouthingdigits, the

Distracters in Fig. 10 (d)-(f), and are extractedrespectiely

from the rst part of clips g08 g17 and g20 of CUAVE. In

all clips Speakr and Distracter pronouncethe samewords,
exceptfor Speakr2 who pronounceshe samedigits but in a

different order Speakrl is the samesubjectwhose mouth
was used to build datasetS1; however, training and test
sequencesare different. DatasetS2 is madeof six clips, each
one featuringthe mouth of one subjectin Fig. 10.

(a) Speakrl (b) Speakr2 (c) Speakr3

(d) Distracterl (e) Distracter2 (f) Distracter3

Fig. 10. The threespealers usedfor testing(a)-(c) and the three subjects
usedas video distracterg(d)-(e).

Audio noisewith averageSNRof 0, -5 and-10dB is mixed
with the audio track. The SNR is calculatedconsideringthe
signalasis, i.e. the speechwith intervening silences We use
two types of noise: additve white Gaussiannoise and the
signalof amalevoice pronouncinghumberdn English(shavn
in Fig. 9 (c)). This secondaudio distracterhas very similar
characteristicgo the tamget speechasit is the speechof the
male spealer in sequencegl2 of the groups sectionof the
CUAVE databaseln addition, we test a no-noisecondition
for eachvideo sequencegbtainingthus seven differentaudio
test conditions.Consideringall the possiblecombinationsof
audioandvideo distractersye usea test-setof 63 sequences.
We wantto stressthat no previouswork in the eld considers
sucha broadand challengingtest set.

Localization results: Figure 9 (a) shavs a sampleframe of
onetestsequencavherethewhite crossindicateghe estimated
position of the sound source over the image plane using
D1c,.ca - Indeedthe foundlocationcoincideswith the mouth
of the actualspealer. Localizationresultsare summarizedn
Table Il. Valuesare in percentageof correctdetectionover
the whole test set of 63 audio-visualsequenced.ocalization
performanceschiezed by the dictionarieslearnedusing AV-
MP are clearly superiorto those obtainedusing the audio-
visual dictionarieslearnedwith the MoTIF algorithm.

Gradient Ascent used with C; achieves the best perfor
manceswith both S1 and S2 datasetsAll methodsproposed
in this paper obtain perfect localization results when using
the more generaltraining set S2. Overall, all combinations
of matchingmeasuresand learning methodsallow to obtain
very accuratelocalization results,shaving the robustnessof
the proposedframavork. The learnedcodescan detectsyn-
chronousaudio-visuabpatternsallowing con dent localization
of soundsourcein complex multimodal sequences.

It is interestingto comparemorein detailsthe performances
of the AV-MP algorithm and of the MoTIF method.For AV-
MP we use the bestsettings,i.e. dictionariesD1¢c,.ca and



AV-MP
GA K-SVD MoTIF
Ci C, Ci C>
S1 | 100% | 95.2% | 98.4% | 96.8% | 38.9%
S2 | 100% 100 % 100 % 100 % 27.2%

TABLE I
SUMMARY OF THE SOURCE LOCALIZATION RESULTS FOR AV-MP (ALL
TESTED LEARNING SETTINGS) AND MOTIF. RESULTS IN PERCENTAGE OF
CORRECT LOCALIZATION.

D2, .ca - Localizationresultsexpressedn termsof percent-
age of correctspealer localizationfor the two methodsare
showvn in Fig. 11. Bars are groupedaccordingto the spealer
in the sequenceBars expresslocalization accurag for the
four dictionariesandfor the two typesof acousticnoise.Each
bar is the averageresult over 12 sequence®btainedusing
the threevideo distractersandthe four audio noiselevels. As
alreadyunderlined,usingD 1c,.ca andD2¢,.ca the spealer
is correctly localized in all testedconditions. On the other
hand,D1y ot and D2y o7 exhibit poor localization perfor
manceson sucha challengingdatabaseThe only exceptions
are sequencesnvolving Speakrl analyzedusing D1y o7 -
This is not surprisingsincethe audio-visualspeechusedfor
training D1y ot is extracted from sequencef Spealerl.
Sequence@volving Speakr2 can be betterinterpretedthan
thosefeaturing Speakr3, which again is not surprisingsince
Speakr2 is not uttering the digits in the sameorder of the
Distracters. These sequencesave thus a lower degree of
visual noise. The most challenging audio distracteris the
addedspeechwhich is very similar to the tamget audiosignal.
TheseresultsstronglyindicatethatusingAV-MP, thealgorithm
learns audio-visual featuresthat are more robust to strong
acousticandvisualnoiseandthatit is ableto generalizebetter
to differentspealers.

VI. SUMMARY

We have investigatedalgorithmsto extract bimodally infor-
mative data structuresfrom audio-visualtraining. The paper
containsthe following new results:

| Audio-Msual Matching Pursuit (AV-MP) is described
a methodfor coding audio-visualsignals and learning
bimodal structurein audio-visualdatathatis informative
for taskssuch as spealer localization and other fusion
tasks.

| Different audio-visual similarity measues and different
learningalgorithmsare implementedn AV-MP and com-
pared in their ability to encodeand learn characteristic
audio-visualstructurein syntheticand naturaldata.

I  AV-MP is testedin a challenging spealer localization
task with audio and visual distractels and compaed
to the MoTIF algorithm. All testedversionsof AV-MP
outperformMOoTIF signi cantly.

Applications of the proposedapproachcan range from
robust crossmodakourcelocalization,to audio-visualsource
separatior[16] or joint encodingof multimediastreams.

The presentednodel can be extendedintroducingthe no-
tion of scaleinvariancein the representationlf in the test
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Fig. 11. Comparisorbetweernthe averagespealer localizationperformances
using the dictionaries learned with the AV-MP method (D1c,.ca and
D2c,.ca ) and with the MoTIF algorithm (D1y ot and D2y o7 ). Bars
are groupedaccordingto the spealer presentin the sequenceBars express
localizationaccurag for the two audio noise conditions(uniformly colored
bars—additve white Gaussiamoise—andchecled bars—addedspeech—)sing
the four learneddictionaries( rst four bars—MoTIF—andlastfour bars—Av-
MP-). Eachbaris the averageresultover 12 sequencesbtainedusing3 video
distractersand4 audionoiselevels (no noise,SNR = 0, -5, -10 dBs). Results
arein percentagef correctlocalization.The improvementobtainedwith the
proposedmethodis evident.

seguenceshovn here the mouth regions had signi cantly
different dimensions,or if the speechwas pronouncedat
a different enoughrate, the localization performancewould
probablydegradebecausef the x ed space-timescaleof the
audio-visualcode. To accountfor spatialand temporalscale
invariancea more comple architectureof the one presented
herewill berequired.Sucharchitecturewill probablyinvolve a
multi-layer hierarchicalmodel of audio-visualrepresentation,
in the line of recentstudieson image [56,57] and speech
modelling[58]. Furthermorea hierarchicalframeavork seems
appropriateto de ne a model with a slow-varying layer ac-
countingfor audio-visualsynchrory and ner layerscapturing
audioandvideo details.

Interestingly the framevork developed here relies upon
techniqueghathave beensuccessfullyemployed for modeling
unimodalperceptuamechanism§35,37,44]. Thus,it is anin-
triguing possibility thatour modelmight relateto mechanisms
of audio-visualperceptionlt is unresohed what computation
is performedby early audio-visualinteractionsthat have been
recentlyreportedin different specieq1-4]. The audio-visual
learningmodelpresentedherecanprovide a startingpoint for
biologically constraintmodels that study the computational
function of early audio-visualinteractions.
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