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Abstract 

 
In this paper, a 3D hand model fitting method is 

presented which can recover the accurate finger 
positions for a virtual keyboard system. The 3D hand 
model consists of a detailed polygonal skin driven by 
an underlying skeleton system. The system uses a 
structured light sensor to generate dense range 
measurements of user’s hand motion. We exploit depth 
information and match it against the model to estimate 
the pose of the hand. The parameters for model 
deformation are optimized with the guide of the 
applied forces between model points and range 
measurements. To speed up the optimization, we 
simplify the physical model and apply hash table-
based fast point pair matching. The system can be used 
in any application requiring zero formfactor and 
requires no contact with a medium. Examples of 
applications include virtual reality, gaming, design, 
etc. 
 
1. Introduction 
 

A virtual keyboard system is known as a touch-
typing device that does not have a physical 
manifestation of the sensing area, that is, the sensing 
area which acts as a button is not per se a button but 
instead is programmed to act as one [1]. It has many 
applications in human-computer interaction, virtual 
reality, game control, 3D designs, etc. Wearable 
sensors can capture hand motion accurately, but they 
are expensive and inconvenient. Vision-based devices, 
on the other hand, are less intrusive to human users, 
and provide fairly high flexibility and accuracy for 
both implementation and application. 

However, tracking articulated structures, like hands, 
is a nonlinear search problem in a high dimensional 
space. A realistic 3D model of the human hand has at 
least 26 degrees of freedom (DOFs). The arsenal of 
tracking approaches that can track such structures 
quickly and reliably is still very small. 

Two general techniques have been proposed for 
visual hand tracking. One choice is the appearance-
based approach, which estimates hand posture directly 
from the images after establishing the mapping 

between the image feature space and the hand motion 
space. Rosales [2] mapped the low level visual features 
to hand joint configuration, with a supervised learning 
framework for training the mapping function. Wu and 
Huang [3] combined the supervised and the 
unsupervised learning framework and thus incorporate 
a large set of unlabeled training data. The major 
advantage of using appearance based methods is the 
simplicity of their parameter computation for the 
temporal gesture. However, the mapping may not be 
one-to-one, and the loss of precise spatial information 
makes them especially less suited for hand position 
reconstruction. 

Another approach is the 3D model-based approach. 
By projecting a 3D hand model to the image space and 
by matching it with the observed image features, Rehg 
and Kanade [4] introduced a highly articulated 3D 
hand model in their DigitEyes hand tracking system. 
The assumption in this work was that the closest 
available feature is the correct match. Lee and Kunii [5] 
employed the skeletal model to simulate the human 
hand in the real image. The constraints on the joints 
are used to reduce the dimension of the search space. 
Wu and Huang [6] decoupled the articulated hand 
motion into global hand motion and local finger 
motion, and the hand pose determination is formulated 
as a least median of squares (LMS) problem. 

We propose a 3D model based fitting method for 
accurate hand tracking, i.e. for recovering the 3D 
world location of the occluded fingers. The system 
employs dense 3D data generated by a structured light 
system. We use a static reference image to subtract the 
background. In each frame, the 3D hand model is 
sampled and matched against the depth map, and the 
deformation parameters of the hand model are 
optimized to minimize the Euclidean distance between 
the model surface and the depth map surface. The 
optimization is carried out with a physical based model 
fitting technique (PMF) [7]. PMF assigns 3D virtual 
forces between the model-data point pairs and directly 
maps the virtual force to the parameter space to guide 
the optimization of the parameters. 

The paper is organized as follows. Section 2 
describes our 3D hand model and its kinematic 
transformation chain. Section 3 gives a brief 
introduction of the physical based optimization model 



and its simplification. In section 4 our model fitting 
method is given for reconstructing the accurate hand 
pose. Section 5 and 6 present the results and a 
discussion. 
 
2. 3D Hand Model 
 

 
Figure 1. Polygonal skin and the underlying 
skeleton system of the hand model 
 

Different hand models have been used to represent 
the hand posture, as simple as a 2D binary silhouette 
and contour [8], and as complex as a 3D textured 
volumetric model [9]. However most of them consist 
only of simple primitives, such as cylinders or 
truncated cones. Our approach is based on a more 
detailed, skeleton-driven deformable model. This 
model consists of a polygonal skin, driven by an 
underlying skeleton system, which supports both the 
global hand motion as the translation and rotation of 
the palm, and the local finger motion as the bending 
and twisting of all the joints. The 3D illustration of the 
hand model is shown in Figure 1. 

 
2.1. Hand Model Deformation 
 

 
Figure 2. Skeleton system of the hand model 

 
Each skin vertex is rigidly coupled to a subset of the 

skeleton joints, and when we deform the skeleton 
system with global or local motion, the shape of the 
skin is thereafter deformed by linearly blending the 
motions of each vertex [9]. The new position of a 
vertex v, influenced by n joints, is computed as: 

(1) 

where γi is the blending weight and v0 is the position in 
the initial pose of the vertex v. Mi is the global 
transformation matrix of i-th joint in current pose and 
Mi0 is the global transformation matrix of i-th joint in 
the initial pose. 

The structure of the skeleton system is based on the 
anatomical respects, which provides a hierarchical 
control for animating the deformation of the polygonal 
skin. It is defined as a sequence of rigid links and 
joints. Figure 2 illustrates the skeleton system we used. 
The constraints of the human hand motion reduce the 
model to 30 DOFs: one DOF (extension / flexion) for 
each distal interphalangeal (DIP), interphalangeal (IP) 
and proximal interphalangeal (PIP) joints, two DOFs 
(extension / flexion and adduction / abduction) for 
each metacapophalangeal (MCP) joints except for the 
thumb (one DOF for extension / flexion), and one 
DOF (twist) for each trapeziometacarpal (TM) joints 
except for the thumb (two DOFs for adduction / 
abduction and twist). The palm has six DOFs for the 
wrist’s translation and rotation movement. 

 
2.2. Kinematics of Hand Model 
 

To describe the translational and rotational 
relationships between adjacent links of the open 
kinematic chain, the Denavit-Hartenberg notation (D-
H notation) [10] has been used because of its strength 
in handling a large number of degrees of freedom and 
its ability to systematically enable kinematic and 
dynamic analysis. D-H notation uses a minimum 
number of parameters to completely describe the 
kinematic relationship, thus establishing a coordinate 
system to each link of articulated chain in robotics. 

 
Figure 3. Parameters describing the kinematic 
relationship 

 
The overall D-H coordinate transformation matrix 

from frame i coordinate system relative to frame i-1 
coordinate system is given as: 
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where ai, di, αi and θi are the translational and 
rotational parameters illustrated in Figure 3. And for 
an n-joint manipulator, given n-homogeneous 
transformation matrices          , the 
transformation matrix from the end-effector frame n to 
the global frame 0 is: 

(3) 
Using the D-H notation, the local coordinate 

systems for each DOF of the joint are illustrated as 
Figure 4. The skeleton system of the 3D hand model 
can be viewed as a set of six serial kinematic chains 
(phalange links). All are attached to a base frame 
which is defined at the end of the palm. 
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Figure 4. Coordinate frames for D-H notation 

 
3. Physical Based Optimization Model 
 

Physical based deformable models are shapes 
specified by a set of parameters that deform based on a 
physical model due to forces, which are determined 
from visual cues such as edges in an image [11]. 
Metaxas and Terzopoulos [7] developed this technique 
for 3D shape and non-rigid motion estimation. Their 
framework applies dynamic models that incorporate 
the mechanical principals of rigid and non-rigid bodies 
into conventional geometric primitives. 

Given the shape s of a deformable model 
parameterized by a vector q, which includes both for 

the global translational and rotational movement, and 
for the local finger motions, each vertex on the model 
can be expressed as: 

(4) 
where u is used to identify specific points on the model 
and to provide its topological structure. 

Estimation of the model parameters is based on first 
and second order Lagrangian dynamics. As the shape 
changes, velocities of points on the model are given by: 

(5) 
where L(u)=∂x(u)/q is the model Jacobian.  

From Lagrangian mechanics, the second order 
equation of motion is in the form of: 

(6) 
where            is the mass matrix if we assume 
the model has a mass distribution µ(u) and it is subject 
to frictional damping, the stiffness matrix K may be 
obtained from a deformation strain energy, and the 
Raleigh damping matrix           . The generalized 
inertial forces          . And the generalized 
external forces              are associated with the 
component of q, where f(u) is the force distribution 
applied to the model. 

For single frame model fitting problem, as in the 
case of this paper, it makes sense to ignore the inertia 
and set the mass density to zero, which get M and gq to 
zero. Lacking inertia, the model will come to rest as 
soon as all the internal and applied forces equilibrate. 
If we assume the adjacent points on the model barely 
change their relative positions, which suits well for our 
skeleton-driven deformation, the stiffness matrix K 
would be very small and is ignored. Then the dynamic 
equation of motion of the model can be simplified as: 

(7) 
where we use a unit damping matrix D in this paper 
and our experiment. 

Using L(u), the 3D applied forces f are converted to 
forces acting on q and are integrated over the model to 
find the total parameter force fq. The distribution of 
forces on the model is based on forces computed from 
some measure of the Euclidean distance of the depth 
map and the 3D hand model. 
 
4. 3D Hand Fitting 
 

The 3D depth map is generated by the structured 
light system from VialuxTM. The background 
subtraction process is then applied to the depth map 
with the help of a static reference frame to mask out 
the background. To remove the spurious outliers near 
the rim of the hand and to reduce the 3D measurement 
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noise, a 3×3 Gaussian window filtering is applied to 
the range data. 
 
4.1. Stochastic Sub-Sampling 
 

In our experiments, a fully expanded hand region in 
the depth map contains roughly 20,000 points. To 
speed up the fitting, the hand is sub-sampled at 500 
stochastically determined points, which is a good 
tradeoff for our application keeping both the fitting 
accuracy and the optimization speed. Our parameter 
optimization problem is a highly non-rigid searching 
problem, and there exists in the whole searching space 
many local minima introduced by the discrete nature of 
the samplings and the noise in the measurements. By 
randomly changing the set of samplings where the 
objective function is evaluated at each iteration step, 
we lower the chance for the optimizer to get stuck in 
local minima. Note that the stochastic sub-sampling 
need not be executed at every iteration of the fitting 
process. It can be executed every l iterations, where l is 
dependent on some measure of the fitting error and the 
parameter variation. 
 
4.2. 3D Forces Assignment 
 

The physical based model fitting uses 3D applied 
forces to guide the parameter optimization. These 
forces are calculated as the Euclidean distance between 
the model samplings and the depth measurements. In 
our experiments we couple the model samplings to the 
range data, which is indicated by the dark dot in Figure 
5, by looking for the nearest neighbor among the 
measurements to each vertex on the hand model, 
referred to as ‘point pairs’. 

 
Figure 5. Applied 3D forces to point pair 

 
The brute-force nearest neighbor searching method 

would work in this case, however too inefficiency with 
the large amount of measurements. For simplicity, we 

assume the pseudo-orthographic projection in camera 
coordinate system and map the 3D measurements to x-
y plane. The hand region can be divided into small 
grids each containing 30 to 50 measurements. The 3D 
hand model is also projected into the same x-y plane 
and classified into a different grid. The nearest 
neighbor searching is only carried out among the 
measurements in the same grid with the sampled vertex. 
Thus the grid space acts like a hash table and speeds 
up the searching tremendously. 

If the projected sampling falls out of the hand 
region in x-y plane, its nearest grid is first searched 
among all the boundary grids of the hand region. Then, 
the nearest neighbor searching is carried out among the 
measurements in that grid. 
 
4.3. Objective Function 
 

For a given set of samplings on the hand model, we 
seek to minimize the total Euclidean distance between 
the samplings and their nearest neighbors in the 
measurements. The Euclidean distance, thereby the 3D 
applied forces can be expressed as a squared function: 

(8) 
where ||· || denote the L2-norm, and the nearest 
neighbor s’ is found based on the fast point pair 
matching method in section 4.2. 

 
4.4. Optimization Process 
 

Using the Jacobian matrix L, the 3D applied forces 
f(s) are then converted to the parameter space acting on 
q and summed up to estimate the gradient of the 
parameter vector q as: 

(9) 

where S is the set of model samplings. 
Note that we set the damping matrix D to unit 

matrix during our model simplification, so there exists 
a scale factor λ between the estimated gradient   and 
the actual   . 

To find an appropriate λ, one can use linear 
programming, which is quite inefficient if used in 
every iteration of the optimization process. We use an 
adaptive variable scale factor λ to circumvent this issue. 
The step size is adjusted based on the optimization 
result of every iteration: if the total Euclidean distance 
is decreased with the current λ, the parameters will be 
updated with the corresponding scaled gradient and the 
scale factor will be doubled. Otherwise the update for 
the parameters will be rejected and the scale factor will 
be halved to re-calculate the change. 
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We solve the dynamic system by integrating over 
time, using the standard differential equation 
integration techniques: 

(10) 
For a series of frames fitting, the q(0) of the first frame 
is taken from the initial pose of the hand model, and 
for the sequential frames, the q(0) is taken from the 
fitting result of the previous frame as the initial guess. 

Figure 6 shows the whole fitting process of our 
method, with the inner-loop for the parameter 
optimization based on a certain set of samplings, and 
the outer loop for stochastically changing the sampling 
set and control the fitting accuracy. 

Compute Current 
Jacobian Matrix

Sampling 
the Model

Search for 
Nearest Neighbor

Compute  
Virtual 3D Force

Map 3D Force to
Parameter Space

Update 
Parameter Set
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Outer Loop

Parameter
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No
Yes

Fitting Error
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Yes

No

 
Figure 6. Flowchart of model fitting process 

 
5. Results 
 

We have tested our method on real human hand 
motion sequences. The polygonal skin of the 3D hand 
model totally has 1114 vertices and 2224 triangular 
faces. The 3D data are acquired at 16 frames per 
second with the image resolution of 640×480 pixels. 
The following experiments were executed on a 
Pentium 3 1.6GHz PC. The inner-loop in Figure 6 
takes at most 30 iterations. The fitting speed is about 
0.6 second per frame with 300 iterations in total for 
our method. Figure 7 shows the raw depth maps 
(Figure 7.a) and the reconstructed hand poses (Figure 
7.b). Note that for the latter two frames, although most 
fingertips have been self-occluded from the camera’s 
views, we still recovered very accurate and natural 
positions for all the fingertips. Figure 8 shows the 

polygonal skin surface projected back to the gray-scale 
images of the same sequence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 7. (a) Raw depth maps sequence 

(b) Reconstructed 3D hand sequence 
 
 
 
 
 
 
 
 
 
Figure 8. The polygonal surface projected 
back to the gray-scale images 
 

To measure the fitting accuracy, we define the 
average fitting error in our case as: 

tqtqtq ∆+=+ &)()1(



(11) 

where H is the point set of the hand model and M is the 
point set of the range measurements, and N is the total 
number of points on the hand model. The function 
dist(m, n) compute the Euclidean distance between two 
3D points m and n. Figure 9 shows how the average 
fitting error changes as the iterations go on. The final 
average fitting error is about 0.2 cm after 150 iterations, 
which is sufficient for the virtual keyboard 
applications. 

 
Figure 9. Average fitting error changes with 
the number of iterations 
 
6. Conclusion 
 

Recovering finger position is a difficult problem 
due to the large number of DOFs. We have described a 
3D hand model fitting method that can recover the 
accurate locations of fingertips. A detailed 3D hand 
model is used to match against the range measurements 
generated by the structured light system. To speed up 
the fitting process, a simplified physical based model is 
employed to measure the Euclidean distance between 
the hand model and the range measurements. Our 
experiments show that this fitting method performs 
robustly and efficiently even for some complex self-
occlusion cases. 

Further research will be carried out in several 
directions: a pre-calibration process to adjust the 3D 
hand model to any user with different hand shape / size 
is a must for a practical virtual keyboard system. The 
hand motion tracking with the training and analysis of 
normal human typing movement [12] is needed to 
estimate / predict the model deformation parameters 
and will enhance the optimization performance 
ultimately. Using an implicit expression [13] of the 
skin surface instead of the explicit polygonal one, thus 
simplifying our non-rigid discontinuous optimization 
problem to a well-functioned differentiable solution, is 
also in our near future consideration. 
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