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Abstract — In this paper a Multi-Level Feature Matching 

(MLFM) method is presented for 3D hand posture 
reconstruction of a virtual keyboard system. The human 
hand is modeled with a mixture of different levels of detail, 
from skeletal to polygonal surface representation. Different 
types of features are extracted and paired with the 
corresponding model. The matching is performed in a 
bottom-up order by SCG optimization with respect to the 
state vector of motion parameters. The low level of matching 
provide initial guess to the high level of matching, refining 
the precise position of the hand hierarchically. The matching 
results show that this method is effective for tracking human 
hand typing motion, even with noisy 3D depth map 
reconstruction and roughly detected fingertips. Examples of 
applications include virtual reality, gaming, 3D design, etc. 
 

Keywords — Virtual Keyboard System, 3D Hand Model, 
3D Hand Tracking, Feature Matching 
 

I. INTRODUCTION 
S the demand of ubiquitous computing thrives, the 
human-computer interaction (HCI) issue has become 

very significant. Ordinary keyboards however, are limited 
in conveying complex or multi-dimensional information. 
Virtual keyboard systems are proposed as a new 
generation of HCI devices and paradigms. A virtual 
keyboard is known as a touch-typing device that does not 
have a physical manifestation of the sensing area, that is, 
the sensing area which acts as a button is not per se a 
button but instead is programmed to act as one [1]. It has 
many applications in human-computer input, virtual reality, 
game control, 3D designs, etc. 

To date, there exists a number of virtual HCI implemen- 
tations reaching various levels of sophistication. Examples 
of such systems are touch-pads, miniaturized keypads, 
cyber-gloves [2] and pressure-sensitive bands [3], to name 
a few. However, in all these cases complex pick-up 
devices, add-ons, or surgical implants are always required, 
making the HCI system expensive, inconvenient and less 
attractive. On the other hand, vision-based devices are less 
intrusive to human users, and provide fairly high 
flexibility and accuracy for both implementation and 
application. Due to the inherent complexity of capturing 
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and interacting with 3D entities, the trend is to move to 
zero-form-factor approaches, involving full 3D methods 
for both sensing and tracking purposes. 

Tracking highly articulated structures, like hands, is a 
nonlinear search problem in a high dimensional space. The 
existence of many local optima and the requirement of 
massive measurements make the hand tracking a big 
challenge in computer vision for over a decade. To 
mitigate the problems caused by ambiguities, occlusions, 
and image measurement noise, sophisticated modeling 
methods and feature extraction techniques have been 
introduced into the human hand tracking [4] - [6]. 
However, due to high-dimensional variability and 
nonlinearity of human dynamics, tracking complex human 
motion, such as hand typing motion, is still challenging. 

Two general techniques have been proposed for visual 
hand tracking. One is an appearance-based method, and 
the other is a model-based method. The appearance-based 
method establishes mapping between image features and 
hand poses and directly estimates hand postures from the 
images. Rosales [7] mapped the low level visual features 
to hand joint configuration, with a supervised learning 
framework for training the mapping function. Stenger et al. 
[8] proposed an effective indexing framework for 
Bayesian tracking based on the tree representation of a 
large database of synthetic hand images. The major 
advantage of using appearance-based methods is the 
simplicity of their parameter computation for the temporal 
postures. However, the mapping may not be one-to-one, 
and the loss of precise spatial information makes it 
especially less suited for hand position reconstruction.  

Alternatively, model- 
based methods project a deformable 2D/3D hand model to 
the image space and matche it with the observed image 
features. Rehg and Kanade [9] introduced a highly 
articulated 3D hand model in their DigitEyes hand 
tracking system. Lee and Kunii [10] employed the skeletal 
model to simulate the human hand in the real image. A 
realistic 3D model of the human hand has at least 26 
degrees of freedom (DoFs). Tracking based on 3D hand 
model is then formulated as a nonlinear search problem in 
a high dimensional space. The search for good solutions in 
large spaces and with high dimensional data is hard to 
tackle and can cause immense computational costs. 

We propose a virtual keyboard system using 3D hand 
tracking scheme based on Multi-Level Feature Matching 
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method. The hand is modeled by a hierarchical 
representation with different levels of detail. The matching 
is carried out in a bottom-up order, that the lower level of 
matching provides a rough estimation of the hand posture 
to the adjacent higher level of matching as its initial guess. 
In each level of matching, a certain type of image feature 
is extracted and matched against its correspondence in that 
level of hand representation. The sketch of our system is 
presented in Fig 1. The matching step implements an SCG 
optimizer based on the state vector of motion parameters. 
The details of the tracking steps are described in the 
following parts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1. Overview of our Multi-Level Feature Matching 

framework 

II. 3D TRACKING CONFIGURATION 

A. Hand Model Representation 
Different 3D hand models have been proposed in the 

literature. Either simple articulated structure as stick figure 
[11], or primitive models as conics and convex polyhedron 
[12], or complex volumetric models as triangulated surface 
[13] have been adopted. We consider a mixture of hand 
models that represents the hand in different levels of detail. 
This mixture model contains three levels of representation: 
the skeletal level, the ellipsoidal-primitive level, and the 
polygonal-surface level. In the skeletal level, similar to the 
ones used in the inverse kinematic systems, a 3D skeletal  
 

 
 
 
 
 
 
 
 
          (a)                           (b)                           (c) 

 

Fig 2. Multi-level hand representation: (a) skeletal level 
(b) ellipsoidal-primitive level (c) polygonal-surface level 

hand model is employed to simulate the human hand 

dynamics. In the ellipsoidal-primitive level, each phalange 
is modeled as an ellipsoid primitive and driven by the 
underlying skeletal system. Finally, in the 
polygonal-surface level, also driven by the skeletal system, 
a detailed deformable polygonal surface is used to 
represent the human hand skin. The 3D illustration of the 
hand model of different levels is shown in Fig 2. 

The skeletal representation supports both the global 
hand motion as the translational and rotational movement 
of the palm, and the local finger motions as the bending 
and twisting of the joints. The base is the wrist and the 
palm is modeled as five metacarpal bones, each with a 
finger attached to it. The constraints of the human hand 
motion reduce the model to 30 DoFs: one DoF (extension / 
flexion) for each distal interphalangeal (DIP), 
interphalangeal (IP) and proximal interphalangeal (PIP) 
joints, two DoFs (extension / flexion and adduction / 
abduction) for each metacapophalangeal (MCP) joints 
except for the thumb (one DoF for extension / flexion), 
and one DoF (twist) for each trapeziometacarpal (TM) 
joints except for the thumb (two DoFs for adduction / 
abduction and twist). The palm has six DoFs for the 
wrist’s translational and rotational movement. All the three 
levels of representation share the same parameter space of 
30 DoFs. 

 
 
 
 
 
 
 
 
 
 
Fig 3. The 3D representation of our deformable skeletal 

hand model 

B. Hand Model Deformation 
The basic skeletal dynamics is formulated using an open 

kinematic chain. Let          be the transformation matrix 
from joint i to joint i-1, which is used to describe the 
translational and rotational relationship between the 
adjacent links of the kinematic system, and is of the form 

(1)  
where        is the homogeneous translation matrix and         
is the homogeneous rotation matrix from joint i to joint 
i-1. 

By multiplying all the transformation matrices that 
correspond to the preceding joints in the hand hierarchy, 
the transformation matrix of joint n to the global 
coordinate system joint 0 can be denoted as 

(2)  
In 3D space, the quadric surface of the ellipsoidal- 

primitive model can be represented in homogeneous 
coordinates as a symmetric 4×4 matrix Q such that 

(3)  
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The matrix Q is of the form 

(4)  

where M is the transformation matrix of the joint attached 
to, C is the translational matrix and L is the scaling matrix 
along the principle axes of the local coordinate system of 
the joint. The matrix C and L are of the form: 

(5)  

Here                     is the ellipsoid primitive’s center in the 
local coordinate system, and                   are the radii of the 
ellipsoid. For any configuration of hand posture, we can 
first compute the transformation matrix M of all the joints 
using (1) and (2), and then update the ellipsoidal surface 
by finding points X satisfying (3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4. Transformation of multi-level models based on 

skeletal representation parameters 

For polygonal-surface model, each vertex of the surface 
is coupled to a subset of the skeleton joints. During the 
deformation of the kinematics, the shape of the polygonal 
surface is updated by linearly blending the new positions 
of each vertex [14]. Denote      as the blending weight and      
as the initial position of the vertex v, its current position      
can be given as 

(6)  

where     is the transformation matrix of the i-th joint in 
current posture and        is of the same joint in initial 
posture. 

C. 3D Ranging 
Optical depth map reconstruction may be performed 

using one of three main techniques: triangulation, time-of- 
flight (ToF) and stereo vision. Triangulation based 
techniques achieve millimeter depth accuracy at a cost of 
high power dissipation and computational complexity. 
Moreover high 3D framerates at high depth precision are 
generally difficult to achieve. Modulation type ToF 
rangefinders [15] require relatively powerful laser or LED 
sources, and accuracy is limited by the speed at which the 
sensor can be clocked. The stereo vision approach [16] 
simulates how human vision manages to perceive objects 

in depth, and derives 3D structures by comparing the 
images acquired with different cameras. The 3D ranging 
device used in our virtual keyboard system is very similar 
to the structured light system proposed by Forster [17]. 
The color-encoded stripe pattern is projected onto the 
target scene and captured by the pre-calibrated camera. 
Based on the deformation of the stripes and the decoded 
position information, the projector-camera con- 
figuration acts as a stereo-vision framework but has much 
higher precision than the multi-camera configurations, 
which is based on image feature detection and registration. 
The reconstructed 3D depth map has high depth precision, 
large image resolution and moderate framerate. 

III. FEATURE EXTRACTION 
Our feature extraction process is based on noisy 3D 

depth map of human hands. The depth map is generated 
using the structured light system. It is first binarized by 
applying a certain threshold to remove the background 
objects and keep only the hand region, and then projected 
back to 2D image plane for further processing. After the 
background subtraction and binarization, the boundary of 
the hand is traced by denoting the pixels within the hand 
region that have 8-connectivity neighborhood with the 
non-hand region. Since our proposed matching method is 
based on multi-level features and models, here we need to 
extract different types of feature for different levels of 
model, as shown below. 

A. Fingertip 
Fingertips are presented in the 2D image as the peaks of 

the hand contour. Fingertip detection in the 2D image can 
be formulated as finding the local maxima of the 
k-curvature for each pixel on the boundary. K-curvature is 
defined as the angle between two vectors                 
and                , where k is a constant and                     is the 
coordinate of the contour pixel. On the other hand, the 
interdigital clefts are shown as the valleys of the contour 
and can be detected by finding the local minima of the 
k-curvature. K-curvature computation can be simplified by 
using the approximation of sign change [18], as shown in 
Fig 5. After the fingertips are detected in 2D image plane, 
they are mapped back into the 3D space using the depth 
map. 

 
 
 
 
 
 
 
 
Fig 5. Fingertip detection by finding local maxima of 

k-curvature along the hand contour 

Applying the transformation matrix in (2), the fingertips 
of the skeletal model are transformed as the end-effectors 
of the kinematic chain to the global coordinate system. 
These synthesized fingertips are then fitted to the 
corresponding ones detected in the depth map 
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measurement, with the matching approach explained in 
Section IV. 

B. Finger Silhouette 
Using the method introduced above, we can detect not 

only the fingertips as the peaks, but also the interdigital 
clefts as the valleys of the hand contour. Based on the 
relative order of the fingertips and the interdigital clefts, 
the silhouette of each finger can be traced along the hand 
contour in the 2D image plane. We only take a certain 
length of segment used for feature matching. Exceedingly 
short segments are discarded since they do not have 
enough position information to help locate the fingers and 
may misguide the matching to an unlike direction. Too 
long segments are cropped to an appropriate length for 
computation efficiency and matching accuracy. 

 
 
 
 
 
 
 
 
 
 
Fig 6. A 3D ellipsoid projection into the image plane 

The silhouette of the ellipsoidal-primitive model can be 
computed directly using the 2D projective geometry. Since 
our measurements are a 3D depth map, for simplicity we 
assume a pseudo-orthographic projection from 3D space to 
2D image plane. In this way each ellipsoid is projected 
into an ellipse in the image plane. From (3) we have 

(7)  

where                   is the point coordinate in 2D image 
plane. As shown in Fig 6, for the silhouette of the 
projected primitive, it has unique solution of (7) for z, 
which can be expressed as 

(8)  

By solving Equation (8), we can extract the silhouette of 
the primitive model and matched against the segments 
detected in depth map projection. The nearest neighbor 
strategy is used to setup the corresponding relationship 
between the points on model silhouette and on depth map 
segment. 

C. 3D Surface 
Since our 3D depth map measurements are dense and 

noisy, the extraction of common features, such as the 
normal and tangent vectors of small patches, are 
computationally expensive and imprecise. Our tactics is to 
use only a limited number of points randomly sampled 
from the 3D measurements as the feature points for the 
matching. However, the discrete nature of the sample set 
introduces local minima into the optimization function of 
the matching step, and may trap the optimization process 

far from the actual posture. A stochastic sampling strategy 
is used to circumvent local minima and to lower the 
chance of getting stuck in them. As a result, random 
changes in the sample set are introduced at each iteration 
step. 

The polygonal-surface model updates its vertices using 
the linear blend skinning technique, as shown in (6). The 
correspondences to the measurement samples are chosen 
as the nearest neighbors among the vertices on the 
polygonal surface. 

IV. FEATURE MATCHING 
We consider the matching problem as estimating an 

appropriate configuration of hand position and joint 
angles. A state vector      is parameterized to model the 
hand posture with 30 DoFs, as shown in Fig 3. Similar to 
the feature extraction step, the matching is implemented in 
a hier- 
archical order, from low to high level of hand model, to 
refine the precise position of the hand. For all levels of 
matching, it is formulated as a nonlinear optimization 
problem, which is defined by a cost function and certain 
state constraints. We use the 3D Euclidean distance 
between the corresponding feature point set of the 
measurements and the hand model as the cost function, 

(9)  
and the optimization process aims at minimizing these 
distances with respect to the state vector    . The minima 
are searched with a Scaled Conjugate Gradient (SCG) 
estimator. The details of the cost function and the Jacobian 
matrix computation for the optimization are introduced 
below. 

A. Skeletal Level 
The feature points extracted for this level of matching 

are the fingertips. The corresponding fingertips of the 3D 
measurements and the skeletal model are paired according 
to their relative order in the 2D projection. The overall 3D 
Euclidean distance between the pairs is computed as the 
cost function for SCG optimization. 

For each iteration of SCG optimization, the fingertip 
positions of the skeletal model is updated using (2) 

(10)  
And the Jacobian matrix for SCG optimization of this 
matching level can be formulated as 

(11)  

where               can be expressed as 

(12)  

B. Ellipsoidal-Primitive Level 
For the ellipsoidal-primitive model, the feature 

extracted is the silhouette of the fingers. The extracted 
silhouette is then down-sampled to lower the 
computational complexity. The corresponding point pairs 
are setup by finding the closest point in 3D space of the 
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silhouette from the primitive model. This model’s 
silhouette is updated by solving (8), and if we assume the 
local coordinate of the point remains the same during the 
transformation, it can be computed by mapping the 
silhouette points from the global coordinate system back to 
the local joint coordinate system, as in (13) 

(13)  
where      is the local coordinate of the points on the 
ellipsoid attached to the i-th joint. The computation of the 
Jacobian matrix is simplified to a similar form of (11) 

(14)  

and               is of the same form as in (12). 

C. Polygonal-Surface Level 
In this level, a limited number of samples are taken 

from the measurements and the corresponding point pairs 
are matched in the similar way presented above. Since the 
vertices of the polygonal surface are updated using (6), its 
Jacobian matrix is of the form 

(15)  

V. EXPERIMENT RESULTS 
In this paper we focus on tracking the human typing 

motion with 3D depth maps as the input. The 3D depth 
maps are generated using the structured light system with 
pre-calibrated projector-camera pair. The depth precision 
for this ranging system is at the mean error of 0.12mm and 
the standard deviation of 1.13mm. The captured image 
resolution before 3D reconstruction is 640 × 480 and the 
frame rate for online image capturing is about 30 frames 
per second. 

 
 
 
 
 
 
 
 
                 (a)                                            (b) 

 

Fig 7. (a) Original image from the structured light 
system. (b) 3D depth map generated by the structured light 
system. 

A. Feature Extraction 
Once the 3D depth map is captured, as shown in Fig 7 

(b), we can use it as the input for background subtraction 
and hand contour segmentation. Next, the fingertip 
detection and finger silhouette denotation steps are 
employed to extract different features for multi-level 
feature matching, as explained in Section III. Fig 8 shows 
the results of (a) the detected fingertips, which is marked 
as the red-lined squares and centered on the detected local 
maxima, and (b) the labeled and cropped finger silhouette, 
which is marked with red dots. The feature extraction step 
takes less than 0.1 second on an Intel Core™2 1.83GHz 
CPU, using a Matlab implementation. This step can be 

implemented with a paralleled framework for faster 
performance. Further speedup for tracking scheme can be 
easily achieved by using an optimized implementation.  

 
 
 
 
 
 
 
 
 
                   (a)                                            (b) 
Fig 8. (a) Fingertip detection result (b) Finger silhouette 

extraction result 

B. Hand Matching Results 
Fig 9 shows the hand matching results using the MLFM 

framework proposed in this paper for the same subject. 
The reconstructed hand is represented using the 
ellipsoidal- primitive model wrapped around the 
underlying skeleton, and is projected back into 2D image 
plane for comparing with the original hand postures. The 
mean matching error is less than 0.1cm, using the 
definition in [19]. The total processing time is 0.4 
sec/frame by a C implementation with no major 
optimization. Fig 10 shows the synthesized 3D human 
hand typing on a virtual keyboard. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 9. Tracking 150 frames of human typing motion, 

with noisy 3D depth map. The reconstructed polygonal 
skin surface is projected onto the image 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 10. Synthesized 3D human hand typing on a virtual 
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keyboard, with key-pressing event detected 

We also compared our matching scheme with another 
3D hand matching approach designed for virtual keyboard 
system [19]. This reference framework applied a physical 
based model fitting (PMF) method with detailed 3D hand 
skin model. Fig 11 shows that our approach converges 
faster and has less matching error, thus it is better suitable 
for a real time virtual keyboard system, whereby event 
detection accuracy and speed are essential. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 11. Comparison of MLFM and PMF by matching 

error and number of iterations 

VI. CONCLUSION 
In this paper, we propose a virtual keyboard system 

based on the Multi-Level Feature Matching method. We 
show that this framework can generate high precision 
matching results for hand typing postures in near 
real-time. Moreover, the experimental results show that 
the matching scheme is effective for reconstructing the 
hand typing postures with roughly detected fingertips and 
hand contour from the weak and noisy 3D depth maps, and 
the mean matching error is small enough for virtual 
keyboard applications. 

Further research will be carried out in stylistic motion 
learning direction. With more captured hand postures, the 
tracking process can be trained to build a prior model for 
the normal human typing motions.  
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