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ABSTRACT 
 

This paper gives an example of how predictive models of the deterioration of reinforced concrete pipes and the 
consequences of failure can be used to develop risk-based replacement strategies for redundant reinforced concrete pipe 
networks. It also shows how an accurate deterioration prediction can lead to a reduction of agency costs, and illustrates the 
limitation of the incremental intervention step algorithm. The main conclusion is that the use of predictive models, such as 
those developed by Oxand S.A., in the determination of replacement strategies for redundant reinforced concrete pipe 
networks can lead to a significant reduction in overall costs for the owner of the structure. 
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INTRODUCTION 

 
Reinforced concrete pipe networks used to transport water deteriorate with time due to environmental conditions, such 

as chloride-induced corrosion of the steel reinforcement, and if not maintained will eventually fail [1]. The risks associated 
with the failure of reinforced concrete pipe networks, defined herein as the probability of failure multiplied by the 
consequences of failure, and how they change with time, play a crucial role in determining the optimal replacement 
strategies for the pipes within these networks [2]. Consequences of failure include the interruption to service and the 
damage that results from the failure itself, such as the flooding of the buildings that house the pipes or nearby buildings or 
roads. 

Although risks can be diminished by periodically replacing deteriorated pipes [3], there are potentially high costs 
associated with replacing pipes, including the cost of removing the existing pipes, the cost of the new pipes and the cost of 
service interruption of a temporary closure. Optimal replacement strategies for the pipes must therefore be determined by 
minimising both the risks and the cost of replacement for the pipes in the network, as well as how these risks and costs 
change with time and the effectiveness of the replacement in reducing future risks. Optimal replacement strategies are 
herein referred to with the abbreviation for optimal management strategy, OMS. Replacement strategies are one type of 
management strategy. In this paper an example of how OMS’s can be determined for redundant reinforced concrete pipe 
networks using predictive models of deterioration and considering both the consequences of failure and the redundancy of 
the network is given. 

 
RISK-BASED OBJECTIVE FUNCTION 
 

To determine risk-based OMS’s the objective function is defined to minimise cumulative overall costs (both agency 
costs and risks) (Eq. 1). By using Eq. 1 as the objective function both the redundancy of the network and the deterioration of 
the pipes, are taken into consideration in the estimation of the probability of failure of the system, Pfsys. The costs of failure, 
Cf are then multiplied by the Pfsys and added to the agency costs, Ca. The minimisation of these overall costs throughout the 
investigated time period will give the OMS.  
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The probability of failure of a parallel system, parallel

fsysP , is given by Eq. 4, and the probability of failure of the branches in a 

parallel system, which are in series, series
fsysP , is given by Eq. 5.  
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where: 
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where:  
 

tion
fiP sec  = the probability of failure of the sections in the branches 

 
The deterioration is taken into consideration by assuming that the pipes are in a constant condition state for each time 

interval in the investigated time period and evaluating the probability of the pipes in each of these condition states for each 
successive time interval. The probability of passing between condition states from one time interval to the next is described 
using Markov models. In Markov models the condition ratings take the form of discrete states in order to reduce the 
complexity associated with continuous ranking systems [4]. 

 
PREDICTIVE MODELS OF PIPE DETERIORATION 

 
Markov models and semi-Markov models are used to model the deterioration of the pipes. Markov models are commonly 

used, in management systems, to model the deterioration of infrastructure assets, such as pipes [5] and road bridges [4]. 
Semi-Markov models, however, have been used to incorporate changes in failure mode that may occur as a function of both 
time and the number of previous breaks [6]. As an unchanging failure mode is assumed in this example Markov models are 
considered adequate.  

A Markov model describes a stochastic process where the conditional probability of any future event, such as being in 
condition state j, given any past event and the present state Xt = i, is independent of the past event and depends only on the 
present state. The conditional probabilities { }iXjXP tt ==+1  are called transition probabilities. The transition 
probabilities in a Markov model can be determined using Poisson and negative binomial based regression techniques [7, 8] 
and can be correlated to actual deterioration models [9] albeit not perfectly. The possible transition probabilities are often 
shown in matrix form. The form of the Markov models used in this example (Eq. 6) is based on the five-state model shown 
in Fig 1. 
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where pij = transition probability from condition state Xi in year t to condition state Xj in year t + 1. For example, column 1 
row 1 (in bold, Eq.1) shows the probability of being in condition state X1 at t+1 if the pipe is in condition state X1 at time t. 
Note the pij = 0 for i > j. This imposes the constraint that pipes cannot improve in condition. Also p55 = 1 because this is the 
worst possible condition state and it is an absorbing state, i.e. once a pipe has entered this state it cannot leave without an 
intervention. 
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Figure 1. State transition diagram for five-state pipe example 

 
 

The probability of being in condition state Xj, in year t + 1 can be determined through the application of the total 
probability theorem (Eq.7).
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where t
ip  = the probability of being in condition state Xi, in year t. 

 
EXAMPLE NETWORKS 
 

To illustrate how predictive models of the deterioration of redundant reinforced concrete pipe networks and the 
consequences of failure can be used to develop risk-based replacement strategies a simple parallel network is used (Fig. 1a). 
To illustrate the limitations of an incremental intervention step algorithm both the two-section parallel network (Fig. 1a) and 
the four-section parallel network (Fig. 1b) are used. The difference between the two networks is that in network 1, branch 1 
and branch 2 have only one section each, whereas in network 2 branch 1 and branch 2 have two sections each. Each section 
in both networks consists of 1500 pipes in series. The pipes in the network are classified into 5 different condition states 
(CS), which are defined in Table 1 [3].  
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Figure 1. (a) Network 1,  (b) Network 2 
 
 

Table 1. Condition states for underground reinforced concrete pipes [2] 

Condition state Physical description 
1 Near perfect condition 
2 Some superficial deterioration 
3 Serious deterioration, requiring substantial maintenance 
4 Level of deterioration affects the fabric of the asset, requiring major 

reconstruction or refurbishment 
5 Level of deterioration is such to render the asset unserviceable 

 
 
It is assumed that inspection of the entire network is performed prior to the determination of the OMS, and that one 

quarter of the pipes (375) in each section is in each of the condition states, i.e. there are 375 pipes initially in CS1, CS2, CS3 
and CS4 for each of the sections. All pipe deterioration is assumed to be the same and is described by the medium 
deterioration matrix shown Fig. 2. 

 
 

 Slow deterioration: Medium deterioration:  Fast deterioration: 
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Figure 2. The deterioration matrices for (a) slow deterioration, (b) medium deterioration and (c) fast deterioration 
 
 

The four possible interventions on each section of each network are to replace all of the pipes that are initially in each 
condition state, i.e. CS4, CS3, CS2 and CS1. This means that there are 8 possible interventions on network 1 and 16 
possible interventions on network 2 (Table 2). All interventions are assumed to cost 100 mu (mu = monetary units). It is 
assumed that if an intervention is not done and failure (defined as CS5) occurs, that the pipe where the leak occurs is 
replaced and the rest of the network is not. This has the effect of leaving the network in basically the same overall condition 
state, i.e. the probability of failure of this section of pipe is basically not changed, and the expected failure costs in the 
upcoming year therefore remain unchanged. The cost of failure is 1000 mu, or 10 times the intervention cost.  
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Table 2. Interventions  
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1 1 Pipes initially in CS4 1 1 Pipes initially in CS4 9 3 Pipes initially in CS4 
2 1 Pipes initially in CS3 2 1 Pipes initially in CS3 10 3 Pipes initially in CS3 
3 1 Pipes initially in CS2 3 1 Pipes initially in CS2 11 3 Pipes initially in CS2 
4 1 Pipes initially in CS1 4 1 Pipes initially in CS1 12 3 Pipes initially in CS1 
5 3 Pipes initially in CS4 5 2 Pipes initially in CS4 13 4 Pipes initially in CS4 
6 3 Pipes initially in CS3 6 2 Pipes initially in CS3 14 4 Pipes initially in CS3 
7 3 Pipes initially in CS2 7 2 Pipes initially in CS2 15 4 Pipes initially in CS2 
8 3 Pipes initially in CS1 8 2 Pipes initially in CS1 16 4 Pipes initially in CS1 

 
 

OPTIMAL REPLACEMENT STRATEGIES 
 
The OMS’s were determined for a 100-year period with no restriction on the number of interventions per time interval 

(each time interval consists of 5 years) using an incremental intervention step algorithm. An incremental intervention step 
algorithm means that the optimal intervention and time of the optimal intervention were determined one intervention at a 
time. For example, to determine the optimal interventions for a two-intervention management strategy, intervention 1 is first 
determined and then it is assumed that this intervention (both the pipes to replace and the time to replace them) would not 
be affected by performing intervention 2. Intervention 2 is then determined. This type of algorithm is not always valid as 
can be seen when comparing the OMS’s for the two networks (Table 3). Complete enumeration and dynamic programming 
were used to find for each successive intervention.  
 

Table 3. Ranking of interventions  
 

 Example network 1 Example network 2 

Number of 
inter-

ventions 

Pipe 
section 

Pipe 
group 

Intervention 
time 

Incremental 
reduction in 
overall costs 

(mu) 

Pipe 
section

Pipe 
group 

Intervention 
time 

Incremental 
reduction in 
overall costs 

(mu) 
1 1 4 t1 6420 1 4 t1 -77 
2 1 3 t2 10719 2 4 t1 4526 
3 1 2 t6 1354 1 3 t2 1743 
4 1 1 t10 -51 2 3 t2 9486 
5 1 4 t10 -51 1 2 t5 1081 
6 1 3 t11 -62 2 2 t6 1324 
7 1 2 t13 -90 1 1 t10 -52 
8 3 4 t3 -95 2 1 t10 -52 
9 3 3 t3 -93 2 4 t10 -51 

10 3 2 t5 -99 1 4 t10 -51 
11 3 1 t15 -100 1 3 t11 -63 
12 3 3 t15 -100 2 3 t11 -62 
13 3 4 t14 -100 1 2 t12 -86 
14 3 2 t15 -100 2 2 t13 -90 
15 1 2 t11 -100 2 1 t15 -98 
16 1 3 t10 -100 1 1 t15 -98 
17 1 1 t11 -100 1 4 t15 -98 
18 1 3 t13 -100 2 4 t15 -98 
19 1 4 t12 -100 1 3 t15 -100 
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The OMS’s, which can be read from Table 3 once the number of interventions desired are known, are determined for the 
both networks assuming discount rates of 0 %. For example, if it is desired to have only 4 interventions in the investigated 
100-year period the OMS is to replace the pipe groups 4, 3, 2 and 1 at t1, t2, t6 and t10 respectively for network 1. The 
negative values in Table 3 indicate where it is no longer beneficial to perform an intervention, i.e. the agency costs are 
higher than the possible reduction in expected failure costs. All values are rounded to the nearest monetary unit. In Tabéle 3, 
this means that it is only beneficial, given the Cf, Ca and deterioration matrices used, to replace pipe groups 4, 3 and 2 in 
branch 1 for both networks (section 1 for network 1 and sections 1 and 2 for network 2). These interventions are shown in 
bold in Table 3. 

On network 1 the seven most beneficial interventions are to replace the pipes on branch 1 from best to worst (pipe groups 
4, 3, 2, and 1, and then 4, 3, 2 again) at time intervals t1, t2, t6, t10, t10, t11, and t13, respectively. It is not until the probability 
of system failure is sufficiently small throughout the entire investigated time period (Fig. 3a) that replacing pipes in the 
second branch of the parallel network becomes the most beneficial. This occurs at the 8th intervention, shown in bold with 
squares in Fig. 3a. Fig. 3a shows the cumulative probability of system failure of network 1 and network 2. The decreasing 
probability of failure of the networks (in the direction of the arrow) occurs because each successive curve is generated using 
a management strategy with an additional intervention. For example, in Fig. 3a., the bold line with squares is the cumulative 
probability of failure of network 1 when an OMS consisting of 8 interventions is used. The bold line with diamonds in 
Fig. 3a is the cumulative probability of failure of network 1 when an OMS consisting of 9 interventions is used. 
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Figure 3. The cumulative probability of system failure for all of the OMS’s shown in Table 3 (a) network 1 (b) network 2 

 
 

On network 2 all interventions are found to be on branch 1. This is an error due to the use of the incremental intervention 
step algorithm, which only looks at one intervention at a time. It should suggest repairing network 2 in the same order that it 
suggests repairing network 1. The interventions that should be the same, i.e. the pipes and the location of the pipes that 
should be replaced, but are not, are shown as shaded cells in Table 3. Instead of suggesting that the pipes on branch 2 
(sections 3 and 4) in network 2 are the most beneficial to replace, as they are on network 1 (section 3 – interventions 8 and 
9), the incremental intervention step algorithm suggests, that the optimal interventions are on branch 1 (sections 1 and 2 - 
interventions 15, 16, 17, and 18). By not changing branches on network 2 the cumulative probability of system failure 
throughout the 100-year (20 time interval) period remains much higher than for network 1. The cumulative probability of 
system failure after the intervention 8, and after intervention 8 and 9, on branch 2, on network 1, are in bold in Figure 3a. It 
can be seen that there are order of magnitude drops in the probability of system failure with successive interventions. The 
cumulative probability of system failure after each of the four successive interventions that should be the equivalent of the 
interventions 8 and 9 on network 1, on network 2, are in bold in Figure 3b. It can be seen that there is very little further 
reduction in the cumulative probability of system failure.  

This inability to switch branches occurs because, by only looking at one intervention at a time the incremental 
intervention step algorithm never “sees” the future benefit of doing an intervention on the more deteriorated branch in the 
parallel network, i.e. if only the benefits of performing one intervention at a time are compared the largest benefit will 
always come from performing the intervention on the branch that has already had one intervention if the probability of 
failure of the other branch is high (which in this example it is). The incremental intervention step algorithm should therefore 
only be used in situations where it is not required to “see” the benefit of future interventions. 
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ACCURATE DETERIORATION PREDICTION 
 

To investigate the importance of accurate determination of deterioration speeds on redundant reinforced concrete pipe 
networks, the OMS’s consisting of up to 19 interventions are determined for network 1 using three different deterioration 
speeds; slow, medium and fast (Table 4). Slow, medium and fast deterioration speeds are defined in this example by the 
deterioration matrices shown on Fig. 2. Slow deterioration is defined as having a 0.5 % chance that a pipe will pass out of 
its condition state in one time interval. Medium deterioration is defined as having a 1 % chance that a pipe will pass out of 
its condition state in one time interval. Fast deterioration is defined as having a 2 % chance that a pipe will pass out of its 
condition state in one time interval. A discount rate of 0 % is used. For the slow deterioration speed it can be seen that no 
interventions were selected after the 13th intervention. This is because the improvement in the probability of system failure 
is small enough to be negligible. Any additional expenditure after 12 interventions is simply a waste of agency money. 
 

Table 4. OMS for example network 1  
 

 Deterioration speed 
Fast  Medium Slow 
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0 - - - 18993 - - - 18953 - - - 18664 
1 1 4 0 14700 1 4 0 12533 1 4 0 6918 
2 1 3 1 4520 1 3 1 1813 1 3 1 422 
3 1 2 5 1026 1 2 5 459 1 2 4 310 
4 1 1 9 908 1 1 9 510 3 4 2 407 
5 1 4 9 781 1 4 9 560 3 3 2 500 
6 1 3 10 704 1 3 10 623 3 2 7 600 
7 1 2 12 755 1 2 12 712 3 1 12 700 
8 3 4 2 844 3 4 2 807 3 3 11 800 
9 3 3 2 915 3 3 2 901 3 4 12 900 

10 3 2 4 1002 3 2 4 1000 3 2 15 1000 
11 3 1 13 1101 3 1 14 1100 1 1 1 1100 
12 3 3 14 1201 3 3 14 1200 1 4 4 1200 
13 3 4 14 1300 3 4 13 1300 1 1 1 1300 
14 3 2 14 1400 3 2 14 1400 - - - 1400 
15 1 2 10 1500 1 2 10 1500 - - - 1500 
16 1 3 9 1600 1 3 9 1600 - - - 1600 
17 1 1 12 1700 1 1 10 1700 - - - 1700 
18 1 3 12 1800 1 3 12 1800 - - - 1800 
19 1 4 12 1900 1 4 11 1900 - - - 1900 

 
 
The cumulative overall costs for the OMS’s for the three deterioration speeds for network 1 are shown in Figure 4. The 

number of interventions in the OMS that will maximize cumulative overall savings is indicated with a large circle. It can be 
seen that for slow deterioration a replacement strategy with 1, 2 and 3 interventions will result in savings of 11745, 18241 
and 18353 mu, respectively (Fig. 4a). If a fourth intervention is done there will actually be a decrease in overall savings to 
18257 mu. This is because the agency costs for the intervention are higher than the possible reduction in expected failure 
costs. For medium deterioration a replacement strategy with 1, 2 or 3 interventions will result in 6420, 17139 and 18494 mu, 
respectively (Fig. 4b). A replacement strategy with 4 interventions will also decrease overall savings (18443 mu). If the 
deterioration speed is fast, the 6 intervention OMS will result in the largest overall savings, 18288 mu, and performing the 
seventh intervention will result in a decrease in overall savings (Fig. 4c).  
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The importance of accurate estimation of deterioration speed lies in the ability to determine the appropriate number of 
interventions to have in the OMS. For example, in network 1, if there is medium deterioration and it is wrongly estimated to 
be fast, the agency costs will be 100 % higher than necessary. The cumulative agency costs for the OMSs for the slow, 
medium and fast deterioration speeds are shown in Fig. 4d. Of course this depends on the Cf, Ca and the exact deterioration 
matrices used to describe the deterioration. If there is slow deterioration speed and it is estimated to be a medium 
deterioration speed the same interventions will be recommended and the agency costs (and overall costs) will be no 
different.  
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Figure 4. Cumulative overall costs vs. number of interventions performed from optimal sequences for network 1 (a) slow 
deterioration, (b) medium deterioration, (c) fast deterioration, and (d) Cumulative agency costs for each intervention 

 
 
CONCLUSIONS 
 
This example shows that: 
 
1) Risk-based optimal management strategies can be determined for redundant reinforced concrete pipe networks using 

predictive models of the deterioration and considering both the consequences of failure and the redundancy of the 
network 

2) The incremental intervention step algorithm can only be used on networks where it is not required to “see” the benefit 
of future interventions.  

3) Predictive deterioration models can be used to determine risk-based replacement strategies for redundant reinforced 
concrete pipe networks taking into consideration the functioning of the network as a whole. 

4) The use of risk-based replacement strategies can determine when additional agency spending is unnecessary. 
5) Accurate deterioration prediction can result in substantial savings in agency costs. 

 
Future work needs to concentrate on the accuracy of the deterioration models used in predicting future deteriorating of 
underground reinforced concrete pipes. 
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