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ABSTRACT
One of the most celebrated results of the theory of dis-
tributed computing is the impossibility, in an asynchronous
system of n processes that communicate through shared
memory registers, to solve the set agreement problem where
the processes need to decide on up to n − 1 among their n
initial values. In short, the result indicates that the register
abstraction is too weak to implement the set agreement one.

This paper explores the relation between these abstrac-
tions in a message passing system where a register is not a
given physical device but is rather itself implemented by pro-
cesses communicating through message passing. We show
that, maybe surprisingly, the information about process fail-
ures that is necessary and sufficient to implement a register
shared by two particular processes is sufficient but not nec-
essary to implement set agreement.

We later generalize this result by considering k-set agree-
ment, where the processes can decide on up to k values, and
comparing it with a register shared by any particular subset
of 2k processes. We prove that, for 1 ≤ k ≤ n/2, (a) any
failure information that is sufficient to implement a register
shared by 2k processes is sufficient to implement (n− k)-set
agreement but (b) a failure information that is sufficient for
(n − k)-set agreement is not sufficient for a register shared
by 2k processes. We also prove that (c) a failure information
that is sufficient for a register shared by 2k processes is not
sufficient for ((n-k)-1)-set agreement.
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1. INTRODUCTION
One of the fundamental results of the theory of distributed

computing, proved by three independent groups of resear-
chers [21, 13, 3] and celebrated by the Gödel prize, is the
impossibility, in an asynchronous shared memory system, of
implementing set agreement [6]: a decision task where n pro-
cesses, starting each with an initial value, need to agree on
up to n− 1 among their n initial values. In short, the result
conveys the fact that the basic read/write shared memory
abstraction, also called the register [15] abstraction, is not
powerful enough to help the processes eliminate one of their
initial values, if these processes can run at their own speed,
including stopping without warning, i.e., failing by crashing.

In many cases however, a register is not available as a
physical device accessible to the processes but is rather im-
plemented (we also say emulated [1]) in a distributed system
where the processes communicate solely by exchanging mes-
sages. Such an implementation cannot be achieved however
without any information about process failures, e.g., only a
minority of processes can crash [1] or all failures are accu-
rately detected [5].

At first glance, one would expect the failure information
that is necessary and sufficient to implement a register not to
be sufficient to implement set agreement. This paper shows
that, may be surprisingly, it is actually sufficient. More-
over, we show that the failure information that is necessary
and sufficient to implement set agreement is not sufficient to
implement a register. We establish our results precisely by
expressing the notion of failure information using the failure
detector formalism of [5].1 We show that (a.1) any failure
detector that implements a register shared by (a specific pair
of) two processes also implements set agreement, but (b.1)
not vice-versa.

The intuition behind (a.1) lies in the fact that the failure
information that is needed to implement a register shared
by two processes is sufficient for these processes to eliminate
at least one of their initial values (and thus for the entire
set of processes to implement set agreement). The intuition

1We consider a system of at least three processes. In a sys-
tem of two processes, the two abstractions are equivalent [9].



2-register → set agreement
6← set agreement

3-register 6→ (n− 2)-set agreement
...

2k-register → (n− k)-set agreement
6← (n− k)-set agreement

2k + 1-register 6→ (n− k − 1)-set agreement

Figure 1: Results

behind (b.1) is that, to eliminate one of the initial values
of a set of processes, it is enough for at least one process
to learn that some other process is correct, without knowing
which one. This is however not enough to implement a regis-
ter abstraction, even shared only among two processes. We
capture these intuitions more specifically in the paper, by
introducing a failure detector that might be of independent
interest. This failure detector, denoted σ, chooses exactly
two processes and distinguish them from the rest. If these
two processes are the only correct ones in the system then
σ also provides them with information about correct quo-
rums of processes and this is used to eventually eliminate
at least one of their values. We prove that σ is sufficient to
implement set agreement but not a register.

Our result naturally raises the more general question of
the relation between implementing a register and imple-
menting k-set agreement, where the goal is for the processes
to agree on up to k ≤ (n− 1) values, i.e., to eliminate n− k
values. Interestingly, the failure information that is neces-
sary and sufficient to implement a register shared by two
processes is not sufficient to implement (n − 2)-set agree-
ment. More generally, assuming 1 ≤ k ≤ n/2, we prove
that (Figure 1) (a.2) any failure detector that implements a
register shared by (a specific subset) of 2k processes imple-
ments (n− k)-set agreement; (b.2) a failure detector might
be sufficient to implement (n − k)-set agreement but not a
register shared by 2k processes; and finally (c) a failure de-
tector might be sufficient to implement a register shared by
2k processes but not to implement ((n − k) − 1)-set agree-
ment.

The rest of the paper is organized as follows. Section 2 de-
fines the basic model of computation and recalls the notions
of X-register ([9]), ΣX ([9]) and k-set agreement ([6]). Sec-
tion 3 shows that implementing a register shared by two pro-
cesses is strictly harder than implementing set agreement.
Section 4 generalizes this result and shows that implement-
ing a register shared by 2k processes is strictly harder than
implementing (n−k)-set agreement. Section 5 completes the
results of Sections 3 and 4 by showing that implementing a
register shared by 2k + 1 processes is not harder than im-
plementing (n− (k + 1))-set agreement. Section 6 discusses
related work.

2. MODEL AND DEFINITIONS

2.1 Processes, failures and failure detectors
Our model of computation is the one of [4]. In this section,

we simply recall elements of the model that are needed to
state and prove our results.

The system we consider is a set Π of n processes that
communicate through reliable channels. The processes run
asynchronously at their own speed and can fail by crashing.
A process that does not fail in a given run (we recall what
a run is below) is said to be correct. Each run of the pro-
cesses is associated with a failure pattern: a function F that
associates, to each time t ∈ Φ (Φ is a global clock that can
not be accessed by the processes), the set of processes that
have crashed by time t. We denote by Correct(F ) the set
of correct processes in F . An environment is a set of failure
patterns. We consider in this paper failure patterns where
at least one process is correct, and, except when explicitly
stated, we focus on the environment, denoted by E , that con-
tains all failure patterns with at least one correct process.
A failure detector history H with range R is a function that
associates, to each process p and each time t, a value H(p, t)
in R. A failure detector D with range R is a function that
associates, to each failure pattern, a set of failure detector
histories D(F ) with range R.

A distributed algorithm A using a failure detector D is a
collection of n deterministic automata (one per process in
the system). A run (execution) of A occurs in steps: for
every time t ∈ Φ, at most one process takes a step; every
correct process takes an infinite number of steps. For any
given failure pattern F and any given failure detector history
H of D(F ), in each step, a process p atomically performs the
following three actions: (1) p receives a message from some
process or a null message, (2) p queries and receives a value
H(p, t) from its failure detector module, and (3) p changes
its state and sends a message (possibly null) to some process.

Every abstraction U (e.g., register, k-set-agreement, etc)
is associated with exactly one set of runs, i.e., the runs that
obey the properties of U . We say that an algorithm A imple-
ments U using a failure detector D if every run of A using D
is in U . We say that D implements U if there is an algorithm
that implements U using D.

A failure detector D′ is said to be stronger than a failure
detector D (we write D � D′) if there is an algorithm that
emulates the output of D (we also say implements D) using
D′. Two failure detectors are equivalent if each is stronger
than the other. If D′ is stronger than D and they are not
equivalent then we say that D′ is strictly stronger than D
(we write D ≺ D′). We say that a failure detector D is the
weakest to implement an abstraction U if (a) D implements
U and (b) any failure detector that implements U is stronger
than D.

We say that an abstraction U is harder than an abstrac-
tion U ′ if (1) the weakest failure detector to implement U
implements U ′. We say that an abstraction U is strictly
harder than an abstraction U ′ if (1) U is harder than U ′

and (2) U ′ is not harder than U .

2.2 Registers
A register is a shared object accessed through two oper-

ations: read and write. The write operation takes as an
input parameter a specific value to be stored in the register
and returns a simple indication OK conveying the fact that
the operation has been executed. In the absence of concur-
rency, the read operation is supposed to return the last value
written in the register.

We consider atomic [15], also called linearizable [14], reg-
isters. Roughly speaking, these ensure that, despite concur-
rent invocations and possible crashes of the processes, every



correct process that invokes an operation eventually gets a
reply (a value for the read and an OK indication for the
write), and every operation appears to be executed instan-
taneously between its invocation and reply time events [15,
14, 2].

Given a subset S of processes in Π, a S-register ([9]) is a
register that can be read and written only by processes in
S. When S is the overall set Π of processes, such a register
(i.e., that can be read and written by any process) is called a
(multi-writer/multi-reader) register [15]. By language abuse,
given an integer 1 ≤ k ≤ n, we use the term k-register to
denote a X-register for some specific subset X of k processes
in Π.

Failure detector ΣS [9] outputs, at each process of S, and
at any time, a list of processes called trusted processes, such
that the following properties are ensured: (these properties
assume that, at any process of S that has crashed, the list
that is output is Π)

• Intersection. Every two lists of trusted processes in-
tersect:

– ∀F ∈ E ,∀H ∈ ΣS(F ),∀p, q ∈ S,∀t, t′ ∈ Φ :
H(p, t) ∩H(q, t′) 6= ∅

• Completeness. Eventually, every list of processes tru-
sted by every correct process contains only correct pro-
cesses:

– ∀F ∈ E , ∀H ∈ ΣS(F ), ∀p ∈ S ∩ Correct(F ), ∃t ∈
Φ,∀t′ > t ∈ Φ : H(p, t′) ⊆ Correct(F )

It is easy to see that, for any subset S, failure detector ΣS
can be implemented (with no synchrony assumption) in any
environment where a majority of processes is correct. Every
process periodically sends a message to all, asking for replies,
waits for a majority of these, and outputs the list of processes
which indeed replied.

We recall the result of [9]:

Proposition 1. In any environment, for any subset S of
processes, ΣS is the weakest failure detector to implement a
S-register.

2.3 The k-set agreement problem
Given a positive integer k, solving k-set agreement [6] con-

sists for every process p ∈ Π, starting with some initial value
vp, to satisfy the following properties: 1. Agreement: At
most k different values are decided; 2. Termination: every
correct process eventually decides; 3. Validity: if any pro-
cess decides a value v, then v is the initial value of some
process .

Sometimes, we simply write set agreement for (n− 1)-set
agreement.

3. A (2-)REGISTER IS STRICTLY HARDER
THAN SET AGREEMENT

We prove in this section the following:

Theorem 2. ∀n ≥ 3, ∀p, q ∈ Π, a {p, q}-register is strictly
harder than set agreement.

To prove this theorem we first introduce a new failure
detector, σ, and we prove that it implements set agreement
(Sec. 3.1). Then we show that Σ{p,q} is stronger than σ,

proving that a {p, q}-register is harder than set agreement
(Sec. 3.2). Finally we prove that σ is not stronger than
Σ{p,q}, deducing therefore that set agreement is not harder
than {p, q}-register (Sec. 3.3).

3.1 Failure detector σ

Intuitively, failure detector σ selects, for each run, a pair
A of two processes (not necessarily correct), called the active
processes: σ permanently outputs ⊥ at all other processes.
When all other processes are faulty, σ behaves like ΣA at
the active processes. That is, σ outputs at these two active
processes, subsets of A that intersect and contain eventually
only correct processes. In case the active processes are not
the only correct ones in the system, σ might simply output
∅ at these active processes.

More precisely:

Definition 3. ∀F ∈ E, ∀H ∈ σ(F ) there is a pair A =
{p, q} of processes verifying the following properties:

• Well-formedness.

– ∀t ∈ Φ,∀x ∈ A,H(x, t) ⊆ A and ∀t ∈ Φ,∀x /∈
A,H(x, t) = ⊥

• Completeness.

– ∀x ∈ A ∩ Correct(F ), ∃t ∈ Φ ∀t′ > t H(x, t′) ⊆
Correct(F )

• Intersection.

– ∀x, y ∈ A,∀t, t′ ∈ Φ if H(x, t) 6= ∅ and H(y, t′) 6=
∅ then : H(x, t) ∩H(y, t′) 6= ∅

• Non-triviality.

– If Correct(F ) ⊆ A then : ∀x ∈ A, ∃t ∈ Φ, ∀t′ >
t H(x, t′) 6= ∅

The algorithm described in Figure 2 implements set agree-
ment using σ. The output of σ is obtained by the process
using primitive queryFD(). In every run, exactly two pro-
cesses are distinguished as active. Processes that are not
active obtain ⊥ and decide on their own value. On the other
hand, active processes either decide a value coming from a
non-active one or eliminate one of their initial values.

If σ outputs ⊥ to a process, then this process does not
belong to the set A of active processes. A non-active process
sends to all its own value before deciding on it.

By the definition of σ, only two processes are in the set
of active processes. Only active processes run Task 1 and
Task 2. In Task 1, when it receives a value from a non-
active process, an active process decides this value. Hence,
an active process will be ensured to decide if at least one
correct process is not active. If there is no correct process
in the set of non-active processes, then the active processes
will decide by Task 2. In Task 2, active processes reach
consensus using σ.

Theorem 4. The algorithm of Figure 2 implements set
agreement using σ.

Proof. Consider any run r with a failure pattern F . Let
H be the associated failure detector history of σ. Let A =
{q0, q1} be the active set for H. vp denotes the local variable
of any distributed variable v of p (e.g., Me).

From the intersection property of σ we directly deduce the
following fact:



Code for each process p:

1 to propose (v) :
2 if ⊥ = queryFD() then
3 send(D, v) to all
4 decide(v)
5 return
6 else
7 start Task 1 and Task 2

8 Task 1:
9 upon receive(D, ∗):
10 if (D, w) has been received then
11 send(D, w) to all
12 decide(w)
13 return

14 Task 2:
15 Me← v; Y ou← ⊥
16 Phase 1:
17 send (1, Me) to every process except p
18 wait until received (1, ∗) or {p} = queryFD()
19 if (1, w) has been received then Y ou← w

20 Phase 2:
21 send (2, Y ou) to every process except p
22 wait until received (2, ∗) or {p} = queryFD()
23 if (2,⊥) has been received then Me← ⊥

24 Phase 3:
25 (* we assume that ⊥ < v for all v *)
26 w ← max{Me, Y ou}
27 decide(w)
28 return

Figure 2: Implementing set agreement using σ.

Fact 5. For i = 0 or 1, if at some time t, process qi
gets H(qi, t) = {qi} from σ, then at all times t′, q1−i gets
H(q1−i, t

′) 6= {q1−i}.
Termination: All correct non-active processes decide

in Line 4. Let q be a correct process in the set of active
processes. If at least one non-active process is correct then
all correct active processes that do not decide by Task 2
will decide and terminate by Task 1, in Line 12. So, we
only have to contradict the existence of a run in which (1)
all non-active processes are faulty, and either (2) q0 never
decides or (3) q1 never decides.

Assume the existence of such a run α with failure pattern
Fα and failure detector historyHα(Fα) for σ. By hypothesis,
Correct(Fα) ⊆ {q0, q1}. Because there is at least one correct
process in each failure pattern then we can assume without
loss of generality that q0 is correct.

We have two cases to consider:
(a) q1 is also a correct process. Both q0 and q1 send a

message in Line 17 and then q0 and q1 terminate the repeat
loop of Phase 1. Then both q0 and q1 send a message in
Line 21 and then q1 and q0 terminate the repeat loop of
Phase 2. Hence q0 and q1 decide in Lines 27 or 12 and
terminate, contradicting the existence of the run α.

(b) q1 is faulty, then q0 is the only correct process and by
the non-triviality and the completeness properties of σ there
is a time after which Hα(q0, ∗) equals {q0}. Consequently
q0 is not blocked forever in the repeat loop of Task 2 and
decides in Lines 27 or 12, contradicting the existence of the
run α.

Validity: We have only to check that if an active process
q decides by Line 27 then wq 6= ⊥. Without loss of general-
ity, assume that q0 decides ⊥ in Line 27. For this to occur
when q0 decides we have Meq0 = Y ouq0 = ⊥.

• From Y ouq0 = ⊥, we deduce that q0 did not receive
any message from q1 in Line 19 and q0 terminated the
repeat loop of Phase 1 because queryFD() outputs
{q0}.

• From Meq0 = ⊥, we deduce that q0 received a mes-
sage (2,⊥) in Line 23. If q1 sent (2,⊥) then q1 did not
receive a message (1, ∗) from q0 in Line 19 and q1 termi-
nated the repeat loop of Phase 1 because queryFD()
outputs {q1}.

These values of the ouputs of failure detector σ contradict
Fact 5.

Agreement: Non-active processes decide at most n − 2
different values. If at least one active process decides by
Task 1, then this process decides one of these n − 2 values
and so there is at most n− 1 decided values. It remains to
show that if both active processes decide by task 2 then they
decide the same value.

By Fact 5, if both active processes decide, then at least
one active process terminates its repeat loops by receiving
message (1, ∗) and message (2, ∗). Assume without lost of
generality that q0 receives messages from q1 in Line 19 and
Line 23. So q0 sends message (1, vq0) and (2, vq1). There are
two cases to consider:

(a) q1 receives message (1, vq0) from q0 in Line 19. So
when q0 and q1 decide in Line 27 we have: Meq0 = vq0 ,
Y ouq0 = vq1 , Meq1 = vq1 and Y ouq1 = vq0 .



Code for pi:

1 if pi ∈ {p, q} then
2 while true do
3 Y ← queryFD()
4 if Y ⊆ {p, q} then
5 output← Y
6 else
7 output← ∅
8 else
9 output← ⊥

Figure 3: σ � Σ{p,q}

(b) q1 does not receive message (1, vq0) from q0 in Line 19.
So when q0 and q1 decide in Line 27: Meq0 = ⊥, Y ouq0 =
vq1 , Meq1 = vq1 and Y ouq1 = ⊥.

In both cases, q0 and q1 decide on the same value.

3.2 A (2-)register is harder than set agreement

We now show that for any set {p, q} a {p, q}-register is
harder than set agreement. As the weakest failure detector
for {p, q}-register is Σ{p,q}[9], we simply prove here that σ �
Σ{p,q}. The algorithm that implements σ using Σ{p,q} is
given in Figure 3.

Lemma 6. ∀p, q ∈ Π: σ � Σ{p,q}

Proof. Let p and q be any two processes, the algorithm
of Figure 3 emulates the output of σ using Σ{p,q}. The em-
ulated failure detector history is abstracted by the variable
output. outputtp denotes the value of output of process p at
time t.

We prove the properties of σ. The set of active processes is
{p, q}. output is ⊥ for processes different from p and q and is
a subset of {p, q} for process p or process q: this ensures the
well formedness property. Completeness of Σ{p,q} ensures
completeness of σ.

Consider a run r with failure pattern F and some failure
detector history H of Σ{p,q}(F ).

For the intersection property, consider x, y ∈ {p, q}, t, t′ ∈
Φ with outputtx 6= ∅ and outputt

′
y 6= ∅. As outputtx and

outputt
′
y are respectively equal to H(x, u) and H(y, u′) for

some u, u′ ∈ Φ and H(x, u)∩H(y, u′) 6= ∅ we have outputtx∩
outputt

′
y 6= ∅ proving the intersection property of the emu-

lated failure detector.
For the non-triviality, assume Correct(F ) ⊆ {p, q}. By

the completeness of Σ{p,q}, the output of Σ{p,q} is eventually
forever a subset of{p, q}. Then, by the algorithm, for x ∈
{p, q}, outputx is eventually forever an output of Σ{p,q}. As
there is at least one correct process in F , either p or q is
correct. By the intersection property of Σ{p,q}, the output
is not empty, proving the Non-triviality.

3.3 Set-agreement is not harder than
a (2-)register

For the special case of n = 2, the register and set agree-
ment abstractions are equivalent [9]. But set agreement is
not harder than a 2-register as soon as n ≥ 3.

If set agreement was harder than a 2-register, as σ imple-
ments set agreement, σ would be stronger than the weakest

failure detector for a 2-register. We use again the fact that,
for a set {p, q} of processes, Σ{p,q} is the weakest failure
detector to implement a {p, q}-register. We show that set
agreement is not harder than {p, q}-register by proving that
there is no algorithm that emulates Σ{p,q} from σ.

Lemma 7. If n ≥ 3, ∀p, q ∈ Π: Σ{p,q} 6� σ

Proof. We prove this result by contradiction. Assume
there is an algorithm that implements Σ{p,q} using σ. The
emulated failure detector history is abstracted by the vari-
able output. Variable outputtp denotes the value of output
of p at time t. As n ≥ 3, besides p and q, there is another
process, say a. In the following, in all failure patterns we
consider, all processes of Π − {a, p, q} are crashed from the
beginning.

Consider first failure pattern F , in which p and a are cor-
rect and q is crashed from the beginning. A possible fail-
ure detector history H for σ(F ) has A = {p, q} as the set
of active processes and, for all times t, H(p, t) = ∅ and
H(a, t) = ⊥. Consider a run r with this failure pattern and
this failure detector history. By the completeness property
of Σ{p,q}, there is a time t at which outputtp ⊆ {a, p}.

Consider now a failure pattern F ′ in which q is correct
and both p and a crash right after time t. Then let H ′ be a
failure detector history of σ(F ′) in which (1) A = {p, q} is
the set of active processes, (2) for all times t′ ≤ t H ′(p, t′) =
H ′(q, t′) = ∅ and H ′(a, t′) = ⊥ and, (3) for all time t′ > t
H ′(q, t′) = {q}.

Consider a run r′ with this failure detector history H ′

in which p and a take the same steps until time t, as in
r, and q takes its first step at time t + 1. Then for all

times t′ ≤ t the value of outputt
′
p is the same in r and r′.

By the completeness property of Σ{p,q}, there is a time t′′

after which outputt
′′
q ⊆ {q}. Then outputtp ∩ outputt

′′
q = ∅,

contradicting the intersection property of Σ{p,q}.

4. A 2K-REGISTER IS STRICTLY HARDER
THAN (N −K)-SET AGREEMENT

We generalize the results of section 3 to the more gen-
eral case of a 2k-register and (n− k)-set agreement. In the
following, X2k denotes a set of 2k processes. We prove the
following:

Theorem 8. ∀n ≥ 3, ∀k, 1 ≤ k ≤ n/2, ∀X2k, a X2k-
register is strictly harder than (n− k)-set agreement.

To prove our theorem, we introduce a family of new failure
detectors σk, as natural extensions of σ.2 In fact σ is σ2.
Failure detector σk is defined for all k between 1 and n.
Intuitively, failure detector σk selects, for each run, a subset
A of k processes, called the active processes: σk permanently
outputs ⊥ at all other (non-active) processes. However, σk
behaves like ΣA at the active processes in runs where all
other processes are faulty. That is, σk outputs at the active
processes, subsets of A that intersect and contain eventually
only correct processes.

In case the active processes are not the only correct ones in
the system, σk might simply output ∅ at the active processes.

Then we show that failure detector σ2k implements (n −
k)-set agreement (Sec. 4.1). We also prove that ΣX2k is
stronger than σ2k, proving that a X2k-register is harder than

2Failure detector σ cannot implement (n−2)-set agreement.



(n−k)-set agreement (Sec. 4.2). Finally we prove that σ2k is
not stronger than ΣX2k , deducing therefore that (n− k)-set
agreement is not harder that a X2k-register (Sec. 4.3).

4.1 Failure detector σk

Roughly speaking, failure detector σk selects, for each run,
a subset A of k processes, called the active processes. Failure
detector σk behaves like ΣA at the active processes when all
other processes are faulty.

The case n = 2k is special because all processes are then
active. For this case we weaken a little bit the intuitive
definition of σk.

More precisely, the set of active processes A is decomposed
into two subsets: A and Ā. A is the subset of A composed
of the bk/2c smallest elements of A and Ā = A \ A. Failure
detector σk may give no information to processes in A (in
this case the output for the processes in A is (∅, A)), but if
there is no correct process in A or no correct process in Ā
then σk outputs eventually for processes of A, subsets of A
that intersect and contain eventually only correct processes.

More precisely:

Definition 9. ∀F ∈ E, ∀H ∈ σ(F ) there is a subset A
of k processes satisfying the following properties:

• Well-formedness.

– ∀t ∈ Φ, ∀x ∈ A,H(x, t) = ∅ or (X,A) with X ⊆ A
and ∀t ∈ Φ, ∀x /∈ A,H(x, t) = ⊥

• Completeness.

– ∀x ∈ A∩Correct(F ), ∃t ∈ Φ ∀t′ > t H(x, t′) = ∅
or H(x, t′) = (X,A) with X ⊆ Correct(F )

• Intersection.

– ∀x, y ∈ A,∀t, t′ ∈ Φ, if ∃X ⊆ A, X 6= ∅ and
Y ⊆ A, Y 6= ∅ such that H(x, t) = (X,A) and
H(y, t′) = (Y,A), then : X ∩ Y 6= ∅

• Non-triviality.

– Let A be the set of the bk/2c smallest processes
in A. Ā = A \ A.

If Correct(F ) ⊆ A or Correct(F ) ⊆ Ā then :
∀x ∈ correct(F ), ∃t ∈ Φ, ∀t′ > t H(x, t′) 6= ∅
and H(x, t′) 6= (∅, A)

The algorithm described in Figure 4 implements (n− k)-
set agreement using σ2k. In the code of this algorithm
the output of σ2k is obtained by a process using primitive
queryFD(). The output of σ2k may be a pair, in which case
the first component is obtained by queryFD().trust and the
second one by queryFD().active.

Let A be the 2k elements set of active processes chosen
by σ2k. The processes in Π \ A are non-active and decide
their own proposed values. At most n − 2k values are thus
decided by these processes. The processes of A, the active
processes, have to decide on a subset of at most k values.
To ensure this, the set A is partitioned into two subsets of k
elements: A contains the k processes of A with the smallest
identities and Ā = A \A. The algorithm will essentially try
to eliminate either values from A or values from Ā.

Basically, the processes of A send their own values and
decide only on values from Ā. As soon as a process p receives

Initialization: ∀j, 1 ≤ j ≤ 2k, T [j] = ⊥

Code for each process pi, 1 ≤ i ≤ n:

1 to propose (vi) :
2 if queryFD().active = ⊥ then
3 send(D, vi) to all
4 decide(vi)
5 return
6 else
7 start Task 1 and Task 2 in parallel

8 Task 1:
9 upon receive(D, ∗):
10 if (D, w) has been received then
11 send(D, w) to all
12 decide(w)
13 return

14 upon receive(v, i) for the first time:
15 send(v, i) to all
16 T [i]← v
17 return

18 Task 2:
19 A← ∅
20 while A = ∅ do
21 A← queryFD().active
22 A is the k smallest elements of A
23 Ā is the k greatest elements of A

24 if pi ∈ A then
25 send(vi,i) to all
26 repeat
27 X ← queryFD()
28 if ∃x such that px ∈ Ā and T [x] 6= ⊥ then
29 decide(T [x])
30 send(D, T [x]) to all
31 return
32 until(X.active 6= ∅ ∧X.trust 6= ∅ ∧ (Ā ∩X.trust = ∅))

33 else /* pi ∈ Ā */
34 repeat
35 X ← queryFD()
36 if ∃x such that px ∈ A and T [x] 6= ⊥ then
37 send(T [x],i) to all
38 decide(T [x])
39 send(D, T [x]) to all
40 return
41 until(X.active 6= ∅ ∧X.trust 6= ∅ ∧ (A ∩X.trust = ∅))

Figure 4: Implementing (n − k)-set agreement with
σ2k.



Proof.Code for p:

1 if p ∈ X then
2 while true do
3 Y ← queryFD()
4 if Y ⊆ X then
5 output← (Y, X)
6 else
7 output← ∅
8 else
9 output← ⊥

Figure 5: σ|X| � ΣX

a message with a value of some process, p stores its value in
a local array Tp. The processes of Ā try to read in Tp values
from processes in A and decide on them if such values are
available. There is of course the possibility that all processes
of A are faulty and never send their value. In this case,
the processes of Ā have to decide on their own value. But
information given by σ2k to the processes in Ā is not strong
enough to know whether all processes of A are faulty and
have not yet decided.

However, notice that the intersection property of σ2k en-
sures that, if some process p of Ā has no information about
the failures of processes in A at time t (i.e. H(p, t).trust 6= ∅
and A∩H(p, t).trust = ∅), then every process q in A has, at
any time t′, some information about the failures of processes
in Ā (i.e. Ā ∩H(q, t′).trust 6= ∅ and H(q, t′).trust 6= ∅). In
the same way if some process p of A has no information
about the failures of processes in A at time t, then every
process q in Ā has, at any time t′, some information about
the failures of processes in A.

Then after having sent its own value, a process in A will
try, in a loop, to read and decide a value from the processes
in Ā until either it succeeds or its failure detector output has
no information on failures of processes in Ā. Symmetrically,
each process in Ā will try in a loop to read and decide a value
from processes in A, until either it succeeds or its failure
detector output has no information on failures of processes
in A.

If all processes end the loop by deciding, only values from
A may be chosen for a decision and hence we have at most
only k different values for the decision. The previous remark
about the intersection property shows that if a process in A
ends the loop without deciding then all processes in Ā will
choose a value from A. Symmetrically if a process in Ā ends
the loop without deciding then all process in A will choose
a value from A. In this way k values are eliminated.

4.2 ΣX is stronger than σ|X|

We now show that, for any set X2k of 2k elements, a
X2k-register is harder than (n − k)-set agreement. As the
weakest failure detector for a X2k-Register is ΣX2k [9], we
simply show that σ2k � ΣX2k . The algorithm that imple-
ments σk using ΣX for a subset X of k elements is given in
Figure 5.

Lemma 10. ∀X ⊆ Π: σ|X| � ΣX

The proof is similar to the proof of Lemma 6.

4.3 (n − k)-set agreement is not harder than a
2k-register

If (n − k)-set agreement was harder than 2k-Register, as
σ2k implements (n − k)-set agreement, then σ2k would be
stronger than the weakest failure detector for a 2k-Register.
We use again the fact that, for a set X2k of processes, ΣX2k

is the weakest failure detector to implement a X2k-Register.
We show that (n−k)-set agreement is not harder than aX2k-
Register by proving that there is no algorithm that emulates
ΣX2k using σ2k.

Lemma 11. If n ≥ 3, 1 ≤ 2k ≤ n, ∀X2k ⊆ Π, |X2k| = 2k:
ΣX2k 6� σ2k

Proof. If n 6= 2k, the proof is similar to the proof of
Lemma 7. In the special case n = 2k, we deduce the Lemma
from the fact that if there a correct process in {p1, . . . , pk}
and a correct process in {pk+1, . . . , pn} then the output of
σn may be (∅,Π) and we cannot emulate a failure detector
history of Σ from this.

5. A (2K + 1)-REGISTER IS NOT HARDER
THAN (N − (K + 1))-SET AGREEMENT

In this section, Xl denotes a set of l processes. The pre-
vious section showed that a X2k-register is strictly harder
that (n− k) set agreement. We prove now that such a X2k-
register is not harder than (n− k − 1)-set agreement.

Notice, in particular, that for a set X2 of two processes,
a X2-register is strictly harder than set agreement but not
harder than (n− 2)-set agreement.

We first show the following:

Theorem 12. If n > 2, a register is not harder k-set
agreement for 1 ≤ k ≤ dn/2e − 1

Proof. We proceed by contradiction. Assume there ex-
ists an algorithm A that implements (dn/2e − 1)-set agree-
ment using Σ. Consider now the environment where a ma-
jority of processes are correct. A implements (dn/2e − 1)-
set agreement using Σ in this environment too. But we
can emulate Σ in this environment. Hence A implements
(dn/2e − 1)-set agreement in this environment. Therefore
A implements (dn/2e − 1)-set agreement in a shared mem-
ory distributed system with a majority of correct processes.
This contradicts the results of [21, 13, 3] establishing the
impossibility of k-set agreement if k ≤ (dn/2e − 1).

Theorem 13. For all sets X2k+1 of 2k+1 processes with
1 ≤ k ≤ dn/2e a X2k+1-register is not harder than (n− (k+
1))-set agreement.

Corollary 14. For all sets X2k of 2k processes, a X2k-
register is not harder than (n− (k + 1))-set agreement.

Proof. (Sketch) Let X be any set of 2k + 1 processes
with 1 ≤ k ≤ dn/2e and without loss of generality assume
that X = {p1, ..., p2k+1}. We proceed by contradiction and
assume there exists an algorithm A that implements (n −
(k + 1))-set agreement using ΣX .

Consider algorithm B using failure detector Σ in a system
of 2k + 1 processes with Π = X such that each pi executes
in B exactly the same code as in A.

With algorithm A, each process p in Π \X has to decide
even if all other processes have crashed from the beginning.



As p has no information about failures, for all failure pat-
tern there is run in which p decides without receiving any
message; in this case it decides its own value. By an easy
induction, for all failure patterns there is run in A in which
all processes in Π \ X that decide in this run, decide their
own value without receiving any message.

Then it is easy to verify that for each run of B, there exists
a run of A in which (1) pi in X has the same behavior, (2) all
processes in Π\X decide their own values and, (3) messages
from processes in Π\X are delayed until the last decision of
processes in X. As A implements (n−(k+1))-set agreement
then the processes of X decide at most n − k − 1 − (n −
2k − 1)) = k values. But then B using Σ implements k-set
agreement contradicting Theorem 12.

6. CONCLUDING REMARKS
Failure detectors for set agreement have been extensively

investigated in the distributed computing literature, e.g. [20,
19, 17, 12, 18, 22, 7]. Most of these papers typically seek
the weakest failure detector to implement set agreement in
a shared memory model where registers are given as black-
boxes. In a sense, the results of the present paper mean
that determining the weakest failure detector to implement
set agreement in a shared memory would not automatically
yield the weakest in message passing. This contradicts for
instance the conjecture of [22], that both the register and
set agreement abstractions would require the same failure
detector in a message passing system: we prove here that
our new failure detector σ is powerful enough for set agree-
ment but not sufficient for a register. In fact, we also prove
in the appendix that anti−Ω, the weakest candidate for set
agreement in shared memory [22] does not implement set
agreement in message passing.

The weakest failure detector to implement a register was
determined in [8, 10]. The observation that even if a shared
object O cannot implement an object O′, the failure infor-
mation needed to implement O might reveal sufficient to
implement O′ was first made in [9]. It was shown in [16]
that a register shared by two processes is equivalent to one
shared by any number of processes and this might seem to
contradict our results. In fact, what is actually shown in [16]
is that any number of registers shared by two processes can
be used to implement a register shared by any number of
processes. In our case, when we consider a k-register, we ac-
tually mean one register shared by a particular subset of k
processes. Relations between set agreement and atomic ob-
jects were established in [11]. A partitioning approach was
proposed in [7] to systematically weaken failure detectors for
k-set agreement. At a high level, σ, when choosing a sub-
set of active processes, makes indeed some kind of partition.
However, σ is strictly weaker than the result of a partition
applied to Σ.
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[22] P. Zieliński. Anti-Ω: the weakest failure detector for
set agreement. Technical report, UCAM-CL-TR-694,
2007.

Appendix
A. σ IS STRICTLY HARDER THAN ANTI−Ω

Zielinski established in [22] that anti − Ω is the weak-
est failure detector to implement set agreement in an asyn-
chronous shared memory system equipped with registers.
Each query to anti−Ω returns a single process id; the spec-
ification ensures that there is a correct process whose id is
returned only finitely many times. We show in this section
that (1) anti−Ω is not sufficient to implement set agreement
in an asynchronous message passing system (Sec. A.1) and
(2) σ is strictly stronger than anti− Ω (Sec. A.2).

From (1) we deduce that anti−Ω is not the weakest fail-
ure detector to implement set agreement in an asynchronous
message passing system. We also deduce from (2) that σ is
not the weakest failure detector to implement set agreement
in a shared memory equipped.

A.1 anti−Ω does not implement set agreement

Lemma 15. No algorithm implements set-agreement with
anti− Ω.

Proof. Assume there is an algorithm that implements
set agreement using anti− Ω.

Consider a failure pattern F1 in which all processes are
crashed from the beginning (at time t0) except p1. Let H1

be any a failure detector history of anti − Ω(F ). Let r1
be any a run with this failure pattern and failure detector
H1. By the termination property of set agreement, there is
a time t1 at which p1 decides. By the integrity property of
set agreement p1 decides its own proposed value.

Consider a failure pattern F2 in which all processes are
crashed from the beginning except p2. Let H be any failure
detector history of anti − Ω(F2). Let H2 be any failure
detector history where for all t ≤ t1 H2(p, t) = H1(p, t)
and otherwise H2(x, t′) = H(x, t′). H2 is a failure detector
history of anti−Ω(F2). Consider now a run r2 with failure
pattern F2 and failure detector history H2 such that p2 takes
its first step at time t1 + 1. By the termination property of
set agreement, there is a time t2 ≥ t1 at which p2 decides.
As p2 has not received any message from any other process,
by integrity property of set agreement, p2 decides its own
proposed value.

We construct in this way a series of n failure patterns,
failure detector histories and runs. Each time we can indeed
extend the failure detector history because anti − Ω is an
eventual failure detector.

Consider now a failure pattern F in which all processes
are correct. Hn is a failure detector history of anti− Ω(F )
for this failure pattern. Consider a run for failure pattern
F and failure detector history Hn in which, for all i, (1) pi
takes its step between ti−1 and ti as in ri and takes no other
step before tn+1, (2) all messages sent by pi are delayed
after time tn+1. This run is indistinguishable from ri for pi.
Hence, at time ti, pi decides its own proposed value. Then
all processes decide their own initial values contradicting the
agreement property of anti− Ω.

A.2 σ is strictly stronger than anti− Ω

We first give an algorithm, depicted in Figure 6, that emu-
lates anti−Ω using σ. The emulated failure detector history
is abstracted by the variable output. All processes query
their failure detector and know if they are in the active set



Code for pi:

1 nonactive← ∅; active← ∅
2 start task 1 and 2

3 task 1:
4 upon received (NONACTIV E, p)
5 if p 6∈ nonactive then
6 send(NONACTIV E, p) to all
7 nonactive← nonactive ∪ {p}

8 upon received (ACTIV E, p)
9 if p 6∈ active then
10 send(ACTIV E, p) to all
11 active← active ∪ {p}

12 task 2:
13 if queryFD() = ⊥ then
14 send(NONACTIV E, pi) to all
15 nonactive← nonactive ∪ {pi}
16 else
17 send(ACTIV E, pi) to all
18 active← active ∪ {pi}
19 while active ∪ nonactive 6= Π
20 output← min{p|p 6∈ active ∪ nonactive}
21 min← min{p|p ∈ active}
22 max← max{p|p ∈ alive} (* active = {min, max} *)
23 output← min
24 if pi = min then
25 while queryFD() 6= {p} do ;
26 output← max
27 send(CHANGE) to max
28 else
29 wait until received (CHANGE)
30 output← max

Figure 6: anti− Ω � σ

of σ or not. Then all processes broadcast a message indicat-
ing that they are alive and whether they are in the active
set or in the non-active one. Then all processes collect the
messages that have been sent in sets active and nonactive.

If a process p is crashed from the beginning, p will never
be in active∪nonactive and p can be chosen as the value of
the emulated failure detector history. If active ∪ nonactive
contains all the processes, then all the processes know the
set of active processes. In this case output will be one of the
processes of the active set. Let p and q be the processes in
the active set and assume p < q. To determine which process
has to be output, we use again σ. There are two cases to
consider: (A) p is faulty or p and some other process are
correct and (B) p is the only correct process. In case (A),
the output is p at every process: this gives a correct history
of anti − Ω. In case (B), the output must be changed. To
detect this latter case, p queries σ. By the completeness and
the non-triviality properties of σ , there is a time after which
the query returns {p}. In this case p changes its output to
q. Because it is possible that the query of σ returns {p} to
p even if q is correct, p indicates to q, by sending a message
CHANGE, that it has changed its output. This is done to
prevent the case where p outputs q and q outputs p when p
and q are the only correct processes.

Lemma 16. anti− Ω � σ

Proof. The algorithm of Figure 6 uses σ to emulate
anti − Ω. We have to show that there is a correct process

whose id is returned to all correct processes only finitely
many times. Consider a failure pattern F , a failure detector
history H of σ(F ) and a run r of the algorithm of Figure 6.
Let A be the set of active processes given by H. Assume
A = {p, q} with p < q. We denote by outputtp the value of
output of p at time t.

Note that the mechanism of sending and forwarding for
ACTIV E and NONACTIV E implements a reliable broad-
cast: if a correct process receives such a message then all
correct processes receive this message. And so eventually all
correct processes have the same sets active and nonactive.
There are two cases to consider:

1. active ∪ nonactive 6= Π: Let x be the process with the
minimal identity in Π − active ∪ nonactive. As the
communication is reliable, x is faulty. The choice of
this process gives a correct failure detector history for
anti− Ω.

2. active ∪ nonactive = Π and p finds at some time t
H(p, t) = {p}: In this case, for any time t, for all pro-
cesses x ∈ Π \ F (t): outputtx = p or outputtx = q. If
there is some correct process in nonactive then these
values of outputx constitute a correct failure detector
history for anti − Ω. If there is no correct process in
nonactive then there are again three cases to consider:

(a) p is the only correct processes: in this case by the
completeness property of σ, there is a time t af-
ter which H(p, t) = {p}, and for any time t′ ≥ t,

outputt
′
p = q. These values of output constitute a

correct failure detector history for anti− Ω.

(b) q is the only correct process: by the completeness
property of σ, there is a time t after whichH(q, t) =
{q}, and so, by the intersection property, p (when
it is alive ) cannot get H(p, t) = {p}. Hence p
never sends a CHANGE message to q. Therefore,

for any time t′ ≥ t, outputt
′
q = p. These values of

output constitute a correct failure detector history
for anti− Ω

(c) p and q are correct: if p finds at some time t
H(p, t) = {p} then p and q change their output:
outputtq = q and outputtp = q and never change af-
ter that. If p never finds at any time t H(p, t) =
{p}, p and q never change their output: outputq =
p and outputp = p. In all cases, as p and q are
correct, then these values of output constitute a
correct failure detector history for anti− Ω.

A Corollary of Lemma 15 is that the reverse is not true.
And so σ is indeed strictly weaker than anti− Ω.

Corollary 17. σ 6� anti− Ω

Proof. Assume that σ � anti − Ω. As σ implements
set-agreement, anti − Ω implements set-agreement, contra-
dicting Lemma 15.


