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A similar pattern of deficits in executive function and neuroanatomical abnormalities is shared between
22q11.2 deletion syndrome (22q11DS) and schizophrenia, suggesting that common cerebral alterations
may lead to cognitive dysfunction and promote the appearance of psychotic symptoms in 22q11DS indi-
viduals. Specifically, there is increasing evidence for involvement of the cingulate gyrus (CG) in executive
dysfunction and the expression of positive symptoms in schizophrenia. The aim of our study is to exam-
ine CG morphology in a 22q11DS population and its potential role as a cerebral marker of executive
dysfunction and the manifestation of psychotic symptoms. Using region of interest (ROI)-based analysis,
we compared CG volumes from 58 children and adults affected by 22q11DS with 64 healthy age- and
gender-matched controls. After covarying for total cranium grey matter and age, a bilateral reduced CG
grey matter volume, driven by a decrease in anterior CG cortex, was observed among 22q11DS patients.
Further post hoc analyses suggest correlations between right CG cortical reductions, low-executive func-
tioning and the occurrence of psychotic symptoms. The CG structural abnormalities observed in 22q11DS
are consistent with previous reports in schizophrenic patients and are associated with pre-morbid cogni-
tive impairments. The mechanisms by which these changes may modulate executive functioning and the
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expression of psychosis are discussed.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Recent studies suggest that individuals at high-risk for psychosis
demonstrate structural abnormalities in the cingulate gyrus (CG)
(Pantelis et al., 2003), especially reduced grey matter in the ante-
rior cingulate (Borgwardt et al., 2007; Yamasue et al., 2004). As
part of the limbic system, the CG is involved in executive func-
tion and shares numerous connections with prefrontal cortex and
hippocampus (Bush, Luu, & Posner, 2000), two other regions sig-
nificantly altered in schizophrenia (Gur, Keshavan, & Lawrie, 2007;
Suzuki et al., 2005). Moreover, cognitive impairments linked with
both of these structures, specifically executive function and work-
ing memory, are considered as putative endophenotypes and core
features for schizophrenia (Bilder et al., 2000; Mohamed, Paulsen,
O’Leary, Arndt, & Andreasen, 1999; Silver, Feldman, Bilker, & Gur,
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2003; Snitz, Angus, MacDonald, & Carter, 2006). Increasing interest
is given to identifying such potential endophenotypes, which rep-
resent important markers for the complex relationships between
genes, brain and related cognitive functions.

It is now established that almost a third of individuals affected
by 22q11.2 deletion syndrome (22q11DS), a neurogenetic auto-
somal dominant condition occurring in approximately 1 in 4000
live births (Oskarsdottir, Vujic, & Fasth, 2004), eventually develop
schizophrenia (Murphy, Jones, & Owen, 1999). Moreover, neu-
ropsychological deficits associated with schizophrenia are already
apparent in youngsters with 22q11DS. These deficits include
impairments in executive function, sustained attention and ver-
bal skills (Lewandowski, Shashi, Berry, & Kwapil, 2007). Studies on
schizotypal manifestations in 22q11DS show that half of the ado-
lescents with the syndrome experience transient positive psychotic
symptoms, such as hallucinations and delusions (Baker & Skuse,
2005; Debbané, Glaser, David, Feinstein, & Eliez, 2006). Auditory
hallucinations represent the earliest symptomatic manifestation of
psychosis in children with 22q11DS, which can be observed as early
as the age of 9 (Debbané et al., 2006a), and represent a powerful
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predictor for subsequent development of psychosis (Gothelf,
Feinstein et al. 2007; Poulton et al., 2000). These observations
lend support for the view of psychosis as a continuum (van Os &
Tamminga, 2007), according to which cognitive and clinical man-
ifestations of schizophrenia can be observed, at reduced levels of
expression, in individuals prone to psychosis (Brewer et al., 2006).

As previously mentioned, subjects at high-risk for psychosis
display brain morphological changes in addition to cognitive
changes compared to healthy individuals. Neuroimaging studies
of 22q11DS describe how cerebral alterations in the syndrome
relate to schizophrenia (Chow, Zipursky, Mikulis, & Bassett, 2002;
Zinkstok & van Amelsvoort, 2005). Individuals with 22q11DS dis-
play general structural brain abnormalities, including reduced
total brain tissue, grey and white matter volumes (Eliez, Schmitt,
White, & Reiss, 2000; Kates et al., 2001), increased ventricular and
basal ganglia volumes (Eliez, Barnea-Goraly, Schmitt, Liu, & Reiss,
2002), decreased thalamic, hippocampal as well amygdala volumes
(Bish, Nguyen, Ding, Ferrante, & Simon, 2004; Debbané, Schaer,
Farhoumand, Glaser, & Eliez, 2006; Deboer, Wu, Lee, & Simon,
2007), and a reduction in cingulate grey matter density (Simon et
al,, 2005). In schizophrenic 22q11DS subjects compared to non-
schizophrenic, further anatomical differences include decreased
whole-brain total volume and total white matter and increased
total and sulcal cerebrospinal fluid volume (van Amelsvoort et
al., 2004). These results provide evidence for a specific pattern of
schizophrenic-like cerebral alterations in 22q11DS. Additionally,
the executive function deficits in 22q11DS (Lewandowski et al.,
2007) have been closely related to structural abnormalities in the
anterior CG in schizophrenia (Carter, MacDonald, Ross, & Stenger,
2001; Morey et al., 2005; Szeszko et al., 2000).

Research has demonstrated that structural cerebral alter-
ations may disrupt related cognitive function (Bush et al., 2000;
Karmiloff-Smith et al., 1998), potentially sustaining resulting psy-
chopathological manifestations such as hallucinations (Aleman &
Largi, 2008). Frith, Friston, Liddle, & Frackowiak (1992) suggests
that the anterior CG is key to positive symptom activity, and recent
research supports this claim (Allen, Largi, McGuire, & Aleman,
2008). In the verbal self-monitoring hypothesis proposed by Frith
et al. (1992), positive symptoms involve misattributing the ori-
gin of self-generated mental events (thoughts, intentions, internal
speech) to a source other than the self. These self-monitoring
deficits, shown to involve the anterior CG (Allen et al., 2007),
can promote the expression of hallucinations (Aleman & Largi,
2008). Accordingly, both structural and functional alterations in
the anterior CG are present among psychotic patients with pos-
itive symptoms (Choi et al., 2005; Shergill, Brammer, Williams,
Murray, & McGuire, 2000; Wang et al., 2007). Therefore, given
that 22q11DS patients are particularly prone to experience posi-
tive symptoms like hallucinations from a young age (Baker & Skuse,
2005; Debbané, Glaser et al., 2006), a careful analysis of CG struc-
ture and associated clinical symptoms seems worthwhile.

The aim of this study is to examine CG structure and its poten-
tial relationships with executive dysfunction and positive psychotic
symptomatology in a sample of individuals with 22q11DS.

To accurately measure CG morphology, we employed a ROI-
based analysis method for its high sensitivity and specificity, rather
than voxel-based morphometry (VBM)-analysis, which can some-
times produce artifactual results (Eckert et al., 2006). We conducted
this research on a large sample of affected children, adults and
healthy controls. As suggested by previous VBM results (Simon et
al., 2005), we expected CG volumes to be reduced in 22q11DS sub-
jects. Following previous reports on executive dysfunction and CG
alterations in schizophrenic patients (Carter et al., 2001; Morey et
al,, 2005; Szeszko et al., 2000), we explored whether altered CG
morphology is associated with the deficits in executive function

frequently observed in 22q11DS (Lewandowski et al., 2007). Finally,
given evidence for an implication of CG integrity in the expression of
positive psychotic symptoms, we expected to find structural differ-
ences in CG volume between psychotic and non-psychotic 22q11DS
individuals.

2. Materials and methods
2.1. Subjects

2.1.1. 22q11DS group

Fifty-eight patients with 22q11DS aged 6-37 years (mean =15.52 + 8.75) partic-
ipated in the study. Detailed demographic characteristics are presented in Table 1.
The sample had a mean full-scale IQ score of 69.03 & 11.79 as measured by the Wech-
sler Intelligence Scales for Children or Adults (WISC-III and WAIS-III) (Wechsler,
1991, 1997). The 22q11.2 deletion was confirmed in all patients using PCR direct
sequencing. Written informed consent was received from all participating subjects,
as well as the parents of subjects younger than 18 years of age, in accordance with
protocols approved by the Institutional Review Board of Geneva University School
of Medicine. At time of participation, a total of 10 patients were taking psychotropic
medication, five of which had a diagnosis of schizophrenia.

The presence of positive psychotic symptoms was determined through semi-
structured interviews with participants affected by 22q11DS and their parents. The
parents of participants younger than 18 years responded to a computerized DICA-
P (Reich, 2000), administered by a child and adolescent psychiatrist (S.E.). DICA-P
software generated DSM-IV diagnoses as well as a listing by diagnostic criteria of all
symptoms reported as present or absent. The DICA-P was supplemented with the
K-SADS-PL (Kaufman et al., 1997) for evidence of psychosis and mood cycling. Par-
ticipants older than 18 years were interviewed separately from their parents by the
same psychiatrist (S.E.) using the SCID-I to generate DSM-IV diagnoses and criteria
(First et al., 1993). This procedure was supplemented with the SADS-PL. The “degree
of psychosis” scale (Table 1) represents a description of patients’ psychotic symp-
toms and the severity. This scale has been used in a previous publication (Debbané,
Glaser, & Eliez, 2008).

2.1.2. 22q11DS subgroups

Psychotic (n=24, 11 males and 13 females) and non-psychotic (n=18, 7 males
and 11 females) subgroups were created from the 22q11DS group for post hoc
analyses. This division corresponds to a degree of psychosis >0 (psychotic) or =0
(non-psychotic). Only patients older than age 9 were used (n=42), given the age at
which psychotic symptoms become relevant in the clinical picture of children with
22q11DS (Debbané, Glaser et al., 2006).

These patients also were divided into high-executive functioning (n=20, 12
males and 8 females) and low-executive functioning (n =20, 5 male and 15 female)
subgroups. A composite score (WISC III-Digit span subtest+Stroop interference
score) was used to assess level of executive function. Only for the executive func-
tion analyses, two of the 42 subjects were excluded due to an absence of data.
Table 3 shows detailed group characteristics and Section 2.3 describes the executive
function composite score.

2.1.3. Control group

The comparison group consisted of 64 healthy individuals aged 6-39 years
(mean=15.02 £ 8.09) with amean IQ of 111.89 & 13.02. An absence of past or present
neurological and psychiatric disorders was established during a medical intake
interview and by using scores from standardized screening forms (Medical and
Developmental History Form, the CBCL for individuals younger than 18, and the
SCL-90 for those older than 18).

2.2. Brain imaging

MRI was performed on a Philips Intera 1.5T scanner; 124 contiguous coronal
slices with a thickness of 1.5mm and in-plane resolution of 0.94 mm x 0.94 mm
(TR=35ms, TE =6 ms) were acquired. Image optimization was performed in Brain-
Image 5.2 following standard procedures whose details have been published
elsewhere (Reiss et al., 1998; Schaer et al., 2006).

Manual circumscription of the cingulate gyrus ROI was performed based on a
previously published protocol (Woodward et al., 2006) developed by the principal
investigator (S.E.). Briefly, we first traced left and right CG on sagittal slices 5 mm lat-
eral to the midline. Sagittal landmarks were used to draw CG boundaries on coronal
slices. The CG was delimited medially by the inter-hemispheric cortical surface, and
laterally by a line between the deepest extension of the CG sulcus and the deepest
extension of CG grey matter adjacent to the corpus callosum (CC), and by the CG
sulcus superiorly and the CC or the calcarine fissure inferiorly. A dynamic Talaraich
grid (Talaraich & Tournoux, 1988) was then used to define four sub-regions of the
CG: ventral anterior (VA; corresponding to A/B/C boxes of Talairach), dorsal anterior
(DA; D/E1 boxes), cingulate body (CinB; E2/E3 boxes) and splenium cingulate (SCin;
F/G boxes) (Fig. 1).
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Table 1
Demographic and medical data
22q11DS Controls ANOVA
n Mean S.D. n Mean S.D. JE p
Age 58 15.521 +8.751 64 15.024 +8.099 0.106 0.745
1Q 58 69.034 +11.799 64 111.89 +13.023 360.102 0.001
Gender 1/2 1.569 +0.499 1.609 +0.491 0.202 0.654
Male=1 25 25
Female=2 33 39
Degree of psychosis? 58 1.21 +1.67 NA NA
Psychotropic medication 10 0
Schizophrenia 5 0

2 Degree of psychosis: 0 =no symptoms lifetime; 1 = hallucination or delusion (<3 lifetime); 2 = hallucination or delusion (>3 lifetime); 3 = hallucination or delusion (monthly

basis); 4 = hallucination or delusion (weekly basis); 5=DSM-IV schizophrenia diagnosis.

For all procedures, two independent raters, blind to the participants’ diagnoses
(FD, MS), traced the CG volumes of 10 randomly chosen subjects. Intra-class correla-
tion coefficients for total left and right cingulate tissue volumes were 0.94, indicating
good inter-rater reliability for measurements.

2.3. Statistics

An alpha of 0.05 (two-tailed) was used as the threshold for statistical signifi-
cance. Specific covariates including total grey or white matter volumes, age, IQ or
psychosis degree were used when necessary to exclude any non-significant free-
standing results.

2.3.1. Volumetric comparisons between 22q11DS and control groups

First, ANOVA were used to compare total brain tissue, grey and white matter
volumes between groups. Second, we used MANCOVA, with total cranium grey or
white matter volumes respectively as covariates, to compare CG grey and white
matter volumes bilaterally, and then to compare grey matter volumes from the four
CG sub-regions for both hemispheres. Significant regional differences were then
retested adding age as a covariate.

2.3.2. Post hoc volumetric analyses within 22q11DS and control subgroups

For the aforementioned reasons, only patients 9 years of age and older were
included in post hoc analyses.

First, we defined high- and low-executive functioning subgroups by averaging
the z-scores converted from standard scores obtained from the Digit Span and Stroop
interference tasks. These tests were specifically chosen given that the anterior CG
cognitive division is important for executive control (Bush et al., 2000). We then
divided our sample of 22q11DS subjects by high (z-score >0) and low (z-score <0)
executive-functioning individuals. An ANCOVA using age, IQ and degree of psychosis

Fig. 1. Sub-regions of the cingulate gyrus are shown: ventral anterior (red), dorsal
anterior (green), cingulate body (pink), splenium cingulate (blue). The ROI excluded
sub-genual cingulate gyrus.

as covariates, and executive function as a group factor was then performed to com-
pare high and low executive functioning subgroups on left/right CG grey matter
volumes.

Second, we employed ANCOVA, with age as a covariate and presence of psychotic
symptoms as a group factor to test the effect of psychosis on left and right CG grey
matter volumes.

Finally, we repeated the same procedure for posterior CG regions (splenium
cingulate sub-region), which were not expected to be related to executive function
or psychotic symptoms.

We subsequently tested for any significant relationships between executive
functioning and CG grey matter volumes within control subjects older than 9 (48
individuals split in 27 high- and 21 low-executive functioning control subjects).

2.3.3. Relationship between executive function and psychotic symptoms in
22q11DS

ANOVA with psychotic symptoms as group factor and the executive function
composite mean z-score as the dependent variable was used to test a poten-
tial relationship between level of executive-functioning and presence of psychotic
symptoms.

3. Results

3.1. Volumetric comparisons between 22q11DS subjects and
healthy controls

Subjects with 22q11DS showed a significant reduction in total
brain tissue and grey and white matter volumes compared to the
control group (total brain tissue: p=0.001; total cranium grey mat-
ter: p=0.000; total cranium white matter: p=0.001) (Table 2).
MANCOVA indicated smaller bilateral CG grey matter volumes
in 22q11DS compared to controls (Wilks Lambda: p=0.002, left:
p=0.025; right: p=0.003). Further delineation of the CG sub-
regions (Fig. 1) revealed that dorsal anterior and cingulate body
grey matter volumes were also reduced bilaterally (Wilks Lambda:
p=0.013; p=0.004 for left DA; p=0.002 for right DA; p=0.027 for
left CinB; p=0.004 for right CinB). Neither left nor right CG white
matter volumes significantly differed between groups. Adding age
as acovariate, we observed the same pattern of reduced CG volumes
across 22q11DS subjects.

3.2. Post hoc volumetric analyses within 22q11DS and control
subgroups

A significant reduction in right CG grey matter volume was
observed in the low-executive functioning 22q11DS subgroup
(p=0.02) compared to the high-executive functioning 22q11DS
subgroup. When comparing CG grey matter volumes and execu-
tive functioning within control subgroups, ANCOVA did not show
any significant differences between groups (p=0.142).

Further, a reduction in right CG grey matter in the 22q11DS psy-
chotic group compared to the 22q11DS non-psychotic group, as
well as a trend for reductions in the right DA (p=0.074) and CinB
(p=0.054) anterior sub-regions were observed (Table 3).
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Table 2
Volumetric comparisons between 22q11DS subjects and healthy controls
22q11DS (n=58) Controls (n=64) ANCOVA
Mean S.D. Mean S.D. F p

Total brain tissue? 1124.523 +138.71 1244.722 +102.87 29.915 0.001
Total cranium grey matter? 674.682 +85.813 743.839 +74.432 22.714 0.001
Total cranium white matter? 449.841 +90.035 500.883 +70.949 12.208 0.001
Cingulate gyrus

Total left grey matter 11.238 +1.721 12.597 +1.847 5.18 0.025

Total right grey matter 12.167 +2.36 14.274 +2.16 9.31 0.003

Total left white matter 6.94 +1.352 7.288 +1.214 0.004 0.951

Total right white matter 6.677 +1.534 7.247 +1.129 0.864 0.355
Ventral anterior grey matter

Left 2484 +0.889 2.862 +1.29 2.059 0.154

Right 3.296 +1.181 3.736 +1.232 1.925 0.168
Dorsal anterior grey matter

Left 1.904 +0.349 2314 +0.619 8.46 0.004

Right 2272 +0.536 2.784 +0.623 10.52 0.002
Cingulate body grey matter

Left 1.692 +0.321 1.957 +0.346 4.995 0.027

Right 1.739 +0.374 2.091 +0.378 8.721 0.004
Splenium cingulate grey matter

Left 5.156 +0.942 5.461 +0.945 0.003 0.957

Right 4.859 +1.025 5.661 +1.237 2.816 0.096

Note: Raw measurements of CG volumes are included in the table. Follow-up ANCOVA shows significant differences between groups after covarying for total cranium grey or

white matter volume. All volumes are expressed in cm?.
2 ANOVA was used to statistically compare volumes.

To test whether these results were related to deficits in exec-
utive function and psychotic symptoms observed in 22q11DS, we
performed the same analyses with the posterior segment of the CG
(splenium cingulate sub-region), and did not observe a significant
relationship with executive function or psychotic symptoms.

3.3. Relationship between executive function and psychotic
symptoms in 22q11DS

ANOVA with psychotic symptoms as a group factor and the
executive function mean z-score as a dependent variable indicated
a trend (p=0.064) toward a relationship between low executive
functioning and the presence of psychotic symptoms. Indeed, the
general distribution of psychotic symptoms among the low- and
high-executive functioning 22q11DS individuals shows that 70%
of the low-executive functioning subjects demonstrated psychotic
symptoms versus 40% in the high-functioning subgroup (Table 3).

4. Discussion

To our knowledge, this is the first investigation of the cingulate
gyrus structure using ROI-based analyses in 22q11DS individuals.
The results demonstrate bilateral reductions in CG cortical vol-
ume compared to normal controls, driven by a decrease in anterior
CG grey matter volumes, which remain significant after covarying
for age and total grey matter volume. Further, post hoc analyses
illustrated a reduction in the right CG grey matter volume in low-
executive functioning patients, associating right CG alterations in
22q1DS with executive function deficits. We also observed an over-
all right CG grey matter reduction in the participants with 22q11DS
reporting psychotic symptoms, and post hoc analyses revealed a
trend toward right anterior CG grey matter reduction in relation to
the presence of psychotic symptoms. Decreased statistical power
in our post hoc analyses may have prevented the identification of
specific CG sub-regional alterations linked to psychosisin 22q11DS.
Finally, we observed a trend toward a correlation between low-
executive functioning and the presence of psychotic symptoms.

Reductions in anterior cingulate grey matter volumes confirm
CG alterations in 22q11DS compared to healthy controls, which
were first reported by Simon and colleagues (2005) using voxel-
based morphometry analyses. These findings are also compatible
with anterior CG structural abnormalities found in individuals
at high-risk for psychosis (Borgwardt et al., 2007), as well as in
schizophrenia (Baiano et al., 2007). Using support from the litera-
ture on psychosis, in this discussion we will focus on the following
points: (1) the implication of a relationship between executive
function deficits and anterior CG changes; (2) the potential involve-
ment of the anterior CG in the expression of psychotic symptoms
in 22q11DS; and (3) suggestions for future explorations of brain
structure and cognitive functions leading to positive symptom
expression.

Cognitive studies have shown that executive function and work-
ing memory deficits related to the anterior CG (Carter et al., 2001;
Morey et al.,, 2005; Szeszko et al., 2000) are present in most
schizophrenicindividuals (Bilder et al.,2000; Mohamed et al., 1999;
Silver et al., 2003; Snitz et al., 2006). Neuroimaging studies have
directly linked these deficits to the CG. Indeed, executive and work-
ing memory tasks normally activate the caudal part of the anterior
CG(Bushetal.,2000), and a significant positive correlation between
the volume of the right anterior CG and the ability to perform a
go/no-go task has been previously reported (Bush et al., 2000).
Thus, the relationship between right CG cortical reductions and
low-executive functioning in 22q11DS patients may represent an
endophenotypic marker signaling neurocognitive deficits associ-
ated with schizophrenia. A recent study of children and adolescents
with 22q11DS reporting “schizophrenic-like” executive functioning
deficits (Lewandowski et al., 2007) further supports this idea.

Pronounced CG structural alterations in individuals with psy-
chosis and 22q11DS may provoke functional disruptions in a
cerebral network responsible for the development of positive
symptoms such hallucinations. The existing literature on high-risk
and schizophrenic samples implicates the CG in the pathology of
psychosis (Borgwardt et al., 2007; Pantelis et al., 2003; Yamasue
et al., 2004). Suzuki and colleagues (2005) suggest that loss of
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Table 3
Post hoc analyses among 22q11DS subjects aged above 9
Psychotic 22q11DS subgroup (n=24) Non-psychotic 22q11DS subgroup (n=18) ANCOVA
Mean S.D. Mean S.D. F p
Psychosis versus non-psychosis volumetric comparisons (n=42)
Age? 20.482 +7.842 16.255 +8.561 2.763 0.104
IQ 64.208 +10.668 72.111 +10.867 5.555 0.066
Cingulate gyrus
Total left grey matter 10.919 +1.729 11.661 +2.083 0.733 0.397
Total right grey matter 11.438 +2.53 13.485 +2.22 4.479 0.041
Dorsal anterior grey matter
Left 1.852 +0.325 1.908 +0.345 0.13 0.72
Right 2111 +0.552 2.519 +0.541 3.371 0.074
Cingulate body grey matter
Left 1.58 +0.282 1.748 +0.348 1.417 0.241
Right 1.602 +0.292 1.919 +0.483 3.937 0.054
High 22q11DS subgroup (n=20) Low 22q11DS subgroup (n=20) ANCOVA
Mean S.D. Mean S.D. F p
High versus low executive functioning volumetric comparisons (1n=40)
Age? 15.817 +6.91 20.062 +8.229 3.12 0.085
1Q? 72.2 +9.299 64.85 +11.065 5.171 0.029
Cingulate gyrus
Total left grey matter 11.75 +2.008 10.843 +1.735 1.293 0.324
Total right grey matter 13.615 +1.451 11.342 +2.859 6.142 0.020
Dorsal anterior grey matter
Left 1.915 +0.331 1.838 +0.291 0.279 0.730
Right 2.506 +0.419 2.136 +0.631 245 0.105
Cingulate body grey matter
Left 1.756 +0.314 1.556 +0.255 2.262 0.339
Right 1.918 +0.402 1.593 +0.362 3.576 0.117
Executive functioning-psychotic symptoms relationship
Psychotic subjects n=8 n=14
Non-psychotic subjects n=12 =
Psychotic subjects (n=22) Non-psychotic subjects (n=18) ANCOVA
Mean S.D. Mean S.D. F p
Executive function composite mean z-score? —0.217 +0.637 0.213 +0.789 3.641 0.064

Note: Raw measurements of CG volumes are included in table. Follow-up ANCOVA shows significant differences between groups. All volumes are expressed in cm?.

2 ANOVA was used to statistically compare groups.

inhibitory control, typically regulated in networks involving the
prefrontal cortex and the anterior CG (Kerns et al., 2004), may be
significant to the development of such symptoms, related to an
anterior CG grey matter volume reduction in schizophrenia (Choi
et al., 2005; Wang et al., 2007). Concordantly, Allen et al. (2008)
review several reports illustrating anterior CG activity deficits
during hallucinatory experiences. For example, the authors sug-
gest that abnormal anterior CG and temporal cortex activation
leads, in patients with auditory verbal hallucinations, to the mis-
attribution of inner speech to an external source (Allen et al.,
2007). Moreover, abnormal connections between the temporal
and anterior CG cortex also contribute to verbal self-monitoring
deficits, further sustaining auditory verbal hallucinations (Johns &
McGuire, 1999; Mechelli et al., 2007). Finally, consistent with our
structural findings of an altered right CG volume in 22q11DS
patients with psychotic symptoms, Shergill et al. (2000) report the
involvement of a large network of cortical areas prominently in the
right hemisphere, including CG, in auditory hallucinations.
Although our data point to an association between right CG
alteration, executive function and psychotic expression, it is dif-
ficult at this point to differentiate between the cause and effect
of their putative contributions. Considering that CG grey matter
reduction is a common finding among 22q11DS people compared

to healthy individuals, two developmental hypotheses may be
likely: (1) CG cortical alterations may disturb executive function-
ing in 22q11DS patients, thereby increasing the risk for psychotic
symptom expression, or (2) CG cortical alterations may directly
support hallucination-proneness thereby affecting executive func-
tion deficits in 22q11DS subjects. To date, longitudinal studies
in 22q11DS find that cerebral alterations, most notably in dorso-
lateral prefrontal cortex, are related to cognitive alterations (verbal
1Q decline) that accompany the rise of psychotic symptom expres-
sion (Debbané, Glaser et al., 2006; Gothelf et al., 2005). However,
a direct relationship between developmental brain abnormalities
and psychosis expression in 22q11DS has yet to be found (Gothelf,
Penniman, Gu, Eliez, & Reiss, 2007).

One limitation of our study is that we cannot exclude an effect
of 1Q concerning the structural results between 22q11DS subjects
and the control group. Indeed, the groups show significant differ-
ences in 1Q, which are likely correlated with brain grey matter
volume (Reiss, Abrams, Singer, Ross, & Denckla, 1996). Low IQ is
probably a general result of the many specific developmental fac-
tors interacting in 22q11DS, like the ones specifically tested in
this study. Covarying for IQ is an ongoing debate in research on
neurodevelopmental syndromes because it often means covarying
out the very effects in question. However, within-group analyses
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clearly show the association between right CG alteration and psy-
chotic symptoms in 22q11DS, independent of age or 1Q. Another
limitation is our inability to test for any effects of medication
between the 10 individuals with 22q11DS following pharmacolog-
ical treatment and healthy subjects because of the large variety
of psychotropic drugs (neuroleptic, anti-epileptic, benzodiazepine,
methylphenidate) prescribed to the participants. Finally, the assess-
ment of psychotic symptoms will necessitate finer evaluation
to better understand their developmental process in 22q11DS.
Future studies employing dimensional measures characterizing
frequency and intensity of hallucinations and delusions, and the
distress and perturbation caused by these symptoms, may help
to clarify the complex interactions between brain morphology,
cognitive profile and the unfolding of positive symptoms psy-
chosis.
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