INSTITUTE OF PHYSICS PUBLISHING

JOURNAL OF MICROMECHANICS AND MICROENGINEERING

J. Micromech. Microeng. 16 (2006) 1800-1810

doi:10.1088/0960-1317/16/9/007

Cantilever beam electrostatic MEMS
actuators beyond pull-in

Subrahmanyam Gorthi!, Atanu Mohanty' and
Anindya Chatterjee?

! Supercomputer Education and Research Centre, Indian Institute of Science,

Bangalore 560012, India

2 Mechanical Engineering, Indian Institute of Science, Bangalore 560 012, India

E-mail: subrahmanyam.gorthi@ gmail.com, amohanty@serc.iisc.ernet.in and

anindyal00@ gmail.com

Received 25 May 2006, in final form 28 June 2006
Published 26 July 2006
Online at stacks.iop.org/JIMM/16/1800

Abstract

The operational range of electrostatic MEMS parallel plate actuators can be
extended beyond pull-in in the presence of an intermediate dielectric layer,
which has a significant effect on the behavior of such actuators. Here, we
study the behavior of cantilever beam electrostatic actuators beyond pull-in
using a beam model along with a dielectric layer. The results from the
simple beam model are validated with 3D simulations performed in
CoventorWare™. Three possible static configurations of the beam are
identified over the operational voltage range. We call them floating, pinned
and flat; the latter two are also called arc-type and S-type in the literature.
We compute the voltage ranges over which the three configurations can exist
and the points where transitions occur between these configurations.
Voltage ranges are identified where bi-stable and tri-stable states exist. A
classification of all possible transitions (pull-in and pull-out as well as
transitions we term pull-down and pull-up) is presented based on the
dielectric layer parameters. Dynamic stability analyses are presented for the
floating and pinned configurations. For high dielectric layer thickness,
discontinuous transitions between configurations disappear and the actuator
has smooth predictable behavior, but at the expense of lower overall

tunability.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper presents a study of cantilever beam electrostatic
MEMS actuators beyond pull-in. The effects of an
intermediate dielectric layer on possible configurations of the
actuator and transitions between them are studied.

The behavior of electrostatic MEMS parallel plate
actuators before pull-in is studied extensively in the
literature [1-8].  These actuators can be meaningfully
modeled beyond pull-in in the presence of an intermediate
dielectric layer between the electrodes. Many MEMS
devices operate beyond pull-in, e.g., capacitive switches
[9, 10], zipper varactors [11, 12] and tunable CPW
resonators [13].

0960-1317/06/091800+11$30.00 © 2006 IOP Publishing Ltd Printed in the UK

Simple lumped element models of MEMS actuators with
a single degree of freedom [14—17] result in easy calculations
but fail to capture details of the behavior beyond pull-in. At
the other end of modeling complexities, simulations of MEMS
actuators beyond pull-in have been done using 3D models
[18]. Similar approaches have been used in studying the
hysteresis characteristics of electrostatic actuators [19]. 3D
models [2, 18, 19] lead to a detailed and accurate prediction,
but simulations are expensive in time and computation,
particularly for problems involving mechanical contacts. In
this paper we employ a 1D analysis that, at an intermediate
level of complexity, gives useful results with reasonable effort.
The results with the 1D beam model are validated with 3D

simulations in CoventorWare™.
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Figure 1. Schematic view of the cantilever beam electrostatic
actuator.

This paper proceeds as follows. We discuss the possible
equilibrium configurations of the beam actuator. Of these,
two stable configurations exist beyond pull-in, denoted as
pinned (arc-type) and flat (S-type) configurations [20, 21].
The beam with free end not touching the dielectric
surface is called floating. The governing equations and
the details of our finite-difference scheme are presented
for the three configurations. Solutions show that multiple
stable configurations can coexist. Transition points between
configurations are computed. Dynamic stability analyses are
conducted to further understand the nature of solutions and the
behavior of the system. Finally, the results are validated with
3D simulations using CoventorWare™.

The main contribution of this paper is a classification of all
possible transitions along with the associated dielectric layer
thickness.

2. Possible configurations

The cantilever beam electrostatic actuator is illustrated in
figure 1. It has three possible configurations in the entire
operational range. These configurations differ under the
boundary conditions at the free end of the cantilever beam
and are as follows.

(1) Floating configuration. The cantilever beam has no
contact with the dielectric layer and is illustrated in
figure 2(a). The bending moment and shear force at the
free end are zero.

(ii) Pinned configuration. The free end of the cantilever beam
touches the dielectric layer but is free to pivot about
the contact point and is illustrated in figure 2(b). The
deflection (measured from the dielectric layer) and the
bending moment are zero at the touching end.

(iii) Flat configuration. A non-zero length of the beam is
in contact with the dielectric layer, as illustrated in
figure 2(c). The contact length of the cantilever beam

Dielectric Layer

Table 1. Boundary conditions at the free end of the cantilever beam
for the three configurations.

Type of configuration ~ Boundary conditions

Floating ') =0;z"() =0
Pinned z()=0,7"()=0
Flat z2(a) =0;7'(a) =0;2"(a) =0

varies with the applied voltage. Deflection measured
from the dielectric layer, slope and moment are zero at the
point separating the contact and the non-contact regions
of the cantilever. The point is denoted by x = a in
figure 2(c). Note that, unlike the previous two
configurations, the shear force is the only unknown
boundary condition at this point. Here, the extent of
the domain (the non-contacting region) is not known
in advance; the previous two configurations represent
boundary value problems while the flat configuration
represents a free boundary problem. We will not concern
ourselves unduly with this distinction, as will be seen
below.

The boundary conditions discussed so far are summarized
in table 1. The parameter / in the table denotes the length of the
beam. Atthe clamped end of the cantilever beam, the boundary
conditions are the same for all the configurations: the slope is
zero and the deflection (measured from the dielectric layer) is
equal to the zero bias height of the cantilever beam.

3. Modeling and simulations

The non-contact portion of the beam for all the three
configurations is governed by the same equation.
3.1. Governing equation

The 1D equation governing the mechanical deformation of an
Euler—Bernoulli beam is [5, 22]

prde, 2y )
ot TP T e
where
GowV2
S LA )

5 -
Z(Z + g)

F, is the electrical force per unit length. The variables x and
z in the above equations denote the position along the length
and the lateral deflection of the beam, respectively, and ¢ is the
time. Effects such as step-ups, stress-stiffening and softened

Substrate
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Figure 2. Possible configurations of the cantilever beam actuator. (The scale in the vertical direction is exaggerated.) (a) Floating

configuration, (b) pinned configuration and (c) flat configuration.
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Table 2. Description of the parameters in the governing equation.

Parameter  Description
i Beam length
w Beam width
ty Beam thickness
tg Dielectric layer thickness
o Mass per unit length of the beam
g Zero bias height of the cantilever beam
3

1 Moment of inertia of the beam cross-section (: uirz’ >
E Young’s modulus of the beam material
€ Permittivity of free space
€ Relative permittivity of the dielectric or

dielectric constant
14 Applied voltage

contact surfaces are not included in this model. The parameters
in the governing equation are described in table 2.

The common practice [5] of using a fringing field
correction such as 0.65 % is not adopted here. In the post-
pull-in regime, the cantilever beam has portions very close
to the dielectric, where the fringing field is small. Further,
neglecting the fringing field makes the analysis simpler and
provides useful insights. Finally, calculations including the
fringing field, though slightly complex, could if necessary be
carried out using the approach adopted in this paper.

3.2. Normalized equation

The length quantities x and z (refer to figure 1) are normalized
with respect to the length and zero bias height of the beam.
The time ¢ is normalized with respect to a constant 7, defined
in such a way that the parameter p in equation (1) becomes
unity. The normalized quantities are as follows:

L _ X

=7, 3)

s=12, )
8

p=L 5)

-

pl*
where T = T (6)

Two other non-dimensional quantities are defined as follows:

g [amy %
TV 2EIg3
13
h=-2. 8)
8€r
The governing equation becomes
942 523 V2
oy = ©)
9%t 972 (Z+h)?

For static analysis, there is no time dependence and the
equation reduces to

4z (2
¥ = —Avi- (10)
dz* Z+h)?
The hats in the normalized equation are now dropped for
convenience. Equation (10), with different right-end boundary
conditions for each of the three configurations, is solved using
finite differences. Some details follow.
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3.3. Finite difference approximation

The derivatives are replaced by finite difference
approximations, and the resulting system of algebraic
equations is solved. Where boundary conditions involve
derivatives, we introduce suitable fictitious points beyond the
physical boundaries.

Specifically, a five-point central difference scheme is
implemented because a fourth-order derivative is involved.
Two fictitious points are introduced on each side of the non-
contact length of the cantilever beam.

The non-contact length of the cantilever beam is divided
into a uniform grid of N points along the x-axis with a step size
of Ax. These points are denoted by x;, x, ..., xy_, Xy. Let
z; denote the beam deflectionatx = x;, j =1,2,..., N. Let
the fictitious points be denoted by zg, z_; on the left side and
ZN+1, Zn+2 on the right side of the non-contact length with
the same step size, Ax. Hence, totally N + 4 points are
considered along the x-axis. The finite difference
approximations of derivatives of z at x = x;, derived from
the five-point central difference scheme, are as follows:

,_ Zj=2 —8Zj71 +8Zj+l —Zj42

.= , 11
% 12(Ax) (i
/= —Zj72+16Zj—1 —30Zj+16Zj+l —Zj2 (12)
J 12(Ax)? ’
—Zi oy + 27 1 —27:1+ g
/]'//: Zj 2 Z/ 1 3Z/+l Zj+2’ (13)
’ 2(Ax)
i —4zj1+6z; —4zj01 + 2
Z/]_/// — Zj-2 Zj-1 ZJ4 Zj+l ZJ"'Z’ (14)
' (Ax)
forj=1,2,...,N.
The governing equation (10) in terms of finite
differences is
Ax)*V?
Zj2 —4zjo1+6z; — 4z +Zjn + BV, 15)

(z jt h)2
The derivatives under the boundary conditions are also
replaced by the finite difference approximations. The boundary
conditions at the clamped end of the three configurations,
written in terms of finite differences, are

(16)
a7

=1
z-1 —8z0+8z —z3 = 0.
At the other end of the beam, the boundary conditions in terms
of finite differences for the three configurations are as follows.

(i) Floating configuration.

—zy—2 + 16zy_1 —30zy + 162541 — 2zy+2 =0, (18)
—ZN-—2+2Zn-1 — 2Zn41 +2ZN42 = 0. (19)

(ii) Pinned configuration.
zy =0, (20)
—zn—2 +16z2y_1 —30zy + 162541 —2y+2 = 0. (21)

(iii) Flat configuration.

v=0 (22)
Zv—2 — 8zn—1 +8zn+1 — Zy42 =0, (23)
—IN-—2+ 16ZN_1 — 3OZN + 16ZN+1 —IN+2 = 0. (24)
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The solution procedures adopted for the floating and
pinned configurations are identical; the flat configuration has
a minor addition.

In the floating and pinned configurations, the non-contact
length is known and is equal to 1 for the normalized
case. Hence, z values at N + 4 points are the only
unknowns. Four boundary conditions are known in each
of these two configurations. Equation (15) computed for
j =1,2,..., N together with the four boundary conditions
of the corresponding configuration form a system of N + 4
nonlinear algebraic equations. The system of nonlinear
equations is solved through the Newton—Raphson iterative
technique [23], and z values at N + 4 points are computed.

For the flat configuration, any one solution determines all
other solutions by a scaling law discussed in the following
subsection. The procedure to find one solution, for which we
assume that the non-contacting length is unity, is as follows. V
is initialized with an arbitrary value. The corresponding value
of z is computed using the three boundary conditions at the
flat end (at z) and the zero-slope condition at the fixed end
(at z1). In other words, equation (16) is initially ignored.
With V given, this is enough to determine the solution. The
computed value of z;, at the fixed end, should be unity. The
chosen V is iteratively modified to match equation (16). Once
this V is found, all other flat solutions for the same / can
be found by scaling as discussed in the following subsection.
All the numerical computations in this paper are done with
N = 1001 (1000 intervals).

This concludes our description of the finite-difference
scheme.

The governing equation (10) includes a nonlinear term.
The system can have multiple solutions, and the solution
obtained depends on the initial guess made in the iterative
procedure. Physically feasible solutions avoid interpenetration
between the beam and the dielectric layer. Such physically
feasible equilibrium solutions may or may not be dynamically
stable. For the present, we concentrate on obtaining the
equilibrium solutions (for stability analysis, see section 5).

3.4. Scaling law in the flat configuration

In the flat regime, a scaling law is found. Due to this scaling,
if the solution is computed at one voltage, solutions at other
voltages can be found by scaling without solving the governing
equation again. Let

£=xVV. (25)
Equation (10) becomes
d*z -1
A 26
dé*  (z+h)? 20

Let the & value at x = a (see figure 2(c)) be denoted by &.
The boundary conditions expressed in terms of & are

2(6=0=1 JE=0=0
WE=&)=7E=£)=27"¢6=%)=0.

It is now evident from equations (26) and (27) that neither the
governing equation nor the boundary conditions depend on the
applied voltage. The value of &, and the function z(¢) for a
given voltage can be computed from the numerical procedure

and
27

described previously; they are fixed for a given /4. Let « be the
physical (x) non-contact length of the beam for any V. Then,

avV = &) = constant. (28)

Similarly, z(§) computed at one voltage can be used to compute
z(x) at all voltages. We note that this scaling approach is
applicable even to models [5, 24] that account for the fringing
field.

4. Effects of the dielectric layer

The governing equation (10) has only two parameters V and 4.
h is proportional to the dielectric thickness for a given zero bias
height and dielectric constant. Similarly, V is proportional to
the applied voltage. We study solutions for fixed / and varying
V, for a range of values of /.

The following subsection gives details regarding voltage
limits of the three possible configurations of the beam.

4.1. Normalized voltage (V') limits of configurations
(1) Floating configuration. The lower limit (Vﬁﬂ;‘;) is,
trivially, zero. The upper limit (Vjn¥) is decided either
by disappearance of solutions via a so-called turning point
(for small 4, as discussed later) or by (for large /) contact
with the dielectric layer. Beyond this upper limit, the
actuator switches to the pinned or flat configuration.

(ii) Pinned configuration. The end of the beam can, in
principle, always be held pinned (say, by an external
agent) against the dielectric layer by a suitable additional
vertical force at the end point. If that force needs to
act downward, then such a pinned solution is physically
unfeasible because when we remove that force, the end
point moves up. Upward acting forces are feasible
because when we remove that force, the end point tends to
move down and presses against the dielectric layer which,
through mechanical contact, can apply an upward force.
The lower limit (V") is therefore the voltage at which
the shear force at the contacting end of the cantilever
beam becomes zero (and the boundary conditions of the
pinned configuration are also satisfied). Below Vp'i“rf", the
dielectric layer would have to mechanically pull down on
the free end; since it cannot do so, the actuator is in the
floating configuration. The upper limit (Vi) is decided

either by disappearance of solutions via a so-called turning

point (for small %, as discussed later) or by (for large /)

extended contact with the dielectric layer (zero slope at

the end). Beyond this upper limit, the actuator switches

to the flat configuration. The transition at ( l;}}j”‘) has not
been elucidated in the literature and is one of post-pull-in
insights offered in this paper.

(iii) Flat configuration. The lower limit (VA“;:“) is that at which
the non-contacting length of the beam equals the total
length of the beam. There is no upper V limit for the
flat configuration. The non-contacting length approaches
zeroas V — oo.

The V limits for the three configurations, computed for varying
h values, are shown in figure 3. Possible transitions between
configurations are shown in figure 4, based on figure 3.
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Figure 3. V limits of the three configurations.

4.2. Transitions

Four transitions are identified, as suggested by figure 4. The
following insights into transitions from one configuration to
another would be impossible with lumped parameter models
and somewhat obscured with 3D models. These simple
insights form one of the main benefits of the beam model
for the actuator.

4.2.1. Pull-in. Pull-in occurs when the floating configuration
solution disappears, as discussed earlier. Figure 5 shows the
magnitude of the pull-in discontinuity for varying % values.
The jump in the height at the free end of the beam at the point of
transition results from a turning-point bifurcation, as discussed
later. Here, we note (figure 5) that the magnitude decreases
essentially linearly with increasing 4. It is interesting to note
that for 7 < 0.03 (figure 4(a)), the transition from floating
has to be to the flat configuration. For 0.03 < h < 0.07
(figure 4(b)), the transition could be to either the pinned or the
flat configuration, and only a full nonlinear dynamic analysis
(not attempted here) can resolve which configuration is
reached immediately after pull-in. For 2 > 0.07, the transition
has to be to the pinned configuration. Upon increasing
the voltage, regardless of /s, any pinned configuration will
transition to a flat configuration.

0.6 T T

04f 1

Jump at free end

h

Figure 5. Variation of the magnitude of the pull-in discontinuity
with A.

— —(Slope)

0.5r

0 . . . .
0.2 0.4 0.6 0.8 1 1.2
-V

Figure 6. Pull-down: jump-in slope at the touching end of the beam.

4.2.2. Pull-down. The transition from the pinned to the flat
configuration is referred to here as pull-down. The pinned
configuration has a non-zero slope at the beam’s end point
while the flat configuration has a zero slope. As is the case for
pull-in, a discontinuous transition from pinned to flat occurs
due to a turning-point bifurcation, as discussed later. Figure 6
shows the pull-down discontinuity for & = 0.01. As V is

1 1 ' !
< float < float ———Px
1)
' \ W fla——> ' o e flat—>
1 & pin T—5 ' > ! & pin —.—|. > >
0o V" Vi Ve Vs 0 Vo Viiar Viioas Ve
(@ 0<h<0.03 (b) 0.083 <h <0.07
st+—— float > r— flat > . < pin —DIF—— flat —>
: D L — y F——itu—=w .
0 Vo' Ve Vi Ve 0 VET Vi Ve = Vil

(¢) 0.07 <h <0.40

(d)0.40<h<1.24

4— float —DIt—— pin —D>K— flat —>

0 maz min mar. min >
Vfloai = an V;m/x,” = Vfla’t,'
(e h>1.24

Figure 4. Classification of possible transitions based on the numerical results of figure 3.
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Figure 7. Variation of the magnitude of the pull-down discontinuity
with A.

increased from Vp‘}}ii“, the magnitude of the slope at the touching
end point decreases faster and faster until the curve turns
around (not shown here; see the discussion later) and the
pinned solution disappears. Figure 7 shows the magnitude of
the pull-down slope discontinuity for different 4. For i > 0.4,
the discontinuity in the transition disappears.

4.2.3. Pull-up. Starting in the flat configuration, a transition
is possible to a pinned configuration. Here, we refer to
such a transition as pull-up. Again, for 4 > 0.4, pull-up
is continuous (figure 4). In addition, for 2 < 0.07, it is
not clear without nonlinear dynamics analysis (not conducted
here) whether the transition at Vf{gi" occurs to the pinned or
the floating configuration. Note that any pinned configuration
must eventually transition to the floating configuration as V is
decreased.

4.24. Pull-out. Finally, the transition from either pinned
or flat to floating is called pull-out. Note that, as is widely
observed in experiments, pull-out does not in general occur at
the same voltage as pull-in; however, for large enough #, it
does. This consistency in physical behavior may be useful in
applications.

The width of bi-stability regions between the floating—
pinned and the pinned—flat configurations, as a function of /4,
is shown in figure 8. There may be two or even three stable
configurations at a given V. As V is changed back and forth
so that transitions occur between states, therefore, there can
be hysteresis in the actuator’s behavior. Note that there is no
such bi-stability for 4 > 1.24 and that there is #ri-stability for
h < 0.07.

The existence of tri-stable states has not previously been
noted for such actuators in the literature.

5. Dynamic stability of equilibrium solutions

5.1. Method

The dynamic stability of an equilibrium solution can be
determined by considering small variations of that solution
and is governed by an eigenvalue problem.

— Floating — Pinned configuration
- - Pinned — Flat configuration

— Width of bi—stability region
e o °o o o o o o
N w > & =) ~ [ed ©
T T T = T T T T
. . . . . . . .

o
T

.
.

Figure 8. Variation of the width of the bi-stability region with 4.

Let z¢q be an equilibrium solution. Then,

a4 V2
feg _ _ . (29)
ox* (Zeq + h)?
Let ¢ be a small perturbation to z¢q. Putting
I =2eq*t ¢ (30)
in equation (9),
34(Zeq+§) n az(zeq"';) _ V2
dx* 2 (zeg+C )Y
Linearizing for small ¢,
P tl) PRty V22V
8)64 o2 - (Zeq + h)2 (Zeq + h)3 '
(€29
By equation (29),
e 3% 2v?
PYvirvs e L (32)
ax at (Zeq +h)

The above system is discretized using a modal expansion
along the lines of [25] by letting

ce ) =) ai(O)Yi(x), (33)
i=1

where 1; (x) is the ith normal (or natural) mode of the beam in

the absence of electrostatic forces and a; (¢) is the associated

modal coordinate or participation factor. Large n gives high

accuracy. The normal modes used are
Y (x) = cosh(A;x) — cos(A;x) — b; (sinh(A;x) — sin(A;x)),

(34)
where A; and b; are as follows for the floating and pinned

configurations.

(i) Floating. X; is the ith root of
1 + cosh(};) cos(A;) =0 35)
and

_ sinh(A;) — sin(A;)

= 36)
cosh(A;) + cos(};)
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(i1) Pinned. A; is the ith root of

coth(A;) — cot(X;) =0 37

and

b; = coth(};). (38)
Stability analysis of the flat configuration is more difficult
because the contacting length of the beam changes during
motion. Such an analysis is not attempted here. Note,
however, that an extended contact region suggests, intuitively,
that the flat configuration is stable.

The normal modes are, as the name suggests, orthonormal:

! wo [V ii=0 39
/0 Vi)Y (o) de = 0 otherwise. (39)
From equation (34),
4o
% = (). (40)
X
Equation (32) becomes
8%
Z[ G0 g () + a0 <x>]
i=1
2v?:
S iy gaxr)w,-(x), @n

where we write ‘~’ instead of ‘=" to emphasize that a finite-n
approximation is being made.

Multiplying the above with v;(x), j = 1,2,...,n and
integrating over the length, we obtain
0%a;(t)
pyeai Aja,(z)
2
Za, O | ——3 Vi)Y, (x)dx, (42)

0 (eq h)3

where we have reintroduced ‘=" instead of ‘~’ for convenience
although the finite-n approximation remains. Note, also, that
the integral on the right-hand side requires knowledge of z¢q (x)
from a separate calculation.

In a matrix form,

(43)
where

a=lai(t), ax(t),as(t), ..., a, (1",

and A is a diagonal matrix with A ;; = A ;. Also, B is a square
matrix with

(44)

1 2v2
Bjj =/0 G eq+h)3wl(x>w] (x) dx. (45)
Leta e?’. Substituting in equation (43),
(—A*+ B)ii = o2l (46)

The eigenvalues of the above system determine stability.
By the symmetry of A and B, all o2 are real. If all o2
are negative, then all solutions are linear combinations of
sinusoidal oscillations, and the original equilibrium solution
is dynamically stable. A positive o? implies instability.
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Figure 9. Stability analysis of equilibrium solutions of the
normalized governing equation. (a) Floating configuration:
variation of height at the free end of the beam with the applied
voltage and (b) pinned configuration: variation of slope at the
pinned end with the applied voltage.

At a stability boundary, one eigenvalue will be 02 = 0
(a degenerate case).

Note that the numerical integration to be performed in
equation (45) requires z¢q and v values at the mesh points.
Of these, z¢q was computed above at a number of mesh points
and ¥ was given above. All integrations were performed
using Simpson’s rule. Five normal modes were used in the
stability results presented below. The stability boundary points
obtained did not differ from those obtained with three and with
seven modes (those calculations are not presented here).

5.2. Stability results

Figures 9(a) and (b) show the results of stability analysis for the
floating and pinned configurations, respectively. Each point
on each curve represents an equilibrium solution (floating or
pinned). Solid lines indicate stable and dashed lines indicate
unstable solutions. Where the two branches coalesce at a
turning point, the solution is borderline unstable by linear
analysis. The value of V at the turning point represents pull-
in and pull-down in the floating and pinned configurations,
respectively.

5.3. Connections with section 4

The stability results plotted above also include families of
equilibrium solutions plotted therein. It is useful to discuss
these plots in light of section 4.
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(1) In figure 9(a), the turning points indicate Vghir. If there
are no turning points (large 4), intersection with the
horizontal axis indicates Vjoar. Whether a turning point

exists or not, intersection with the horizontal axis always

indicates a floating solution where the beam tip just
contacts the dielectric surface; the same solution happens
to be a pinned solution as well, with the contact force
equal to zero. The corresponding V is therefore Vp'{}:“

(recall the discussion of section 4).

The above result, though probably not new, is
apparently not well known in the MEMS community. We
discuss it further, briefly, from a mechanical point of view.

If there is no turning point in the curve, then the
slope of the curve is negative; this means that decreasing
V tends to raise the beam tip off the dielectric surface,
following a stable solution curve. Thus, reducing V
causes disappearance of the pinned solution. Vice versa,
increasing V would tend to lower the beam tip into
the dielectric surface, bringing a vertical contact force
into play and producing a pinned solution. Hence, the
intersection marks V",

On the other hand, if there is a turning point, then
slightly raising V produces a floating solution where the
beam tip is slightly above the dielectric surface. However,
that solution is unstable, and so a slight downward
perturbation to it will cause the beam tip to come down
further until it touches the dielectric surface, producing a
pinned solution. Vice versa, lowering V slightly would
make the beam tip tend to dip below the dielectric surface;
this would bring into play an upward acting contact force,
disturbing the solution, and, the solution being unstable,
would make the beam move further up, away from the
pinned state.

In this way, simultaneous consideration of
equilibrium and stability helps us understand why the
intersection point of the floating solution curve with the
horizontal axis indicates Vp‘&i“.

(ii) Similarly, considering the pinned configuration illustrated
in figure 9(b) (the vertical axis shows the slope at the
end of the beam), we observe that Vg{}fx is the maximum
V at which a stable solution exists (whether there is a
turning point or not), and the solution curve intersects the
horizontal axis at fo;:".

(iii) For = > 0.4, all pinned solutions are stable. In other
words, Vp“i}f"‘ = Vﬂ“;i“. Simultaneously, stable pinned and
flat solutions no longer coexist (this mode of bi-stability
disappears).

(iv) For h > 1.24, all floating solutions are stable, and
Vioer = V};'i‘ni". Simultaneous multiple stable solutions
of any kind no longer exist.

6. Validation of results with the 3D FEM-BEM
model in CoventorWare™

3D simulations are performed in CoventorWare™-2004 and
the results are compared to those of the 1D beam model.
CoventorWare™ uses finite element method (FEM) for
solving the mechanical domain and boundary element method
(BEM) for the electrical domain. Nonlinear effects are also

Figure 10. 3D model of the cantilever beam electrostatic actuator.
(The z-scale is exaggerated by a factor of 10.)

Table 3. % values that are considered to validate the classification.
Casel Case2 Case3 Case4 Case5
h  0.005 0.05 0.2 0.8 1.5

Table 4. A comparison of the cases.

Casel Case2 Case3 Case4 CaseS

Tri-stable states J Vv X X x

Bi-stable state: V4 i V4 Vv X

floating—pinned

Bi-stable state: J Vv J X X
pinned—flat

Transition from Flat Pinned/ Pinned Pinned Pinned
floating configuration flat

is to:

taken into account and the 3D model is shown in figure 10.
The qualitative classification is found to be applicable even for
the 3D model. Further, the displacements, transition points
between the configurations and contact lengths are in good
agreement with the 1D model.

The dimensions of the moving electrode (upper electrode)
are 400 x 10 pm?, with a thickness of 0.3 wm and the material
is polysilicon. The left side surface of this electrode is fixed. A
zero bias gap (g) of 3 um is taken for all the cases by defining
a contact plane in between the moving and fixed electrodes,
at a distance of 3 um from the moving electrode. The gap
between the contact plane and the fixed electrode (z;) is
varied to get different values of 4. Table 3 shows the values
of / that are chosen to validate the classification. Note that
the corresponding #; values are obtained by just multiplying
h with g since €, = 1, as air is the dielectric medium here.

The moving electrode is meshed using the mesh type of
Manbhattan bricks and parabolic element order. Element sizes
of 4, 5 and 0.3 um are taken along the length, width and
thickness respectively. The fixed electrode is surface meshed
with an element size of 4, with a quadrilateral type of elements
and by using the Paving algorithm.

The key differences among these cases are highlighted in
table 4. The existence of tri-stable states at a given voltage
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Figure 11. Tri-stable states for the Case 2 example at 1.5 V. (The z-scale is exaggerated by a factor of 15.) (a) Floating configuration,
(b) pinned configuration and (c) flat configuration.
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Figure 14. Variation of the moving electrode tip deflection with the

Figure 12. Variation of the moving electrode tip deflection with the .
applied voltage for the Case 3 example.

applied voltage for Case 1 example.
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Figure 13. Variation of the moving electrode tip deflection with the ~ applied voltage for the Case 4 example.
applied voltage for the Case 2 example.
The variation of the moving electrode tip deflection with
the applied voltage is shown in figures 12—16 for all the
is verified in CoventorWare™ by finding out the solutions for examples. Figure 17 shows the variation in the contact length
various initial deflection conditions of the moving electrode.  with V for the Case 1 example. Note that the scaling law gives
For instance, figure 11 shows all the three possible states for a very good approximation for this example even for the 3D

the Case 2 example at 1.5 V. model.
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Case 5
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Figure 16. Variation of the moving electrode tip deflection with the
applied voltage for the Case 5 example.
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Figure 17. Variation of the moving electrode contact length with the
applied voltage for the Case 1 example.

7. Conclusions

Cantilever beam electrostatic actuators with an intermediate
dielectric layer have been analyzed in detail over the
entire operational range using a beam model. The
results are validated with the 3D simulation results from
CoventorWare™,

Three qualitatively different configurations, here called
floating, pinned and flat, have been identified and studied.
A scaling law is found for the flat configuration. Transitions
from and to the floating configuration (pull-in and pull-out) and
transitions from pinned to flat (pull-down) and flat to pinned
(pull-up) have been studied as well. Bi-stable and tri-stable
states have been found. A classification of all possible types
of transitions is made based on the dielectric layer parameters.
Dynamic stability analyses have complemented the study
of these configurations and transitions. Higher dielectric
thickness gives more regular and predictable behavior at the
cost of lower overall tunability in device characteristics.
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