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Abstract—In this paper, we present the segmentation of the head
and neck lymph node regions using a new active contour-based
atlas registration model. We propose to segment the lymph node
regions without directly including them in the atlas registration
process; instead, they are segmented using the dense deformation
field computed from the registration of the atlas structures with
distinct boundaries. This approach results in robust and accurate
segmentation of the lymph node regions even in the presence of
significant anatomical variations between the atlas-image and the
patient’s image to be segmented. We also present a quantitative
evaluation of lymph node regions segmentation using various sta-
tistical as well as geometrical metrics: sensitivity, specificity, dice
similarity coefficient and Hausdorff distance. A comparison of the
proposed method with two other state of the art methods is pre-
sented. The robustness of the proposed method to the atlas selec-
tion, in segmenting the lymph node regions, is also evaluated.

Index Terms—Atlas-based segmentation, head and neck, IMRT,
lymph node regions, non-rigid registration, radiotherapy.

I. INTRODUCTION

I NTENSITY-modulated radiotherapy (IMRT) is the ultimate
high precision technique to accurately deliver X-ray radia-

tion treatment for different tumor locations of the patients. How-
ever, one of the significant obstacles in the widespread imple-
mentation of IMRT, for head and neck (H&N) cancer, concerns
the complexity of target definition. In the case of H&N carci-
nomas radiotherapy, besides the gross tumor volume, the radi-
ation oncologist has to segment the clinical target volume and
the complicated planning target volume which contains different
lymph node levels. Each lymph node level or group of levels
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correspond to a potential area of spread for a given tumor sub-
location. Since the IMRT approach prerequisites the segmenta-
tion of all the volumes to be treated as well as the organs at risk,
it is easy to understand that its routine use for H&N tumors is
not common at the present time. Besides the precise contouring
of primary H&N tumors that is often difficult, the accurate, re-
producible and time-efficient contouring of elective nodal risk
regions represents an even greater challenge. The tentative to im-
plement lymph nodes levels segmentation in the clinical environ-
ment were initially based on the translation of the surgical lymph
nodes levels to CT-based regions which meant meticulous seg-
mentation of each CT regions on each slice of the planning CT
scan, a laborious process that was considered as incompatible
with a routine clinical practice [1]. Indeed, experienced H&N
cancer specialists generally spend several hours to fully contour
and refine desired targets for a single H&N IMRT case. In a study
reported by Song et al. [2], the average physician working time
to design a H&N treatment contours for the target definition was
2.7 h for IMRT approach compared to 0.3 h for the conventional
three field plan. In summary, the major challenge in the routine
clinical implementation of IMRT for H&N region is to delin-
eate the lymph nodes automatically and accurately.

Grégoire et al. [3] presented guidelines for delineating the
lymph nodes in the H&N region. Fig. 4 shows the manually
delineated lymph node levels: IA, IB-left, IB-right, IIA-left,
IIA-right, IIB-left, IIB-right, III-left, III-right, IV-left, IV-right,
VA-left, VA-right, VB-left, VB-right, and VI in the computed
tomography (CT) images. 3-D volumes of these lymph nodes
are shown in Fig. 8. Most of these lymph nodes do not have
distinct boundaries; rather they are defined with respect to
other distinct landmark structures in the H&N region and hence
posing challenges in the automated segmentation.

The lymph node segmentation techniques that have been re-
ported so far can be broadly classified into two categories. The
first category of techniques assume that at least a portion of the
lymph node to be segmented has a distinct boundary with the
surrounding structures. The second category of techniques do
not assume the existence of any such distinct boundaries.

In the first category, Rogowska et al. [4] used various basic
techniques like threshold selection, sobel/watershed technique
and deformable contour algorithm for the segmentation of lymph
nodes. Their evaluation was on synthetic images. In [5], Honea
et al. semi-automatically segmented the lymph nodes with
slice-wise active contours and active surface models. Their eval-
uation was also on synthetic images. In [6], Yan et al. proposed an
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improved 2-D fast marching method with an intensity weighted
speed term. [7] extended it to 3-D images using a similar idea
with watershed transform. In both [6], [7], boundary leaking is
avoided through a hard stopping criterion, by manually bounding
a circle around the lymph node; the circle should be very close
to the actual boundary of the lymph node. In [8], Dornheim et al.
proposed a mass-spring model for 3-D lymph node segmenta-
tion, and the formulation is based on the characteristic gray value
range, directed contour information and shape knowledge.

The second category of techniques are atlas-based segmen-
tation methods. Atlas-based methods have become a standard
paradigm in medical image segmentation for exploiting prior
anatomical knowledge. The atlas is a reference image in which
structures of interest, here the lymph nodes, have been carefully
segmented, usually by hand. To segment a new image, a dense
deformation field that registers (i.e., puts in point-to-point cor-
respondence) the atlas to the patient image is first computed.
This transformation is then used to project labels assigned to
the different structures from the atlas onto the patient image
to be segmented. Thus, the segmentation problem is reduced
to a registration problem. The registration task typically con-
sists of first capturing the difference in positions between the
atlas and the patient image. This is often done with an affine
registration. Then, a non-rigid registration is used to compen-
sate the normal anatomical variability between both the images.
One of the main advantages of atlas-based methods compared
to the segmentation techniques presented in the first category,
is that the dense deformation field, interpolated on the whole
image from the registration of visible image features, allows to
easily estimate in the patient image, the position of structures
with fuzzy or not visible contours. Atlas-based segmentation
methods are thus particularly well suited for the lymph node
regions segmentation.

The majority of atlas-based methods that have been proposed
so far are developed for brain segmentation. Unfortunately,
these methods are of limited use for lymph nodes segmentation
due to the presence of high anatomical variability, particularly
in the nodal regions. To cope up with this problem, Teng et
al. [9] propose to use the BSpline algorithm of Mattes et al.
[10] along with the landmark points. The landmark points are
selected on the mandible and hyoid bones, because of their
proximity to the lymph nodes, high contrast and consistency
among the patients. These landmarks are used to initialize the
deformation field at the start of every resolution level of the
BSpline algorithm. The authors show that local constraints on
the atlas registration lead to a more accurate delineation of
the lymph nodes. The main drawback of this method is that it
requires a pre-processing step including the segmentation of
the bones of interest in the patient image, the extraction of the
landmark points on the bones surfaces and the computation of
landmarks correspondence between the atlas and the patient
image. In [11], Commowick et al. try to better catch the high
variability of the H&N region by using a mean atlas built
from a database of 45 patients. The atlas is then registered to
the patient image by using a block matching algorithm [12],
[13]. However, this method shows limitations when the patient
anatomy is too different from the mean atlas or when the struc-
tures of the patient image are drastically deformed by a lesion.

The model that we propose here to segment the lymph node
regions, aims to combine the advantages of the dense defor-
mation field computed by the non-rigid registration algorithms
with local segmentation constraints derived from the active con-
tour (AC) segmentation framework. Unlike many of the pre-
vious approaches, the lymph nodes are not directly segmented
in this paper. Rather, the lymph node regions are indirectly seg-
mented using the dense deformation field. The dense deforma-
tion field computed from the registration of visible image con-
tours allows to easily estimate the position of structures with not
well or without visible contours in the image such as the lymph
node regions. On the other hand, the AC segmentation model is
often able to delineate visible boundaries in a more accurate way
than the segmentation method based on atlas registration. This
is due to its global and local matching criteria that can exploit
the image information directly linked to the objects to be ex-
tracted. The main advantage of our active contour-based regis-
tration model is that it can jointly perform the segmentation task
and a registration task. Moreover, it allows to select structures
to drive the registration process. These structures are chosen to
be consistent between the atlas and the patient’s image and rele-
vant to find the position of the lymph node regions. Then, thanks
to the AC framework, our algorithm allows to easily introduce
prior knowledge, such as the intensity distribution or the admis-
sible shapes on the objects selected to drive the atlas registration.
Finally, we will show that our model is able to recover higher
anatomical variability than the state of the art atlas registration
methods that we have tested in this paper.

Quantification of automated segmentation results is an im-
portant aspect for comparing them with the existing results as
well as for using them in practice. Statistical methods commonly
used in medical image processing can often fail to detect errors
in segmentation results. For instance, Popovic et al. [14] found
that better values of sensitivity and specificity alone, which are
commonly used metrics for evaluation, cannot always guarantee
improvement in other important metrics like dice similarity co-
efficient and Hausdorff distance. Exhaustive quantitative eval-
uation of the H&N lymph node regions segmentation has not
been reported so far. In this paper, we also present the quan-
titative evaluation of the results for each lymph node region,
using various statistical and geometrical metrics. The evaluation
is performed by comparing the automated segmentation results
against the manually segmented lymph nodes by the radiation
oncologist. The results from our active contour-based atlas reg-
istration model are also compared with two other state of the art
methods.

The paper is organized as follows. In the next Section,
we present our active contour-based registration model. In
Section III, we describe our lymph node regions segmentation
approach and also present the details of the dataset used for
the evaluation. In Section IV, we present the qualitative and
quantitative evaluation of the lymph node regions segmenta-
tion; the results are compared with the results from Demons
registration model [15] and a radial basis function registration
model [16]. The robustness of the proposed method to the
atlas selection, in segmenting the lymph node regions is also
evaluated. Finally, discussion and conclusions are presented in
Section V.
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II. METHOD

A. Our Active Contour-Based Atlas Registration Model

The main source of inspiration of our joint registration and
segmentation algorithm is the partial derivative equation (PDE)-
based method proposed by Vemuri et al. in [17] 1. The formula-
tion of their model is intuitively deduced from the general level
set 2 evolution (1) introduced by Osher and Sethian in [19]

(1)

where is the velocity of the flow or speed function that contains
the local segmentation and contour regularization constraints
and is the signed distance function often used to represent
implicitly the active contour (AC) by its zero level. The original
idea brought by Vemuri’s model is to replace, in (1), by the
intensity function of the image to register (the moving image).
Thus, the level sets considered in the segmentation process cor-
respond to the contours naturally present in the moving image,
i.e., the curves of high image gradient. A dense deformation
field is then generated by tracking the deformation of these level
sets during the segmentation process. The main advantage of
this model using the intensity function, is to register any type of
contours (closed, open, connected or disconnected) unlike the
signed distance function that can only model closed and discon-
nected contours. However, this advantage can also be a draw-
back. Since all the level sets of the reference image are consid-
ered, inconsistencies between both images, e.g., local intensity
differences between both images or a lesion in the patient image,
can lead to misregistration. Moreover, since this contour repre-
sentation does not permit to select consistent contours or closed
regions in the atlas, Vemuri’s model is limited to pixel-based
segmentation forces only. That means that this model cannot
use the typical segmentation forces of the AC framework such
as boundary-based and region-based forces (see Section II-D)
in the registration process.

Unlike [17], our registration model is able to use forces devel-
oped in the AC framework since it is based on the general level
set approach [19]. Moreover, we propose to handle the registra-
tion of multiple regions by modeling the active contours with a
label function.

B. Deformation Field Extraction

The general formulation of our model is derived from the
tracking of the signed distance function motion with the optical
flow (OF) approach [20]. The OF technique assumes that the
brightness of the moving image, here the level set function ,
stays constant for small displacements and for a short period of
time

(2)

1There exists also a variational energy-based approach initiated by Yezzi et
al. in [18] to combine registration to AC segmentation. We chose the PDE-based
approach because it seems more flexible to solve joint registration and segmen-
tation problems notably in the choice of the attractive and regularization terms
composing the speed function.

2Level set method is a non-parametric model of the active contour technique.

where is the instantaneous deformation vector field and
is the total derivative of . By using the chain rule, this optical
flow constraint can be rewritten as the evolution equation of a
vector flow

(3)

where , given by (1), represents the variation of the level
set function according to the desired forces such as supervised
segmentation, shape prior knowledge or contour regularization.
Thus, by introducing the evolution equation of the level set seg-
mentation model (1) in (3), we obtain the following equation
merging the active contour segmentation framework with the
image registration task:

(4)

The level set function does not evolve with the usual finite
difference scheme. Its position at time is given by the deforma-
tion field and the initial level set function such
that

(5)

with is the initial active contour position. This ensures
that the evolution of the level set function exactly corresponds
to the current deformation. Introducing (5) in (4) yields

(6)

This equation corresponds to the general formulation of our
AC-based atlas registration model. It defines a displacement
vector (or registration force) at each point of the level set
function. The level set function models the contours of the
objects selected in the atlas to drive its registration. We show
in Sections II-C and II-D that a large variety of active contour
segmentation models can be used in the registration process.

C. Label Function Representation

The signed distance function representation can be used
with any type of forces derived from the active contour frame-
work (see Section II.D). However, this representation can model
only two regions. As we said, the intensity function representa-
tion proposed by Vemuri et al. in [17] can model any type of
contours but it can only be used with pixel-based registration
forces. To cope up with these limitations, we propose to rep-
resent the active contours selected in the atlas to drive its reg-
istration by a label function 3. This label function permits
to define an arbitrary number of regions as follows:

if , where is the
labeled region and is the number of regions. In this repre-

sentation, active contours are modeled by the discontinuities of
. The main advantage of the label function representation is

to distinguish regions by using only one function. However,

3We note that in the active contours segmentation framework, the idea of
using labels to perform a multi-phase segmentation has recently been presented
(see for instance [21]). The difference with our work is that this representation
has been proposed for particular variational energy-models and we present a
scheme for any type of PDE-based models.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 28,2010 at 11:25:19 UTC from IEEE Xplore.  Restrictions apply. 



138 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 3, NO. 1, FEBRUARY 2009

Fig. 1. Illustration of the function �. (a) ���� � � Gradient is in the right
direction. (b) ���� � �� Gradient direction has to be changed. (c) ���� � �
Gradient is null.

this representation does not contain the polarity information (in-
formation indicating the inside and the outside of
a modeled region) necessary to compute the region-based forces
of the AC segmentation framework. In order to generate the po-
larity information, we introduce a function “ ” in the gen-
eral formulation of our model (6). The objective of this function
is to adapt the orientation of the gradient based on local
label values such that it always gives the polarity of the current
region, i.e., is always oriented from the inside to the
outside of the region. Fig. 1 illustrates the function . The
green line enhances the interface between the light and dark re-
gions. Each panel shows the current pixel (enhanced in bold)
surrounding by its eight neighbors. The arrow shows the ini-
tial direction of the gradient. If neighbors have values larger or
equal to , the gradient is already in the right direction and
hence, [Fig. 1(a)]. If one neighbor has a value infe-
rior to , the gradient direction is changed with
[Fig. 1(b)]. Finally, if the neighborhood has the same value of

, the gradient is null which means [Fig. 1(c)].
With the label function representation, the general formulation
of our registration model (6) becomes

(7)

The generalized evaluation (1) of the joint registration and
segmentation model is proposed in [22]. It is used with a signed-
distance-map representation in [23]. The main limitation of [22]
and [23] is that they can model only two regions. The evalua-
tion (1) is extended to multiple regions with the modified model
(7), along with the label function representation. The prelimi-
nary discussions on this model with label function representa-
tion, and the initial results on 2-D images in registering struc-
tures with distinct boundaries, are presented in the conference
paper [24]. The method used in this paper differs with [24] in
the following aspects:

• [24] does not use any explicit regularization forces whereas
in this paper, mean curvature forces (discussed later in this
section) are used for regularization;

• [24] uses entropy-based region forces while mean-based
region forces are used in this paper, as they are found to be
more suitable for the segmentation of H&N region.

The main contribution of this paper is the application and evalu-
ation of this method in the context of H&N lymph node regions
segmentation. Please refer to [25] for a more detailed descrip-
tion of the generalized framework.

Fig. 2. Classification of the AC forces according to their effect in a contour
matching process.

Fig. 3. Block diagram illustrating the proposed lymph node regions segmenta-
tion approach.

D. Registration/Segmentation Forces

Fig. 2 summarizes different types of forces coming from the
AC segmentation framework that can still be used in the regis-
tration process. The most used regularization force of the AC
framework is the mean curvature force. This force smoothens
the level sets by minimizing their length. They can be applied
on any type of contour representation. The pixel-based forces
are based on the smallest image feature, the pixel value. They
allow the local registration of the whole moving image domain
or selected regions. Pixel-based forces are the typical segmen-
tation forces of the OF model. In the AC model, these forces are
rather used to include intensity or shape prior knowledge in a
segmentation process. These forces can match any type of con-
tours (closed or open) and can also be used with any type of rep-
resentation. However, they are very sensitive to image noise and
are limited to recover small deformations. Object-based forces
can register image regions. If we apply an object-based force on
each point of a signed distance function, every level set will col-
lapse to the closest target contour in the target image. So, they
need to be computed only on the zero level set of the signed dis-
tance function or around the interface of the labeled function

. Finally, region-based forces are very efficient forces of the
AC framework because they are less sensitive to noise than the
boundary-based forces. They can also perform supervised seg-
mentation, i.e., they can use prior knowledge extracted from a
reference image. This region-based forces seems thus particu-
larly well suited to register an atlas based on selected objects
with visible boundaries. At each iteration of our algorithm, the
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Fig. 4. Atlas image in the (I) Axial, (II) sagittal, and (III) coronal slices. Manually delineated lymph nodes are superposed over the atlas image.

Fig. 5. Labeled image in the (I) Axial, (II) sagittal, and (III) coronal slices. The labeled structures in the image are (1) external-contour, (2) mandible, (3) vertebra,
and (4) trachea.

displacement computed on the active contour is extended to the
whole image by linear diffusion and thus influence the position
of their surrounding objects. Finally, the registration process is
speeded up by a multiresolution approach.

E. Atlas-Based Lymph Node Regions Segmentation Process

The whole lymph node regions segmentation process is il-
lustrated in Fig. 3. Our active contour-based atlas algorithm is
used to register the atlas to the patient images. First the struc-
tures of interest selected in the atlas to drive its registration are
represented by a labeled function. This label function is shown
in Fig. 5. It models the external contour of the image, mandible,
vertebrae and trachea. These structures have been chosen for
the following two reasons. First, they are closely located to the
lymph nodes. Hence, their registration will influence the loca-
tion of the lymph nodes. Then they have distinct boundaries. For
that, we use a region-based force inspired by the unsupervised
region-based segmentation model proposed by Chan and Vese
[26]. This force is derived from the following energy designed
to be minimal when the mean of a region defined in the target
image by the evolving level set function (or label function) is
close to the mean of the corresponding region in the reference
image

(8)

where is the image area inside the contour and is the
image area outside the contour, is the prior mean of a
given region extracted from a reference image (the atlas) and

is the intensity function of the image to segment. This force
assumes that corresponding regions between the reference and
the target images have similar means 4. Note that does
not evolve during the registration process. Hence it is computed
once on the reference image in a pre-process step.

Once the dense deformation field matching the atlas to the
patient image is computed, the segmentation process ends up as
the classical atlas-based method. The transformation is applied
to the manually segmented lymph nodes of the atlas image for
automatically obtaining the lymph node regions segmentation
on the patient’s image.

III. DATASET, PREPROCESSING AND PARAMETERS SETTING

The dataset used in this paper contains the H&N CT scans of
ten patients, acquired during routine clinical practice, at Divi-
sions of Radiotherapy, Geneva University Hospital (HUG). The
CT images of the patients in the dataset have significant anatom-
ical variations among them and thereby representing a real time
clinical situation. For evaluating the performance of the auto-
mated segmentation, the radiation oncologist has manually seg-
mented the lymph nodes for the CT images in the dataset, ac-
cording to the consensus given in [3]. The size of each slice is
512 512 pixels with a spacing of 0.9375 mm 0.9375 mm;
the inter-slice distance is 3 mm. A subset of slices that are rel-
evant to the lymph nodes of the H&N region are selected for
each patient; this is done by choosing the slices starting from
the eye of each patient till the slice that covers the last lymph

4Possible intensity differences between both images can be reduced in a pre-
process step by histogram matching.
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Fig. 6. One of the patients’ image in the (I) axial, (II) sagittal, and (III) coronal slices. Automated segmentations of the lymph node regions are superposed over
the patient’s image.

Fig. 7. Contours of structures in the deformed label are superposed over the patient’s image, for qualitative evaluation of the registration.

node (lymph node-VI). The images are then preprocessed by
thresholding them over a selected region, for removing the bed
and other immobilization devices. The CT image shown 5 in
Fig. 4 is arbitrarily chosen as the atlas image for the dataset and
the automated segmentation is performed on the remaining nine
CT images.

It is common with most of the non-rigid image registration
methods to perform an affine or rigid registration prior to the
final non-rigid registration, in order to recover large deforma-
tions. However, our method is found to be robust enough to ac-
curately perform the registration without requiring any such ini-
tial registration and is indeed, because of the labeling approach.
So we do not use any initial registration and this is one of the
advantages of our registration model, whereas we perform an
initial affine registration for the other two methods that we use
in this paper for comparison.

Concerning the parameters setting, we use four levels of res-
olutions for the multi-resolution approach and a for the
Gaussian filtering performing the linear diffusion.

IV. RESULTS

In this section, we present the qualitative and quantitative
evaluation of the automated segmentation.

5All the actual images are cropped and resized while displaying in this paper,
in order to show the lymph node regions and other areas of interest with a better
resolution.

A. Qualitative Evaluation

We present here the qualitative results for one of the patients’
images in the dataset. Fig. 6 shows the CT images of the patients.
Figs. 4 and 5 show respectively the intensity image and the la-
beled image of the atlas. Manually delineated lymph nodes of
the atlas image are shown on the intensity image itself in Fig. 4.
For a better 3-D visualization of the lymph node volumes, the
original atlas image is thresholded to contain only bones, and the
lymph node volumes are shown along with the bones in Fig. 8.
Now, as mentioned in the previous Section, non-rigid registra-
tion is performed and the resulting dense deformation field is
computed. The contours of the deformed structures of the la-
beled image are superposed over the patient’s image for qual-
itative evaluation and are shown in Fig. 7. It can be seen that
the algorithm has registered the selected structures well, except
over the upper portion of few axial slices. Although the active
contour method is actually capable of registering the contours
perfectly, the deviation is due to the trade off between the reg-
ularization term that smoothens the deformation field and the
attraction term.

In the second step, the dense deformation field is applied to
the manually delineated lymph nodes of the atlas image to ob-
tain their segmentations on the patient’s image. The auto seg-
mented lymph node regions results are superposed over the pa-
tient’s image and are shown in Fig. 6. Fig. 9 shows 3-D auto-
mated segmentations of lymph node volumes on a thresholded
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Fig. 8. Manually delineated lymph node volumes on the thresholded atlas image: (I) front view, (II) side view, and (III) back view of the lymph node volumes.

Fig. 9. Automated segmentations of the lymph node volumes on the thresholded patient’s image: (I) front view, (II) side view, and (III) back view of the lymph
node volumes.

patient’s image. These results are visually inspected by an ex-
pert oncologist and found to be qualitatively good for most of
the lymph nodes.

B. Quantitative Evaluation

The proposed model is compared with the following two reg-
istration methods that are commonly used in medical atlas reg-
istration.

Radial Basis Function Algorithm (RBF): This is a mutual in-
formation-based technique proposed by Rhode et al. [16]. The
deformation that registers the intensity atlas onto the patient
image is modeled with a linear combination of radial basis func-
tions with finite support.

Demons Algorithm: It is an independent implementation
of the intensity-based algorithm developed by Thirion [15].
Demons algorithm is close to our method for the following
reasons. First, both are non-parametric. Then, both are specially
designed to match contours and also both the algorithms use
linear diffusion to extend the deformation computed on the
contours to the whole image. Finally, both algorithms rely
their registration force on polarity. However, in the Demons
algorithm, the polarity depends on intensity differences and in
our algorithm it depends on the inside and outside of the objects
to be registered.

The quantitative evaluation is performed over all the ten CT
images in the dataset. The lymph nodes are manually delineated
by the radiation oncologist for all the ten patients, and those are
considered as the gold standard for evaluating the automated
segmentations. The statistics for the left right side pairs of the

same lymph node are combined while presenting the results be-
cause they are mostly symmetrical. For instance, the statistics
for lymph nodes IB-left (IB-L) and IB-right (IB-R) are repre-
sented as IB itself. The evaluation is performed using three sta-
tistical metrics: sensitivity, specificity, Dice Similarity Coeffi-
cient (DSC), and a geometrical metric: Hausdorff distance.

For a lymph node under investigation, an voxel is treated as
True Positive (TP) if it is present in the lymph node volumes of
both the gold standard and the automated segmentation output.
Similarly, if an voxel is not present in both gold standard and the
automated segmentation, it is treated as a True Negative (TN)
voxel. If a voxel is present in the gold standard but not in the
automated segmentation, it is treated as a False Negative (FN)
voxel. Finally, if an voxel is present in the automated segmenta-
tion but is not in the gold standard, it is treated as a False Positive
(FP) voxel.

Sensitivity and specificity are the most commonly used sta-
tistical metrics and are the measures of “true positive fraction”
and “true negative fraction” respectively; they are defined as
follows:

where represents the number of voxels that belong to the
category specified by the subscript . Figs. 10, 11 respectively
show the box plots of sensitivity and specificity for each lymph
node region, computed from the three methods: RBF algorithm,
Demons algorithm and our proposed algorithm. The mean and
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Fig. 10. Box plots comparing the sensitivity measure of lymph node regions segmentation, using (1) RBF algorithm, (2) demons algorithm, and (3) our proposed
algorithm.

Fig. 11. Box plots comparing the specificity measure of lymph node segmentations, using (1) RBF algorithm, (2) demons algorithm, and (3) our proposed algo-
rithm.

TABLE I
MEAN AND STANDARD DEVIATIONS FOR SENSITIVITY AND DSC MEASURES, ON A DATASET OF TEN PATIENTS

standard deviations for sensitivity are presented in Table I. The
results for specificity are not tabulated as the mean values are
almost 1 for all methods as we can see in Fig. 11, for the fol-
lowing reason. The major pitfall with specificity is their de-
pendability on the relation between the size of image and ob-
ject under investigation [14]. Since the sizes of many lymph
nodes are small compared to the size of the image, the speci-

ficity values in Fig. 11 are close to the ideal value for all
the lymph nodes. Generally, in the axial slice direction of the
CT images, the H&N region may not spread over the entire size.
Had the CT images been preprocessed in the axial slice direc-
tion, by cropping them such that they contain only the H&N
region, then for the same automated segmentation results, the
specificity values would have decreased. In summary, specificity
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Fig. 12. Box plots comparing the DSC measure of lymph node regions segmentation, using (1) RBF algorithm, (2) demons algorithm, and (3) our proposed
algorithm.

Fig. 13. Box plots comparing the Hausdorff distance measure for lymph node regions segmentation, using (1) RBF algorithm, (2) demons algorithm, and (3) our
proposed algorithm.

is not a good measure for evaluating the lymph nodes segmen-
tation, because of its dependance on the relative size of the seg-
mented object with respect to the image size.

DSC is a statistical measure of spatial overlap [27] between
the gold standard and the automated segmentation. DSC is de-
fined as follows:6

The ideal value of DSC is 1. Since DSC does not depend on the
size of the samples, it is a more useful measure for quantitative
evaluation. Fig. 12 shows the box plots of DSC for each lymph
node, computed from all the three methods. The mean and stan-
dard deviation values for DSC from the three methods are pre-
sented in Table I. The DSC values are good considering the com-
plexity of lymph nodes segmentation but there is still scope for
improvement. Since there are no previously reported statistics of
DSC for automated segmentation of the H&N lymph node re-
gions, a comparison with the existing techniques is not possible.

6Note that the equation that we use here for computing DSC is same as the
one used by Warfield et al. [27], but just differs in the notation followed.

Hausdorff distance is a measure of resemblance between two
sets of data that are superposed on one another [28]. Let the sets

and respectively represent
the points of a lymph node in the gold standard and automated
segmentations. The Hausdorff distance is defined as

where

and is the norm between the points of and . The
Hausdorff distance is the maximum of and

. Thus it measures the degree of mismatch between the
gold standard and the automatically segmented lymph node re-
gions, by measuring the distance of the points of gold stan-
dard that is farthest from any point of automatically segmented
lymph node regions and vice versa. Lesser the Hausdorff dis-
tance, better the resemblance between the gold standard and
the auto segmentation. Fig. 13 shows the box plots of Haus-
dorff distance for each lymph node, from all the three methods
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Fig. 14. Sagittal views of four patients in the current dataset. The images illustrate the anatomical variations present in the current dataset.

Fig. 15. Box plots of the mean values of sensitivity, DSC, and Hausdorff Distance. These values are computed by varying the atlas through leave-one-out procedure.

TABLE II
MEAN AND STANDARD DEVIATIONS FOR HAUSDORFF DISTANCE

MEASURE, ON A DATASET OF TEN PATIENTS

and the associated mean and standard deviation are presented in
Table II.

Note that there is no definite relationship among the trends of
the metrics that are considered here for evaluation, because of
the following reasons. Sensitivity and DSC are statistical met-
rics and do not reflect the magnitude of deviations in terms of
distance, between the gold standard and the automated segmen-
tation. On the other hand, Hausdorff distance is a geometrical
metric that takes these deviations into account, and thus evalu-
ates the segmentation in an entirely different perspective com-
pared to the statistical metrics. Within the two statistical metrics,
unlike DSC, sensitivity does not depend on the number of false
positive voxels thus, no definite relationship is possible
between the trends of sensitivity and DSC as well.

C. Effect of Atlas Selection

As mentioned earlier, there can be significant anatomical
variations in the H&N lymph node regions among different
patients. Hence, the evaluation of robustness of a method to the

atlas selection is particularly important in the current context.
We present here the evaluation of robustness of the proposed
method, through “leave-one-out” atlas selection procedure:
One of the images from the dataset of ten patients is chosen as
the atlas, and segmentation is performed on the remaining nine
patients. The mean values of sensitivity, DSC and Hausdorff
distance are computed over the nine patients, for each lymph
node region. Then this process is repeated such that each patient
in the dataset is used once as the atlas and the segmentation is
performed on the remaining nine patients.

Sagittal views of four patients are presented in Fig. 14 for il-
lustrating the anatomical variability present the current dataset.
Fig. 15 shows the box plots of mean values of sensitivity, DSC
and Hausdorff distance with the varying atlas image. The asso-
ciated mean and standard deviations of the “mean values of the
metrics” are presented in Table III. It can be noticed that final
mean values in Table III are very close to the mean values of the
metrics in Tables I and II. The standard deviations of the “mean
values of the metrics” in Table III are also similar to the standard
deviations of the metrics in Tables I and II. Thus the proposed
scheme is found to be robust in segmenting the lymph node re-
gions.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have presented the automated segmentation
of the H&N lymph node regions, using active contour-based
atlas registration technique. We have also proposed to segment
the lymph node regions based on the dense deformation field
computed from the registration of selected structures that have
distinct boundaries. The results from our registration model are
compared with the results from RBF algorithm and Demons al-
gorithm, using different statistical and geometrical measures.
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TABLE III
MEAN AND STANDARD DEVIATIONS FOR “MEAN VALUES OF THE METRICS,” COMPUTED FROM LEAVE-ONE-OUT ATLAS SELECTION PROCEDURE

Even though multiple structures of the atlas image are used
for segmentation, it is not required to perform separate segmen-
tations of these structures because of the labeling strategy. The
object-based forces of the active contour model used by our
algorithm need the initial positions of the selected structures.
These initial positions are given by the labeled image. Then
the active contours automatically segment the target objects
in the patient’s image. The automatic segmentation process is
in fact performed by minimizing the energy from which the
object-based forces are derived. The only exception where an
initial alignment or affine registration is required is, when there
is no overlap between the labels of the atlas image and the
corresponding structures in the patient’s image. This limitation
comes from the active contours framework itself. Although
there are large deformations among the atlas and the patient’s
image, as long as there is an overlap of the selected structures,
our method is found to perform the registration well without
requiring any initial affine registration. All the CT images
of the dataset are taken on the same machine having similar
orientations. Hence, no initial registration is performed for our
method whereas prior affine registration is performed for both
RBF and Demons methods.

From the comparison of sensitivity results shown in Fig. 10,
our model has performed better than RBF and Demons algo-
rithms. In case of specificity measure, the results for all the
lymph node regions, from all the methods are around the ideal
value . Specificity is not a good measure for the evaluation
of lymph node segmentation, because of it’s dependency on the
relative size of the lymph node with respect to the image size.

For DSC measure shown in Fig. 12, our method is superior to
the RBF method. The reason for lower values of DSC for RBF
method is because it is a parametric method and hence cannot
cope up with large deformations between the atlas and the pa-
tient’s image. The mean values of DSC from our method are
very close to the Demons method; this is not surprising because
both of these techniques are non-parametric, and also both of
them are derived from the optical flow model. The variance in
DSC is relatively small for our method compared to the Demons
method.

As mentioned in the previous Section, lower values of Haus-
dorff distance imply a better resemblance between the gold stan-
dard and the automated segmentation. From the Hausdorff dis-
tance results shown in Fig. 13, the results are poor for the RBF
method. The mean values of Hausdorff distance for our method
are close to the Demons because of the similar reasons men-

tioned for DSC. For some lymph node regions, the mean values
are slightly better for Demons method and is in the other way
some other lymph node regions. However, Our method has the
advantage of relatively small value of variance than the Demons
method.

It can be observed from the results in Tables I and II that
for most of the cases, all the three metrics have similar trends;
i.e., if the value of one of the metrics is comparatively better
for a certain lymph node region, the values of the remaining
metrics for that lymph node region are also found to be com-
paratively better, and vice versa. However, the trends are in the
reverse way for few other cases. For instance, using the pro-
posed method, segmentation of lymph node region III has less
sensitivity compared to lymph node region IV, but DSC value is
comparatively better for lymph node region III. Hence, as men-
tioned in Section IV-B, there is no definite relationship among
the trends of these metrics.

The robustness of the method to the atlas selection is also
evaluated by selecting each image in the dataset as the atlas,
and performing the segmentation of the lymph node regions on
the rest of the images in the dataset. The proposed method is
found to be robust to the atlas selection. The segmentation re-
sults may further improve if individual atlases are selected for
each patient’s image to be segmented, based on the anatomical
similarity. but this is beyond the scope of this paper.

In our current evaluation, the manual delineations made by
a single radiation oncologist are taken as gold standard. How-
ever, there can be some amount of errors in the manual segmen-
tations due to the intra-expert variability, and that needs to be
considered. A more accurate performance characterization can
be done by obtaining manual segmentations from many experts
and then computing a probabilistic estimate of the true segmen-
tation, using the algorithm proposed by Warfield et al. in [29].

For computing the dense deformation field in the registration
process, we have used four important structures with distinct
boundaries: external contour, mandible, vertebrae, and trachea.
In the future work, we will include more structures with distinct
boundaries to further improve the segmentation results. We also
want to extend our evaluation over a larger dataset as the current
dataset contains only ten patients.
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