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ABSTRACT
We introduce a new approach for finger-spelling recognition from
video sequences, relying on the collaboration between the feature
extraction and behavior inference processes. The inference process
dynamically guides the segmentation-based feature extraction pro-
cess towards the most likely location of the signer’s hand (based
on its attributes). Reciprocally, segmentation offers to the inference
process hand object attributes extracted from each image, combin-
ing the received guidance and new image information. This collab-
oration is beneficial for both processes, yielding not only accurate
segmentations of the spelling hand, but also a robust recognition
scheme, which can cope with complex backgrounds, typical of real
life situations.

1. INTRODUCTION

In sign languages, information is mostly conveyed through a word-
level sign vocabulary, combining arm and body motions, hand
shapes and facial expressions. Finger-spelling is the component
which connects a sign language with the surrounding (spoken) lan-
guages. It consists of manual representations of alphabet letters and
it is used for spelling words that have no sign equivalent (e.g. proper
nouns or foreign words).

For word-level sign recognition, the most successful ap-
proaches [1, 2] rely on the use of devices such as data-gloves and
magnetic trackers. Compared to these, purely vision-based ap-
proaches are preferable, being cheaper in terms of technology and
also less cumbersome for the signer. Among these, the American
Sign Language (ASL) recognizer proposed in [3] tracks hands as
skin-colored blobs, extracts global features (e.g. positions and in-
ertia axis angles), and classifies them via Hidden Markov Models
(HMMs). In [4], high level descriptions of the hands’ motion, shape
and relative positions are extracted from video sequences, filtered
via Independent Component Analysis and classified by a bank of
Markov models trained for individual signs. A similar approach
for Australian sign language recognition (based on geometric fea-
tures and HMM classification) is presented in [5]. All these systems
have shown good performances in their respective sign recognition
tasks, but they cannot be directly applied to finger-spelling recog-
nition because of the different nature of the problem. Furthermore,
they depend heavily on the feature extraction task, which could de-
grade their performance.

Generally, in finger-spelling the discrimination between letters
is based on hand and finger configurations, rather than on global
hand and arm motions, as in word-level signing. Thus, global fea-
tures (used in the above-mentioned systems) are not adequate for
finger-spelling recognition and one needs to use more precise de-
scriptions of the hand shape. In [6], finger-spelling recognition is
addressed by hand mask extraction based on skin color and sub-
sequent classification via nearest neighbor template matching and
deterministic boosting. For the recognition of Australian finger-
spelling (involving two handed global motions, unlike ASL), good

results were obtained in [7], based on general geometric and mo-
tion features, recognized using HMMs. In both approaches, the
feature extraction phase relies on skin color for hand region detec-
tion and performance is only guaranteed in a controlled laboratory
environment, with constant-color background and similar lighting
conditions during the training and testing phases.

In this paper, we introduce a method for finger-spelling recog-
nition which is robust against cluttered background and changing
lighting conditions, while being invariant to 2D similarity transfor-
mations of the signing hand. This is achieved through the unifica-
tion of the two separate steps traditionally considered in recognition
tasks: (i) feature extraction and (ii) classification. We propose a col-
laborative framework, where these two tasks are performed in paral-
lel, so that each benefits from the knowledge and results yielded by
the other one. Feature extraction is performed through variational
image segmentation, which assimilates a priori knowledge regard-
ing the most probable attributes of the signing hand, generated by
the recognition process. This extra knowledge makes the segmen-
tation robust against adverse conditions, such as cluttered back-
grounds and various lighting conditions. Recognition is achieved
via probabilistic inference in a multiple HMM framework, allow-
ing the collaboration of the two processes through frame by frame
integration of new segmentation results.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the proposed framework and details its collaborating
halves: behavior inference and image segmentation. In Section 3 we
describe the finger-spelling application and particularize our general
framework to provide an adequate resolution. Experimental results
are presented at the end of Section 3 and Section 4 concludes the
paper.

2. OUR GENERAL SEGMENTATION/BEHAVIOR
INFERENCE FRAMEWORK

Our general framework is based on the idea of collaboration be-
tween two processes – image segmentation and behavior 1 infer-
ence – along the target image sequence During an initial training
phase, the inference process learns the dynamic probability models
of typical behaviors from training data. Then, segmentation and be-
havior inference are run cooperatively throughout a new test image
sequence. For each image, an inference step is performed, gener-
ating probabilistic prior attribute models for each behavior class.
These are used by the ensuing segmentation to identify the most
likely objects in the current image and subsequently provide their
attributes to the next inference step. The priors offered by the in-
ference process are based on learning from training data and are
updated dynamically according to newly processed images. The

1By “behavior”, we mean the temporal evolution of the object, as ob-
served in the image sequence. The inference of object behavior from an
image sequence requires the determination of the appropriate behavior class
for each object evolution instance throughout the sequence.



most likely behavior class of each object evolution instance can be
extracted at any point within the sequence from the inference pro-
cess.

By the generic term “attribute” we designate a visual property
of an object, definable as a functional A(C, I) of the image I and
of the object’s segmenting contour C (A is assumed to be differ-
entiable with respect to C). This definition includes many proper-
ties computable with boundary- and region-based functionals (e.g.
position, orientation, average intensity/color, higher order statistics
describing texture) and makes our framework adaptable to the needs
of other behavior recognition applications.

2.1 Behavior Inference using Multiple HMMs
Given a sequence of object attribute values extracted from an image
sequence, behavior inference translates to finding the best matching
sequence of behavior classes. We address this task using Hidden
Markov Models (HMMs) [8]. Having estimated HMM parameters
from training attribute sequences, we use them to infer the behavior
reflected in new image sequences, while jointly performing segmen-
tation of these sequences, according to the intended collaboration.

An HMM [8] is a doubly embedded stochastic process, consist-
ing of an underlying hidden process, observable via a set of stochas-
tic processes (the HMM states) that produce a sequence of observa-
tions. In our case, the observations are the attribute values extracted
from the image sequence, while the states correspond to the behav-
ior classes. We denote the HMM states by S = {S1, S2, . . . , SM},
the state at time t by qt and the attribute value at time t by A(t).
The HMM parameters are:
1. the initial state distribution π = {πi}, with πi = P (q1 = Si),

i = 1..M ,
2. the state transition probability distribution T = {tij}, with

tij = P (qt+1 = Sj |qt = Si), i, j = 1..M , and
3. the state observation probability distributions (behavior class

likelihoods):

P (A(t) | qt = Si) = Pi(A(t)), i = 1..M. (1)

The class likelihoods Pi(A(t)) are another free parameter of our
framework, adaptable to the application at hand, with the sole con-
dition that they be differentiable with respect to A(t) (to enable
collaboration with the segmentation).

Many human-to-computer interaction applications require dis-
crimination among a number of behavior types, each made up of a
different succession of basic actions, belonging to different behav-
ior classes, which are shared among the behavior types (e.g. letter
classes shared among words). We model such cases via multiple
HMMs, each accounting for a different behavior type and sharing
the same state models, corresponding to the basic behavior classes.
To perform behavior inference, we estimate the probability of an
attribute sequence on the most likely state path in each HMM and
choose the winner HMM (thus, behavior type) as the one with the
highest probability. Its most likely state path yields the most likely
succession of behavior classes for the given attribute sequence.

To estimate the most likely state path (and its probability), we
run the Viterbi algorithm [8] simultaneously on all HMMs. For an
observation sequence A1..T , the Viterbi algorithm estimates – for
each time step t and state Si – the highest probability along a state
sequence which accounts for the first t observations and ends in
state Si:

δt(i) = max
q1,q2,...,qt−1

P (q1..t−1, qt = Si, A1..t). (2)

To distinguish among K behavior types, we employ K HMMs,
with shared states and state models Pi(A(t)), i = 1..M and dif-
ferent initial πk = {πk

i } and state transition probabilities T k =
{tk

ij}, k = 1..K. We store (2) and its maximizing argument in the
δk and ψk variable sets. The analysis of a sequence A1..T starts
with variable initialization:

δk
1 (i) = πk

i Pi(A(1)),

ψk
1 (i) = 0, i = 1..M, k = 1..K.

(3)

Then, for each t = 2..T , a recursion step is performed:

δk
t (i) = max

j=1..M

(
δk

t−1(j) tk
ji

)
Pi(A(t)), (4)

ψk
t (i) = arg max

j=1..M
δk

t−1(j) tk
ji, i = 1..M, k = 1..K.

Finally, the probability of the attribute sequence given the most
likely path in each HMM k is given by:

P opt
k = max

i=1..M
δk

T (i). (5)

The winner HMM (thus, behavior type) maximizes (5)

kopt = arg max
k=1..K

P opt
k . (6)

The most likely behavior class sequence for A1..T can be retrieved
from the δ-s and ψ-s of the winner HMM:

qopt
T = arg max

i=1..M
δkopt

T (i),

qopt
t = ψkopt

t+1(q
opt
t+1), t = T − 1, T − 2, . . . 1.

(7)

Our innovation is to couple behavior inference and segmentation
by using the probability estimates of the Viterbi algorithm at each
step to guide the segmentation of the corresponding image. To this
end, we run the algorithm and segmentation in an interleaved man-
ner along the image sequence, using as observations the attributes
of newly segmented images as soon as they become available. Sup-
pose we have completed step t−1 of our framework, so that A1..t−1

and δk
t−1(j), j = 1..M, k = 1..K are available. We invest into the

segmentation of I(t) the maximum amount of a priori knowledge
given by the inference process:
1. the predictions of each class i for the next attribute A(t); i.e.,

the likelihood functions Pi(A(t)) (1), and
2. our relative confidence in the class predictions, given by the

maximum probability of reaching state Si at time step t, af-
ter having observed attributes A1..t−1. This probability can be
estimated as:

wt(i) = max
k=1..K

max
q1..t−1

P (q1..t−1, qt = Si, A1..t−1 | k)

= max
j=1..M
k=1..K

δk
t−1(j)t

k
ji. (8)

We define the prior information offered by class i about the next
attribute A(t) as the product of the two quantities above:

δt(A(t), i) = wt(i) Pi(A(t)), i = 1..M

= max
k=1..K

δk
t (A(t), i).

(9)

2.2 Variational Image Segmentation
Motivated by successful segmentation approaches using prior infor-
mation [9, 10], we formulate segmentation in a variational frame-
work which incorporates the probabilistic behavior class priors
δt(A(t), i) via a competition approach. In this way, the segmented
object belongs to the class which best accounts for its generation,
given the image evidence. Having run our joint segmentation / be-
havior inference framework on the first t−1 frames of an image se-
quence, we segment I(t) by minimizing the following energy func-
tional:

E(C,L, I(t)) = Edata(C, I(t)) + αEprior(C,L, I(t)), (10)

where C is the segmenting contour, L = (L1, . . . LM ) is the set of
labels (defined below) and α is a positive weighing constant. En-
ergy Edata(C, I(t)) encapsulates image-related constraints on the



contour C, and can be any boundary- or region-based segmenta-
tion energy suitable for the application at hand (e.g. [11]). Energy
Eprior(C,L, I(t)) is:

Eprior(C,L, I(t)) =−
M∑

i=1

log
(
δt(A(C, I(t)), i)

)
L2

i

+ β

(
1−

M∑
i=1

L2
i

)2

. (11)

with β – a positive constant. It contains the negative logarithms of
the prior probabilities (9), which through energy minimization will
lead to the maximization of the respective probabilities. Each prior
carries a label factor L2

i , which controls its contribution to segmen-
tation according to its relative probability with respect to the other
priors. The label Li is a scalar variable that varies continuously be-
tween 0 and 1 during energy minimization and converges either to 1
(for the winning prior, whose probability has thus been maximized
through segmentation) or to 0 (for the other priors, which have thus
been annulled). Competition among priors is enforced by the soft
constraint that the label factors should sum to 1, introduced by the
last term in (11).

We minimize (10) simultaneously with respect to the segment-
ing contour C and the labels L using the calculus of variations and
gradient descent. The corresponding equations are not included
here due to space limitations.

2.3 Summary
To sum up, our general framework for segmentation and behavior
inference consists of the following:
• Training phase: estimate parameters of the HMMs from train-

ing attribute sequences, according to [8].
• Testing phase: perform joint segmentation and behavior infer-

ence on new attribute sequences A1..T :
1. Segment first image in the sequence I(1) (manually or using

only Edata(C, I(1)) in (10).
2. Extract attribute A(1) = A(C, I(1)).
3. Initialize δ and ψ according to (3).
4. For t = 2..T

– Compute wt(i), i = 1..M according to (8).
– Segment image I(t) using energy (10), with

δt(A(C, I(t)), i) given by (9).
– Extract attribute A(t) = A(C, I(t)).
– Compute δk

t (i) and ψk
t (i), i = 1..M, k = 1..K using

(4).
5. Estimate winner HMM and infer behavior type using (6).
6. Backtrack to infer the behavior class of each attribute in-

stance in A1..T using (7).

3. FINGER-SPELLING RECOGNITION

In the following, we perform finger-spelling recognition using our
collaborative segmentation/behavior inference framework. We first
describe our application. Then, we particularize our framework us-
ing likelihood and segmentation models adapted to our application.
Finally, we present the obtained results.

3.1 Application description
For our application, we use the manual alphabet of the French-
speaking part of Switzerland (Suisse Romande) (see [12]). Our goal
is to perform finger-spelling recognition on a 30-word vocabulary,
containing country names (Table 1).

With the support of the Swiss Federation for the Hearing-
Impaired [12], we have acquired a data base containing image
sequences of a hearing-impaired person finger-spelling the above
mentioned words. Acquisition has been performed both in ideal
conditions (contrasting background, low speed gesturing), for train-
ing purposes, and realistic ones (cluttered background, normal
speed gesturing), for testing purposes.

Albania Algeria Armenia Austria Belarus
Belgium Burundi Croatia Denmark Ecuador
Eritrea Estonia Finland Georgia Germany

Hungary Iceland Lebanon Lesotho Liberia
Moldova Namibia Nigeria Romania Senegal
Somalia Tunisia Ukraine Uruguay Vietnam

Table 1: Vocabulary of our finger-spelling application

3.2 Solution using the proposed framework

For this application, we use the hand contour as attribute A(C, I) =
C, represented by a level set function (LSF) φ : Ω → R, where Ω
is the image domain [13].

The words in our vocabulary constitute our behavior types and
are each modeled by an individual HMM. Letters are the common
basic components of all words and are modeled as shared states
(behavior classes) of our HMMs.

The likelihood model Pi(φ) for each class i adapts dynami-
cally to new image content and relies on a shape distance function,
motivated by [14], between the segmenting contour and a prior con-
tour corresponding to that class. The prior contours are computed
via principal components analysis (PCA) from specific training data
for each class. They evolve during segmentation so as best to match
image information, within class constraints imposed by the PCA.

Based on the training LSFs for a class, we approximate a new
LSF φ̂ from that class via PCA as:

φ̂ = φ + E c, (12)

where φ is the mean of the training LSFs, E is a matrix whose
columns are a reduced set of p PCA eigenvectors and c is the p-
dimensional vector of eigencoefficients.

Our shape distance function between the current segmenting
contour φ and the prior contour φ̂ is given by:

d(φ, c, τ ) =

∫∫

Ω

(
φ̂2|∇φ|δ(φ) + φ2|∇φ̂|δ(φ̂)

)
dx dy. (13)

Here, δ is the Dirac function and φ̂ is the continuously interpolated
LSF of the prior contour, obtained from (12):

φ̂(c, τ ) |(x,y)=
1

s

(
φ(hτ (x, y)) + E(hτ (x, y)) c

)
. (14)

Here τ = {s, θ, Tx, Ty} are the parameters of a similarity transfor-
mation which aligns the prior with contour φ:

hτ

(
[x y]T

)
= s

(
cos θ sin θ
− sin θ cos θ

) [
x
y

]
+

[
Tx

Ty

]
. (15)

Since
∫∫

Ω
|∇φ|δ(φ) dx dy represents the length of the zero level

set of φ and the LSFs are represented as signed distance functions,
we readily observe that the first term of (13) approximates the min-
imal Euclidian distance to the prior contour, integrated along the
segmenting contour. The second term of (13) exchanges the roles
of φ and φ̂ relative to the first term, making the distance function
symmetric and thus suitable for use in classification. Based on this
distance function, we define the likelihood of the segmenting con-
tour represented by φ, for time t (image I(t)) and class i as

Pi(φ(t)) = e−d(φ(t),ci(t),τ i(t)). (16)

We use the piecewise constant Mumford-Shah model [11] to
guide the evolution of the main contour φ and prior contours



Letter A Letter B Letter C Letter D

Figure 1: Sample images (and corresponding behavior classes) from
training sequences used in our application.

φ̂i(c
i, τ i), in terms of their parameters ci and τ i:

Edata(φ, ci=1..M , τ i=1..M ) = ν

∫∫

Ω

|∇H(φ)| dx dy

+

∫∫

Ω

(I − µφ+)2H(φ) + (I − µφ−)2H(−φ) dx dy

+

M∑
i=1

∫∫

Ω

(I − µφ̂i+
)2H(φ̂i) + (I − µφ̂i−)2H(−φ̂i) dx dy.

(17)

Here H is the Heaviside function and µφ+, µφ̂i+
and µφ−, µφ̂i−

are the mean image intensities over the positive, respectively nega-
tive, regions of the LSFs φ and φ̂i. The first term of (17) imposes
smoothness of the contour φ.

Using likelihoods (16) for the priors δt(φ, i) in (9), the prior
energy becomes:

Eprior(φ,L, ci=1..M , τ i=1..M ) =

M∑
i=1

(
− log wt(i)

+ d(φ(t), ci(t), τ i(t))

)
L2

i + β

(
1−

M∑
i=1

L2
i

)2

. (18)

In practice, to decrease the computational burden during segmen-
tation, we used only the top 3 most probable letter priors (esti-
mated with (8)) to guide segmentation, instead of the 20 available
letter priors. This pruning strategy did not affect recognition perfor-
mance, while diminishing segmentation time and improving con-
vergence towards the optimal prior.

The total energy (10), summing (17) and (18), is minimized via
the calculus of variations and gradient descent, yielding evolution
equations for the LSF φ, the labels L, the PCA and alignment pa-
rameters ci and τ i, i = 1..M .

3.3 Training the model
We have trained our model using image sequences of each vocab-
ulary word from the acquired database, where the gesturing person
was filmed on a dark, contrasting background and the gestures were
performed at slow speed. Figure 1 presents images from the training
sequences.

First, the gesturing hand has been segmented in each training
sequence and the resulted contours have been assigned to their re-
spective letter classes and aligned with respect to similarity trans-
formations using genetic algorithms [15]. Subsequently, a separate
HMM was trained for each vocabulary word [8]. The observation
probabilities for the shared HMM states have been learned by PCA
(p = 20) from the contours of each letter class.

3.4 Experimental Results
We tested the resulting implementation of our framework on im-
age sequences of the same person finger-spelling words from the
vocabulary, this time in realistic conditions, involving a cluttered
background, normal gesturing speed and changed lighting condi-
tions with respect to the training image sequences. Despite the

Sq.1-064; Cl. N Sq.1-073; Cl. D Sq.1-129; Cl. E

Frame number

Figure 2: Erroneous results using sequential segmentation and be-
havior inference on the “Albania” sequence, miss-classified as “Ice-
land”.

complexity of the task, the results are accurate in terms of the rec-
ognized words, due to the infusion of knowledge about the dynam-
ics of vocabulary words via our collaborative framework. Figure 3
presents examples of cooperative segmentation and behavior infer-
ence on two image sequences, which have been correctly classified
as the words “Albania” and “Belarus”, respectively. The dynamical
PCA-based prior models have adapted to significant shape varia-
tions within behavior classes, allowing the segmentation of the hand
in a difficult case of cluttered background. The frame-wise behavior
inference results for these sequences, yielded by the winner HMMs,
are presented on the bottom of in Fig. 3 and correspond to our un-
derstanding of the sequences in terms of the executed gestures. In
contrast, using the traditional (sequential) approach for recognition,
i.e. variational segmentation without prior models, followed by in-
ference, produces erroneous results. For instance, Fig. 2 shows how
the “Albania” sequence was miss-classified as “Iceland”, because
the segmentation has been side-tracked by the cluttered background.

4. CONCLUSION

We have introduced a novel approach for finger-spelling recogni-
tion, based on a collaborative framework that fuses feature extrac-
tion and classification. The advantage of our framework is the shar-
ing of information between the two processes, which is mutually
beneficial. Feature extraction is based on variational image segmen-
tation, which allows the introduction of prior models of the hand,
resulted from classification. Classification is performed through be-
havior inference using HMMs, enabling the step-by-step incorpo-
ration of new attributes extracted from the image sequence. Our
approach yields good results both in terms of image segmentation
and of gesture recognition, proving robustness in difficult situations,
involving cluttered background and changing lighting conditions.
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