
Strategy Construction

for Parity Games with Imperfect Information⋆

Dietmar Berwanger1, Krishnendu Chatterjee2, Laurent Doyen3,
Thomas A. Henzinger3,4, and Sangram Raje5

1 RWTH Aachen, Germany
2 CE, University of California, Santa Cruz, U.S.A.

3 I&C, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
4 EECS, University of California, Berkeley, U.S.A.

5 IIT Bombay, India

Abstract. We consider imperfect-information parity games in which strate-
gies rely on observations that provide imperfect information about the history
of a play. To solve such games, i.e., to determine the winning regions of play-
ers and corresponding winning strategies, one can use the subset construction
to build an equivalent perfect-information game. Recently, an algorithm that
avoids the inefficient subset construction has been proposed. The algorithm
performs a fixed-point computation in a lattice of antichains, thus maintain-
ing a succinct representation of state sets. However, this representation does
not allow to recover winning strategies.

In this paper, we build on the antichain approach to develop an algorithm for
constructing the winning strategies in parity games of imperfect information.
We have implemented this algorithm as a prototype. To our knowledge, this
is the first implementation of a procedure for solving imperfect-information
parity games on graphs.

1 Introduction

Parity games capture the algorithmic essence of fundamental problems in state-based
system analysis [10]. They arise as natural evaluation games for the µ-calculus, an
expressive logic that subsumes most specification formalisms for reactive systems, and
they are closely related to alternating ω-automata [6].

In the basic variant, a parity game is played on a finite graph with nodes labeled by
natural numbers denoting priorities. There are two players, Player 1 and Player 2, who
take turns in moving a token along the edges of the graph starting from a designated
initial node. In a play, the players thus form an infinite path, and Player 1 wins if the
least priority that is visited infinitely often is even; otherwise Player 2 wins. These are
games of perfect information: during the play each of the players is informed about
the current position of the token. One key property of parity games is memoryless

⋆ This research was supported in part by the NSF grants CCR-0132780, CNS-0720884, and
CCR-0225610, by the Swiss National Science Foundation, by the European COMBEST
project, and by the Deutsche Forschungsgemeinschaft (DFG).

determinacy: from every initial node, either Player 1 or Player 2 has a winning strategy
that does not depend on the history of the play [4]. As a consequence, a winning
strategy can be represented as a subset of the edges of the graph, and the problem of
constructing a winning strategy is in NP ∩ coNP.

The perfect-information setting is often not sufficient in practice. The need to
model uncertainty about the current state of a system arises in many situations. For
instance in controller-synthesis applications, certain parameters of the plant under
control may not be observable by the controller. Likewise in multi-component design,
individual components of a complex system may have private variables invisible to
other components. As a way to handle state-explosion problems, one may accept a loss
of information in a concrete model in order to obtain a manageable abstract model
of imperfect information.

One fundamental question is how to model imperfect information. In the classical
theory of extensive games, this is done by partitioning the game tree into information
sets signifying that a player cannot distinguish between different decision nodes of
the same information set [5]. Technically, this corresponds to restricting the set of
strategies available to a player by requiring a uniform choice across all nodes of an
information set. However, for the algorithmic analysis of games of infinite duration on
graphs, the information sets need to be finitely represented. Such a model is obtained
by restricting to strategies that rely on observations corresponding to a partitioning
of the game graph.

The model of imperfect information games that we consider here was originally
introduced in [9]. Like in the perfect-information case, the game is played by two
opposing players on a finite graph. The nodes of the graph, called locations, are
partitioned into information sets indexed by observations. Intuitively, the only visible
information available to Player 1 during a play is the observation corresponding to the
current location, whereas Player 2 has perfect information about the current location
of the game. The starting location is known to both players. Following [1], the parity
winning condition is defined in terms of priorities assigned to observations.

The basic algorithmic problems about parity games are (1) to determine the win-
ning region of a player, that is, the set of initial locations from which he has a winning
strategy, and (2) to construct such a winning strategy. One straightforward way to
solve parity games of imperfect information is based on the following idea [9, 1]: after
an initial prefix of a play, Player 1 may not know in which precise location the play
currently is but, by keeping track of the history, he can identify a minimal set of
locations that is guaranteed to contain the current location. Such a set, to which we
refer as a cell, reflects the knowledge derived by a player from past play. Via a sub-
set construction that associates moves in the game to transitions between cells, the
original imperfect-information game over locations is transformed into an equivalent
game of perfect information over cells. This approach, however, incurs an exponential
increase in the number of states and is therefore inefficient.

For computing the winning region of a game, an algorithm that avoids the explicit
subset construction has been proposed recently in [1]. The algorithm exploits a mono-
tonicity property of imperfect-information games: if a cell is winning for Player 1, that
is, if he wins from every location of the cell, then he also wins from every subset of the

2

cell. Intuitively, the subcell represents more precise knowledge than the entire cell. It
is therefore sufficient to manipulate sets of cells that are downward-closed in the sense
that, if a cell belongs to the set, then all its subcells also belong to it. As a succinct
representation for downward-closed sets of cells, the algorithm maintains antichains
that consist of maximal elements in the powerset lattice of cells. The winning region
can now be computed symbolically by evaluating its characterization as a µ-calculus
formula over the lattice. One particular effect of this procedure is that the discovery
of winning cells propagates backwards, rather than forwards from the initial location,
and thus avoids the construction and exploration of cells that are not relevant for
solving the game.

On many instances, the antichain algorithm performs significantly better than the
subset construction for computing winning regions. However, in contrast to the lat-
ter, the antichain algorithm does not construct winning strategies. Indeed, we argue
that there is no direct way to extract a winning strategy from the symbolic fixed-
point computation. In terms of logic, the algorithm evaluates a µ-calculus formula
describing the winning region, which corresponds to evaluating a monadic expression
with second-order quantifiers that range over (sets of) nodes in the game graph. On
the other hand, strategies are not monadic objects; already memoryless location- or
observation-based strategies are composed of binary objects, namely, edges of the
graph or pairs of cells. In particular, we show that already in parity games of per-
fect information knowing the winning region of a game does not make the problem
of constructing a winning strategy easier. In imperfect-information games there are
additional sources of complexity: the size of a winning strategy may be exponentially
larger than the winning region, already for reachability objectives. Nevertheless, the
construction of winning strategies is crucial for many applications such as controller
synthesis or counterexample-guided abstraction-refinement [7].

In this paper, we present an algorithm for constructing winning strategies in parity
games of imperfect information. One main concern is to avoid the subset construc-
tion. To accomplish this, our algorithm works with symbolic representations of set of
cells and builds on the antichain technique. It is based on an elementary algorithm
proposed by McNaughton [8] and presented for parity games by Zielonka [12]. This
algorithm works recursively: from the viewpoint of Player 1, in each stage a smaller
game is obtained by removing the attractor region from which Player 2 can ensure to
reach the minimal odd priority. This operation of removal marks the main difficulty
in adapting the algorithm to antichains, as the residual subgame is in general not
downward-closed. Intuitively, switching between the sides of the two players breaks
the succinct representation. We overcome this difficulty by letting, in a certain sense,
Player 1 simulate Player 2. Technically, this amounts to replacing two alternating
reachability computations by the computation of a strategy that simultaneously sat-
isfies a reachability and a safety objective.

We have implemented the algorithm as a prototype. To our knowledge, this is the
first automatic tool for solving imperfect-information parity games on graphs.

3

2 Definitions

Let Σ be a finite alphabet of actions and let Γ be a finite alphabet of observations.
A game structure of imperfect information over Σ and Γ is a tuple G = (L, l0, ∆, γ),
where L is a finite set of locations (or states), l0 ∈ L is the initial location, ∆ ⊆
L×Σ×L is a set of labelled transitions, and γ : Γ → 2L\∅ is an observability function
that maps each observation to a set of locations. Abusing notation, we usually identify
the set γ(o) with the observation symbol o. We require the following two conditions
on G: (i) for all ℓ ∈ L and all σ ∈ Σ, there exists ℓ′ ∈ L such that (ℓ, σ, ℓ′) ∈ ∆, i.e.,
the transition relation is total, and (ii) the set {γ(o) | o ∈ Γ} partitions L. For each
ℓ ∈ L, let obs(ℓ) = o be the unique observation such that ℓ ∈ γ(o). In the special
case where Γ = L and obs(ℓ) = ℓ, for all ℓ ∈ L, we say that G is a game structure of
perfect information over Σ. For infinite sequences of locations π = ℓ1ℓ2 . . . , we define
obs(π) = o1o2 . . . where obs(ℓi) = oi for all i ≥ 1, and similarly for finite sequences of
locations. For σ ∈ Σ and s ⊆ L, we define postσ(s) = {ℓ′ ∈ L | ∃ℓ ∈ s : (ℓ, σ, ℓ′) ∈ ∆}
as the set of σ-successors of locations in s.

The game on G is played in rounds. In each round, Player 1 chooses an action σ ∈
Σ, and Player 2 chooses a successor ℓ′ of the current location ℓ such that (ℓ, σ, ℓ′) ∈ ∆.
A play in G is an infinite sequence π = ℓ1ℓ2 . . . of locations such that (i) ℓ1 = l0, and
(ii) for all i ≥ 0, there exists σi ∈ Σ such that (ℓi, σi, ℓi+1) ∈ ∆.

A strategy for Player 1 in G is a function α : Γ+ → Σ. The set of possi-
ble outcomes of α in G is the set Outcome(G, α) of plays π = ℓ1ℓ2 . . . such that
(ℓi, α(obs(ℓ1 . . . ℓi)), ℓi+1) ∈ ∆ for all i ≥ 1. We say that a strategy α is memoryless
if α(ρ · o) = α(ρ′ · o) for all ρ, ρ′ ∈ Γ ∗. We say that a strategy uses finite memory
if it can be represented by a finite-state deterministic transducer (M, m0, λ, δ) with
finite set of states M (the memory of the strategy), initial state m0 ∈ M , where
λ : M → Σ labels states with actions, and δ : M × Γ → M is a transition function
labeled by observations. In state m, the strategy recommends the action λ(m), and
when Player 2 chooses a location with observation o, it updates the internal state to
δ(m, o). Formally, (M, m0, λ, δ) defines the strategy α such that α(ρ) = λ(δ̂(m0, ρ))

for all ρ ∈ Γ+, where δ̂ extends δ to sequences of observations in the usual way. The
size of a finite-state strategy is the number |M | of states of its transducer.

An objective for a game structure G = (L, l0, ∆, γ) is a set φ ⊆ Γ ω of infinite
sequences of observations. A strategy α for Player 1 is winning for an objective φ

if obs(π) ∈ φ for all π ∈ Outcome(G, α). We say that set of locations s ⊆ L is
winning for φ if there exists a strategy α for Player 1 such that α is winning for φ

in Gℓ := (L, ℓ, ∆, γ) for all ℓ ∈ s. A game is a pair (G, φ) consisting of a game structure
and a matching objective. We say that Player 1 wins the game, if he has a winning
strategy for the objective φ.

We consider the following classical objectives. Given a set T ⊆ Γ of target ob-
servations, the safety objective Safe(T) requires that the play remains within the set
T , that is, Safe(T) = {o1o2 . . . | ∀k ≥ 1 : ok ∈ T }. Dually, the reachability objective
Reach(T) requires that the play visits the set T at least once, that is, Reach(T) =
{o1o2 . . . | ∃k ≥ 1 : ok ∈ T }. The Büchi objective Buchi(T) requires that an observa-
tion in T occurs infinitely often, that is, Buchi(T) = {o1o2 . . . | ∀N ·∃k ≥ N : ok ∈ T }.
Dually, the coBüchi objective coBuchi(T) requires that only observations in T occur

4

infinitely often. Formally, coBuchi(T) = {o1o2 . . . | ∃N · ∀k ≥ N : ok ∈ T }. Finally,
given a priority function p : Γ → N that maps each observation to a non-negative
integer priority, the parity objective Parity(p) requires that the minimum priority that
appears infinitely often is even. Formally, Parity(p) = {o1o2 . . . | min{p(o) | ∀N · ∃k ≥
N : o = ok} is even}. We denote by coParity(p) the complement objective of Parity(p),
i.e., coParity(p) = {o1o2 . . . | min{p(o) | ∀N · ∃k ≥ N : o = ok} is odd}. Parity objec-
tives are a canonical form to express all ω-regular objectives [11]. In particular, they
subsume safety, reachability, Büchi and coBüchi objectives.

Notice that objectives are defined as sets of sequences of observations, and they
are therefore visible to Player 1. A game with a safety (resp. reachability) objective
defined as a set of plays can be transformed into an equivalent game with a visible
safety (resp. reachability) objective in polynomial time.

3 Antichain Algorithm

Let Σ be an alphabet of actions and let Γ be an alphabet of observations. We con-
sider the problem of deciding, given a game structure G = (L, l0, ∆, γ) and a parity
objective φ, whether Player 1 has a winning strategy for φ in G. If the answer is Yes,
we ask to construct such a winning strategy. This problem is known to be Exptime-
complete already for reachability objectives [9, 1]. The basic algorithm proposed in [9]
constructs a game (GK, φ′) such that (i) GK = (S, s0, ∆

′, γ′) is a game structure of per-
fect information over the action alphabet Σ, and (ii) Player 1 has a winning strategy
for φ in G if and only if Player 1 has a winning strategy for φ′ in GK. The game struc-
ture GK is obtained by a subset construction where S = 2L \ {∅} and (s1, σ, s2) ∈ ∆′

if and only if there exists an observation o ∈ Γ such that s2 = postσ(s1) ∩ γ(o) and
s2 6= ∅. In the sequel, we call a set s ⊆ L a cell. A cell summarizes the current
knowledge of Player 1, i.e., the set of possible locations in which the game G can be
after the sequence of observations seen by Player 1. Notice that every cell reachable
in GK is a subset of some observation, and so the parity objective φ′ is defined by
extending to cells in the natural way the priority function p that defines φ. Notice
that an objective for GK is a set of infinite sequences of cells, since locations and ob-
servations coincide in games of perfect information. In (GK, φ′), memoryless winning
strategies always exist. Hence, they can be converted into winning strategies in (G, φ)
that depend only on the current cell in GK. Due to the explicit construction of GK,
this approach involves an exponential blow-up of the original game structure.

In [1], an alternative algorithm is proposed to solve games of imperfect information.
Winning cells are computed symbolically, avoiding the exponential subset construc-
tion. The algorithm is based on the controllable predecessor operator CPre : 2S → 2S

which, given a set of cells q, computes the set of cells q′ from which Player 1 can force
the game into a cell of q in one round. Formally,

CPre(q) = {s ∈ S | ∃σ ∈ Σ · ∀s′ : if (s, σ, s′) ∈ ∆′ then s′ ∈ q}.

The key of the algorithm is that CPre(·) preserves downward-closedness, which in-
tuitively means that if Player 1 has a strategy from s to force the game to be in q

in the next round, then he also has such a strategy from all s′ ⊆ s because then

5

Player 1 has a more precise knowledge in s′ than in s. Formally, a set q of cells is
downward-closed if s ∈ q implies s′ ∈ q for all s′ ⊆ s. If q is downward-closed, then
so is CPre(q). Since parity games can be solved by evaluating a µ-calculus formula
over the powerset lattice (S,⊆,∪,∩), and since CPre(·), ∩ and ∪ preserve downward-
closedness, it follows that a symbolic algorithm maintains only downward-closed sets
q of cells, and can therefore use a compact representation, namely their maximal
elements ⌈q⌉ = {s ∈ q | s 6= ∅ and ∀s′ ∈ q : s 6⊂ s′}, forming antichains of cells,
i.e., sets of ⊆-incomparable cells. The set A of antichains is partially ordered as fol-
lows: for q, q′ ∈ A, let q ⊑ q′ iff ∀s ∈ q · ∃s′ ∈ q′ : s ⊆ s′. The least upper bound
of q, q′ ∈ A is q ⊔ q′ = ⌈{s | s ∈ q or s ∈ q′}⌉, and their greatest lower bound is
q ⊓ q′ = ⌈{s ∩ s′ | s ∈ q and s′ ∈ q′}⌉. The partially ordered set (A,⊑,⊔,⊓) forms a
complete lattice. We view antichains of location sets as a symbolic representation of
⊆-downward-closed sets of cells.

The advantage of the symbolic antichain approach over the explicit subset con-
struction has been established in practice for different applications in model-checking
(e.g. [2, 3]). The next lemma shows that the antichain algorithm may be exponentially
faster than the subset construction.

Lemma 1 (See also [2]). There exists a family (Gk)k≥2 of reachability games of
imperfect information with k locations such that, on input Gk the subset-construction
algorithm runs in time exponential in k whereas the antichain algorithm runs in time
polynomial in k.

Proof. Consider the family of games Gk over the alphabet Σ = {0, 1} shown in Fig. 1.
For any k ≥ 2 the set Lk of locations of Gk consists of 2k +1 locations, ℓ0, . . . , ℓk and
ℓ′1, . . . , ℓ

′
k, the initial location is ℓ0. The observations are {ℓk, ℓ′k} and Lk \ {ℓk, ℓ′k},

and the goal is to reach the set T = {ℓk, ℓ′k}. Clearly, there exists a winning strategy
in Gk for all k ≥ 2, consisting in playing any {0, 1}-word starting with 1.

It is easy to see that the subset-construction algorithm encounters an exponential
blow-up on Gk as there are O(2k) cells in the perfect-information version of the
subgame {ℓ1, . . . , ℓk}.

However, the antichain algorithm terminates in polynomial time, as the sequence
defined by q0 = {{ℓk, ℓ

′
k}}, and qi+1 = CPreGk(qi) ⊔ q0 for i ≥ 0, stabilizes after

k iterations with qi = {{ℓk−i, . . . , ℓk} ∪ {ℓ′k−i, . . . , ℓ
′
k}} for i < k, qk = {Qk}, and

qk+1 = qk. �

The antichain algorithm computes a compact representation of the set of winning
cells. However, it does not produce a winning strategy. We point out that, already
for parity games with perfect information, if there exists a polynomial-time algo-
rithm that, given a game and the set of winning locations for Player 1, constructs a
memoryless winning strategy, then parity games can be solved in polynomial time.

Proposition 2. The following two problems on parity games with perfect information
in which Player 1 wins are polynomial-time equivalent.

(i) Given a game, construct a memoryless winning strategy.
(ii) Given a game and the set of winning locations for Player 1, construct a memory-

less winning strategy.

6

Gk

ℓ0

ℓ1 ℓ2 ℓ3 ℓk−1 ℓk

ℓ′1 ℓ′2 ℓ′3 ℓ′k−1 ℓ′k

0, 1

0

1 0, 1 0, 1 0, 1 0, 1
. . .

0, 1

1 0, 1 0, 1 0, 1
. . .

0, 1

Fig. 1. A family of games Gk, k ≥ 2, for Lemma 1.

Proof. For any instance of problem (i), that is, a game G where Player 1 wins from
the initial location l0, we construct an instance (G′, W) of problem (ii) in such a way
that every memoryless winning strategy in G′ corresponds to a winning strategy for
G. (The converse is trivial.)

Without loss, we assume that no priorities in G are less than 2. The game G′ is
obtained by adding to G a “reset” location z of priority 1, with transitions that allow
Player 1 to reach z from any location of G where he moves, and with one transition
from z back to l0. In the new game, Player 1 wins from any location by first moving
via z to l0 and then following the winning strategy he has in G. Thus, G′ together
with the set of all locations is an instance of problem (ii). Obviously this can be
constructed in polynomial time. Let now α be a memoryless winning strategy in G′.
No play starting from l0 that follows α can reach z, otherwise Player 1 loses. Thus, α

is readily a winning strategy in the original game G. �

We also argue that, in games with imperfect information, even for simple reach-
ability objectives the antichain representation of the set of winning cells may not be
sufficient to construct a winning strategy. Consider the game G depicted in Fig. 2,
with reachability objective Reach({ℓ2}). The observations are {ℓ0, ℓ1} and {ℓ2}. Since
CPre({{ℓ2}}) = {{ℓ1}} (by playing action b) and CPre({{ℓ1}, {ℓ2}}) = {{ℓ0, ℓ1}}
(by playing action a), the fixed-point computed by the antichain algorithm is
{{ℓ2}, {ℓ0, ℓ1}}. However, from {ℓ0, ℓ1}, after playing a, Player 1 reaches the cell {ℓ1}
which is not in the fixed-point (however, it is subsumed by the cell {ℓ0, ℓ1}). Intu-
itively, the antichain algorithm has forgotten which action is to be played next. Notice
that playing a again, and thus forever, is not winning. The next lemma formalizes
this intuition.

Lemma 3. There exists a family of games Gk with O(p(k)) many locations for a
polynomial p, and a reachability objective φ, such that the fixed point computed by the
antichain algorithm for (Gk, φ) is of polynomial size in k, whereas any finite-memory
winning strategy for (Gk, φ) is of exponential size in k.

7

ℓ0 ℓ1 ℓ2

b a

a b

Fig. 2. A reachability game G.

We first present the ingredients of the proof informally. Let p1, p2, . . . be the list
of prime numbers in increasing order. For k ≥ 1, let Σk = {1, . . . , k}. The action
alphabet of the game Gk is Σk∪{#,⊥}. The game is composed of subgames Hi, each
consisting of a loop over pi many locations ℓ1, . . . , ℓpi

. From a location ℓj all actions
in Σk lead to ℓj+1 and from the last location ℓpi

Player 1 can return to the initial
location ℓ1 with any action in Σk except i. Formally, for all 1 ≤ i ≤ k, we define the
subgame Hi with location space Li = {ℓ1, . . . , ℓpi

}, initial location ℓ1, and transition
relation Ei = {(ℓj, σ, ℓj+1) | 1 ≤ j ≤ pi− 1∧ σ ∈ Σk} ∪ {(ℓpi

, σ, ℓ1) | σ ∈ Σk \ {i}}. In
the sequel, we assume that the location spaces of all Hi are disjoint, e.g. by adding a
superscript i to the locations of Li (Li = {ℓi

1, . . . , ℓ
i
pi
}).

Fig. 3 shows the game Gk for k = 2. In general, in Gk, there is a unique trivial
observation, so it is a blind game. We also assume that playing a particular action
in a location where it is not allowed leads to a sink location from which Goal is not
reachable. The plays start in location ℓ0 where every move in Σk is allowed. The next
location can be any of the initial locations of the subgames Hi. Thus, Player 1 can
henceforth play any action σ ∈ Σk, except in the last location ℓpi

where playing σ = i

would lead to the sink. As he does not know in which of the Hi the play currently is,
he should avoid playing σ = i whenever his knowledge set contains qi

pi
. However, after

a certain number of steps (namely p∗k =
∏k

i=1 pi), the current location of the game
will be one of the ℓi

pi
. Then, taking a transition labeled by # necessarily leads to Goal.

The # is not allowed in any other location, so that Player 1 needs to count the first
p∗k steps before playing that move. Notice that after the first round, Player 1 could
play ⊥, but this would not reduce the amount of memory needed to win. However, it
shows that he is winning uniformly from all locations of the subgames Hi. Since the
size p∗k of the strategy is exponential in the size

∑k

i=1 pi of the game, the theorem
follows.

Notice that the size of the alphabet for Gk grows linearly with k. It is easy to
transform Gk into an equivalent game with fixed alphabet {0, 1, #,⊥} by replacing
i ∈ Σn by a sequence of transitions labelled by 0 or 1, corresponding to the binary
encoding of i. With this encoding, the location space grows only polynomially.

Proof of Lemma 3. The location space of Gk is the disjoint union of L1, . . . , Lk and
{q0, Goal, Bad}. The initial location is q0, the target observation consists of Goal, and
the sink location is Bad. The transition relation contains each set Ei, the transitions
(ℓi

j,⊥, ℓ0), and the transitions (ℓ0, σ, ℓi
1) and (ℓi

pi
, #, Bad) for all 1 ≤ i ≤ k, 1 ≤ j ≤ pi

and σ ∈ Σk. The transition relation is made total by adding the transitions (q, σ, Bad)
for each location ℓ of Gn and σ ∈ Σk ∪ {#} such that there is no transition of the

8

ℓ0

ℓ1
1

ℓ1
2

ℓ2
1

ℓ2
2 ℓ2

3

Goal

H1 H2

⊥ ⊥

Σ2 Σ2

Σ2 Σ2\{1}
Σ2

Σ2

Σ2\{2}

#
#

#

Fig. 3. The game G2.

form (q, σ, q′) for q′ 6= Bad. There is only one trivial observation, i.e., the observation
alphabet Γ is a singleton.

First we show that Player 1 wins Gk. As there is exactly one observation, a strategy
for Player 1 is a function λ : N

≥0 → Σk ∪{#,⊥}. We define the sets Sj such that any
strategy λ such that λ(j) ∈ Sj for all j ≥ 1 is winning for Player 0. We take S1 = Σk,
Sj = {i ∈ Σk | j − 1 mod pi 6= 0} for 2 ≤ j ≤ p∗k. Notice that Sj 6= ∅ because the
least common multiple of p1, . . . , pk is p∗k. Finally, for j > p∗k we take Sj = {#}. It is
easy to show that any strategy defined by these sets is winning for Player 1.

For the second part of the theorem assume, towards a contradiction, that there
exists a finite-state winning strategy λ̂ with less than p∗k states. Clearly, when playing
any winning strategy, the (p∗k + 1)-th location of the play in Gk must be ℓi

pi
for some

i ∈ {1, . . . , k}. Moreover, each of the states ℓi
pi

could be the current one, depending
on the initial choice of Player 2 (after the first move of Player 1). Therefore, after p∗k
steps, any winning strategy must play #. In the case of λ̂, the state of the automaton
for λ̂ after p∗k steps has necessarily been visited in one of the previous steps. This

means that # has been played before and thus λ̂ is not a winning strategy as for all
j < p∗k, one of the subgames Hi is not in location ℓi

pi
after j steps of play, and thus

playing # leads to a loss for Player 1. �

Finally, we show that it is not trivial to efficiently compute CPre(·). In the antichain
representation, the controllable predecessor operator is defined as

CPre(q) =
⌈
{s ⊆ L | ∃σ ∈ Σ · ∀o ∈ Γ · ∃s′ ∈ q : postσ(s) ∩ γ(o) ⊆ s′}

⌉
,

9

or equivalently as

CPre(q) =
⊔

σ∈Σ

l

o∈Γ

⊔

s′∈q

{p̃reσ(s′ ∪ γ(o))}, (1)

where p̃reσ(s) = {s′ ∈ S | postσ({s′}) ⊆ s} and γ(o) = L \ γ(o).
Notice that the least upper bound of a set {ℓ1, . . . , ℓk} of antichains can be com-

puted in polynomial time, whereas a naive algorithm for the greatest lower bound is
exponential. The next lemma shows that, as long as we use a reasonable represen-
tation of antichains which allows to decide in polynomial time whether an antichain
contains a set larger than n, it is unlikely that CPre(·) is computable in polynomial
time.

Lemma 4. The following problem is NP-hard: given a game of imperfect informa-
tion G, an antichain q and an integer n, decide whether there exists a set B ∈ CPre(q)
with |B| ≥ n.

Proof. We reduce the NP-complete problem 3SAT to our problem. Let P be a
finite set of propositions. Let P̄ = {p̄ | p ∈ P} be the set of negated propositions and
L = P ∪ P̄ be the set of literals. We assume that ¯̄p ≡ p. An instance of 3SAT is a
set C = {c1, . . . , ck} of clauses ci ∈ L × L × L for 1 ≤ i ≤ k, corresponding to the
Boolean formula c1 ∧ · · · ∧ ck where each clause is the disjunction of its literals.

Given an instance C of 3SAT, we construct a game of imperfect information G

(see Fig. 4), an antichain q and an integer n as follows. Let G = (S, Σ,→, Γ) where:

– S = L ∪ {ux, vx, wx | x ∈ P ∪ C};
– Σ = {σ}
– The transition relation → is the union of the following sets:
◦ {(p, σ, up), (p, σ, wp), (p̄, σ, vp), (p̄, σ, wp) | p ∈ P};
◦ {(p̄, σ, uc), (q̄, σ, vc), (r̄, σ, wc) | c = (p, q, r) ∈ C};
◦ {ux, vx, wx | x ∈ P ∪ C} × {σ} × {uy, vy, wy | y ∈ P ∪ C};

Notice that → is total.
– Γ = {{ux, vx, wx} | x ∈ P ∪ C} ∪ {L}. Notice that the observations cover the

location space.

Let q = {{vp, wp | p ∈ P ∪C}, {up, wp | p ∈ P ∪C}, {up, vp | p ∈ P ∪C}} and n = |P |.
We have

CPre(q) =
l

o∈Γ

⊔

s′∈q

{p̃reσ(s′ ∪ o)}

=
l

x∈P∪C

⊔

s′∈q

{p̃reσ(s′ ∪ {ux, vx, wx})} ⊓
⊔

s′∈q

{p̃reσ(s′ ∪ L̄)}

=
l

x∈P∪C

⌈
{p̃reσ(S \ {ux}), p̃reσ(S \ {vx}), p̃reσ(S \ {wx})}

⌉
⊓

⊔

s′∈q

{p̃reσ(L̄)}

=
l

p∈P

⌈
{L \ {p}, L \ {p̄}, L \ {p, p̄}}

⌉
⊓

l

(p,q,r)∈C

⌈
{L \ {p̄}, L \ {q̄}, L \ {r̄}}

⌉
⊓ {S}

=
l

p∈P

{L \ {p}, L \ {p̄}}︸ ︷︷ ︸
Ap

⊓
l

c=(p,q,r)∈C

⌈
{L \ {p̄}, L \ {q̄}, L \ {r̄}}

⌉
︸ ︷︷ ︸

Ac

10

Now, we show that C = {c1, . . . , ck} is satisfiable if and only if there exists a set
B ∈ CPre(q) with |B| ≥ n.

First, assume that C is satisfiable and let f : P → {true, false} be a truth assign-
ment satisfying C. Take B′ = {p ∈ P | f(p) = true} ∪ {p̄ ∈ P̄ | f(p) = false}. Then
(i) |B′| = n, (ii) for all propositions p ∈ P , if f(p) = true then B′ ⊆ L \ {p̄}, and if
f(p) = false then B′ ⊆ L \ {p}, so that there exists B ∈ Ap such that B′ ⊆ B, and
(iii) each clause c ∈ C is satisfied by f , so there exists a literal ϕc in c such that
either ϕc = p and f(p) = true, or ϕc = p̄ and f(p) = false. Hence, either there exists
some proposition p in c and B′ ⊆ L \ {p̄} or there exists some negated proposition p̄

in c and B′ ⊆ L \ {p}, so that there exists B ∈ Ac such that B′ ⊆ B. All this shows
that there must exist a set B ∈ CPre(q) with |B| ≥ n.

Second, assume that B ∈ CPre(q) and |B| ≥ n. Then for all p ∈ P , there exists
B′ ∈ Ap such that B ⊆ B′ (⋆). In particular, this entails that B ⊆ L. Let us show
that p ∈ B iff p̄ 6∈ B for all p ∈ P . By contradiction, assume that p ∈ B and p̄ ∈ B

for some p ∈ P . Then, {p, p̄} ⊆ B but {p, p̄} 6⊆ L \ {p} and {p, p̄} 6⊆ L \ {p̄}. Hence
B 6⊆ L \ {p} and B 6⊆ L \ {p̄}, which contradicts (⋆). Similarly, p 6∈ B and p̄ 6∈ B is
impossible since |B| ≥ n would imply that there exists q ∈ P such that {q, q̄} ⊆ B.
Now, take f(p) = true iff p ∈ B. For each clause c ∈ C, there exists B′ ∈ Ac such that
B ⊆ B′, hence there exists a literal ϕc in c such that ϕc ∈ B and thus f satisfies c.

�

4 Strategy Construction with Antichains

We present a procedure to construct a winning strategy for a parity game of imperfect
information G = (L, l0, ∆, γ) over the alphabets Σ and Γ . It is often convenient to
reason in terms of the equivalent perfect-information game GK obtained via the subset
construction in Section 3. Let C denote the set of all cells s such that s ⊆ γ(o) for
some o ∈ Γ . Thus, C contains all locations of GK. For R ⊆ C, a cell strategy on R
is a memoryless strategy α : R → Σ for Player 1 in GK. Given an objective φ ⊆ Cω

in GK, we define

WinR(φ) := { s ∈ R | there exists a cell strategy α such that

Outcome(GK

s , α) ⊆ φ ∩ Safe(R) }.

In words, WinR(φ) consists of cells s such that given the initial cell is s there exists a
winning cell strategy for Player 1 to ensure φ while maintaining the game GK in R.

In Algorithm 1, we present a procedure to construct a winning cell strategy in GK

for objectives of the form

Reach(T) ∪ (Parity(p) ∩ Safe(F)),

where T ,F ⊆ C are downward-closed sets of cells and p : Γ → N is a priority function
over observations. As p can be naturally extended to cells, the set Parity(p) contains
the sequence of cells such that the minimal priority cell appearing infinitely often
is even. The parity objective Parity(p) corresponds to the special case where F = C

11

p

q

r

s

p̄

q̄

r̄

s̄

up

uq

wp

wq

vp

vq

...

uc1

uc2

wc1

wc2

vc1

vc2

Fig. 4.

Reduction for the formula (r̄ ∨ q ∨ s̄)
| {z }

c1

∧ (p̄ ∨ s ∨ r)
| {z }

c2

.

and T = ∅. Note that a winning strategy need not be defined on T since Reach(T) is
satisfied for all cells in T . Memoryless strategies are sufficient for this kind of objective
in games of perfect information. Thus, we can restrict our attention without loss to
memoryless cell strategies.

Informal description. The algorithm is based on two procedures ReachOrSafe(T ,F)
and ReachAndSafe(T ,F) that use antichains to compute the set of winning cells and
a winning strategy for the objectives Reach(T) ∪ Safe(F) and Reach(T) ∩ Safe(F),
respectively, given downward-closed sets of cells T ⊆ C and F ⊆ C. For perfect-
information games, it is known that memoryless winning strategies exist for such
combinations of safety and reachability objectives.

The procedure is called recursively, reducing the number of priorities. Given a
parity function p we denote by p − 2 the parity function such that for all o ∈ Γ we
have (p− 2)(o) = p(o) if p(o) ≤ 1, and (p− 2)(o) = p(o)− 2 otherwise. For i ≥ 0, we
denote by Cp(i) = { s ∈ C | s ⊆ γ(o), o ∈ Γ, p(o) = i } the set of cells with priority i.
Let W1 and W2 be disjoint sets of cells, and let α1 be a cell strategy on W1 and α2 be
a cell strategy on W2. We denote by α1 ∪ α2 the cell strategy on W1 ∪W2 such that
for all s ∈W1 ∪W2, we have (α1 ∪α2)(s) = α1(s) if s ∈W1, and (α1 ∪α2)(s) = α2(s)
otherwise.

12

Algorithm 1: Imperfect-Information Game Solver - Solve(G, T , F , p)

Input : A game structure G with target T ⊆ C, safe set F ⊆ C and parity func-
tion p on Γ .

Output : W = WinC(φ) where φ := Reach(T)∪ (Parity(p)∩ Safe(F)), and a winning
cell strategy α on W \ T for φ.

begin

1 W ← WinC(φ)
2 (W ∗, α∗)← ReachAndSafe(T , W)
3 (W0, α0)← ReachAndSafe(W ∗ ∪ (Cp(0) ∩W),W))
4 Let α′

0 be a cell strategy on (Cp(0) ∩W) \W ∗ such that
5 postα′

0
(s)(s) ∩ γ(o) ∈W for all o ∈ Γ and s ∈ (Cp(0) ∩W) \W ∗

6 α0 ← α0 ∪ α′
0 ∪ α∗

7 i← 0
8 repeat

9 Ai ←W \Wi

10 if W ⊆ Cp(0) ∪ Cp(1) ∪ Cp(2) then

11 (Wi+1, αi+1)← ReachOrSafe(Wi, Ai ∩ Cp(2))

12 else

(Wi+1, αi+1)← Solve(G, Wi, Ai \ Cp(1), p− 2)

13 αi+1 ← αi ∪ αi+1

14 i← i + 1

until Wi = Wi−1

15 return (Wi, αi)

end

Without loss of generality we assume that the cells in the target set T are absorbing
(i.e., have self-loops only). In line 1 of Algorithm 1, we compute W = WinC(φ) using
the antichain algorithm of [1]. Since we assume that cells in T are absorbing, a winning
cell strategy for the objective φ ensures that the set W is never left. In the rest of the
algorithm and in the arguments below, we consider the sub-game induced by W . In
line 2, the set W ∗ of winning cells and a winning cell strategy α∗ on W ∗ \ T for the
objective Reach(T) is computed by invoking the procedure ReachOrSafe with target T
and safe set W . Then the set W0 of cells is obtained along with a cell strategy α0

that ensures that either W ∗ is reached or the set of priority 0 cells in W is reached.
After this, the algorithm iterates a loop as follows: at iteration i + 1, let Wi be the
set of cells already obtained by the previous iteration and let Ai = W \ Wi. The
algorithm is invoked recursively with Wi as target set, Ai \ Cp(1) as the safe set,
and p− 2 as the priority function to obtain a set Wi+1 as a result. In the base case,
where W consists of priorities 0, 1 and 2 only, since Ai has no priority 0 cells, the
objective Reach(Wi) ∪ (Parity(p− 2) ∩ Safe(Ai \ Cp(1)) can be equivalently written as
Reach(Wi)∪Safe(Ai∩Cp(2)). Therefore, in the base case, the recursive call is replaced
by ReachOrSafe(Wi, Ai∩Cp(2)). Notice that Wi ⊆Wi+1. The algorithm proceeds until
a fixpoint of Wi = Wi+1 is reached.

13

Correctness of the iteration. First, we have W \W ∗ ⊆ F which essentially follows
from the fact that from W \W ∗ Player 1 cannot reach T . More precisely, if a cell
s ∈ W \ W ∗ does not belong to F , then against every cell strategy for Player 1,
there is a Player 2 strategy to ensure that the set T is not reached from s. Hence
from s, against every cell strategy for Player 1, there is a Player 2 strategy to ensure
that Reach(T) ∪ Safe(F) is violated, and thus φ = Reach(T) ∪ (Parity(p) ∩ Safe(F))
is violated. This contradicts s ∈ W = WinC(φ). The significance of the claim is that
if W ∗ is reached, then Player 1 can ensure that T is reached, and since W \W ∗ ⊆ F
it follows that if W ∗ is not reached then the game stays safe in F .

To establish the correctness of the iterative step, we claim that from the set Wi+1

the cell strategy αi+1 on Wi+1 \Wi which ensures

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
,

also ensures that

Reach(Wi) ∪
(
Parity(p) ∩ Safe(F \ Cp(1))

)
.

Notice that in Ai \ Cp(1), there is no cell with priority 0 or priority 1 for the priority
function p since Cp(0) ∩W ⊆W0 ⊆Wi. Hence, we have

Parity(p− 2) ∩ Safe(Ai \ Cp(1)) = Parity(p) ∩ Safe(Ai \ Cp(1)).

Since Ai ⊆W \W0 ⊆W \W ∗ ⊆ F , it follows that the cell strategy αi+1 on Wi+1 \Wi

to ensure
Reach(Wi) ∪

(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
,

also ensures that

Reach(Wi) ∪
(
Parity(p) ∩ Safe(F \ Cp(1))

)
.

holds from all cells in Wi+1. By induction on i, composing the cell strategies (i.e., by
taking the union of strategies obtained in the iteration) we obtain that from Wi+1, the
cell strategy αi+1 on Wi+1 \T for Player 1 ensures Reach(W0)∪

(
Parity(p)∩Safe(F)∩

coBuchi(F \ Cp(1))
)
. Note that to apply the induction step for i times, one may visit

cells in Cp(1), but only finitely many times.

Termination. We claim that upon termination, we have Wi = W . Assume towards
a contradiction that the algorithm terminates with Wi = Wi+1 and Wi+1 6= W . Then
the following assertions hold. The set Ai = W \Wi is nonempty and

Wi+1 = Wi = WinW
(
Reach(Wi) ∪

(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

))
,

that is, in the whole set Ai against all Player 1 cell strategies, Player 2 can ensure
the complementary objective, i.e.,

Safe(Ai) ∩
(
coParity(p− 2) ∪ Reach(Ai ∩ Cp(1))

)
.

Now, we show that satisfying the above objective also implies satisfying Safe(Ai) ∩
coParity(p). Consider a cell strategy for Player 1, and consider the counter-strategy

14

for Player 2 that ensures that the game stays in Ai, and also ensures that coParity(p−
2)∪Reach(Ai ∩Cp(1)) is satisfied. If a play visits Ai ∩Cp(1) only finitely many times,
then from some point onwards it only visits cells in Ai that do not have priority 1 or
priority 0 for the priority function p, and then coParity(p−2) = coParity(p). Otherwise,
the set Ai ∩ Cp(1) is visited infinitely often and Ai is never left. Since Ai has no 0
priority cells for the priority function p, it means that Player 2 satisfies the coParity(p)
objective. It follows that in Ai against all Player 1 cell strategies, Player 2 can ensure
Safe(Ai) ∩ coParity(p). This is a contradiction to the fact that Ai ⊆ W = WinW (φ)
and Safe(Ai) ∩ coParity(p) ⊆ Γ ω \ φ. This leads to the following theorem.

Theorem 5. Given an imperfect-information game G with target T ⊆ C, safe set
F ⊆ C and a parity function p on Γ , Algorithm 1 computes W = WinC(φ), where
φ = Reach(T) ∪ (Parity(p) ∩ Safe(F)), and a winning cell strategy α on W \ T for φ.

Proof. This follows from the correctness of the iteration, and the fact W = Wi for
some i, it follows that from all locations in W , the obtained cell strategy ensures

Reach(W0) ∪ (Parity(p) ∩ Safe(F) ∩ coBuchi(F \ Cp(1)).

We now complete the argument by showing that the cell strategy is winning for φ.
The cell strategy on W0 ensures that T is reached from cells in W ∗, from cells in
Cp(0)∩W it ensures to stay in W , and in all remaining cells in W0 it ensures to reach
W ∗ ∪ (Cp(0) ∩W). The following case analysis completes the proof.

1. If the set W0 is visited infinitely often, then (a) if W ∗ is reached, then T is reached;
(b) otherwise Cp(0) ∩W is visited infinitely often and the game always stays safe
in W \W ∗ ⊆ F . This ensures that Parity(p) is also satisfied.

2. If W0 is visited only finitely often, then the play never reaches W ∗, otherwise it
would reach T and stay in T forever, and hence Safe(F) is satisfied, such that the
objective Parity(p) ∩ Safe(F) ∩ coBuchi(F \ Cp(1)) is attained. Overall, it follows
the objective φ is satisfied.

�

Antichain algorithm. To turn Algorithm 1 into an antichain algorithm, all set
operations must preserve the downward-closed property. The union and intersection
operations on sets preserve the downward-closed property of sets, but the comple-
mentation operation does not. Observe that Algorithm 1 performs complementation
in line 9 (Ai ← W \Wi) and uses the set Ai in lines 11 and 12. This was done for
the ease of correctness proof of the algorithm. To see that the complementation step
is not necessary, observe that

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
=

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(W \ Cp(1))

)
.

Indeed, if a play never visits Wi, then the play is in Safe(Ai \Cp(1)) if, and only if,
it is in Safe(W \Cp(1)). Also note that the expression Parity(p−2)∩Safe(W \Cp(1)) can
be equivalently written as Parity(p− 2) ∩ Safe(W ∩

⋃
i≥2 Cp(i)). It follows that every

set operation in Algorithm 1 preserves downward-closed property. This demonstrates
the following statement.

15

Theorem 6. Algorithm 1 is compatible with the antichain representation.

We remark that the explicit construction of the strategies takes place only in few
steps of the algorithm: at line 2 and 3 of each recursive call where cell strategies
are computed for reachability objectives, and in the base case (parity games with
priorities 0, 1 and 2) in line 11 where cell strategies are computed for union of safety
and reachability objectives. Also note that we never need to compute strategies for
the target set T , and therefore in line 10, we would obtain strategies for the set
Wi+1 \Wi. Hence, once the strategy is computed for a set, then it is never modified
in any subsequent iteration.

5 Implementation

We have implemented Algorithm 1 in a prototype written in C. The input is a text-file
description of the game structure, transitions and observations. Internally, transitions
and sets of locations are represented as arrays of integers.

The building blocks of the algorithm are the computation of CPre(·), and the two
procedures ReachOrSafe and ReachAndSafe. The implementation for CPre(q) follows
Equation (1) using three nested loops over the sets Σ, Γ and q. In the worst case
it may therefore be exponential in |Γ | which is not avoidable in view of Lemma 4.
To compute ReachOrSafe(T ,F), we evaluate the following fixpoint formula in the
lattice of antichains: ϕ1 ≡ νX.(F ⊓ CPre(X)) ⊔ T ∗ where T ∗ = µX.CPre(X) ⊔ T . To
compute ReachAndSafe(T ,F), we use ϕ2 ≡ µX.F ⊓ (CPre(X) ⊔ T).

When computing q′ = CPre(q), we associate with each cell in the antichain q′ the
action to be played in order to ensure reaching a set in q. For ϕ1, this information is
sufficient to extract a winning strategy from the fixpoint: the action associated with
each winning cell ensures to reach an element of the fixpoint, thus either confining
the game inside F forever, or eventually reaching T ∗. On the other hand, for T ∗

and ϕ2 (which has the flavor of reachability), we have seen in Section 3 that the
final fixpoint is not sufficient to recover the winning strategy. Therefore, we have to
construct on the fly the winning strategy while computing the fixpoint. We output
a reachability strategy as a tree structure whose nodes are the sets in the successive
antichains computed in the least-fixpoint iterations together with their associated
action σ ∈ Σ. If q′ = CPre(q) and σ is the action to be played in cell s ∈ q′, then
for each observation o (given by Player 2) we know that there exists a cell so ∈ q

such that post(s) ∩ γ(o) ⊆ so. Correspondingly, each node for the sets in q′ has |Γ |
outgoing edges to some sets in q.To evaluate the scalability of our algorithm, we have
generated game structures and objectives randomly. We fixed the alphabet Σ = {0, 1}
and we used the following parameters to generate game instances: the size |L| of the

game, the transition density r = |∆|
|L|·|Σ| , i.e., the average branching degree of the

game graph, and the density f = |Γ |
|L| of observations. For each σ ∈ Σ, we generate r ·

|L| pairs (ℓ, ℓ′) ∈ L × L uniformly at random; each location is randomly assigned
one of the f · |L| observations. We have tested reachability and Büchi objectives for
games with transition density varying from 0.5 to 4 and density of observation varying
from 0.1 to 0.9. We have limited the execution time to 10s for each instance. The size

16

of the generated instances ranges from 50 to 500. For all values of the parameters,
our prototype solved half of the instances of size 100 for both reachability and Büchi
objectives. When the transition density is below 1.5, the instances are much easier
to solve and the maximal size is 350 for reachability and 200 for Büchi objectives.
Finally, we did not observe significant influence of the number of observations on the
performance of the prototype. It seems that the exponential cost of computing CPre(·)
is compensated by the fact that for large number of observations, the games are closer
to perfect-information games.

References

1. K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-
regular games of incomplete information. Logical Methods in Computer Science, 3(3:4),
2007.

2. M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new algorithm
for checking universality of finite automata. In Proc. of CAV 2006, LNCS 4144, pages
17–30. Springer-Verlag, 2006.

3. M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains: Alternative algorithms
for LTL satisfiability and model-checking. In Proc. of TACAS 2008, LNCS 4693, pages
63–77. Springer-Verlag, 2008.

4. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In Proc.

of FoCS 1991, pages 368–377. IEEE, 1991.
5. D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
6. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games.

LNCS 2500. Springer-Verlag, 2002.
7. T. A. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In Proc.

of ICALP 2003, LNCS 2719, pages 886–902. Springer-Verlag, 2003.
8. R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65(2):149–184, 1993.
9. J. Reif. The complexity of two-player games of incomplete information. Journal of

Computer and System Sciences, 29:274–301, 1984.
10. W. Thomas. On the synthesis of strategies in infinite games. In Proc. of STACS 1995,

pages 1–13. Springer-Verlag, 1995.
11. W. Thomas. Languages, automata, and logic. Handbook of Formal Languages, 3:389–455,

1997.
12. W. Zielonka. Infinite games on finitely coloured graphs with applications to automata

on infinite trees. Theoretical Computer Science, 200:135–183, 1998.

17

