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ABSTRACT

Feature selection is a machine learning technique that has
many interesting applications in the area of brain-computer
interfaces (BCIs). Here we show how automatic relevance
determination (ARD), which is a Bayesian feature selection
technique, can be applied in a BCI system. We present an
computationally efficient algorithm that uses ARD to com-
pute sparse linear discriminants. The algorithm is tested
with data recorded in a P300 BCI and with P300 data from
the BCI competition 2004. The achieved classification ac-
curacy is competitive with the accuracy achievable with a
support vector machine (SVM). At the same time the compu-
tational complexity of the presented algorithm is much lower
than that of the SVM. Moreover, it is shown how visualiza-
tion of the computed discriminant vectors allows to gain in-
sights about the neurophysiological mechanisms underlying
the P300 paradigm.

1. INTRODUCTION

Brain-computer interfaces (BCIs) are systems that enable
communication with other persons or control of devices, only
through cerebral activity, without using muscles. Almost all
BCI systems rely on machine learning algorithms in order to
translate measurements of cerebral activity into commands
for a computer. An interesting subclass of machine learning
algorithms for BCIs uses the strategy of feature selection.
This means that during the training phase, the learning algo-
rithm attempts to determine a small subset of features which
is relevant to the classification task at hand (see [8] for a gen-
eral introduction to feature selection methods).

One of the main motivations for employing feature se-
lection is that classification accuracy can potentially be im-
proved by excluding noisy and irrelevant features from the
classification rule. Furthermore, using a small subset of fea-
tures implies that the number of operations needed for classi-
fying new examples is drastically reduced and classification
becomes faster. Last but not least, feature selection often
allows to better understand classification rules and the data
that is classified. This is of great importance when analyzing
new BCI paradigms or while finding new features for already
existing paradigms.

To find new features for a BCI paradigm, an approach
that might be used is to first build a large dictionary of fea-
tures by using many different feature extraction methods.
Then, a feature selection algorithm can be used to find the
most relevant features. Another possible application in the
BCI context is to test for the presence of artifacts in the data.
For example in electroencephalogram (EEG) based BCIs,

features selected mainly from frontal electrodes might raise
the suspicion that subjects are using eye-movement or eye-
blinks to control a BCI. Still another important application
of feature selection is electrode selection. By applying fea-
ture selection to groups of features corresponding to different
electrodes, the number of necessary electrodes for classify-
ing cerebral activity can be reduced. Hence, the setup time
and complexity of BCI systems can be reduced with the help
of feature selection.

Given the various advantages of applying feature selec-
tion in BCIs, it is no wonder that many feature selection al-
gorithms have already been described in the BCI literature.
The simplest approaches to perform feature selection are so-
called filter methods [8], in which the discriminative power
is computed for each feature individually. Then, features are
ranked by their discriminative power and a subset containing
only the most discriminative features is used for training a
standard machine learning algorithm [3, 11]. Filter methods
are a simple and efficient tool for feature selection, however
their performance is limited by the fact that each feature is
analyzed individually. This can lead to the inclusion of many
correlated and redundant features in the selected subset. Fur-
thermore, features that are relevant only in combination with
other features might not be selected by filter methods [8]. An
additional problem is that the optimal number of selected fea-
tures typically has to be decided by cross-validation, which
is computationally expensive.

An approach to feature selection that does not suffer from
the problems related to the analysis of individual features is
to use regularization. In [1], Fisher’s discriminant in con-
junction with a regularization term that penalizes weight vec-
tors with a large l1 norm is used to compute sparse linear
discriminants. It should be noted that the method described
in [1] critically depends on a regularization constant which
determines the degree of sparseness. The regularization con-
stant has to be estimated through a cumbersome and compu-
tationally expensive cross-validation procedure.

Still another method for feature selection and channel se-
lection in BCIs is to use SVMs along with recursive feature
elimination (RFE) [11]. In SVM-RFE, first a linear discrim-
inant is computed with the SVM learning algorithm. Then,
the features corresponding to the weights with smallest abso-
lute value are removed, and the procedure is repeated recur-
sively until only a preset number of features remains. While
the classification performance of SVM-RFE is very good, the
method suffers from an extremely high computational com-
plexity. This is because training a SVM is complex and be-
cause the optimal number of features as well as regulariza-
tion constants have to be estimated via cross-validation.



In this paper, we explore the use of a feature selection
method that is known as ARD in the neural networks liter-
ature or as the relevance vector machine (RVM) in the area
of kernel methods [12, 14]. More specifically, we use ARD
to perform classification via sparse linear regression to the
class labels. We have termed the resulting algorithm Sparse
Bayesian linear Discriminant Analysis (SBDA). The method
we describe does not suffer from the limitations of filter
methods, is free from regularization constants that have to
be estimated by cross-validation, and has low computational
complexity. We have previously used a similar method for
electrode selection [9]. However, to the best of our knowl-
edge, the ARD approach has previously not been used for
feature selection in a BCI.

The outline of the rest of the paper is as follows. In Sec-
tion 2, the datasets that were used to analyze the behavior
of SBDA are described. In Section 3, feature extraction and
ARD are described1. In Section 4, evaluation methods are
explained. In Section 5 results are presented. A conclusion
follows in Section 6.

2. DATASETS

To evaluate feature selection with SBDA, data recorded in
a P300 environment control paradigm were used. The data
were recorded while users were facing a laptop screen on
which six images were displayed (see Fig. 1). The images
were selected according to an application scenario in which
users can control electrical appliances via a BCI system. The
images on the screen were flashed in random sequences, one
image at a time. Each flash of an image lasted for 100 ms and
during the following 300 ms none of the images was flashed,
i.e. the interstimulus interval (ISI) was 400 ms.

The idea underlying the P300 environment control
paradigm is that subjects can select one specific target-image
by concentrating on it. Since images are flashed in a random
sequence and since the subject is concentrating on only one
out of six images, it is expected that the target image will
evoke a P300. Using the same principle as in the well known
P300 speller paradigm [7], the target image can then be in-
ferred from the EEG by looking for flashes of images which
evoked a P300-like waveform [10].

During the recording of the data the task of the sub-
jects was to silently count how often a prescribed image was
flashed. For example, the operator would ask the subject,
“Now please count how often the TV is flashed”. Then, a
random sequence of flashes was displayed, and after the end
of the sequence subjects were asked to announce their count.

The data analyzed here were recorded with a 32-channel
Biosemi amplifier from four male able-bodied subjects
with an age of 30±2.3 years. Typically the data for a
given subject consists of about 540 target trials, and 2700
nontarget trials. The datasets are available for free download

at http://bci.epfl.ch/efficientp300bci.html2.
More details about the P300 environment control paradigm
and about the datasets can be found in [10, 9].

In addition to the datasets described above, P300 datasets
from the BCI competition 2004 were used for benchmarking.
A description of these datasets can be found in [2].

1The description of ARD is given only for the sake of completeness.
Alternative accounts of the same method can be found in [12, 14].

2At the same URL datasets from four disabled subjects can also be found.
An analysis of these datasets is however beyond the scope of this paper.

Figure 1: Display used in the environment control system. Images
were flashed, one at a time, by changing the overall brightness of
images.

3. ALGORITHMS

3.1 Feature Extraction

The following steps were used to build feature vectors
from the EEG data recorded with the environment control
paradigm:

1. Referencing: The average signal from electrodes T7 and
T8 was used for referencing.

2. Filtering: A 6th order forward-backward Butterworth
bandpass filter with cutoff frequencies of 1 Hz and 12
Hz was used to filter the data.

3. Downsampling: The EEG was downsampled from 2048
Hz to 32 Hz by selecting each 64th sample.

4. Single trial extraction: Single trials of length 1000 ms,
starting at stimulus onset, i.e. at the beginning of the in-
tensification of an image, were extracted from the data.

5. Windsorizing: To reduce the effects of large amplitude
outliers, the data from each electrode were windsorized.
The 10th percentile and the 90th percentile were com-
puted for the samples from each electrode. Values below
the 10th percentile or above the 90th percentile were re-
placed by the respective percentiles.

6. Feature vector construction: The samples from all 32
electrodes were concatenated into feature vectors. The
dimensionality of the feature vectors was 32×32 = 1024.

7. Normalization: The mean and standard deviation were
computed for each of the 1024 features. Then, features
were normalized by subtracting the mean and by dividing
by the standard deviation.

To extract features from the BCI competition data, the
method of the competition winners as described in [13] was
used.

3.2 Sparse Bayesian Discriminant Analysis

3.2.1 Likelihood, Prior, and Posterior

To describe SBDA, it is useful to first look at the model
which links D-dimensional feature vectors x ∈ R

D to class
labels t ∈ {−1,1}:

t = w
T
x+ n.

Here w ∈ R
D contains the weights assigned to different fea-

tures and n ∈ R is drawn from a white Gaussian noise pro-
cess. The class labels are thus modeled to be linear combi-
nations of the features with additive Gaussian noise.



Using the above model, we can derive an expression for
the likelihood of different weight vectors w, given the train-
ing data. To this end, we introduce some further notation.
We denote by X ∈ R

D×N the matrix resulting from the hor-
izontal stacking of N feature vectors, by t ∈ {−1,1}N the
vector containing all class labels, by D the pair (X,t), and
by β the inverse variance of the Gaussian noise process. The
likelihood for w then is:

p(D|β ,w) =

(

β

2π

)
N
2

exp(−
β

2
‖XT

w− t‖2).

To compute the posterior distribution of w in the
Bayesian paradigm, a prior distribution has to be specified.
This distribution allows to express prior knowledge about
weight vectors and can potentially have a strong influence
on the posterior distribution. The prior used in SBDA is a
multivariate Gaussian density with a zero mean vector and a
diagonal covariance matrix. Denoting by αi the inverse vari-
ance of the prior distribution for weight wi, the prior can be
expressed as

p(w|α) =
D

∏
i=1

( αi

2π

)
1
2

exp

(

−
1

2
w

T
I
′(α)w

)

,

where I
′ is a matrix of size D×D, with elements α1 . . .αD

on the diagonal and all other elements zero. As we will see
in Section 3.2.2, the hyperparameters αi are used to estimate
the relevance of each weight wi, i.e. to perform feature selec-
tion. In fact, the hyperparameters corresponding to irrelevant
features go to infinity and hence the corresponding weights
can be set to zero.

Note that other useful learning algorithms can be built
by using variations of the above prior. Using the same value
in all diagonal entries of I

′, the prior distribution becomes
isotropic and can be used to build a classification algorithm
in which weight vectors are shrunk to zero but in which no
feature selection is performed. Experiments with an algo-
rithm using such a prior are described in [9, 10]. Still an-
other possibility is to use one αi for each electrode. Then,
electrode selection can be performed [9].

Given likelihood and prior, the posterior distribution of
w can be computed using Bayes rule:

p(w|β ,α,D) =
p(D|β ,w)p(w|α)

∫

p(D|β ,w)p(w|α)dw
. (1)

Since both prior and likelihood are Gaussian, the posterior is
also Gaussian and its parameters can be derived from likeli-
hood and prior by completing the square. The mean m and
covariance C of the posterior satisfy the following equations.

C = (βXX
T + I

′(α))−1
m = βCXt

The posterior distribution can be used to compute a probabil-
ity distribution of regression targets t̂ for a previously unseen
feature vector x̂. This so-called predictive distribution is ob-
tained by integrating over w:

p(t̂|β ,α, x̂,D) =
∫

p(t̂|β , x̂,w)p(w|β ,α,D)dw.

The predictive distribution is again Gaussian and can be char-
acterized by its mean µ and its variance σ2.

µ = m
T
x̂, σ2 =

1

β
+ x̂

T
Cx̂

While in principle the predictive distribution can be used to
compute class probabilities [9], here we have only used the
mean of the predictive distribution for classification.

3.2.2 Maximization of the Marginal Likelihood

To compute β ,α we write down the likelihood for the hy-
perparameters. The likelihood p(D|β ,α) is the normalizing
integral from equation 1.

p(D|β ,α) =

∫

p(D|β ,w)p(w|α)dw (2)

The quantity p(D|β ,α) is also known as the evidence, or
the marginal likelihood, and corresponds to the probability
of the data given the hyperparameters β and α . The integral
in equation 2 can be solved by considering that everything
is Gaussian and using standard expressions for Gaussian in-
tegrals. After computing the integral, it is convenient to use
the logarithm of the likelihood function for further analysis.

log(p(D|β ,α)) =
1

2

D

∑
i=1

log(αi)+
N

2
log(β )

−
N

2
log(2π)+

1

2
log(det(C))

−
β

2
‖XT

m− t‖2−
1

2
m

T
I
′(α)m

To maximize this log-likelihood, partial derivatives with re-
spect to the αi and β are taken and equated to zero. For this
purpose, the following identity is useful:

∂

∂x
logdetA = tr

(

A
−1 ∂A

∂x

)

.

Using this identity we obtain

∂ log(p(D|β ,α))

∂αi

=
1

2αi

−
1

2
cii −

1

2
m2

i ,

where the cii are the values on the diagonal of C and the mi

are the elements of m. Taking the derivative with respect to
β yields

∂ log(p(D|β ,α))

∂β
=

N

2β
−

1

2
tr(XX

T
C)−

1

2
‖XT

m− t‖2.

Setting the derivatives to zero and solving for αi and β we
obtain the update equations:

αi =
1

cii + m2
i

(3)

β =
N

tr(XXTC)+‖XTm− t‖2
. (4)

The partial derivatives for the αi and β depend on the pos-
terior mean m which itself depends on the αi and β . Equa-
tions 3 and 4 thus represent implicit solutions for the hyper-
parameters. Thus, to maximize the log-likelihood an itera-
tive scheme is used in which first C and m are computed
for a given setting of the hyperparameters and then the hy-
perparameters are updated according to equations 3 and 4.
Features for which the αi become very large can be removed
from the training data during the optimization process. Typ-
ically this quickly reduces the dimensions of C and m and
helps to speed up the training process.



4. EVALUATION METHODS

4.1 Environment Control Datasets

4.1.1 Cross-Validation

Ten-fold cross-validation was used to analyze the features
selected by SBDA and to get an idea of the achievable clas-
sification performance. More specifically, the data for each
of the four subjects was partitioned into ten subsets of equal
size. Then, SBDA was trained on nine of the subsets, the
resulting weight vector w was stored in a file, and the classi-
fication performance was tested on the data in the tenth sub-
set. This procedure was repeated ten times, each time us-
ing a different subset of data for testing. The ten-fold cross-
validation was repeated five times for each subject, each time
using a different partition of the data. The result of the cross-
validation procedure were thus fifty weight vectors and fifty
performance estimates for each subject.

To estimate the classification performance achievable
with an SVM, the procedure described above was augmented
with a five-fold inner cross-validation. More specifically,
on each of the fifty randomly drawn training sets a five-fold
cross-validation was performed in order to estimate the reg-
ularization parameter of the SVM.

4.1.2 Relevance Maps

Given the weight vectors computed with cross-validation, we
used the following steps to compute and visualize the rele-
vance of features:

1. The l1 norm of each weight vector was set to 1 and the
absolute value of each weight was computed. Denoting
by wi j the j-th weight in the i-th weight vector, this can

be expressed as ri j = |wi j|/∑D
k=1 |wik| The result of this

step was a set of relevance vectors ri with entries ri j.

2. The average relevance r̄ j was computed from all rele-

vance vectors: r̄ j = 1
R ∑R

i=1 ri j

3. The average relevance values were multiplied by 100 for
easy interpretation and plotted in the form of scalp maps.
Scalp maps were computed for eight temporal segments
of length 125 ms each. Scalp maps for individual tempo-
ral segments were computed by summing for each elec-
trode the corresponding relevance values r̄ j.

4. Scalp maps were visualized with EEGLAB [6].

4.1.3 Classification Accuracy

To compare the classification accuracy of SBDA and SVM,
a performance measure called per block accuracy (PBA) was
used (see also [9]). PBA measures the percentage of blocks
of feature vectors in which the target image can be correctly
identified from the classifier output. For the data analyzed in
this paper, blocks containing six feature vectors were used.
Each of the six feature vectors in each block corresponded to
a flash of one of the images in the P300 environment control
(cf. Fig. 1). Blocks were counted as correctly classified if the
largest classifier output was obtained for the feature vector
corresponding to the flash of the target image.

4.2 BCI Competition Datasets

For the BCI competition datasets only classification accuracy
was evaluated. Classifiers were trained on the competition
training sets and tested on the competition test sets.

5. RESULTS

5.1 Selected Features

On average 229 out of the 1024 features were selected and
hence about 80% of the features were discarded by SBDA.
The number of selected features differed only little between
subjects (cf. Table 1). Analysis of individual weight vectors
showed that the relevance of selected features varied between
0% and 3%, with many features having a relevance around
0.5% and only some features having a relevance bigger than
1%.

The distribution of relevance on electrodes and time in-
tervals is shown in Fig. 2. Looking at the temporal distribu-
tion, one can see that the interval 250ms - 375ms is most rel-
evant. In particular, in this interval, electrode Pz is strongly
relevant. It is known that the P300 evoked by visual stim-
uli appears approximately 300ms - 500ms after stimulus on-
set and has maximal amplitude at parietal sites. The large
weights at electrode Pz in the interval 250ms - 375 ms thus
seemingly serve to “pick up” the P300.

The second most relevant interval is the interval 125ms
- 250ms. Since mainly occipital and parietal electrodes are
relevant in this interval, it seems possible that visual evoked
potentials (VEPs) also play an important role for classifica-
tion. This might be explained by assuming that most of the
subjects focus on the target image. Hence, target images ap-
pear in the foveal visual field, whereas nontarget images ap-
pear in the peripheral visual field. It is known that in the
foveal visual field the number of neurons representing ob-
jects of a given size is much larger than the number of neu-
rons representing objects of the same size in the peripheral
visual field [5]. VEPs corresponding to flashes of the tar-
get image can thus be expected to have a significantly larger
amplitude than VEPs corresponding to flashes of nontarget
images.

5.2 Classification Accuracy and Complexity

A comparison of the classification accuracy of SBDA with
the classification accuracy of a linear ν-SVM is shown in
Table 1 and Table 2. To perform the comparison we used
LIBSVM, which is a state-of-the-art implementation of the
SVM [4]. As can be seen, there is no significant difference
in accuracy between SVM and SBDA (cf. Table 1, Table 2).

Both SBDA and the SVM were run on a PC with a 3.4
Ghz processor and 1GB of RAM. SBDA was implemented
in MATLAB, while LIBSVM is implemented in C. Perform-
ing one cross-validation fold, consisting of classifier learn-
ing and testing, took on average one minute with SBDA and
twenty minutes with the SVM. An advantage of SBDA is

S6 S7 S8 S9 Average

# Features 209 231 259 217 229±22
PBA SBDA 68 72 87 59 72±12
PBA SVM 68 71 84 61 71±10

Table 1: Number of features and classification accuracy for the
four able-bodied subjects S6, S7, S8, and S9 (subject names were
chosen to be consistent with other publications [9, 10]). Classifi-
cation accuracy is expressed as PBA (cf. Section 4.1.3) and shown
for SBDA and SVM. Classification by chance would have resulted
in a PBA of 16.66%.
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Figure 2: Average relevance maps obtained from data of four able-bodied subjects. Maps were computed from SBDA weight vectors.
Colors indicate the contribution in % to the total l1 norm of weight vectors, Numbers above maps show the summed contribution of all
electrodes in temporal intervals.

Subject A Subject B Average

5 15 5 15 5 15

SBDA 68 98 82 97 75 97.5
SVM 79 96 59 98 69 97

Table 2: Classification accuracy for BCI competition data. Shown
is the percentage of correctly predicted symbols in the test set after
5 and 15 repetitions.

thus that its computational complexity is much lower than
that of the SVM. This is important in many situations, for ex-
ample when the classification accuracy for different feature
extraction methods has to be compared, or when classifiers
have to be set up quickly from freshly acquired training data.

6. CONCLUSION

We have shown how ARD can be used for feature selec-
tion in BCI machine learning tasks. We have described
SBDA, which is an algorithm that uses ARD for feature se-
lection. Experiments showed that the classification accuracy
of SBDA is similar to that achievable with an SVM. At the
same time SBDA has much smaller computational complex-
ity than the SVM and offers the advantages of feature selec-
tion mentioned in the introduction of this paper. Moreover,
we demonstrated how the sparse discriminant vectors com-
puted by SBDA can be visualized in the form of relevance
maps. The relevance maps allowed for a better understanding
of the neurophysiological mechanisms underlying the P300
paradigm analyzed in this paper.
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