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Résumé
L’introduction du freinage ABS dans les voitures a révélé l’importance croissante
des capteurs inertiels. Parmi toutes les données caractérisant les mouvements d’un
véhicule, la vitesse angulaire décrit la variation de l’assiette de ce dernier. L’art de
mesurer la vitesse angulaire a été baptisé gyroscopie (du Grec σκoπειν=observer
et γυρoς=rotation) par Foucault en 1852. Les gyroscopes actuellement disponibles
sont soit des instruments de très haute précision (et d’un prix en conséquence), util-
isés notamment dans les avions, soit des produits meilleur marché mais souffrant
d’un tel manque de sensibilité que leur utilisation pour la navigation de véhicules
est impossible. Ainsi, il existe un besoin réel de gyroscopes alliant bas prix et pré-
cision. Cette thèse présente le développement d’un gyroscope miniature fondé sur
la technologie des paliers magnétiques actifs (AMB). L’avantage d’un tel outil est
de faire léviter la masse en rotation la libérant ainsi de tout lien mécanique avec la
base de l’instrument, lien à l’origine des prix exorbitants des gyroscopes mécaniques
classiques.
Cette thèse, présente deux prototypes de gyroscopes AMB. Le premier s’appuie sur
la détection de l’orbite d’une bille, méthode développée durant ce travail. En raison
des incertitudes liées à la non linéarité inhérente aux AMB, on a choisi de contrôler
la position de la masse en sustentation de manière adaptative. Des mesures effec-
tuées sur ce prototype ont démontré la faisabilité de cette méthode avec une bille
décrivant une orbite soit circulaire soit verticale.
Le second prototype repose sur le théorème du moment cinétique. Pour pallier les
incertitudes liées aux AMB et les couplages entre les forces dans ce prototype, un
compensateur H∞ asservit la position de la masse en lévitation. Des simulations
ont permis de comparer trois différents types de régulateurs H∞ en prenant la qual-
ité de la mesure de la vitesse angulaire comme critère de sélection. Finalement, un
contrôleur H∞ comprenant un correcteur d’anticipation a démontré, par des sim-
ulations réalisées sur le second prototype de gyroscope, les meilleures performances.

Mots clé: navigation, gyroscope, vitesse angulaire, lévitation magnétique,
contrôle adaptatif, contrôle H∞.
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Abstract
The introduction of the active blocking system, better known as ABS, into cars
revealed the growing need for inertial sensing. Among other data, that permit
to apprehend the movements of a vehicle, the measurement of the vehicle angu-
lar velocity describes the change rate of the vehicle attitude. This measurement
has been called by Foucault in 1852 gyroscopic sensing (from the Greek words
σκoπειν=observe and γυρoς=rotation). The currently available gyroscopes are ei-
ther very high precision instruments (hence very costly), used in planes, or cheaper
products but with a lack of sensitivity to be used in vehicle navigation. Therefore,
a real need for gyroscopes combining low cost and precision exists. This thesis
proposes to develop a gyroscope based on miniaturized active magnetic bearings
(AMB). The advantage of such a device is that the spun mass will be levitated
what frees it from any mechanical link to the base of the instrument what render
precise classical mechanical gyroscopes so expensive.
This thesis presents two prototypes of AMB based gyroscopes. The first one re-
lies on the ball orbit sensing method which is a new theory proposed in this work.
Because of the uncertainties due to the nonlinearities inherent to active magnetic
bearings, the position of the levitated mass is adaptively controlled. Measurements
performed on the prototype have demonstrated the feasibility of this solution with
a ball following either a circular or a vertical orbit.
The second designed prototype relies on the Newton’s second law of motion. Due to
the AMB inherent uncertainties and to the force coupling present in the proposed
prototype, it has been chosen to drive the levitated mass with a H∞ controller. Sim-
ulations are run to compare three different H∞ controllers with the quality of the
angular velocity measurement as criterion. Finally, a feed forward H∞ controller
showed the best performances in terms of angular velocity measurements during
simulations run on the prototype developed during this thesis.

Keywords: navigation, gyroscope, angular velocity, magnetic levitation,
adaptive control, H∞ control.
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Terminology

Abbreviations

AMB: Active Magnetic Bearing
CM: Center of mass
DOF: Degree of Freedom
DTG: Dynamically Tuned Gyroscope
EGG: External Gimbal Gyroscope
GPS: Global Positioning System
IFOG: Interferometric Fiber Optic Gyroscope
IMU: Inertial Measurement Unit
JTEKT: Company created by a merging agreement among of Koyo Seiko

and Toyota Machine Works
LFT: Linear Fractional Transformation
LTI: Linear Time Invariant
MOG: Micro Optic Gyroscope
MIMO: Multiple Inputs Multiple Outputs
MRAC: Model-Reference Adaptive Controller
PMB: Passive Magnetic Bearinf
Pitch: Rotor inclination about the stator Y-axis
Roll: Rotor inclination about the stator X-axis
RFOG: Resonant Fiber Optic Gyroscope
RLG: Ring Laser Gyroscope
TFG: Tuning Fork Gyroscope
SDFG: Single Degree of Freedom Gyroscope
SISO: Single Input Single Output
SPR: Strictly Positive Real
STC: Self-Tuning Controller
Vehicle: Object on which acceleration and angular velocity sensors are fixedly mounted

xi



Subscripts and Superscripts

acc: Acceleration
amb: State space model of the gyroscope expressed in the AMB actuator coordinates
gyro: Data related to the gyroscopic effects exerted on the rotor
m: Minus direction of a coordinate axis
p: Plus direction of a coordinate axis
rs: Movements of the rotor expressed in the stator coordinate frame
sf: Movements of the stator expressed in the inertial reference frame
u: Unbalance effects

Physical Constants

χ: Magnetic susceptibility
μ: Magnetic permeability
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Chapter 1

Introduction

1.1 Motivations

The tremendous growth of the Global Positioning System (GPS) has shown how
important vehicle navigation becomes in our everyday life. In this particular case,
the position of a vehicle (for example a car or the apron of the "viaduc de Millau
[Lib08]") is detected by satellites and sent back to the vehicle driver so that he/she
can adjust the vehicle instantaneous trajectory in order for the vehicle to reach its
destination.

More generally, navigation consists in a set of constraints on the dynamics of a
vehicle; these constraints on the vehicle can be for example its trajectory (travel
between two geographical locations for the GPS), its attitude regarding the ground
(all four wheels of a car must stick on the road)... This requires sensors to inform
the driver (human being or computer) about the current dynamical state of the ve-
hicle. Thus the driver can adapt his action in order to stick to predefined constraints.

Two ways of navigation sensing exist: sensing the vehicle dynamics from its outside
or from its inside. The two families can according to the circumstances coexist.
Outside navigation sensors are for example the GPS, radars, light reflectors... The
second sensor family is better known as inertial sensors [Law98]. For example, the
magnetic compass belongs to the latter family.

Inertial navigation (named after inertial sensors) uses gyroscopes and accelerome-
ters to tell the driver about the vehicle current state of motion. With the help of
this information, the driver can compute the vehicle trajectory.

Inertial navigation has the main advantage of being self sufficient, i.e. the vehicle

1



1.2 Originality and Objectives Chapter 1. Introduction

does not need to communicate with an external source of information. This ad-
vantage has firstly been used by the military consortium for material (submarines
among others) that, in war circumstances, must stay invisible for the enemy.

Twenty years ago, the inertial sensor price started to diminish because of a change
of technology towards the electronics. By breaking this prosaic bottleneck, the in-
ertial sensors were admitted into civil applications.

Beside the price, two criteria for a large scale commercialization of inertial sensors
are few maintenance needs and precision. Indeed, depending on the application,
short term or long term precision are required [Law98]. Mechanical gyroscopes are
more accurate for short term measurements whereas optical gyroscopes better be-
have the latter one. Therefore, an overlap of the two domains of use is desirable.

In the case of mechanical gyroscopes, the angular velocity is measured by means of
a mass spun about its inertia axis (more details can be found in §2)). One main
limit of mechanical gyroscopes is the link between the spun mass and the base of the
instrument. As a matter of fact, the ball bearings will induce friction responsible
for imprecisions and fatigue (a limit for the maintenance criterion) which can even
lead to failure. Moreover, limitations in the instrument sensitivity will occur due
to this contact between the mass and the base.

This observation led to the idea of levitating, by means of electrostatic or magnetic
forces, the spun mass to prevent it from any contact with the base. Hence, this
levitation should extend the domain of use of mechanical gyroscopes towards short
term use.

1.2 Originality and Objectives

Magnetic Bearings have been implemented in various applications, such as high
precision accelerometers or high rotational speed motor with very low vibrations,
which were limited by the friction due to conventional mechanical bearings. The
main originality and goal of this thesis is the adaptation of the magnetic levitation
advantages to a high precision gyroscope. It must be noted that the developed
gyroscope can only measure the roll and tilt angular velocities, hence its name of
two-degree-of-freedom gyroscope.

Two fully different methods to measure angular velocity have been investigated in
this thesis. The first solution is called ball orbit observation method and has been
developed in this work, the second solution relies on the second law of Newton. One

2



Chapter 1. Introduction 1.3 Thesis Outline

key component to reach high precision in the measurement is the levitation control
accuracy, which is correlated to the desired gyroscope bandwidth and sensitivity.
This accuracy depends among other on the ability of the controller to compensate
for uncertainties of the gyroscope model and for external disturbances. On that
purpose, two controllers have been developed during this study: an adaptive con-
troller for the gyroscope based on the ball orbit observation method, and a robust
two-degree-of-freedom H∞ controller including an explicit integrator for the other
gyroscope.

Another challenge of this thesis consists in the integration of the active magnetic
bearings within a cube of 40[mm] ridge length.

1.3 Thesis Outline

The structure of the thesis is organized as follow:

- Part I consists of an overview of the existing types of gyroscopes with a short
explanation of the principles on which they rely (Chapter 2), and of a de-
scription of active magnetic levitation with its advantages and its domains of
application (Chapter 3). We will explain the interest to apply this technology
to gyroscopic sensing.

- Part II presents the gyroscope prototype based on the ball orbit observation
method which will be introduced in Chapter 4. Chapter 5 describes the design
of the prototype mechanics and the synthesis of its adaptive control. The
prototype is experimentally evaluated in Chapter 6, what permits to conclude
on the advantages and disadvantages of the ball orbit observation method
(Chapter 7).

- Part III exposes the sensing method based on the Newton’s second law of mo-
tion; this method will be referred in this thesis as cylindrical spinning rotor
method. Chapter 8 presents the design of the gyroscope prototype relying on
this sensing method. Chapter 9 consists of the modeling of the gyroscope and
of an explanation of the method to measure the angular velocity of the vehi-
cle. Chapter 10 introduces the H∞ robust control. Some strategies to control
the actively levitated shaft according to the sensor bandwidth and sensitiv-
ity will be exposed. The synthesis of a two-degree-of-freedom H∞ controller
including an explicit integrator will be described in this chapter. In chapter
11 simulations based on the different control strategies will be analyzed. This
will permit to deduce some rules and criteria to design a controller that fits
the needs required to use Active Magnetic Bearings as a gyroscope. Finally,

3



1.3 Thesis Outline Chapter 1. Introduction

Chapter 12 lists the advantages and disadvantages presented by the cylindrical
spinning rotor method.

- Chapter 13 finally concludes the thesis with a summary, a discussion and an
outlook for future works.

4



Part I

General Introduction to
Gyroscopic Sensing

and to Active Magnetic Bearings
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Chapter 2

Gyroscopic Sensing

The name gyroscope, which is a concatenation of the Greek words σκoπειν (ob-
serve) and γυρoς (rotation), was introduced in 1852 by the French scientist Léon
de Foucault[Fou52b] to describe any instrument that signals or measures a rotation.

There are three families of gyroscopes: mechanical, vibrating and optical gyro-
scopes. These families and the theoretical principles, on which they rely, will be
briefly presented in this chapter.

2.1 Coordinate Systems

2.1.1 Absolute and Relative Coordinate Systems

Before evoking the different existing types of gyroscopes, appropriate coordinate
systems should be introduced. On that purpose, we will describe Fig.(2.1). A ref-
erence frame (O,xf , yf , zf ) is bound to the ground and therefore is considered fix in
space, hence the name of absolute reference frame.

A second reference frame (S,xs, ys, zs) bound to the pink cube (the sensor stator in
our case) is introduced. This reference frame is called relative reference frame. The
movements of the pink cube within the absolute reference frame are fully described
by the movements of (S,xs, ys, zs) relatively to (O,xf , yf , zf ).

A blue cylinder (the active part of the sensor, for example the rotor for mechanical
gyroscopes) can freely move in space. Once again to describe the movements of the
cylinder, a reference frame (G,xr, yr, zr) bound to this cylinder is introduced.

7



2.1 Coordinate Systems Chapter 2. Gyroscopic Sensing

Figure 2.1: Representation of the different reference frames that will be used
throughout the thesis.

In the following, the subscript (sf ) represents the movements of the stator (the pink
object) relatively to the fix reference frame, the subscript (rs) the movements of
the rotor (the blue cylinder) relatively to the stator reference frame, the subscript
(rf ) the movements of the rotor relatively to the fix reference frame.

2.1.2 The Euler Angles

For the rest of this thesis, the Euler angles will be used to describe the behavior of
a coordinate system relatively to another reference frame. To present the Euler an-
gles, the rotations of (S,xs, ys, zs) relatively to (O,xf , yf , zf ) will be described. The
rotations of (G,xr, yr, zr) relatively to (S,xs, ys, zs) can be described in a similar way.

Different definitions of the Euler angles exist depending of the sequence in which
the rotations between the two coordinate systems are considered 1. Throughout this
thesis, we will consider (see Fig.(2.2)) that (S,xs, ys, zs) is first subject to a rotation
φsfy around the vector yf and then to a rotation φsfx around an intermediate vector
x′ = cos

(
φsfy

)
· xf − sin

(
φsfy

)
· zf .

Therefore the complete rotation of (S,xs, ys, zs) about the frame (O,xf , yf , zf ) is
given by:

�φsf = φsfy · �yf + φsfx · �x′

1Rotations are not commutative, therefore once a rotation sequence has been chosen, it cannot
be changed any more.
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Figure 2.2: Rotation of (S,xs, ys, zs) relatively to (O,xf , yf , zf ). First, rota-
tion of (S,xs, ys, zs) by an angle φsfy (green) about yf . Second,
rotation of (S,xs, ys, zs) by an angle φsfx (red) about the inter-
mediate vector x′ .

If the rotation �φsf is expressed in a frame i, it is noted
[
�φsf
]
i
. With this notation,

the expression of �φsf becomes:

[
�φsf
]
f
=
[
�φsf
]T
s
=

⎡
⎢⎣ cy sxsy cxsy

0 cx −sx
−sy sxcy cxcy

⎤
⎥⎦
f

(2.1)

with cx = cos(φsfx ) and sx = sin(φsfx ).

2.2 Families of Gyroscopes

2.2.1 Mechanical Gyroscopes

The first modern gyroscope with a spinning mass was designed by the German
scientist Bohnenberger in 1810.

2.2.1.a Principles

The gyroscopic effects can be derived from the Newton’s Second Law of Motion[New87]:

�τ |rf =
d�L

dt

∣∣∣∣∣∣
rf

=
d
[
J�Ω

]
dt

∣∣∣∣∣∣
rs

+ �ω|rf ×
[
J�Ω

]∣∣∣
rs

(2.2)
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In Eq.(2.2), τ is the torque applied to the considered body (the blue cylinder in
Fig.(2.1)), L its angular momentum, J its inertia matrix considered as constant
in the following, ω the absolute (i.e. expressed in the fix reference frame) angular
velocity of the rotating axes and Ω the angular velocity of the body.

In the following we consider a body with a symmetrical axis Z|r. Therefore its
inertia matrix is diagonal and the inertia Jx (resp. Jy) about the X-axis (resp. the
Y-axis) will be called radial inertia and noted Jr in the following. The mentioned
body spins about Z|r with an angular velocity Ωz. Eq.(2.2) thus becomes:⎡

⎢⎣ τxτy
τz

⎤
⎥⎦
∣∣∣∣∣∣∣
rf

=

⎛
⎜⎝ d
dt

⎡
⎢⎣ JrΩxJrΩy
JzΩz

⎤
⎥⎦
⎞
⎟⎠
∣∣∣∣∣∣∣
rs

+

⎡
⎢⎣ JzΩzωy−JzΩzωx

0

⎤
⎥⎦ (2.3)

Eq.2.3 shows that each component of the torque �τ has two kinds of effects on the
spinning body:

1. the derivative term JiΩ̇i, i ∈ {x, y, z} , means that the effect of the component
τi about the axis i is proportional to the angular velocity of the body about
this particular axis.

2. the effect of the cross product term of the form JzωiΩz, i ∈ {x, y}. In this
case, a torque applied along a direction orthogonal to the spin axis will have
no effect on the angular velocity magnitude, but it can change its direction
(see fig.2.3). The angular velocity ωx (resp. ωy) is called precession rate
about the x-axis (resp. y-axis). This effect is called the gyroscopic effect,
and the corresponding law is referred to as Law of Gyroscopics.

The solutions of Eq.(2.3) contain the previously mentioned steady precession and
an oscillatory term of frequency ωn:

ωx = − τyJz +K1 sin(ωnt) +K2 cos(ωnt)
ωy = τx

Jz
−K1 cos(ωnt) +K2 sin(ωnt)

where ωn = Jz
Jr
Ωz is called the nutation frequency. The amplitude of nutation de-

pends on the damping. Generally, two-axis mechanical gyroscopes (the only ones
able to nutate) have small damping and therefore need electronics that can feed the
instrument with a damping force.

Eq.(2.3) shows the stability advantage presented by a spinning body over a station-
ary one to measure angular velocity. As a matter of fact, a torque τ acting on the
spinning body will induce an angular velocity ω2 = τ/(JzΩz), whereas in the case
of a stationary body (Ωz = 0) it will be ω1 = τ/Jz · t (the variable t representing
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Chapter 2. Gyroscopic Sensing 2.2 Families of Gyroscopes

Figure 2.3: Law of gyroscopics. Diagram of a wheel rotating around an
axis(spin axis in red). Reaction arrows about the output axis
(blue) correspond to forces applied about the input axis (green),
and vice versa [Kie08].

the time). Thus, the effect of τ will be Ωzt times greater for the stationery body
compared to the spinning one. For that reason, mechanical gyroscopes have been
designed based on spinning bodies as in [Fou52a].

2.2.1.b External Gimbal (EGG)

As shown in Fig.(2.4), the rotor is mounted on gimbals. The rotor is spun by
means of electrical energy transmitted through slip rings mounted on the different
gimbal articulations. Finally, the gimbal angles can be measured with the help of
potentiometers placed on these articulations.

Figure 2.4: A two-axis external gimbal type gyroscope [Kie08].

Due to the encapsulation of the rotor within the gimbals, these gyroscopes present
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2.2 Families of Gyroscopes Chapter 2. Gyroscopic Sensing

a small angular momentum compared to their size. Thus, their performance is not
sufficient for inertial navigation.

2.2.1.c Dry Tuned Gyros

As shown in Fig.(2.5), a dry tuned gyroscope is made out of a rotating shaft, a
gimbal, a momentum wheel and two pairs of flexible hinges. The rotating shaft
supports the gimbal by means of a pair of flexible hinges. The momentum wheel
is mounted on the gimbal through the second set of hinges, the direction of these
last hinges is orthogonal to the first pair. This architecture was first described by
Arnold and Maunder in the 1940’s [Wil74].

Rotation of the gimbal causes a reaction at the rotor that is equivalent to a neg-
ative torsional spring stiffness. This effect occurs when the angular momentum of
the shaft does not coincide with that of the rotor, the angular momentum of the
gimbal jumping between that of the shaft and the rotor, at twice the speed of the
rotor. Thus, careful selection of the torsional stiffness of the gimbal components
and the rotational speed of the rotor allows the rotor suspension to have a net zero
spring stiffness at a particular rotor speed, known as the tuned speed. Under these
conditions, the rotor is decoupled from the motion of the rest of the sensor and
hence its movement are free from the influence of the stator[How64].

Figure 2.5: Dry Tuned Gyroscope.

A second advantage of the dry tuned architecture is that the wheel is placed on the
outer side of the gyroscope, inducing a higher angular momentum compared to the
gyroscope with external gimbals. A third advantage: because they are dry, they
provide good performance over a wider range of temperature than single degree of
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freedom gyroscopes (SDFG) [Law98].

However, such advantages have a cost which is the high complexity of the flexures
hinges design and of the servo due to DTG’s low damping, cross coupling and
nutation [Joo77]. Despite this complexity, DTG’s have been commercialized, an
example being the AN/ASN141 inertial sensor used navigation in the F-16 aircraft
[Par08].

2.2.1.d Levitated Gyros

In conventional mechanical gyroscopes, the friction between the stator and the
rotor is a source of measurement error. To avoid this problem, gyroscopes based on
contactless levitation of the rotor inside the stator have been imagined.

2.2.1.d.i) Gas Bearing Gyros

For this gyroscope type (see Fig.(2.6)), the momentum wheel turns around a spher-
ical bearing with a thin gas layer between the two moving parts. This type of
gyroscope has been mounted on US intercontinental missiles because of its mean
time-to-failure of over 1 million hours.

Figure 2.6: A gas bearing gyroscope.

2.2.1.d.ii) Electrically Suspended Gyros (ESG)

In 1954, Nordsieck [Nor96] introduced the first levitated gyroscope consisting of a
sphere suspended by means of electrostatic levitation and spun by coils. In order
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to give to this sphere a principal inertial axis, two implementations were developed:
Honeywell [Had84] placed a ring inside the sphere, whereas Rockwell placed a cylin-
der inside of it. The attitude of the sphere is then detected by optical sensors. Due
to its drift performance below 0.0001◦/h, Honeywell’s solution has been integrated
into nuclear submarines.

Due to a strong ratio force/size that electrical field allows, some implementations
of ESG’s have been developed in MEMS [Mur03] with a resolution of 0.05◦/s for a
disc shaped rotor of 4 [mm] in diameter.

2.2.1.d.iii) Magnetically Suspended Gyros (MSG)

The Levitron [Har83] is the first practical "implementation" of an MSG. It consists of
a rotor placed over an arrangement of electromagnets, but is not used as a gyroscope
but more as a demonstration toy which is described in [Fas08]. More seriously the
use of magnetic suspension for gyroscopes has been introduced in a patent by Barrot
et al. [Bol07]. Such devices are currently under development [Mar06] with promising
results, but no industrial product is available for the moment. The miniaturization
of the AMB gyroscope developed in the present thesis is a novelty compared with
other work and a key factor for widening the use of gyroscopes to mass market
applications.

2.2.2 Vibrating Gyroscopes

The first vibrating gyroscopes were realized during the 1960’s and all relied on
vibrating bodies used to provide torques from the Coriolis acceleration. Three
different implementations of this theory will shortly be introduced in this section:
the vibrating string gyro [Qui64], the tuning fork gyro [Hun64] and the vibrating
shell gyro [Lyn84].

2.2.2.a The Vibrating String

The idea of the vibrating string was first proposed by Quick [Qui64], the principle
is described in Fig.(2.7):

As shown on Fig.(2.7), a string is vibrated in the xz-plane with a sinusoidal velocity
profile v = v0 cosω0t. If the gyroscope is exposed to an angular velocity Ω about
the z axis, then because of the Coriolis acceleration (2vΩ) the string begins to
also vibrate in the y direction. Using the knowledge of the frequency ω0 and the
measurement along the y axis, one obtains the angular velocity Ω.
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Figure 2.7: Effect of the Coriolis acceleration on a vibrating string. v is
the instantaneous velocity of the string in the xz plane, and Ω
describes the rotation speed that acts on the gyroscope.

2.2.2.b The Tuning Fork Gyro (TFG)

This idea was introduced by Hunt[Hun64] in 1964, but a realization with results
satisfactory enough for its industrialization was firstly achieved at the Draper Lab
[Wei93] in 1993.

Figure 2.8: The tuning fork gyroscope. ω0 describes the tine frequency, and
Ω the vehicle angular velocity around the z axis.

As shown in Fig.(2.8), the tines of the fork oscillate in opposite phase at the fre-
quency ω0 within the xz plane. As an angular velocity Ω is applied about the z axis,
the tines, due to the Coriolis acceleration, experience a movement not only within
the xz plane but also along the y direction. The amplitude of the movement along
the y axis is:

a = 4v0 cos (ω0t) Ω/K (2.4)
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In Eq.(2.4), v0 describes the velocity amplitude of the tines and K the torsional
stiffness constant of the stem.

2.2.2.c The Vibrating Cylinder Gyroscope

The vibrating cylinder gyroscope is based on an observation of Bryan [Bry90] that
the rotation of a vibrating cylinder about its central axis induces a change in the
position of its circumferential nodes relatively to the cylinder. This means that
these nodes do not rotate at the same speed as the cylinder (see Fig.(2.9)), but at a
rate proportional to the total turn. This phenomenon arises because of the Coriolis
acceleration induced by the rotation.

Figure 2.9: The vibrating cylinder gyroscope. n represents the percentage
of the case rotation traveled by the vibrating node.

2.2.3 Optical Gyroscopes

This chapter consists of a brief description of the theoretical principles on which
optical gyroscopes are based, as well as a short overview of some of the physical
realizations of this theory.

2.2.3.a Sagnac Effect

All optical gyroscopes rely on the same theory: the Sagnac Effect [Sag13], which is
an interference phenomenon. As shown in Fig.(2.10), two light beams of wavelength
λ are emitted by the same light source/collector (S) in two opposite directions within
an optical path of radius R, for example a glass fiber.
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If the vehicle on which the gyroscope (consisting of the light source/receptor and of
the optical path) is mounted starts turning with an instantaneous angular velocity
Ω, then the arrival of the two light beams on the receptor will be shifted in time (see
Eq.(2.5), in which the subscript + (resp. -) describes the positive (resp. negative)
light beam):

t+ = d+/c = 2πR+RΩt+
c

t− = d−/c = 2πR−RΩt−
c

⎫⎪⎬
⎪⎭⇒ Δt = t+ − t− = 4πR2Ω

c2 −R2Ω2 ≈
4πR2Ω
c2
, as c� RΩ

(2.5)

Figure 2.10: Illustration of the Sagnac Effect. S represents the light source,
R the radius of the interferometer, and Ω describes the rotation
speed of the object on which the gyroscope is mounted.

Thanks to the time delay between the two light beams, interference fringes appear
with a phase shift Φ that is directly related to the vehicle instantaneous speed Ω
(see Eq.(2.6)):

Sagnac effect: Φ = 2π
c

λ
Δt =

8π2R2

cλ
Ω (2.6)

2.2.3.b Types of Optical Gyroscopes

Four categories of optical gyroscopes exist: resonant or nonresonant and active
or passive. Passive sensors use an external device to measure the Sagnac phase,
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whereas in active optical gyroscopes the phase causes a change in frequency that
directly corresponds to the rotation speed.

The most widely used optical gyroscope is the active resonant ring laser gyroscope
(RLG), but it could be supplanted by the Interferometric Fiber Optic Gyroscope
(IFOG) which is based on the Sagnac interferometer. Two passive resonant gyro-
scopes, the Resonant Fiber Optic Gyroscope (RFOG) and the Micro Optic Gyro
(MOG) show good performances and a very attractive cost and are therefore be-
coming more and more used [Law98].

2.3 Summary

A summary of typical performance characteristics for some of the previously intro-
duced kinds of gyroscopes is given in table which is inspired from [Tit] concludes
this brief review of the different existing types of gyroscopes and the theoretical
principles on which they rely.

Characteristic EGG DTG ESG TFG Vibratory RLG FOG
cylinder

Bias [◦/h] 0.05-10 0.05 NA 360-1800 360-1800 0.001-10 0.5-50
Linearity [%] 0.01-0.1 0.01-0.1 0.2 0.05-0.1 0.2-0.3 5-100 0.05-0.5
Maximum
Input Rate [◦/s] >400 1000 200 600 >1000 >1000 >1000
Bandwidth [Hz] 60 100 10 100 500 >200 >100

Table 2.1: Typical performances of different types of gyroscopes.
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Chapter 3

Active Magnetic Bearings

3.1 Definition

Magnetic bearings depict in a general manner the levitation of an object called
the rotor (or flotor [Bar08]) by means of forces created by a magnetic actuators
arrangement, the stator.

(a) (b)

Figure 3.1: Position of the rotor relatively to the magnet to have levitation
at stand still without perturbation in the case of (a) a dia-
magnetic material and of (b) a ferromagnetic or paramagnetic
material.

There exist two types of magnetic bearings: the passive (referred as PMB) and the
active ones (referred as AMB). The classification is made by means of the achiev-
able levitation which is directly linked to the relative permeability μr of the rotor
material. If μr is higher (resp. lower) than 1 the material is called ferromagnetic
(resp. diamagnetic). To illustrate the difference, we consider a bar placed near a
magnet. The norm of the force exerted by the magnet on the bar increases as the
bar gets closer to the magnet. On the opposite, the direction of the force is directly
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relied to μr: if μr > 1 then the force is attractive (see Fig.(3.1(b))), otherwise it is
reluctant see Fig.(3.1(a)).

In the case of a diamagnetic material, a perturbation of the rotor will lead to an
increase or in a decrease of the distance between the rotor and the magnet, thus
reducing or increasing the magnetic force strength. This will result in an attraction
towards the stand still position of the rotor. Therefore diamagnetic levitation does
not need any action of the environment to stabilize the rotor. On that purpose,
diamagnetic levitation is called passive.

On the opposite, a slight deviation from the stand still position of a ferromagnetic
or paramagnetic rotor towards the magnet (resp. away from the magnet) will lead
in an increase (resp. a decrease) of the magnetic force strength, thus destabilizing
the whole system. Hence, in the presence of a static field, such a system can not be
stabilized. Therefore, a dynamic field depending on the distance can stabilize the
system. Therefore, a controller that adapts the magnetic force in function of the
distance between the rotor and the electromagnet is required, whence the name of
active levitation.

Nowadays the existing diamagnetic material have a very small negative magnetic
susceptibility χ. Therefore, the response of passive magnetic forces is too long to
compensate for fast perturbations. On that purpose, for the time being passive
magnetic forces are only used for the rotor levitation [Bar08]. Thus, passive mag-
netic levitation will not be considered in our application of magnetic bearings for a
gyroscope. On the opposite, because of their high χ, ferromagnetic materials driven
by active magnetic bearings can compensate for fast perturbations and therefore
suit the requirement for gyroscopic sensing. On that purpose, this thesis will focus
on active magnetic levitation of ferromagnetic materials.

3.2 AMB: Interest and Applications

The interest for AMB relies on the following advantages:

- no contact.

- no lubrication needed.

- no contamination by the dust created by friction between the rotor and the stator.

- viscous friction can be avoided if the rotor is confined in high vacuum.

- low vibration level.
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- dynamics adaptable to the desired application by tuning of the control loop.

- precise positioning of the rotor due to the control loop.

- achievable fast positioning and/or high rotational speed of the rotor.

Nowadays, AMB are mainly used to replace the conventional ball bearings for turbo-
molecular pumps, high speed motors, flywheels, turbo compressors, vacuum pumps,
grinding and milling spindles [AG08], friction spindles for textile industry[Mos06]
and motors for hard disk drives [Zoe02]. Another application that can also be seen
as the replacement of ball bearings is the substitution of wheels in the case of mag-
netically levitated trains [RTR08], [Sie08].

Recently, AMB have started to being used as inertial sensors. Accelerometers and
inclinometers have been developed [Bar08]. The idea of adapting actively levitated
motors as gyroscopes has been introduced in [Bol05] and [Bol07]. Maruyama et al.
[Mar06] experimentally succeeded to use an industrial AMB motor as gyroscope.
However, due to its size, this AMB based gyroscope is not yet suited for implemen-
tation on common vehicles as cars among others. Thus, the small size (a cube of
40[mm] ridge length) of the AMB gyroscope developed in this thesis is a key factor
for a possible commercialization into the mass market.
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Part II

1st Gyroscopic Sensing Method:
Ball Orbit Observation
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Chapter 4

Ball Orbit Observation

4.1 Description of the Measurement Principle

A new way to measure the angular velocity is proposed in the current part. One
makes a ball1 shaped rotor describe a circular orbit2 of 200[μm] in diameter in the
XY-plane (see Fig.(4.1(a))). This trajectory may be seen as a disc with a normal
vector −→N . At this time the angle between −→Z and −→N is zero.

(a) (b)

Figure 4.1: Orbit of the ball: (a) in the presence (resp. (b) in the absence)
of external movement. The ball shaped rotor is represented in
black and the stator actuators as red and black squares. The
vector �N is the vector normal to the ball orbit.

1The chosen rotor shape is a ball because it is the easiest one to control in position, what is
sufficient for this measurement method.

2An analog method with the ball following a segment along the Z-axis instead of an orbit has
been tested but with less success.
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When the stator (the set of actuators) is moved, the disc described by the ball
will not follow the basis movement instantaneously (see Fig.(4.1(b))). Due to this
latency an angle between −→N and −→Z will appear. The algorithm to compute this
angle is presented in the following section.

4.2 Computation of the Angular Velocity

4.2.1 Computation of the Disc Normal Vector Coordinates

Fig.(4.2) is a top view of the orbit described by the rotor and will be used to explain
the measurement of the vector normal to the disc.

Figure 4.2: Top view of the orbit described by the ball shaped rotor. A(n)
(resp. C(n)) represents the ball position (resp. the orbit center)
at the time t(n). m is the number of ball position measurements
per revolution.

A(n) and C(n) are respectively the position of the ball and the position of the orbit
center at the time t(n). Eq.(4.1) presents how the vector −→N (n−1) (i.e.

−→
N at the time

t(n−1)) is computed:

−→
N (n−1) =

−−−−−−−→
A(n−1)A(n) ×−−−−−−−−→A(n−1)A(n−2)

‖−−−−−−−→A(n−1)A(n)‖ · ‖−−−−−−−−→A(n−1)A(n−2)‖
(4.1)
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4.2.2 Computation of the Angle between
the Normal Vector and the Z-axis

From the measurement of the coordinates of the normal vector −→N (n−1), the rela-
tive angles (φx, φy) between the vectors −→N (n−1) and �Z can be computed using the
definition of the Euler angles (see Eq.(2.1)):

−→
N (n−1) =

⎡
⎢⎣ cos (φx) · sin (φy)

− sin (φx)
cos (φx) · cos (φy)

⎤
⎥⎦ (4.2)

4.2.3 Computation of the Angular Velocity

The angular velocity corresponding to the angle φx, resp. φy, will be noted φ̇x, resp.
φ̇y. The total angle φx (this is analog for φy) described by the gyroscope from the
beginning of the experiment (time t = 0) to the current time t is given by Eq.(4.3):

φx (t)− φx (0) =
∫ t

0
φ̇x (t) · dt (4.3)

The digital form of Eq.(4.3), with Ts as sampling time, permits to compute the
angular velocity φ̇x at time k · Ts:

φx (k · Ts)− φx (0) =
k∑
i=1
φ̇x (i · Ts) · Ts

⇒ φ̇x (k) = 1
Ts
(φx (k)− φx (0))−

k−1∑
i=1
φ̇x (i) =

φx (k)
Ts
− Sk−1,

with Sk−1 = φx(0)
Ts

+
k−1∑
i=1
φ̇x (i)

(4.4)
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Chapter 5

Prototype Design and Control

In this chapter, the rotor levitated by the active magnetic bearings can be designated
by the terms "rotor" or "ball". This possible change in terminology has no influence.

5.1 Prototype Design

As presented in §4, the ball shaped rotor only needs to be controlled in position,
what can be fulfilled by three pairs of actuators. On that purpose, a prototype
inspired from the one used by [Bol05] has been developed. Further precisions about
the sensing system can be found in [Bol05].

The prototype developed in this thesis is presented in Fig.(5.1).

5.2 Prototype Model

5.2.1 Force calculation

5.2.1.a General Expression of the Force

According to [Bol05], the magnetic force applied on the ball shaped rotor by an
electromagnetic actuator is given by :

F (u, i) =
1
2
· ∂L(u)
∂u
· i2 (5.1)

with

⎧⎪⎨
⎪⎩
L : the inductance of the actuator coil
u : the air gap between the actuator and the ball
i : the current flowing in the actuator coil
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Figure 5.1: Exploded view of the prototype. The ball shaped rotor is rep-
resented in green, the electromagnetic actuator coils in red and
their cores in blue.

[Bol05] proposes Eq.(5.2) as linearized expression of the coil inductance:

L(u) = L0 +
ΔL

1 + a · u (5.2)

with

⎧⎪⎨
⎪⎩
L0 : the inductance of the coil without the rotor
ΔL : the maximum variation of the coil inductance
a : constant

With the help of Eq.(5.1) and Eq.(5.2), the linearized expression of the force exerted
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by the actuator on the ball is:

F (u, i) = −1
2

ΔL · a
(1 + a · u)2 · i2 (5.3)

For the present prototype, [Bol05] proposes Eq.(5.4) as expression for the air gap u
between the actuator and the ball. In this equation, d (resp. r) represents the axial
(resp. radial) distance between the actuator and the ball center (see Fig.(5.6)), and
rball the ball radius.

u =
√
r2 + d2 − π

4
rball (5.4)

Figure 5.2: Schematic representation of the magnetic force exerted by the
ferrite/coil actuator onto the ball.

The general form of the force becomes with the help of Eq.(5.3) and Eq.(5.4):

−→
F =

⎧⎪⎪⎨
⎪⎪⎩
Fr = F (u, i) · r√

r2+d2

Fd = F (u, i) · d√
r2+d2

(5.5)

5.2.1.b Linearization of the Force

The electromagnetic actuators have been dimensioned so that the electromagnetic
force exerted by an actuator placed over the ball must exactly compensate for its
weight m ·g. Therefore, at the the nominal air gap u0 (i.e half the distance between
two opposed actuators), the nominal current i0 flowing through the actuator is given
by:

i0 = [1 + a · u0] ·
√
2 ·m · g
a ·ΔL (5.6)

Therefore the linearization of Eq.(5.3) around u = u0 (i.e. r = 0 and d = d0) and
i = i0 returns:
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F (r,Δd,Δi) = F (u0, i0) + ∂F
∂r

∣∣∣
(u0,i0)

· r + ∂F
∂(Δd)

∣∣∣
(u0,i0)

·Δd+ ∂F
∂i

∣∣∣
(u0,i0)

·Δi

= −1
2

ΔL·a·i20
(1+a·u0)2 + ΔL·a2·i20

(1+a·u0)3Δd− ΔL·a·i0
(1+a·u0)2Δi

(5.7)

with
{
Δd : the position deviation from the nominal distance d0
Δi : the current deviation from the nominal current i0

5.2.1.c Global Magnetic Force

In this section, we will use the following designations for the forces created by two
electromagnetic actuators placed on each of the rotor and placed on a same axis of
the stator:

• Fm designates the force by the actuator placed on the negative part of the
axis.

• Fp designates the force by the actuator placed on the positive part of the axis.

5.2.1.c.i) Expression of the force Fm

−→
Fm (r,Δd,Δim) =

1
d0
Fm (r,Δd,Δim) ·

[
r
d0 +Δd

]
(5.8)

with Δim the deviation of the nominal current for the negative actuator.

5.2.1.c.ii) Expression of the force Fp

−→
Fp (r,Δd,Δip) =

1
d0
Fp (r,Δd,Δip) ·

[ −r
d0 −Δd

]
(5.9)

with Δip the deviation of the nominal current for the positive actuator.

5.2.1.c.iii) Calculation of the resulting force F = Fp + Fm

With the help of Eq.(5.8) and Eq.(5.9), the resulting electromagnetic force exerted
on the ball shaped rotor is given by:

32



Chapter 5. Prototype Design and Control 5.2 Prototype Model

−→
F = −→Fm (r,Δd,Δim) +−→Fp (r,Δd,Δip)

= ΔL·a·i20
(1+a·u0)2

⎡
⎢⎢⎣
−
(
1 + Δim+Δip

i0

)
· r
d0

(
2·a

1+a·u0
·Δd+ Δip−Δim

i0

)
−
(
1 + Δim+Δip

i0

)
· Δd
d0

⎤
⎥⎥⎦

(5.10)

We consider that the ball shaped rotor is only subject to small displacement from its
nominal position, i.e. that r 	 d0 and Δd 	 d0. With this assumption Eq.(5.10)
becomes:

−→
F = −→Fm (r,Δd,Δim) +−→Fp (r,Δd,Δip)

= ΔL·a·i20
(1+a·u0)2

⎡
⎢⎣
0

2·a
1+a·u0

·Δd+ Δip−Δim
i0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣
0

kd ·Δd+ ki ·Δi

⎤
⎥⎥⎥⎦

(5.11)

with Δi =
1
2
(Δip −Δim) =

1
2
[(Δi− i0)− (−Δi− i0)]

Thus, Eq.(5.11) confirms that the electromagnetic force exerted on the ball shaped
rotor along one axis can be assumed to be directed along the considered axis and
that it only depends from the position deviation along that axis and from the current
flowing within the actuator coils.

5.2.2 Transfer Function of the Electromagnetic Force

As the behaviors of the ball movement along the three stator directions x,y,z are
governed by Eq.(5.11), the term Δd of this equation will be replaced by z (it could
be x or y as well) in the following developments and Δi by iz.

Introduction the force exerted by the electromagnetic actuators onto the ball shaped
rotor (see Eq.(5.11)) into the second Newton law of motion returns:

m · d
2z

dt2
= kd ·Δz + ki · iz (5.12)

The previous equation leads to the following transfer function in the Laplace do-
main:

Giz→z =
Z

Iz
=

ki
m · s2 − kd (5.13)
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Eq.(5.13) shows a placement of the poles of the system transfer function on the
imaginary axis. This means that the plant is intrinsically unstable and that it
requires a controller to be stabilized.

5.3 Prototype Control

5.3.1 PID Control

To stabilize the model, a closed-loop controller is needed to shift the transfer func-
tion poles (see equation 5.13) to the left half-plane. A PID controller is introduced in
order to inject a current iz related to the ball displacement into the electromagnetic
actuators, Eq.(5.12) becomes:

m · z̈ = kd · z + ki · i = kd · z + ki ·K
(
1 + Td · d

dt
+

1
Ti
·
∫
t

)
· (−z) (5.14)

with

⎧⎪⎨
⎪⎩
K : the proportional term of the PID controller
Ti : the integrative term of the PID controller
Td : the derivative term of the PID controller

Hence, the plant transfer function integrating the controller (see Fig.(5.6)) in the
Laplace domain becomes:

GC = Gi→zCz→i =
Z

Z0
=
kiKTd
m
· s2 + 1

Td
· s+ 1

TiTd

s3 + kiKTd
m
· s2 + kiK−kd

m
· s+ kiK

mTi

(5.15)

with
{
Z0 : the reference position of the ball shaped rotor
Cz→i : the transfer function of the PID controller

Figure 5.3: Block diagram representation of the controller/plant system.
The controller is represented within the square.
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5.3.1.a Stability Condition: Routh Criterion

The Routh Criterion [Rou77] is used to stabilize the GC transfer function. This
criteria tells that the poles of the GC transfer function are placed in the left half-
plane if and only if the following conditions are fulfilled:

kiK−kz
m

> 0

kiKTd
m
·
(
kiK−kz
m

)
− kiK
mTi

kiKTd
m

= kiK−kz
m
− 1
TiTd
> 0

kiK
mTi
> 0

(5.16)

5.3.1.b Specifications in Time Domain

The denominator in Eq.(5.15) is of 3rd degree, therefore it has one purely real root
and two imaginary roots. Hence, the denominator can be rewritten as:

D(s) = (s− pr) ·
(
s2 + 2 · ξ · ωn · s+ ω2

n

)
(5.17)

with

⎧⎪⎨
⎪⎩
pr : the real root of D(s)
ξ : a constant called damping factor
ωn : the natural frequency of D(s)

Time domain specifications (rise time, overshoot and settling time) will be used to
determine ξ and wn. According to [Fra94], the time domain specifications and the
constants presented in Eq.(5.17) are bound by the following relationships:

rise time: tr 
 1.8
ωn

overshoot: Mp = e
− πξ√

1−ξ2

settling time: ts 
 4.6
ξωn

(5.18)

To get an overshoot Mp 
 5%, the damping factor will be chosen as ξ = 0.7.
We will choose the settling time ts = 3Ts, with Ts = sampling time. Thus ωn 
 2.19

Ts
.

Finally, the controller parameters K, Td and Ti, can be identified using the time
specifications (with pr = −α · ωn and α > 0) .

K = 1
ki
· [mω2

n · (1 + 2ξα) + kz]

Td = m
kiK
· (2ξ + α)ωn

Ti = kiK
mαω3

n

(5.19)
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5.3.2 Electronics Transfer Function

As the computer DA card can not deliver any current but only voltages, a voltage
to current converter is needed at the output of the DA card.

Figure 5.4: Schematics of the coil command electronics.

The transfer function of the coil command electronics is:

Gelec (s) = iout
Vin

= −R3+R5
R3R6

· 1+R1Cs
1+(R1+R2+R2R5/R3+R5)Cs+LC(1+R5/R3)s2

(5.20)

The command electronics has a gain of −25[mA · V −1] and a bandwidth of 5kHz.

As the DA card can only deliver a voltage in the domain [-5V; 5V], a saturation
must be included at the output of the controller. Thus the global plant system
including the DA card and the coil command electronics becomes:

5.3.2..i) Introduction of an Antiwindup Feedback Structure

When the voltage Vsat (see Fig.(5.5)) does not belong to the linear domain of the
saturation block, Vd may become very high because of an excessive buildup of the
integral action, whenever Z0−Z is large and Vd exceeds its saturation values. This
phenomenon, known as "reset windup" leads to a loss in the control quality resulting
in an overshoot of Z [Fra94].
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Figure 5.5: Block diagram representation of the controller/plant system
with the DA card and the coil command electronics. The sub-
script "d" means digital, "sat" saturated and "a" analog.

To alleviate this reset windup effect, the basic idea is to monitor the difference ea
of the input and output signal to the saturation block. It is zero within the linear
operating range, and nonzero outside, where the integral action would "wind up".
Then feedback of ea = Vsat − Vd is used to keep the integral action from running
too far off [Gla02].

Figure 5.6: Block diagram representation of the controller/plant system in-
cluding the antiwindup feedback structure.

5.3.3 Adaptive Control

5.3.3.a Adaptive Control Choice

The basic idea of adaptive control is to deal with complex systems that have unpre-
dictable parameter deviations and uncertainties. This uncertainty has many origins
as an insufficient knowledge of the system, linearization of the system, time-varying
system parameters... This lack of knowledge about the system can lead to inaccu-
racy and/or to instability. Therefore, to get rid off this uncertainty, the controller
should be able to be redesigned on-line to maintain consistent performance of the
system.
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Adaptive control is divided into two families that will be presented in the following
sections:

1. Model-reference adaptive controllers (MRAC)

2. Self-tuning controllers (STC)

5.3.3.a.i) Model-reference adaptive controllers

Figure 5.7: General representation of MRACs.

MRACs are composed of four main blocks as shown on Fig.(5.7):

• The plant to be controller whose structure is known but not its parameters.

• The reference model specifies the ideal response ym of the adaptive control to
the external command r imposed by the user.

• The adaption law is used to adjust the controller parameters to the actual
and current plant parameters.

• The controller is parameterized by a number of adjustable parameters and
provides perfect tracking capacity.

5.3.3.a.ii) Self-tuning controllers

Figure 5.8: General representation of STCs.
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As shown on fig.(5.8), STCs combine a controller with an on-line (recursive) plant
parameter estimator. The estimator is a process that finds a set of parameters that
fits the available input-output data from a plant.

5.3.3.a.iii) MRAC choice

As written in [Slo91], STCs are more flexible than MRACs because of the sepa-
ration of control and estimation which leads to the possible coupling of different
controllers with various estimators. However, the stability and convergence of STCs
are generally difficult to ensure if the reference signal is not very rich (a constant
for example). In opposite, MRACs guarantee stability and convergence whatever
the signal richness. In our case, the ball position is a constant and therefore the
choice of the MRAC.

5.3.3.b Design of the adaptive controller

5.3.3.b.i) The Reference Model

Along this section, we will use for the action of the electromagnetic actuators on
the ball shaped rotor the model proposed in Eq.(5.12).
Adaptive control requires a strictly positive real(SPR) plant to work [Slo91]. To
achieve this requirement, the reference plant will consist in the electromagnetic
actuators plus the PID controller presented in Eq.(5.15) whose parameters have
been defined according to Eq.(5.19).

From now on, the transfer function that will be used for the reference model is the
following one:

Wm(s) =
km · (s2 + bm1 · s+ bm2)
s3 + am1 · s2 + am2 · s+ am3

(5.21)

The reference model parameters bm and am presented in Eq.(5.21) are fully known.

5.3.3.b.ii) The Real Plant

As written in the previous section, the transfer function of the plant includes a PID
controller in order to have a SPR system. The plant will be a priori considered to
be linear with the same order as the reference model:

Wm(s) =
kp · (s2 + bp1 · s+ bp2)
s3 + ap1 · s2 + ap2 · s+ ap3 (5.22)

The plant parameters bp and ap presented in Eq.(5.22) are uncertain.
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Figure 5.9: Implementation of the MRAC to the AMB-Gyroscope. The
blue and green rectangles respectively represent the reference
model and the plant

5.3.3.b.iii) MRAC implementation to the AMB system

One of the goal of adaptive control is to fit the plant behavior to the perfectly known
behavior of the reference model. On that purpose, two closed loop blocks (these
are represented in white in Fig.(5.9)) are added to the plant. With these blocks the
relation between the reference signal r(t) and the plant output y becomes:

y = Wp · u = Wp · s2+bm1·s+bm2
s2+(bm1+α1)·s+(bm2+α2) · u1

= Wp · s2+bm1·s+bm2
s2+(bm1+α1)·s+(bm2+α2) ·

[
k · r − β1·s2+β2·s+β3

s2+bm1·s+bm2
· y
]

= kp·(s2+bp1·s+b2)
s3+ap1·s2+ap2·s+ap1

· k(s2+bm1·s+bm2)·r−(β1·s2+β2·s+β3)·y
s2+(bm1+α1)·s+(bm2+α2) (5.23)

Choosing bm1 + α1 = bp1 and bm2 + α2 = bp2, Eq.(5.23) becomes:

y = kp·[k(s2+bm1·s+bm2)·r−(β1·s2+β2·s+β3)·y]
s3+ap1·s2+ap2·s+ap1

⇒ Wry = y
r
= kp·k·(s2+bm1·s+bm2)
s3+(ap1+β1)·s2+(ap2+β2)·s+(ap3+β3) (5.24)

The following set of choices permits to get Wry = Wm and thus to achieve perfect
tracking:

k = km
kp

β1 = am1 − ap1
β2 = am2 − ap2
β3 = am3 − ap3
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As the plant parameters (the terms bp and ap in Eq.(5.22)), are not known, the
adaption law must modify the coefficient αi and βi according to the variations of
the plant parameters. On that purpose an adaption law will be introduced (see
Fig.(5.10)):

Figure 5.10: Introduction of the control law in the MRAC.

From Fig.(5.10), the plant input u can be written as:

u = −→Θ1
T
(t) · −→ω1 +

−→Θ2
T
(t) · −→ω2 +Θ0(t) · y + k(t) · r (5.25)

The vectors ωi introduced in Eq.(5.25) are defined as follow:
−→ωiT = [ωi ω̇i]

−̇→ω1 = Λ · −→ω1 + h · u
−̇→ω2 = Λ · −→ω2 + h · y

(5.26)

The expression of the matrices Λ and h are given by:

Λ =
[

0 1
−bm2 −bm1

]
and h =

[
0
1

]
(5.27)

The introduction of Eq.(5.27) into Eq.(5.26) returns:

−→ω1 =
1
Zm
·
[
s+ bm1 1
bm2 s

]
·
[
0
1

]
· u = 1

Zm
·
[
1
s

]
· u
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−→ω2 =
1
Zm
·
[
s+ bm1 1
bm2 s

]
·
[
0
1

]
· y = 1

Zm
·
[
1
s

]
· y (5.28)

with Zm = s2 + bm1 · s+ bm2

The expressions of the terms ωi’s (see Eq.(5.28)) permit to find the vectors Θi
presented Eq.(5.25):

−→Θ1
T

= −
[
α2
α1

]

−→Θ2
T

= −
[
β3 − β1 · bm2
β2 − β1 · bm1

]

Θ0 = −β1

5.3.3.b.iv) Choice of the adaption law
For conciseness reasons, the following notations for the control law will be used for
now on:

u = −→ΘT (t) · −→ω (5.29)
with −→ΘT =

[
k(t) −→Θ1

T
(t) −→Θ2

T
(t) Θ0(t)

]
−→ω T =

[
r(t) −→ω1

T (t) −→ω2
T (t) y(t)

]
Eq.(5.29) can be rewritten as:

u = −→Θ
T · −→ω +−→Φ T (t) · −→ω (5.30)

with
{ −→Θ
: the ideal value of −→Θ−→Φ = −→Θ −−→Θ
: the error between −→Θ and −→Θ


According to Fig.(5.9) and (5.10) the error e(t) between the plant output y(t) and
the reference output ym(t) becomes:

e(t) = y(t)− ym(t) =Wm · u−Wm · r
= Wm ·

[−→Θ
T · −→ω +−→Φ T (t) · −→ω /k

]
−Wm · r

= Wm · −→Φ
T
(t) · −→ω /k


(5.31)

Applying Barbalat’s lemma (see [Kha92]) to Eq.(5.31), the following control law is
chosen: −̇→Θ = −sgn(kp) · γ · e(t) · −→ω (5.32)

In Eq.(5.32), the term γ is a positive number representing the adaption gain. As
the output signal y is bounded, Barbalat’s lemma shows that the tracking error in
this adaptive control system asymptotically converges.
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Chapter 6

Experimental Results for the Ball
Orbit Measurement Method

Two types of experiments are presented in this chapter in order to characterize the
specifications of the AMB based gyroscope regarding the angular velocity measure-
ment. The angular velocity has been first measured while the vehicle is moving,
and, in a second time, when the vehicle is at stand still. This last measurement
permits to determine the noise of the AMB based gyroscope sensor.

The measurements of the angular velocity about the X and Y axes have returned
the same results , therefore, only the results for the X axis will be presented in this
chapter.

6.1 Test Rig

The experiments are performed with the help of a rotary table designed during
this thesis. This rotary table is based on the pantoscope principle described by
[Bau97]. The AMB based gyroscope is mounted on the upper side of the rotary
table (see Fig.(6.1(a))), and the reference gyroscope (the inertial measurement unit
IMU700CB-200 of Crossbow [Inc08]) on the lower side of the rotary table (see
Fig.(6.1(b))). Thus, both gyroscopes are subject to the same angular velocity.
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Moving Rotary Table Chapter 6. Experimental Results

(a) (b)

Figure 6.1: Test rig: (a) top view of the rotary table with the AMB based
gyroscope. (b) bottom of the rotary table with the reference
gyroscope (Crossbow IMU700CB-200).

6.2 Experimental Results while the Rotary Table
is Moving

The left picture of Fig.(6.2) demonstrates the ability of the AMB based gyroscope
to measure the angular velocity of the rotary table.

Figure 6.2: Angular velocity measurement about the X-axis. The ball
shaped rotor has a diameter of 2[mm] and the orbital revo-
lution frequency is 25[Hz]. The reference (resp. the prototype)
measurement is represented in blue (resp. in red).

However, a zoom of this picture (see Fig.(6.2) right) shows a low pass filter behavior
of the AMB based gyroscope. As a matter of fact, when the angular velocity
becomes 0[◦/s], the reference gyroscope measures a small step which corresponds to
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6.3 Experiments:

Noise Measurement

a signal containing high frequency components. This step is not measured by the
AMB based gyroscope, hence its mentioned low pass filter behavior.

6.3 Experimental Results while the Rotary Table
Stands Still: Noise Measurement
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Figure 6.3: Noise in the measurement of the angular velocity about the X-
axis. The ball shaped rotor has a diameter of 2[mm] and the
orbital revolution frequency is 25[Hz]. The reference (resp. the
prototype) measurement is represented in blue (resp. in red).

As shown in Fig.(6.3), the noise in the angular velocity measurement of 4[◦/s] peak
to peak for the AMB based gyroscope. This noise has been measured in the same
conditions as the ones specified in the reference gyroscope datasheet [Inc08], i.e.
with a refreshment rate of 100[Hz]. The experiments show a 2[◦/s] peak to peak
noise for the reference gyroscope.
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6.4 Performance achieved
with the Ball Orbit Measurement Method

The performances of the AMB based gyroscope when measuring the angular velocity
with the ball orbit method are summarized in the following table:

Update rate 100 [Hz]
Start-up time valid data < 1 [s]
Measurement range ±180 [◦/s]
Bandwidth 10 [Hz]
Noise peak to peak 4 [◦/s]

Table 6.1: Performance of AMB based gyroscope when measuring the an-
gular velocity with the ball orbit method.
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Chapter 7

Conclusions about the
Ball Orbit Method

This angular velocity measurement method has shown a promising ability to mea-
sure the angular velocity (see §6.2). Its advantages and its inconvenients are pre-
sented in the following sections.

7.1 Advantages

The main advantage of this method results from the ball shape of the rotor. As
matter of fact, this shape simplifies the mechanical design of the gyroscope as one
only needs to control the spatial position of the rotor, what only requires three pairs
of electromagnets. This low number of electromagnets should be an advantage for
future miniaturization of such an AMB based gyroscope.

Moreover, the low coupling between the forces created by the pairs of electromagnets
allows to consider that the rotor positionings along the X, Y and Z axes are fully
independent from each other. This permits to have one controller per axis and
to use a PID controller; the goal of the adaptive controller is only to fit the PID
constants to the physical specifications of the prototype and not to the theoretical
ones.
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7.2 Inconvenients
Chapter 7. Conclusions about the

Ball Orbit Method

7.2 Inconvenients

Four main inconvenients with different origins have been pointed out for this orbital
measurement method:

1. The creation of an orbit requires that the electromagnets have a motor func-
tion what results in an unbalanced dynamical force.

2. Because the rotor is only controlled in position, a cross-sensitivity between
the acceleration and angular velocity measurements appears.

3. The measurement method is based on a derivation of the inclination angle of
the plane of the ball orbit (see §4.2.3). Such a derivation is a source of noise.

4. The low pass filter behavior of this orbital method shown in §6.2 results in a
lack of precision in the angular velocity measurement.
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Part III

2nd Gyroscopic Sensing Method:
Cylindrical Spinning Rotor
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Chapter 8

Mechanical Design of the AMB
Gyroscope

8.1 Constraints on the Design

Constraints on the gyroscope size and measurement have been imposed by JTEKT
at the beginning of the project.
The gyroscope outer volume must not exceed 40× 40× 40 [cm3].
The gyroscope should measure angular velocities with a resolution of 1 [◦/h] and
accelerations with a precision of 1 [m · g].

Because of their constant interaction, the actuating system, the sensor arrangement
and the rotor have been simultaneously designed. This thesis proposes to describe
the actuation system design and to derive the rotor shape and sensor arrangement
from it. However, the reader should be aware of the arbitrary nature of the presen-
tation order of these three pendants of a same design.

8.2 Actuation System

8.2.1 Radial Actuators

The radial actuators have three tasks:

• keeping the rotor polar axis parallel to the gyroscope stator main axis (attitude
control).

• keeping the rotor center of gravity at the geometric center of the stator (po-
sition control).
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• rotating the rotor around its main axis.

It has been chosen to place the radial actuators inside the rotor as in the AMB based
hard drive prototype proposed by [Zoe02]. This configuration has some advantages:

• a strong integration of the radial actuation part.

• it offers more space outside the rotor for the sensing system, thus allowing
more sensors to be mounted in order to have differential measurements.

• a more accurate rotor attitude measurement can be achieved through a bigger
distance between the sensor positions and the gravity center of the rotor.

• as shown in §2.2.1.a, the rotor is larger and thus the precision of the measure-
ment is increased.

8.2.1.a Attitude Control

In order to control the roll and pitch angles of the rotor, the radial actuators must
be able to generate a torque and, therefore, need to be divided into at least two
stages of identical sets of actuators as shown on Fig.(8.1).

Figure 8.1: Cross section of the two stage distribution of the radial actua-
tors. The upper (resp. lower) actuator stage is represented in
blue (resp. red) and the rotor in black.

8.2.1.b Position Control

The radial actuators have been designed so that the weight of the rotor at the
nominal actuator/rotor distance can be compensated with the force generated by a
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current of 100[mA] flowing through the coils of two actuators, each one belonging
to one radial actuator stage. This limit has been chosen for three reasons: first to
keep a sufficient margin in the case of a larger rotor/actuator distance, second to
compensate for the vehicle movements and third to produce the motor currents to
make the shaft rotate. The expression of this force is given by [Sch94] (this will be
developed with more precision in chapter 9):

Fact = −μ0 ·N2 · Ac · I2

[lrotor/μrotor + lstator/μstator + 2 · d]2 (8.1)

In (Eq.8.1), N represents the number of turns of the coil, d the rotor to actuator dis-
tance, I the current flowing through the coil and Ac the active area of the actuator,
i.e. the area through which the magnetic field flows from the actuator to the rotor.
The influence of the other unknowns will not be considered in the dimensioning of
the actuators because the high actuator and rotor relative permeabilities will lead
to neglectable magnetic paths.

As the maximal current to compensate the rotor weight has been set, the magnetic
force can only be increased by means of number (N) of coil turns or by the area Ac
(see Eq.8.1). Two constraints limit the increase of these constants:

• Limit on N: the maximal volume of the coils so that they can fit inside the
rotor.

• Limit on Ac: as Ac increases, the number of actuators decreases down to three
actuators per stage. This is the minimum of actuators that are necessary to
drive each the rotor upper and lower parts along two directions.

We have chosen to use three actuators per stage. This has two main drawbacks.
First, the control of the rotor along the X and Y directions will be strongly coupled,
because for each stage two out of the three electromagnets will be used for both the
X and Y axis positioning of the rotor. Second the stiffness of the magnetic force
along the Y axis will be multiplied by sin(120◦) ≈ 0.87. Therefore, the magnetic
force stiffness along the Y-axis will weaker than this along the X-axis.

Another solution which does not suffer from the control and coupling drawback
would have been a solution with four actuators. This would have reduced the
active area Ac by 30% and the number of turns N by 15%. Thus to get the same
magnetic force along the Y axis (the weakest one when using three actuators) an
increase of at least 40% in the current would have been necessary. On the other
side, part of this current need would have been compensated by the easier four
actuator based controller.
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8.2.2 Axial Actuators

For the current application, the axial actuators have the only goal to suspend and
position the gravity center of the rotor along the stator Z-axis. This will have two
consequences:

- one axial actuator on each side of the rotor is sufficient to maintain its center of
mass at a precise Z position. This configuration has been chosen to save space
to meet the gyroscope constraints on the volume.

- the axial actuators should avoid to disturb the control of the rotor attitude control
made by the radial actuators. Hence, their action line should be as close as
possible to the stator Z-axis and symmetrical around this axis. Due to the
placement of the radial actuators inside the rotor, a hole at the axial actuator
center has to be bored to let the radial actuator cables pass.

Figure 8.2: Cross section of the axial actuator shape. The electromagnet
core and coil are respectively represented in grey and orange.

The choice of cylindrical electromagnets with a U-shape (see Fig.(8.2)) section has
been made to close the flux with more efficiency and thus increasing the magnetic
force. The electromagnet has been so designed that the attraction force on the
rotor is always the same when horizontally displaced. One can say that the rotor
is covered by the axial electromagnet.

However, when the rotor is slanted relatively to the stator main axis (see Fig.(8.3)),
the strength of the axial forces will not be constant around the axial actuator
resulting in the creation of a destabilizing moment. This phenomenon will be further
described in the modeling of the axial moment (see §9.1.1.a).

8.3 Rotor Design

Fig.(8.4) shows the final rotor design as required by the actuation system config-
uration, i.e. a cylindrical tubular section to place the radial actuators inside the
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Figure 8.3: Cross section representation of the asymmetric forces exerted
by one axial electromagnet on the rotor.

rotor and two discs in order to increase the axial force by means of a closer distance
between the rotor and the outer axial actuator ring. Therefore, this force increase
far from the rotor polar axis will all the more augment the destabilizing moment
due to the axial actuators.

Figure 8.4: Cross section view of the rotor shape.

These two discs will permit to improve the measurement of the rotor attitude.
Hence the measurement of the distance between these discs and the sensors will
allow to compute the disc normal vector which has the same direction as the rotor
polar axis. More details about the sensing system is given in appendix E.1.
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8.4 The Induction Motor: a Precision Limit
to the Angular Velocity Measurement

The developed prototype includes a motor function in order to spin the rotor around
its polar axis to measure the angular velocity according to Eq.(2.3). Due to the
prototype design the AMB radial actuators will also make the rotor spin. How-
ever, due its small dimensions, the rotor is very hard to modify. Moreover, as the
actuators have been designed, there is no place to add magnets to spin the rotor.
Due to these machining problems, it has been chosen to drive the rotor using the
induction motor principle. This kind of motors permits to reach high rotation speed
[Bol05], which is an advantage for the precision of angular velocity measurement
(see Eq.(2.3)).

Principle of the Induction Motor
In this type of motors, eddy currents are induced onto a conductive rotor. In our
case, these eddy currents will be induced by a rotating magnetic field at the stator.
These eddy currents in the rotor generate a magnetic field whose frequency depends
on the rotating speed of the rotor. The rotating magnetic fields at the rotor and
at the stator interact and the difference between their frequencies will create the
necessary torque to drive the rotor.

This type of motor is also called asynchronous because it cannot reach, without
any external drive, the same speed as the stator magnetic field one. As a matter
of fact, if it were the case, the rotor would not see any variation in the magnetic
field. Hence, the currents would cancel as well as the torque that they induce and
the rotor would not be driven any more. The quantity describing the difference
between the rotor speed and the stator excitation frequency is called the slip s (see
Eq.(8.2)).

s =
Ωs − Ωz

Ωs
, with

{
Ωs the stator rotating field frequency.
Ωz the rotor rotating field frequency. (8.2)

In general, the frequency of the stator rotating magnetic Ωs field is given by Eq.(8.3)
with ωs the excitation frequency of the phases and the number of poles p. According
to Eq.(8.3), the lower the number of poles, the higher Ωs. The number of poles in
our prototype corresponds to the number of radial actuators per stage, i.e. three
(see Fig.(9.3)).

Ωs =
ωs
p

(8.3)

A drawback of induction motors is their asynchronous behavior. As previously
mentioned, their rotational speed is not the same as the actuator excitation fre-
quency and varies along time. Hence, the achievable precision with such a type of
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motor will also depend of the range of variation of the actual rotor speed around
the actuation excitation frequency. On that purpose, a sensor has been added to
the gyroscope prototype to measure the rotor spinning speed.

8.5 Summary

A design of a miniaturized gyroscope has been proposed. Its cylindrical rotor is
levitated by means of magnetic forces which are also responsible for spinning the
rotor. A model of this prototype and the shaft attitude and position control will
be presented in chapter 9 and chapter 10 respectively.
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Chapter 9

Model of the AMB based
Gyroscope

9.1 Actuators

9.1.1 Single Actuator

As a simple experience with a permanent magnet and a ferromagnetic rotor shows,
the magnetic force exerted by the magnet on the rotor is an attractive force that
increases as the rotor gets closer to the magnet. In the case of electromagnets the
behavior of the magnetic force is the same one regarding the distance, but the effect
due to the current flowing inside the coil has to be taken into account. As a matter
of fact, even if the force created by an electromagnet will still be an attractive force,
its strength can be modulated by the amount of current flowing inside the coil (see
Fig.(9.1)).

Figure 9.1: Scheme of the magnetic forces −→F1 and −→F2 exerted by a single
actuator on the rotor.
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According to [Sch94], the expression of the magnetic force created by one pole of
the electromagnet on the rotor is:

Fp =
−μ0 ·N2 · Ap · i2

[lrotor/μrotor + lstator/μstator + d1 + d2]2
(9.1a)

=
−a · Ap

[b+ d1 + d2]2
· i2, with p ∈ {1; 2}. (9.1b)

with:

Ap: the cross section of the electromagnet core.

N: the number of coil turns.

(i0 + δi): the current flowing inside the coil, i0 being the nominal current.

lrotor: the mean distance traveled by the magnetic field inside the rotor core.

lstator: the mean distance traveled by the magnetic field inside the stator core.

μrotor: the relative permeability of the rotor core.

μstator: the relative permeability of the stator core.

dp: distance between the actuator and the rotor. dp = g0+xp, g0 being the nominal
gap.

As shown in the last equality of Eq.(9.1b), the effect of these parameters can be
included into two constants a and b. This last form will be more efficient in praxis as
the effective values of a and b for each actuator will be derived from measurements.

9.1.1.a Single Axial Actuator

As mentioned in §8.2.2, when a disc is slanted relatively to the stator polar axis, all
the points of the disc are not at the same distance from the axial actuator. Hence,
the force exerted by the electromagnet on the disc will not be uniformly distributed
on the disc. Therefore, we propose in this section a model of the force and torques
exerted by an axial electromagnet on a disc. On that purpose, we consider Fig.(9.2).
The model of this force is expressed in the stator reference frame (A,xs, ys, zs) in-
troduced in section §2.1.1.

In this figure, a point P belongs to a ring (inner radius ri and outer radius ro, with
ro > ri) of center C. The coordinates of P within this ring are the distance CP
called r and the angle α. This ring was subject to a rotation (φx,φy), as defined
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Figure 9.2: Representation of a rotor ring slanted relatively to the reference
frame (S,xs, ys, zs) with an axial actuator placed on the Zs-axis.

in §2.1.2, around the Xs and Ys axes. This rotation occurs around the axis −→GC, G
being the rotor center of mass with the coordinates xG, yG and zG. The distance
CG is noted ha ("a" for axial).

We call Q the point of the axial actuator that is the closest to P and, thus, exerts
the electromagnetic force on P . The coordinate of Q along the axis Zs is called zq.
Therefore, the distance QP = ‖−→QP‖ = ‖−→QS +−→SP‖ becomes according to Eq.(9.2):

QP =
zq − zG − h cos(φx) cos(φy) + r cos(α) cos(φx) sin(φy)− r sin(α) sin(φx)

cos(φx) cos(φy)
(9.2)

The attracting surface of the axial actuator (see Fig.(8.2)) is made out of two
rings that will be called inner and outer rings (subscript 1 and 2 respectively).
Hence, the part of the rotor that is attracted by the actuator can be seen as the
projection along the Z-axis of these rings on the rotor. Therefore the expression of
the electromagnetic force df1 acting on the area ds1 = Sa1/(2π)dα (Sa1 being the
total active surface of the inner ring) around a point P belonging to the inner ring
(it is analog for a point belonging to the outer ring) is, according to Eq.(9.1), given
by:

df1 =
Sa1
2π

a · i2
[ba + d1 + d2]2

· dα = Sa1
2π
a · i2 cos2(φx) cos2(φy)

Δ2
a

· dα (9.3)

with Δa = ba cos(φx) cos(φy) + (zq1 + zq2)− 2zCM − (ha1 + ha2) cos(φx) cos(φy)
+(r1 + r2) cos(α) cos(φx) sin(φy)− (r1 + r2) sin(α) sin(φx)

When zG, φx and φy are small, first order Taylor series applied to Eq.(9.3) return
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for df1 the following expression:

df1 = ai2 · Sa12π
· Δa0 + 2 (r1 + r2) (sin(α)φx − cos(α)φy) + 4zG

Δ3
a0

· dα (9.4)

with Δa0 = ba + (zq1 + zq2)− (ha1 + ha2)

Integrating the Taylor series of df1 and df2 over the surfaces ds1 and ds2 respectively,
the expression of the force of the whole axial actuator is given by Eq.(9.5) with Sa1
and Sa2 the total surfaces of the inner and outer rings:

−−→
Fact =

ai0
Δ3
a0
· (Sa1 + Sa2)

⎡
⎢⎣ i0Δa0 · φy

−i0Δa0 · φx
i0Δa0 + 4i0zG + 2Δa0δi

⎤
⎥⎦ (9.5)

The destabilizing effect of the axial force has for origin the torque created by this
force on the rotor (see Fig.(8.3)). Therefore, the expression of the torque τx (resp.
τy) about the x-axis (resp. the y-axis) exerted on the point P is given by:

−→
dτ1 =

−−→
AP1 ×−→df1 = r1 · df1 ·

⎡
⎢⎣ sin(α) cos(φy)

sin(α) sin(φx) sin(φy)− cos(α) cos(φx)
− sin(α) cos(φx) sin(φy)− cos(α) sin(φx)

⎤
⎥⎦

The integration over the angle α of the Taylor series of these torque expressions for
small zG, φx and φy, the torque formulas are given by Eq.(9.6). According to this
equation, the torque τx1 and τy1 are only proportional respectively to φx and φy.

τp =
ai2

Δ3
a0
· (r1 + r2) · (r1Sa1 + r2Sa2) · φp, p ∈ {x; y}. (9.6)

9.1.1.b Single Radial Actuator

For the radial actuator, the distance between the point Q of the electromagnet that
exerts a force on the rotor closest point P is harder to compute. In our prototype
the maximal difference between the Z coordinate of P and Q is below 0.2[μm],
therefore we can assume that they have the same Z coordinates. This simplifies the
resolution and means that the electromagnetic force is fully radial.

The coordinates of Q are [ρ cos(β), ρ sin(β), hr]. ρ is the radial actuator radius.
The notations for the point P are the same than in the previous section. The
coordinates of the vector −→QP are developed using Taylor series for xG, yG, zG, φx
and φy are small. These developed coordinates are given by:

−→
QP =

⎡
⎢⎣ xG + r cos(α) + hrφy − ρ cos(β)yG + r sin(α)− hrφx − ρ sin(β)

0

⎤
⎥⎦ (9.7)
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Figure 9.3: Upper view of a radial actuation stage. The actuators are rep-
resented in grey and their action axes are called X0, X120 and
X240.

The angle β can be obtained by minimization of the square of the distance QP (see
Eq.(9.7)). This minimization over the whole space in which the rotor can move
returns a maximum angle |β − α| = 3.5◦, therefore we will assume in the following
that β = α. With this assumption the distance QP becomes:

QP 2 = [r − ρ] · [(r − ρ) + 2 (cos(α)xG + sin(α)yG) + 2hr (cos(α)φy − sin(α)φx)]
(9.8)

Using the same method as in §9.1.1.a, the radial force created by a two pole elec-
tromagnet is given by:

−−→
Frad = −ai2(Sr1+Sr2)

Δ3
r0

·
[
Δr0 − 2 cos(α0) sin(γ)

γ
(2xG + (hr1 + hr2)φy)

−2 sin(α0) sin(γ)
γ

(2yG − (hr1 + hr2)φx)
] ⎡⎢⎣ cos(α0)

sin(α0)
0

⎤
⎥⎦ (9.9a)

The new variables introduced in Eq.(9.9) are:

• Δr0 = b+ 2(r − ρ).
• Sr = 2γ · ρ · e. Sr is the surface of one pole of a radial electromagnet. The
pole shape is cylindrical section with an angular opening of 2γ (see Fig.(9.3)).
e is the pole thickness but this variable will not been used any further.

• α0 is the mean angle of an actuator, in our case it can be 0, 2π
3 or 4π

3 depending
on the actuator.
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• hj, j ∈ {1; 2} is the Z coordinate of the pole j.

The expression of the torque τ created by a single actuator is not developed here
because it is too long and will not be directly used, but it can be found in §C.

9.1.2 Complete Actuation System

9.1.2.a Axial Actuators

As described in §8.2.2, two axial electromagnets are placed along the Z-axis sym-
metrically about the XY-plane.

According to Eq.(9.5), the sum of the forces by the two electromagnets is:

−−−→
Faxial =

−−−→
F upaxial +

−−−→
F downaxial =

2ai0
Δ3
a0
· (Sa1 + Sa2)

[
4i0zG +Δa0

(
δiupz − δidownz

)]
· �z (9.10)

Refereing to Eq.(9.6), the sum of the axial torques is given by:

τp = 2 · ai
2
0

Δ3
a0
· (r1 + r2) · (r1Sa1 + r2Sa2) · φp, p ∈ {x; y}. (9.11)

Eq.(9.11) shows that the axial torques are only proportional to the angles. There-
fore, the torques created by the axial electromagnets can only be compensated by
the radial actuators.

9.1.2.b Radial Actuators

As described in §9.1.1.b, the radial actuation system is made out of two stages of
three actuators.

The force exerted by the six radial actuators on the rotor is, according to Eq.(9.9),
by:

Δ3
r0

2ai0 (Sr1 + Sr2)
· −−−→Fradial =

⎡
⎢⎢⎣

Δr0
[(
δiup120 + δidown120

)
+
(
δiup240 + δidown240

)]
√
3Δr0

[
−
(
δiup120 + δidown120

)
+
(
δiup240 + δidown240

)]
0

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
−2Δr0

(
δiup0 + δidown0

)
+ 3i0 sin(γ)

γ
· xG

3i0 sin(γ)
γ
· yG

0

⎤
⎥⎥⎦(9.12a)
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The computation of the expression of the global torque ∑ �Tradial is described in
details in §C. Its expression is given by:

∑
Tx =

2ai0Sr(hr1 + hr2)
γΔ2
r0

sin(γ) sin(
2π
3
)
[(
δiup120 − δidown120

)
−
(
δiup240 − δidown240

)]

+
6ai20Sr
Δ2
r0
· r · φx (9.13a)

∑
Ty = −2ai0Sr(hr1 + hr2)

γΔ2
r0

sin(γ)
[(
δiup0 − δidown0

)

−1
2
·
(
δiup120 − δidown120 + δiup240 − δidown240

)
]

+
6ai20Sr
Δ2
r0
· r · φy (9.13b)

∑
Tz = 0 (9.13c)

9.1.2.c Combination of the Effect of the Axial and Radial Actuators

The force FAMB and the torque TAMB combining the effects of both the axial and
radial actuators are respectively given by:

�FAMB =

⎡
⎢⎣ kr · xGkr · yG
kz · zG

⎤
⎥⎦ (9.14a)

+

⎡
⎢⎢⎢⎣
kir ·

[
−2

(
δiup0 + δido0

)
+
(
δiup120 + δido120

)
+
(
δiup240 + δido240

)]
kir ·
√
3
[
−
(
δiup120 + δido120

)
+
(
δiup240 + δido240

)]
kiz
(
δiupz − δidoz

)
⎤
⎥⎥⎥⎦

�TAMB =

⎡
⎢⎣ kφ · Φxkφ · Φy

0

⎤
⎥⎦ (9.14b)

+

⎡
⎢⎢⎣

kiφ
√
3
[(
δiup120 − δido120

)
−
(
δiup240 − δido240

)]
−kiφ

[
2
(
δiup0 − δido0

)
−√3 ·

(
δiup120 − δido120 + δi

up
240 − δido240

)]
0

⎤
⎥⎥⎦

Three vectors XG, δIc and FTamb as well two matrices Kx and Ki are introduced
(more details about these can be found in §B.1):

• XG contains the coordinates of the rotor (zG, xG, φy, yG, φx).

65



9.2 Rotor Mechanics Chapter 9. Model of the AMB based Gyroscope

• δIc contains the currents flowing in all the electromagnet coils.

• FTAMB contains the forces and torques applied to the rotor by the electro-
magnets.

• Kx represents the force displacement stiffness matrix of the system.
• Ki represents the force current stiffness matrix of the system.

With these notations the AMB force tensor −−−−−→FTAMB becomes:
−−−−−→
FTAMB = −Kx ·XG +Ki · δIc (9.15)

9.2 Rotor Mechanics

9.2.1 Gyroscopic Effects

The hardest part to model the gyroscopic effects, on which the angular velocity
measurement relies, may be to answer a question that seems simple: "In which
reference frame is the current equation expressed?". Therefore precise notations
need to be introduced:

• the inertial reference frame (O,xf , yf , zf ) which is considered as fix. Coordi-
nates written in this frame will be described by the subscript f .

• the reference frame (S, xs, ys, zs) bound to the stator with its origin at the
electromagnetic center S of the stator. To simplify, we will consider in this
thesis that the electromagnetic and the geometrical center of the stator are
merged.

• the reference frame (G, xr, yr, zr) bound to the center of gravity G of the rotor.
The only movement of the rotor in this frame is its own spin speed Ωz. This
frame will be noted (r).

• the rotation angle and the rotation speed of the frame s about the frame f is
given by φsf =

(
φsfx , φ

sf
y

)
(see §2.1.2) resp. ωsf .

• the rotation angle and the rotation speed of the frame r about the frame s is
given by φrs =

(
φrsx , φ

rs
y

)
(see §2.1.2) resp. ωrs.

A reference frame is not considered in this thesis; we considered the surface of earth
as an inertial system which is hopefully for the Foucault pendulum experiment not
the case. However, the gyroscope is aimed for vehicles like cars, which have a much

66



Chapter 9. Model of the AMB based Gyroscope 9.2 Rotor Mechanics

higher angular velocity (about 1[rad/s) than the earth does (7.27 · 10−5[rad/s]).

As mentioned in §2.2.1.a, the gyroscopic effects appear when the rotor angular mo-
mentum is derived. Therefore its rotation must be well defined. On that purpose,
we will use the Euler rotation definition used in §2.1.2.

The rotor is affected by four referential rotations and by its spin speed Ωz. Two
referential rotations of the type φx and φy affect the stator (resp. the rotor) about
the fix frame (resp. the stator). As the only available sensors to describe the
complete gyroscopic movement of the rotor are bound to the stator, the angular
moment LG of the rotor expressed in G will be derived in the stator frame (see
Eq.(9.16)). [

dLG
dt

]
s

=
[
�φrs
]
s
·
[[
dLG
dt

∣∣∣∣∣
r

]
r

+ [�ωrf ]r × [LG]r

]
(9.16)

In Eq.(9.16), d•
dt

∣∣∣
i
means that the derivative of • only includes its coordinates and

not the reference frame in which • is expressed.

According to Eq.(9.16), the expression of the first derivative of the rotor angular
momentum expressed in the stator coordinate frame is proposed in Eq.(9.17). As
the gyroscope only measures the angular velocities ( ˙

φsfx , ˙
φsfy ) of the vehicle rela-

tively to the ground, the derivative of the angular momentum about the Z-axis is
not presented here. This equation is a first order Taylor series assuming that the
rotor angles φrsx and φrsy as well as the corresponding angular velocities are very
small compared to the stator angular data relatively to the fix frame. The detailed
development of Eq.(9.17) can be found in §A.

d�LG
dt

= Jr

⎡
⎢⎣
(
φ̈sfx + φ̈rsx

)
+ csfx · ssfx ·

[(
φ̇sfy

)2
+ 2 · φ̇sfy · φ̇rsy

]
(
φ̈sfy + φ̈rsy

)
· csfx − 2 · ssfx ·

(
φ̇sfy · φ̇sfx + φ̇sfx · φ̇rsy + φ̇sfy · φ̇rsx

)
⎤
⎥⎦

+Jz

⎡
⎢⎣ −csfx · ssfx ·

[(
φ̇sfy

)2
+ 2 · φ̇sfy · φ̇rsy

]
ssfx ·

(
φ̇sfy · φ̇sfx + φ̇sfx · φ̇rsy + φ̇sfy · φ̇rsx

)
⎤
⎥⎦

+Jz · Ωz
⎡
⎣ csfx ·

(
φ̇sfy + φ̇rsy

)
−
(
φ̇sfx + φ̇rsx

)
⎤
⎦

= Jr

[
φ̈rsx
φ̈rsy · csfx

]
+Grs

[
φ̇rsx
φ̇rsy · csfx

]
− �T sfgyro − �T sfacc − �Tmix

(9.17)
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with Grs =
[

0 JzΩz
−JzΩz 0

]
,

�T sfgyro = −Jz · Ωz
[
csfx · φ̇sfy
−φ̇sfx

]

�T sfacc = −Jr
[
φ̈sfx
φ̈sfy · csfx

]

�Tmix = −Jr
⎡
⎢⎣ csfx · ssfx ·

[(
φ̇sfy

)2
+ 2 · φ̇sfy · φ̇rsy

]
−2 · ssfx ·

(
φ̇sfy · φ̇sfx + φ̇sfx · φ̇rsy + φ̇sfy · φ̇rsx

)
⎤
⎥⎦

−Jz
⎡
⎢⎣ −csfx · ssfx ·

[(
φ̇sfy

)2
+ 2 · φ̇sfy · φ̇rsy

]
ssfx ·

(
φ̇sfy · φ̇sfx + φ̇sfx · φ̇rsy + φ̇sfy · φ̇rsx

)
⎤
⎥⎦

and Jr, Jz the rotor radial and polar inertia.

The matrix Grs represents the gyroscopic effects induced by the movement of the
rotor itself. The torque �T sfgyro represents the gyroscopic effects due to the movement
of the vehicle. The torque represents �T sfacc describes the action on the rotor due
to the angular accelerations of the stator. Finally, the torque �Tmix represents the
influence of the stator onto the rotor movements and vice versa.

As shown in Eq.(9.17), the expression of the torque due to the external gyroscopic
effects �T sfgyro is quite completed but it must well known to measure the angular
velocity of the vehicle within the fix reference frame. To simplify the expression of
this torque two main assumptions are made throughout this thesis:

1. As mentioned in §1.1, such types of gyroscopes are interesting if the vehicle
on which they are mounted has no fix link with the ground as a car, a mobile
robot, a satellite, an helicopter1... An example of a fix to the ground vehicles
would be a machining tool for which motor encoders are much easier to use.
Therefore, we consider that the gyroscope developed in this thesis is built
on the former class of vehicles. Of all the vehicles, that have been described
the helicopter is the one that can reach the highest angular velocities (about
20[rpm]). Therefore the sampling time (Ts=0.2[ms]) of the controller is suffi-
ciently high in comparison to the vehicle angular velocity to consider that the
terms csfx and ssfx included in the torque �T sfgyro are, at the time t, constants
based on the vehicle attitude measured at the time t− Ts.

2. According to the previous assumption, a controller with sufficient dynamics
to achieve a near to perfect trajectory control can be found for the currently

1An helicopter is in fact a gyroscope.
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studied gyroscope. Therefore the terms of �T sfgyro that contain the angular data
describing the movements of the rotor about the stator can be canceled.

The complete action −→FT sfgyro of the gyroscopic effects on the rotor are:

−→
FT
sf

gyro = Bgyro · �T sfgyro, with Bgyro =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 1
0 0
1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.18)

9.2.2 Unbalance Effects

A rotor is never perfectly balanced due among other to hard contacts with the stator
during tests, machining, thermal dilatation... Certain applications can profit from
it [Bol05]. Unfortunately this is not our case. This rotor unbalance leads to the
creation of a centrifugal force proportional to the square of the rotor spin speed. As
a high spin speed is one of the most important component for the angular velocity
measurement, this rotor unbalance must be considered in our model.

To model the action −→TF u of the unbalance force �Fu on the rotor, a mass mu, on
which this force applies, is artificially bound to the rotor. This mass is placed at
the coordinates [xu, 0, zu] (this set of coordinates is expressed in the reference frame
bound to the stator). Expressed in the reference frame bound to the rotor, the
unbalance effects on the rotor will be:

−→
FT u = Bu · �Fu, with Bu =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
zu 0
0 1
0 −zu

⎤
⎥⎥⎥⎥⎥⎥⎦
and �Fu = −muxuΩ2

z

[
1
0

]
. (9.19)

9.2.3 Rigid Body Model

According to the finite element simulations (see Fig.(9.4)), the first bending modes
of the rotor come from the two discs which start to oscillate around 11′000[Hz].
This is much higher than the spin speed of the rotor and therefore the assumption
of a rigid rotor will be made for the model of the gyroscope.
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Figure 9.4: First bending mode of the rotor at the frequency 11′068[Hz].
This simulation has been run by Dominique Chapuis.

9.3 Complete Model

Using the reference frames introduced in §9.2.1, the part of dynamics acceleration−→a G of the shaft is given by:

m−→a sG = ∑ �F = m−→g +−→F AMB −m�asf + �Fu (9.20)

With:

• m�g: the gravity acting on the rotor.

• �asf : the external accelerations comprising the Coriolis acceleration, the accel-
eration of S (the origin of the stator reference frame).

According to Eq.(9.17) and to Eq.(9.19), the dynamical equations of the shaft atti-
tude φrs =

[
φrsx , φ

rs
y

]
are given by:

Jr
d2�φrs

dt2
=
∑
�T = −Grsd

�φrs

dt
+ �TAMB+ �T sfgyro+ �T sfacc+ �Tmix+

[
0 −zu
zu 0

]
· �Fu (9.21)
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Expressed in an unified matrix form Eq.(9.20) and Eq.(9.21) become (the expression
of XG is presented in Eq.(B.1)):

M · ẌG = −→
FTAMB −Grs · ẊG +m�g +−→FT sfgyro +−→FT

sf

acc +
−→
FTmix +

−→
FT u

= −Kx ·XG +Ki · δIc −Grs · ẊG
+m�g +−→FT sfgyro +−→FT

sf

acc +
−→
FT u

with −→FT sfacc =
[
0,−masfx ,−Jrφ̈sfy ,−masfy ,−Jrφ̈sfx

]T
−→
FT
sf

mix =
[
0, 0, Tmix(2,1), 0, Tmix(1,1)

]T
(9.22)

The matrices M (mass matrix) and Grs (gyroscopic matrix) are presented in Ap-
pendix B.1.

Eq.(9.22) reveals three reasons that impose the use of a controller for such a system:

1. The instability inherent to the AMB systems: the matrix [M−1 ·Kx] (stiff-
ness matrix expressed in the stator coordinate system) is diagonal and only
contains negative terms, which means that the poles of the system belong to
the complex right half plane. Thus the solution of the system homogeneous
equation contains a diverging exponential term.

2. The gyroscopic effects: the matrix [M−1 ·Grs] (equivalent to Eq.(9.22) shows
that the differential equations of the angles φrsx and φrsy are fully coupled
through the rotating speed Ωz of the rotor around its main inertia axis. More-
over, this coupling is absolutely nonlinear, as it consists in the multiplication
of the angular velocity φ̇rsx or φ̇rsy with Ωz, which in our case will not be a
constant. As a matter fact, we have seen in section 2.2.1.a that the higher
Ωz, the better the gyroscope precision.

3. The external actions, �d(t) = m�g +−→FT sfacc +−→FT
sf

gyro +
−→
FTmix, are a priori not

known and will therefore be considered as disturbances.

71



9.4 Angular Velocity Chapter 9. Model of the AMB based Gyroscope

A state space expression of Eq.(9.22) would be:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ̇G =
[

055 I55
−M−1Kx −M−1Grs

]
χG +

[
058
M−1Ki

]
δIc +

[
0

M−1
(
�d(t) +−→FT u

) ]

= A · χG +B · δIc +
[

051
M−1d(t)

]
+
[

052
M−1Bu

]
�Fu

YG = [I55 055]χG = C · χG +D · δIc

with χG =
[
XG ẊG

]T
(9.23)

Based on this state space model, a method to measure the vehicle angular velocity
will be presented in section 9.4 and a controller synthesized in chapter 10.

9.4 Measurement of the Angular Velocity

The proposed measurement algorithm is based on the model developed in §9.3 and
on the assumption of a perfect trajectory tracking, i.e. the position and the attitude
of the rotor as well as their derivatives are null. The consequences of this assump-
tion will be used for the angular velocity measurement algorithm and explained in
the corresponding paragraphs.

Perfect trajectory tracking means that the active magnetic bearings achieve a per-
fect compensation of the external actions onto the rotor. Concerning the angular
velocity, this means a perfect compensation of the unbalance effects, of the gy-
roscope and acceleration torques due to the rotation of the stator about the fix
reference frame.

With these assumptions, Eq.(9.21) can be rewritten as:

Jrφ̈
sf
x + (Jr − Jz) csfx · ssfx ·

(
φ̇sfy

)2
+ JzΩz · csfx · φ̇sfy = kiφ · δiφx + Tux (9.24a)

Jr · φ̈sfy · csfx + (Jz − 2Jr) ssfx · φ̇sfy · φ̇sfx − JzΩz · φ̇sfx = kiφ · δiφy + Tuy (9.24b)

with Tux and Tuy the torques due to the unbalance effects.

At first sight, the gyroscopic differential equation system (c.f. Eq.(9.24)) may seem
easy to solve. However, one must remark the term csfx in Eq.(9.24a) which intro-
duces a non linear dependency from the angle φsfx . This problem can be easily
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overcome using the simplification csfx = constant if the vehicle moves in the range
of small angles within the fix reference frame or when its rotation occurs only about
one axis[Mar06].

However, for the desired range of vehicles on which the present gyroscope should
be mounted this cosine term can not always be neglected. For example, it can be
neglected in a car if the Z-axis is horizontal and pointing in front of the car and
the X-axis is horizontal and perpendicular to the Z-axis. The maximal slope expe-
rienced by a car is around 15% which means csfx ≈ 0.989. On the opposite in an
helicopter, a change in attitude of 30◦ is absolutely not rare and the cosine can not
be neglected any more. Therefore, the cosine term included in Eq.(9.24a) will be
maintained. The effects of the cosine will be shown in §11.

The literature often tackles with the resolution of gyroscopic equations in the case of
small vehicle angles [Law98] or with the stabilization of the gyroscopic phenomenon
[Wan], but the previously mentioned cosine problem, to my knowledge, has not been
yet solved. The resolution of the nonlinear gyroscopic equation system Eq.(9.24)
will be solved using some simplifications.

The interest for mechanical gyroscopes of spinning the rotor to measure the angular
velocity has been shown in §2.2.1.a. One of the goal of this imposed spin is to
sufficiently increase the term JzΩzφ̇sfx bound to the angular velocity to neglect the
term Jrφ̈sfx bound to the angular acceleration. This is possible for our application
since the gyroscope stator will never experienced a high angular acceleration. As
a matter of fact a complete rotation of the vehicle can occur within 1 second what
represents an angular acceleration of about 248◦/s2. In comparison, the term Ωzφ̇sfx
for a rotor spinning at 1′000[rpm] (16[Hz]) will be higher by a factor 16 (equals to
the spin frequency). Classically, the spin speed of mechanical gyroscope is around
10’000[rpm], what permits to neglect the terms in Eq.(9.24) bound to the vehicle
angular acceleration. A good choice of the rotor shape with Jz > Jr increases
the impact of the angular velocity term. Neglecting the angular acceleration term
Eq.(9.24) becomes:

JzΩz · csfx φ̇sfy = kiφ · δiφx + Tux (9.25a)
−JzΩzφ̇sfx = kiφ · δiφy + Tuy (9.25b)
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9.5 Summary

A linear and a non linear model of the gyroscope prototype have been developed in
this chapter. They consider the forces and torques generated by the electromagnets,
the unbalance effects, the gyroscopic effects and the movements of the vehicle.

Based on the linear model of the electromagnetic forces, an angular velocity mea-
surement method considering the non linear behavior of the gyroscopic effects has
been proposed. This measurement method will be evaluated in Chapter 11.
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Chapter 10

Control of the AMB based
Gyroscope

10.1 Control Method

The couplings due to the gyroscopic effect (see Eq.(2.3)) and to the radial actu-
ator configuration with six electromagnets (see 9.1.1.b) imply that the different
rotor coordinates cannot be treated as independent from each other but as a whole.
Therefore MIMO control seems to be mandatory in our case [Sko96].

Second, in normal use, the rotor will obviously be first levitated and then accel-
erated until it reaches its operating rotating speed. This induces that a close to
reality plant model should evolve with the rotor speed and thus strongly differs
between its behavior with the rotor at stand still and its comportment as it rotates
at its operating speed. This major uncertainty on the model naturally leads us to
opt for robust control as according to [Sko96]: "a control system is called robust if it
is insensitive to differences between the actual system and the model of the system
which was used to design the controller.".

This robust controller will be synthesized based on the linear model developed in
Chapter 9. This model-based controller permits to estimate through a state space
model of the system its actual state, and thus to realize a state feedback. By nature,
a model always contains errors due to uncertainties on the model parameters, un-
modeled dynamics or hidden nonlinearities of the plant. Thus, how can one ensure
that a model-based controller works for the actual system? This question is the
starting point of robust control theory. In the particular case of H∞ robust control
theory, the ambition is to develop a controller that can stabilize the actual system
within predefined specifications of the worst case uncertainty.
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10.2 Loop Shaping
of Closed-Loop Transfer Functions

Usually, loop shaping consists in the study of the magnitude of the transfer function
L = GK over frequency, G being the transfer function of the system to control and
K the controller transfer function. For perfect control, we would like to have the
measured signal y to be as close to the reference signal r as possible (see Fig.(D.1)).

ym = (I + L)−1 L · r+ (I + L)−1G · d+ (I + L)−1 L · n ≈ 1 · r+ 0 · d+ 0 · n (10.1)

The tracking performance condition requires ‖L‖ � 1 over the whole frequency
domain. On the opposite, ‖L‖ 	 1 so that the influence of the noise on the loop is
kept as low as possible. Therefore, the design of the controller K is a compromise
between these two mentioned requirements.
Fortunately, the conflicts between these objectives are generally in different fre-
quency ranges and this compromise can be found with ‖L‖ > 1 for low frequencies
and ‖ L ‖< 1 for the highest ones.

This last approach, often called open loop shaping, is insufficient due to the the rela-
tion between the sensitivity function S and the complementary sensitivity function
T (their mathematical expressions are given in Table(D.1)):

‖S + T‖ = 1

Hence, there is no problem when ‖L‖ � 1 and ‖L‖ 	 1, on the opposite there
exists a grey zone where ‖L‖ is close to one. If, in this zone, the phase of L be-
comes −180◦ then ‖S‖ and ‖T‖ can experience high overshoot. The idea of closed
loop shaping in order to avoid this problem is to design the controller based on a
predesign of the shape of ‖S‖ and ‖T‖.

This predesign can be done with the help of weights placed on the exogenous inputs
as well as on the regulated outputs can be weighted (see Fig.(10.1)). These weights
consist in transfer functions Ww(s) and Wz(s) whose singular values reflect the
inverse of the singular values desired in the loop shaping.

The design of the loop using weights is well treated by robust control, particularly
H∞ control permits a good physical representation of the manner to satisfy the
requirements imposed by a particular application (see §10.3.2).
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Figure 10.1: Generalized with weighting functions. The exogenous inputs
w are weighted by Ww, the regulated outputs z by Wz. u
represents the command signals and y the controller inputs.

10.3 Introduction to Robust Control

10.3.1 Representing Uncertainty

As mentioned in section §(10.1), a H∞ controller is developed based on a linear
model of a plant that contains some uncertainties. Uncertainties are distributed
into structured and unstructured uncertainty.

10.3.1.a Structured Uncertainty

In this case, the structure of the plant and the uncertainty to be described are
well-known. This uncertainty often concerns uncertain gains, time constants... On
that purpose, this type of uncertainty is also often referred as parametric.

The structured uncertainty can be composed of three different elements: repeated
scalar matrices, repeated scalar complex matrices, full complex matrices. R is
the number of real matrices, S the number of scalar complex matrices and F the
number of full complex matrices. The dimensions of the single matrices are r1, ..., rR,
s1, ..., sS and f1, ..., fF . Using these notations yields the following definition:

Structured uncertainty:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δs ⊂ C
nw×nz

Δs = diag (δr1Ir1 , ..., δrRIrR , δc1Is1 , ..., δcSIsS ,Δ1, ...,ΔF )

δri ∈ R, δci ∈ C and Δi ∈ C
fi×fi

(10.2)

Due to its structure, some off-diagonal elements of Δs are zero. Therefore, struc-
tured uncertainty is a less conservative approach than unstructured uncertainty.
Yet, modeling the plant using structured uncertainty implicates the minimization
of the structured singular value μ and thus to use μ-synthesis for controller design
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what it is a more complicated strategy. It is also very difficult to exactly quantify
the uncertainties of a real plant.

10.3.1.b Unstructured Uncertainty

This kind of uncertainty will always affect the chosen model as it covers unmod-
eled dynamics (for example hidden dynamics or high frequency dynamics that are
excited in the application) as well as uncertain system poles or zeros [Chr96].

A formal definition of such uncertainties is the use of any "full" complex perturbation
matrices Δ that satisfies:

∀ ω, σ̄ (Δ (jω)) < bu(ω) (10.3)

With ω the frequency, σ̄ the upper singular value and bu(ω) the pertubation matrix
upper bound.

Because of its more general expression (see Eq.10.3), the unstructured uncertainty
is more conservative than the structured one. Moreover, the loop shaping aspect
will be mainly examined in our application and H∞ can very well handle this. These
two reasons lead us to focus along this thesis on unstructured uncertainty.

10.3.2 The H∞ Problem

Along this section, we will consider the system described in Fig.(10.2). This system
is made out of the controller K and of the plant P which is called the augmented
plant. P includes the general plant G as well as the weights Ww and Wz (see
Fig.(10.1)) designed in order to assign the closed loop performance of the system.

In general, the computation of a standard form H∞ controller (Fig.(10.2)) can
be reduced first to a problem of stabilization of the closed loop system and of
perturbation rejection, and second to a minimization problem.

As the maximal value between the energies of the output z(t) and input w(t) sig-
nals are represented by the H∞ norm (see §D.4.2), its minimization is required to
optimize both the perturbation rejection and the trajectory tracking.

10.3.2.a The Optimal H∞ Problem

The so called optimal H∞ problem consists in the synthesis of a control law u = K ·y,
that, among all controllers K that can internally stabilize the system, minimizes the
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Figure 10.2: Lower LFT standard form. w represents the exogenous in-
puts, z the regulated outputs, u the command signals, y the
controller inputs and T zw the transfer function from w to z.

H∞ norm of the transfer function Fl (P (s), K(s)), i.e. ‖Fl (P (s), K(s)) ‖∞, between
the exogenous inputs w and the regulated outputs z. The transfer function from w
to z is designated by T zw (see Fig.(10.2)).

The optimal H∞ problem can be summarized as:

Find K so that:

⎧⎪⎨
⎪⎩

(i) T zw = Fl (P (s), K(s)) is stable.

(ii) ‖T zw‖∞ = ‖Fl (P (s), K(s)) ‖∞ is minimal.
(10.4)

The minimization goal of ‖T zw‖∞ (point (ii) of Eq.(10.4)) is to increase the maximal
uncertainty Δ that the plant can admit. As a matter of fact, the closed loop system
represented in Fig.(10.3) and composed of the control loop plus the unstructured
uncertainty Δ can be written as:

(I − T zwΔ)−1 (10.5)

Under the assumption that both T zw and Δ are stable, system described in Eq.(10.5)
is stable if (Small Gain Theorem):

‖T zwΔ‖∞ < 1 ⇒ σ̄ (T zw) < 1
σ̄ (Δ)

=
1
bu(ω)

(10.6)

10.3.2.b The Suboptimal H∞ Problem

A second formulation of the H∞ problem, called suboptimal, does not consist in
minimizing ‖T zw‖∞ but in first choosing the maximal admissible uncertainty bu(ω)
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Figure 10.3: Control system with unstructured uncertainty Δ.

(see Eq.(10.3)) and then to find a controller K such that ‖Fl (P (s), K(s)) ‖∞ < γ.

The suboptimal H∞ problem can be summarized as:

For a given γ ∈ R
+ / ‖Δ(ω)‖∞ ≤ 1

γ
, find K / ‖Fl (P (s), K(s)) ‖∞ < γ (10.7)

However the loop design using the optimal H∞ problem is more conservative than
the one using the suboptimal H∞ problem, only this last one will be considered
along this thesis due to its easier computation. Therefore, the denomination H∞
problem will designate the suboptimal H∞ problem.

10.3.2.c Resolution of the H∞ Problem with the Riccati Equations

Many resolution methods ([Doy89], [Gah94], [Zho95]) exist for the H∞ problem.
For the time being and for the resolution of important size problem, the resolution
proposed in [Doy89], which is based on a state space variable approach, seems to
be one of the best adapted from a numerical point of view and will, therefore, be
used throughout this work.

10.3.2.c.i) State Space Representation of the Augmented Plant

The previously mentioned augmented plant (see §10.3.2) can be represented as:
⎡
⎢⎣
ẋ
z
y

⎤
⎥⎦ =

⎡
⎢⎣
A B1 B2
C1 D11 D12
C2 D21 D22

⎤
⎥⎦
⎡
⎢⎣
x
w
u

⎤
⎥⎦ (10.8)
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The augmented plant has the following dimensions:

- m1 the number of exogenous inputs w.

- p1 the number of regulated outputs z.

- m2 the number of command signals u.

- p2 the number of measurement signals y.

- n the dimension of the state vector of P .

10.3.2.c.ii) Assumptions

The resolution of the problem, with the method of [Doy89], is possible only under
the following three assumptions:

H1: (A,B2, C2) is stabilizable and detectable1.

H2: rank(D12) = m2 and rank(D21) = p22.

H3:
[
A− jωI B2
C1 D12

]
and

[
A− jωI B1
C2 D21

]
have full row rank for all ω3.

Two unnecessary assumptions for H∞ ([Sko96]) are made to get a proper P11 and a
strictly proper P22:

H4: σ̄(D11) < γ

H5: D22 = 0

10.3.2.c.iii) General H∞ Algorithm

If all the assumptions H1 to H5 are fulfilled, then there exists a controller K that
ensures ‖Fl (P (s), K(s)) ‖∞ < γ and internally stabilizes the system if and only if
the Riccati equations Eq.(10.9a) and Eq.(10.9b) respectively admit X∞ and Y∞ as
solutions and that these solutions verify Eq.(10.9c).

ATX +XA+X
(
γ−2B1B

T
1 −B2B

T
2

)
X + CT1 C1 = 0, (10.9a)

AY + Y AT + Y
(
γ−2CT1 C1 − CT2 C2

)
Y +B1B

T
1 = 0, (10.9b)

X∞ ≥ 0 Y∞ ≥ 0 and ρ (X∞Y∞) < γ2. (10.9c)
1Required for the existence of controllers K.
2Sufficient to ensure the controllers to be proper and thus realizable.
3Guarantee that the solution of the Riccati is not destabilizing the closed-loop system.
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A dichotomy scheme is used to find an optimal γ. The existence of a solution K(s)
for the definite γ is tested at each iteration step. Algorithms to find the existing
solutions are often already implemented within functions proposed in mathematical
softwares such as Matlab. Therefore, we can focus on the choice of the weighting
scheme and of the weighting functions in order to design the closed loop transfer
function of the system. This will be the topic of the next section.

10.3.3 The Weighted H∞ Synthesis

In this section, we will consider the augmented plant P (s) as defined in §10.3.2, i.e.
the general plant G(s) combined with the weights Ww(s) on the exogenous inputs
and Wz(s) the weights on the regulated outputs (see Fig.(10.1)).

These weights can be described as diagonal matrices acting on chosen exogenous
inputs and/or regulated outputs:

Ww(s) =

⎡
⎢⎢⎣
Ww1(s) ∅

. . .
∅ Wwm(s)

⎤
⎥⎥⎦ and Wz(s) =

⎡
⎢⎢⎣
Wz1(s) ∅

. . .
∅ Wzp(s)

⎤
⎥⎥⎦

(10.10)

If ‖Wz(s)Tzw(s)We(s)‖∞ ≤ γ then:
∀ω ∈ R, ∀i ∈ [1;m] and ∀j ∈ [1; p] ,

|Wzj(jω)Tzjwi(jω)Wwi(jω)| ≤ γ ⇔ |Tzjwi(jω)| ≤ γ
|Wzj (jω)Wwi (jω)|

(10.11)

The inequality described in Eq.(10.11) property permits to see these weights as cal-
ibrators over the frequency domain for the SISO systems Tzjwi(s). This approach
is called mixed sensitivity H∞ synthesis.

The following sections, that consist in a presentation of the existing weighting
schemes, will use some notations based on Fig.(10.4) and that are introduced to
get shorter expressions of the transfer functions (see Tab.(10.1)).

The different variables represented in Fig.(10.4) are described as follows:

• r represents the reference signal set by the user.
• y consists in the measurable plant outputs including the noise d in the mea-
surement of the plant outputs.

• e = r − y is the error between the reference signal and the measurable plant
outputs.
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Sensitivity at the system output Ter = Tyd = (I +GK)−1 = Se
Sensitivity at the system input Tuv = (I +KG)−1 = Su

Complementary sensitivity at the system output Tyr = GKSe = I − Se = Te
Complementary sensitivity at the system input −Tūv = KGSu = I − Su = Tu

Table 10.1: Transfer function notations for the weighting schemes.

Figure 10.4: Input output notations for the weighting schemes.

• ū represents the output of the controller also called control signal.

• v represents the disturbances that affect the control signal.
• u = ū + v describes the actual signal that feeds the plant, i.e. the control
signal after the adjunction of the disturbances v.

• d represents the noise affecting the measurements of the plant output.

The following table shows how some of the previously listed variables are linked to
the physical data of the gyroscope prototype developed in §9:
In most cases, a H∞ synthesis, that is directly computed from the model, i.e. with-
out the use of any weight, does not enable to reach satisfactory performances in

variable physical data vector size
r reference position and attitude of the rotor 5× 1
y measured position and attitude of the rotor 5× 1
ū currents of the different electromagnet coils 8× 1

Table 10.2: List of the controller variables bound to the meaningful physical
data of the gyroscope prototype.

83



10.3 Introduction to Robust Control Chapter 10. Gyroscope Control

trajectory tracking, perturbation rejection and in robustness with respect to model
uncertainties.

Therefore, the user imposes, with the help of the calibrators (i.e. the weights), the
desired shape of the singular values of the different transfer functions, such as the
sensitivity, the complementary sensitivity, the transmission of the perturbations on
the outputs... Different weighting strategies will be described in the next sections.

10.3.3.a Weighting of the Outputs: The S/KS/T Weighting Scheme

A very well known weighting method is the mixed sensitivity method or S/KS/T
which is represented on Fig.(10.5). In this method, the sensitivity Se, the comple-
mentary sensitivity Te and the transfer function KSe from the input r to the output
u are respectively weighted by We(s), Wy(s) and Wu(s). Wu(s) can be chosen as a
constant or to prevent the command to include high amplitude signals what can be
useful if the command signal is limited by a saturation.

Figure 10.5: Mixed sensitivity weighting scheme.

The closed-loop transfer function Tzw is:

Tzw =

⎡
⎢⎣ WeSeWuKSe
WyTe

⎤
⎥⎦ (10.12)

This weighting scheme is intuitive as to satisfy Eq.(10.11), we can choose:

We ≈ 1
Se
, Wy ≈ 1

Te
and Wu a small constant.

Hence, We is chosen so that the low frequency perturbations are rejected (We has
a high gain in this frequency range) and to reduce the static error (integration be-
havior).
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The weight Wy is not always included in the weighting scheme, but it may be nec-
essary to increase the high frequency roll-off of Te.

The S/KS/T synthesis presents two important drawbacks:

- the sensitivity and the complementary sensitivity are separately shaped. But,
these two are bound by the relationship S+T = I, and therefore this synthesis
method presents a lot of constraints such as the the waterbed effect [Sko96].

- often, one cannot accept the inverse of the plant to be included in the controller.
As a matter of fact, this inversion implies a slower response if the poles and
zeros are closed to the imaginary axis and where the latter ones are imprecise
due to the uncertainty affecting the plant.

Because of these disadvantages, the S/KS/T method will not be used in this thesis.

10.3.3.b The Plant Non-Inverting GS/T Weighting Scheme

To cope with the transient response problem of the S/KS/T synthesis, [Chr96]
introduced the GS/T method that is based on the use of weights at the system
input what is a very well suited strategy for ill-conditioned plants. To avoid the
inverse of the plant to be in the controller, the idea is to include the plant itself
inside the weighting of the sensitivity function. On that purpose, the reference
signal r is waited instead of the error signal e (see Fig.(10.6)).

Figure 10.6: The GS/T weighting scheme.

Thus, the closed loop transfer function of Tzw becomes:

Tzw =
[ −WuTuWρ WuSuKWr
WyGSuWρ WyTeWr

]
(10.13)
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The weight Wu can be chosen as in the S/KS/T synthesis, i.e. small and constant.
Hence, this choice will lead to a small first line of Tzw which will, therefore, barely
influence the norm of Tzw.

Eq.(10.13) shows that the weighting scheme Tzw contains the plant G in the term
WyGSuWρ which ensures the controller not to include the inverse of the plant
[Chr96].

In order to have a physical feeling about the dimensioning of the weights Wr and
Wρ, we choose Wy = 1. Therefore the second line of Tzw becomes [GSuWρ TeWr].
Hence, the complementary sensitivity function Te is shaped by Wr and GSu by Wρ.

How can we in a more intuitive manner dimension the weight Wρ? To do answer
this question, the reader is recalled that GSuWρ = SeGWρ and therefore Wρ shapes
the term SeG. Thus,Wρ must reflect only that part of the sensitivity Se which is not
covered by G. Theoretically, we should chooseWy = (SeG)−1 but only the envelope
of the plant singular values is to be taken into account to prevent the controller
from again including G−1 [Chr97] which would lead to the previously mentioned
problem of transient response (see §10.3.3.a).

10.3.4 Two DOF H∞ Controller

10.3.4.a Motivations

The main drawback of the controllers mentioned in §10.3.3.a and §10.3.3.b is that
one cannot specify the perturbation rejection performance independently from the
trajectory tracking one. On that purpose, a two-degree-of-freedom controller can
be implemented:

K = [Kf Kb]

Both parts (explained in next section) of such a controller are, in the general case,
separately computed. However there exist a one step synthesis procedure, which
presents some advantages in comparison to the two step procedure. Both strategies
will be exposed in the following sections.

10.3.4.b Different 2DOF Approaches

[Per81] showed that the properties of the sensitivity function and the properties of
the transfer function from the reference to the output signal can be dissociated, if
feedforward controller is used for the reference signal. The inputs e and d of this
controller are respectively connected to the feedback gain Kb and to the feedforward
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term Kf . Both gains are dynamic. The general block diagram of the closed loop
system is shown on Fig.(10.7).

Figure 10.7: Two-degree-of-freedom H∞ controller.

Typically, the controller is synthesized in two steps. First, the behavior of the closed
loop system is optimized by Kb. Then, the trajectory tracking properties are satis-
fied with the design of Kf . However, both parts can be simultaneously calculated
if the same design method is used.

Several authors described weighting methods for the H∞ with a prefilter: [Chi92]
proposed a two step method based on the S/KS/T weighting synthesis. One step
procedures also based on the S/KS/T weighting have been proposed by [Chr94] and
[Edm].

The following section exposes extensions of the previously described one and two
step procedures based on the GS/T weighting scheme. These procedures are mainly
inspired by [Chr96].

10.3.4.b.i) The Two-Step Procedure

In Fig.(10.7), the grey block Gcl represents the closed loop system in which G is
stabilized by the term Kb of the controller. The expression of the transfer matrix
from w to Zy is equal to:

Tzyw = WyTydWe = Wy
(
Gclyd +GclyuKf

)

Hence, the norm of Tzyw can be reduced with the help of negative feed forward gain
Kf . If We = I, then the shape of Tyd will be synthesized by the choice of Wy. The
bandwidth of Kf can be set by Wu.

This two step procedure has the advantage that the synthesis of the feedforward
controller is fully independent from the feedback synthesis. Hence, it can be applied
to any previously stabilized closed loop system. Consequently, ifKb also contains an
observer, the resulting two DOF controller [Kf Kb] possesses at least three times
as many state variables than the original system. Despite the existence of order
reduction methods [Saf89], it is better not to introduce as many state variables.
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Figure 10.8: Two step procedure for the GS/T weighting scheme.

On that purpose, a one step approach of the two DOF GS/T weighting scheme
synthesis is exposed in next paragraph.

10.3.4.b.ii) The One-Step Procedure

This procedure is a combination of the GS/T weighting method proposed in §10.3.3.b
and of the feedforward controller synthesis presented in the previous section. This
means that, for the one step procedure, the controller input does not only consists
of the error e but also of the disturbance d, as represented in Fig.(10.9).

Figure 10.9: One step procedure for the GS/T weighting scheme. The con-
troller includes a feedback and disturbance feedforward gains.

With the previously used notations K = [Kf Kb] and G = [Gyd Gyu], the expression
of the transfer matrix Tzw is given by:

Tzw =
[ −WûTuWρ Wû (−SuKbGyd − SuKf )Wd WûSuKbWr
WyGyuSuWρ WyTydWd WyTeWr

]
(10.14)

with Tyd = SeGyd −GyuSuKf
The first and third columns are the same as for the synthesis of the feedback alone.
The first element of the second column has no important effect as long as Wû is
small, what is most of the time the case.
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The second element of the second column define the trajectory tracking properties
as Tyd is the transfer function corresponding to this trajectory tracking.

10.3.5 H∞ Controller with Explicit Integrator

The simulations of the nonlinear system with two-degree-of-freedom control strat-
egy (c.f. §11.2) point out a static error in the trajectory tracking realized by the
H∞ controllers obtained with the previous synthesis methods. The H∞ controller
behaves, relatively speaking, as a proportional/derivating controller. As a matter of
fact the former controller is computed around an equilibrium position and therefore
cannot compensate for an additional disturbance such as in our case a movement
of the vehicle.

To increase the disturbance rejection, an extension of the two-degree-of-freedom
GS/T structure is introduced in this paragraph. This extension consists of the
adjunction of an explicit integrator in the output feedback loop (see Fig.(10.10)).
This technic is inspired from [Clé02] about time discrete systems.

Figure 10.10: The H∞ controller with explicit integrator (in grey).

The role of the new part Ki of the compensator K = [Kf Ki Kb] is to strengthen
the cancelation of the static error. Thus, the new closed loop transfer function,
including the weighting filters, becomes:

Tzw =
[ −WûTuWρ Wû (−SuK
bGyd − SuKf )Wd WûSuK
bWr
WyGyuSuWρ WyTydWd WyTeWr

]
(10.15)

with K


b = Kb + Kis , Se = (I +GK
b )

−1 , Te = SeGK
b , Tyd = SeGKf ,
Su = (I +K
bG)

−1 and Tu = SuK
b .

Here also, the controller K is synthesized with the help of the "γ−iteration" method
in order to minimize the H∞ norm of the transfer function Tzw. Therefore, in this
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case, the weighting functions Wρ, Wr, Wd, Wy and Wû determine the frequency
shape of the sensibility and complementary sensitivity functions Se, Te, Tyd, Su
and Tu as for the 2 DOF controller without explicit integrator using the GS/T
weighting method. However, in the present case, they allow the computation of the
new part Ki. As shown in Eq.(10.15), all the sensitivity expressions include this
new Ki/s part of the controller. The static error cancelation is, hence, guaranteed
by this explicit integrator adjunction in the case of linear systems and for constant
reference trajectories, which is our case since we want to keep the rotor still within
the stator reference frame. For non linear systems, in our case magnetic bearings,
the static error should be diminished and should therefore guarantee that the rotor
stays within a small displacement range around the point where the linear model
of the plant has been derived.

10.4 Design of the H∞ Controller

10.4.1 Control in the AMB Actuator Coordinates

Eq.9.23 proposed a linear state space model of the plant in the coordinates of the
center of mass, what means that this model was based on the three positions of
the center of mass plus the attitude of the rotor. However, this formulation of
the problem is not intuitive because of the combination of positions and angles.
Therefore, a classical method [Ble84] is to express the previously mentioned model
in the coordinates of the actuators. This means that the positions of the rotor
center mass and its angular attitude will be converted in five positions: the axial
position of the center of mass, the X and Y coordinates of the rotor in the XY
plane defined by the upper stage of radial actuators and analogously for the lower
radial actuator plane. The obtained coordinate vector will be called χamb. The new
description of the state space model is given by:⎧⎪⎨

⎪⎩
χ̇AMB = AAMB · χAMB +BAMB · δIc + dAMB(t) +BAMBu . �Fu

YAMB = [I55 055]χAMB
(10.16)

with:

• TAMB→G: the transformation matrix from the AMB coordinates to the coor-
dinates of the center of mass (see Eq.(B.8)).

• AAMB = T−1
AMB→G · A · TAMB→G.

• BAMB = T−1
AMB→G ·B.

• dAMB(t) = T−1
AMB→G ·

[
051

M−1d(t)

]
.
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• BAMBu = T−1
AMB→G ·

[
052
M−1Bu

]
.

This reformulation cannot improve the control of the plant [Her91]. However, the
easiness of the plant understanding is helpful to have an idea of the weighting
parameters to tune in order to improve the H∞ controller. As a matter of fact, the
singular values of the plant transfer function only explain the behavior of positions
regarding the frequency and not a mix of positions and torques. For this reason,
the system be from now on expressed in the actuator coordinates.

10.4.2 Choice of the Weights

10.4.2.a Weights for the Standard GS/T Weighting Scheme

As proposed in section §10.3.3.b, the weight Wu is chosen small and constant, and
Wy is chosen equal to the 1.
The weight Wr is used to shape the complementary sensitivity function Te and thus
permits to limit its bandwidth. ThereforeWr is designed as high pass filter crossing
the 0[dB] line at the desired bandwidth that, in our case has been fixed at 1[kHz].
As presented in Eq.(10.13), the sensitivity function is shaped by the function G·Wρ.
A low order dynamics weight Wρ has been found using a dichotomic approach
combined with the linear model of the plant developed in Chapter 9.

10.4.2.b Additional Weights for the Two DOF H∞ Controller

The two step procedure for the two-degree-of-freedom controller will not be tack-
led during this thesis due to the large number of state variables that it produces.
Therefore, only the one-step procedure of the two-degree-of-freedom controller will
be considered.
The weightsWr,Wu andWy do not change compared to the previous design. There-
fore, the weight Wρ shapes GyuSu.

The main interest of the introduction of a feedforward controller is to anticipate
the action of the disturbances on the rotor. In the present case, the AMB system
is used as inertial sensor which is aimed to measure the vehicle movements that
are the main external disturbances experienced by the gyroscope rotor. Therefore,
no other device will sense the external disturbances for the gyroscope. Hence, the
only disturbances that can be compensated by the feedforward have an internal
origin. Based on this observation, the unbalance effects will be considered as an
internal disturbance which will be anticipated with the help of the feedforward
controller. Thus, the weight Wd reflects the inverse of the response of the plant to
the disturbances, i.e to an approximation of the unbalance effects.
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10.4.2.c Adjunction of the Explicit Integrator
to the Two DOF H∞ Controller

The synthesis principle of the explicit integrator controller does not differ from
the standard two DOF H∞ controller, since the computation is done for a gain
K
b = Kb + Ki/s instead of Kb. Therefore the choice of the gains will not be af-
fected by this integrator adjunction.

Based on the choice of the gains, the Bode plots of the transfer, sensitivity and
complementary sensitivity functions of the plant for the axial bearings and for the
radial ones are presented below.
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Figure 10.11: Bode plots of the discrete transfer (green), sensitivity (red)
and complementary sensitivity (blue) functions. The func-
tions for the radial bearings are represented in figure (a) ver-
tical and the axial bearings in figure (b).

10.5 Summary

Different standard weighting schemes for the synthesis of H∞ controllers have been
introduced. Based on the introduced schemes three controllers have been developed:

• a controller based on the standard GS/T weighting scheme.

• a feedforward action is added to the first controller.

• an integral action is introduced within the second controller.

These controllers will be evaluated through simulations in chapter §11.
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Chapter 11

Theoretical Tests and Results

11.1 Introduction

The simulations have been run for two different orientations of the gyroscope stator
(see Fig.(11.1)) because the angular velocities of interest depend from the vehicle.
For example, for a plane its attitude is of main interest. On the opposite for a
car, the movement that primes is its orientation in the horizontal plane. Thus,
the gyroscope orientation in Fig.(11.1(a)) would be recommended for a plane or an
helicopter as the gyroscope will measure the angular velocities around the X and Y
axes, whereas for a car the orientation of Fig.(11.1(b)) would be wiser. The former
orientation will be referred as plane configuration in the following, and the latter
as car configuration.
The model chosen for the simulations is nonlinear, i.e. the forces created by the
active magnetic bearings will use the form of Eq.(9.1).

(a) (b)

Figure 11.1: Two different ways of mounting a gyroscope Unidentified Fly-
ing Object. The rotor position at stand still is (a) vertical and
(b) horizontal.

In this section, the different implementations of GS/T H∞ controllers introduced
in §10 will be tested and a controller that best suits the needs of the gyroscope will
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be chosen.

Three types of tests will be performed to evaluate these controllers:

• Trajectory tracking with a not spun rotor: the response of the rotor to an
acceleration step of 2g will be evaluated.

• Maximal spinning speed: the rotor spin speed will be increased until the rotor
diverges. The evaluation criteria will be the maximal achieved speed. The
interest of this experience is to propose a basis for further works to improve
the controller.

• A third series of tests will consist in the quality of the vehicle angular velocity
measurement with the mean error as criteria. A sinusoidal angular velocity
profile is imposed to the vehicle. The tests are first run without external
acceleration and, in a second time, with a 2g acceleration. The effect of the
nonlinearity of Eq.(9.24) due to the cosine term will be emphasized in this
chapter.

11.2 Trajectory tracking without rotor spin

The trajectory tracking without spinning the rotor permits to see the different qual-
ities of the controllers. Fig.(11.2) shows the response of the plant to an acceleration
step of 2g along the gyroscope stator X-axis at the time 0.25[s]. The gyroscope
has also been submitted to an acceleration of 2g along its Y-axis, but as all the
responses to this stimulation were analog, they have not been represented in this
section.

As the reader can remark, Fig.(11.2) does not present the response of the plant fed
by the one DOF H∞ controller because this controller does not stand the accelera-
tion and diverges. On that purpose, this controller is directly disqualified and will
not be subject to further tests.

For concision purposes, the H∞ controller with feedforward action but no integral
action will be called non integrative controller. The other controller will be called
integrative controller.

Two remarks can be made about the response of the different controllers and gyro-
scope configurations. First, the integral controller has a faster response and lower
overshoot than the non-integrative controller. However, the difference among con-
trollers is not so important. Second, both gyroscope configurations behave the same
way along the X-axis; on the opposite, this acceleration step has an effect on the
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Figure 11.2: Response of the plant controlled by H∞ controllers to an ac-
celeration of 2g along the gyroscope stator X-axis at the time
0.25[s]. In blue, a H∞ controller with disturbance compensa-
tion. In red, a a H∞ controller with disturbance compensation
plus integral action. Figure (a): gyroscope plane orientation,
figure (b): gyroscope car orientation. The X coordinate (resp.
Y coordinate) of the rotor center of mass is represented in first
row (resp. second row).

gyroscope when in its plane configuration and none in its car configuration. The
reason for this is probably that in the latter orientation the X and Y axes do not
have the same role and that the rotor is submitted along the Y-axis to its own
weight, what is not the case in the former orientation.

11.3 Maximal Spinning Speed

Both controllers permit for both gyroscope configurations to reach the same maxi-
mal rotor spin speed which is 18.1 · 103 [rpm].
Before they diverge, both controllers show oscillations at the rotor spinning speed
with a position amplitude of the signal of 0.3[μm] about the center of the stator
and an angular velocity amplitude of 0.3[◦/s] about the stator polar axis. These
oscillations are induced by the gyroscopic part of the dynamics.
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11.4 Angular Velocity Measurements

The purpose of this section is to find out how wide is the range of measurements
that can be made by the gyroscope. This range is expressed in terms of angular ve-
locity, amplitude of the vehicle attitude, frequency of the movement. During these
tests the rotor will be spun at 8′000 [rpm]. The maximum speed is not tested in
order to keep sufficient disturbance margin for the measurements.

The tests will consist in exciting the plant with a sinusoidal angular velocity with
predefined amplitude and frequency. We will consider that the gyroscope is placed
so that the angle φsfx (angle about the stator X-axis) as well as φsfy can not be larger
than 45[◦]. This assumption is valid for all vehicles in normal condition of use. For
example, the main propeller of a helicopter cannot lift the vehicle with an angle
higher than 45[◦].

The angular velocities are tested for 100[◦/s] and 200[◦/s] about both X and Y axes.
Hence, each series of experiments is a four-degree-of-freedom experiment plan with
at least 5 tests to run per degree of freedom. Remarks and conclusions about these
tests are presented below.

11.4.1 Angular Velocity Measurements:
Analysis of the Mean Error

The results of all the tests performed on both gyroscope configurations and on both
controllers are analog, therefore only one test has been presented in this section (see
Fig.(11.3)). Some observations can be made about the simulation results. First, as
shown on Fig.(11.3), there is no noticeable difference between the non integrative
and integrative controllers. This is quite normal as this test only consists in sinu-
soids without any step that permits to show any integrative action.

Second, the gyroscope orientation plays an important role in the quality of the
measurement. As a matter of fact, the quality of the measurements for the car
configuration case is not as good as for the other configuration. Indeed, the rotor
weight mostly acts, in the former case, along the gyroscope X-axis. On the oppo-
site, in the latter case, the weight mostly works along the gyroscope Z axis. As
the X axis plays a far more important role than the Z axis in the angular velocity
measurement, this difference among both configurations in terms of measurement
quality was predictable.

Third, the effect of the cosine presented in Eq.(9.24) can be seen for both gyroscope
configurations and for both controllers. Hence, Fig.(11.3) shows that the maximal
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amplitude of the measurements of the angular velocities about the Y-axis increases
and decreases at the frequency of the measured angular velocity about the X-axis.
The results have, as expected, shown that the higher the angular velocity ampli-
tude about the X-axis, the more critical the cosine effect on the angular velocity
measurement about the Y-axis.
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Figure 11.3: Angular velocity measurement (top about the X-axis and bot-
tom about the Y-axis). The reference angular velocity is drawn
in red, the non integrative measurement in blue and the inte-
grative one in green. Y-angular velocity= 200[◦/s], amplitude
of the Y angle=30[◦], X-angular velocity=100[◦/s], amplitude
of the X angle=45[◦]. Figure (a): gyroscope plane orientation,
figure (b): gyroscope car orientation.

11.4.2 Effect of a 2g Acceleration on the Plant

These series have been performed under the effect of a 2g acceleration along the X
and Y axes (not during the same simulation) beside the normal acceleration due to
gravity. The conditions, save the 2g acceleration, are the same ones as in §11.4.1.
As both gyroscope orientations and both controllers responded the same way to
the 2g acceleration along the X-axis, the acceleration along the X-axis will not be
further tackled in this section.

Only one simulation (see Fig.(11.4)) of the effect of 2g acceleration along the Y-axis
is represented in this section as all simulations lead to analog results. In accordance
with the Newton’s 2nd law of motion, the acceleration along the Y-axis mainly af-
fects the measurement of the angular velocity about the X-axis (see third second in
Fig.(11.4)).
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Fig.(11.4) does not permit to conclude on any difference among non integrative
and integrative controllers. However, the different behavior among the different
gyroscope configuration can be clearly observed. When in its car configuration, the
gyroscope is very sensitive to the imposed acceleration. Thus, one can observe on
the measurements of the angular velocity about the X-axis that, for the car config-
uration, the controllers cannot fully compensate the action of the 2g acceleration.
On the opposite, in the plane configuration, the controllers do not need more than
a half period to regain the measurement quality without acceleration.

2.5 3 3.5 4 4.5 5 5.5 6
-150

-100

-50

0

50

100

150

Time[s]

[d
eg

/s
]

2.5 3 3.5 4 4.5 5 5.5 6
-300

-200

-100

0

100

200

300

Time[s]

[d
eg

/s
]

�x ref

�x no int

�x int

�y ref

�y no int

�y int

(a)

2.5 3 3.5 4 4.5 5 5.5 6
-150

-100

-50

0

50

100

150

Time [s]
[d

eg
/s

]

2.5 3 3.5 4 4.5 5 5.5 6
-300

-200

-100

0

100

200

300

Time [s]

[d
eg

/s
]

�x ref

�x no int

�x int

�y ref

�y no int

�y int

(b)

Figure 11.4: Angular velocity measurement (top about the X-axis and bot-
tom about the Y-axis). An acceleration of 2g is imposed along
the Y-axis after 3[s] of simulation. The reference angular ve-
locity is drawn in red, the non integrative measurement in blue
and the integrative one in green. Y-angular velocity= 200[◦/s],
amplitude of the Y angle=30[◦], X-angular velocity=100[◦/s],
amplitude of the X angle=45[◦]. Figure (a): gyroscope plane
orientation, figure (b): gyroscope car orientation.

11.4.3 Conclusion about the Gyroscope Tests

In this section, three GS/T based H∞ controllers have been compared. The one-
degree-of-freedom controller could not compensate an acceleration of 2g, whereas
the two DOF controllers could. These two controllers differ from a synthesis point
of view only by the integral action that one possesses.

During the tests, the controller with integral action has shown a faster response
and a smaller overshoot than the non integrative controller. However, the difference
among both controllers is so small that the additional computation time required
for the integrative controller is not worth. Therefore, the addition of an integrator
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to the H∞ controller synthesized on a GS/T basis scheme will not be recommended
for vehicle navigation.

The simulations have shown that the gyroscope when mounted in the car configu-
ration does not present such a good measurement quality as for plane configuration
and that it is very sensitive to external disturbances. On that purpose, only the
latter configuration will be advised for vehicle navigation.
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Chapter 12

Conclusions about the
Cylindrical Spinning Rotor
Method

The different simulations on the gyroscope model have shown that such a gyroscope
should be able to acquire the vehicle angular velocity with high precision (see §11).
The advantages and drawbacks of this measurement method are presented in the
following sections.

12.1 Advantages

The cylindrical spinning rotor method, which is based on the Newton’s 2nd law of
motion, permits an easy measurement of the angular velocity. As a matter of fact,
we consider with this method that the vehicle angular velocity is proportional to the
force exerted by the magnetic bearings on the rotor. Moreover, this proportionality
prevents from introducing noise in the measurement through a derivation of the
position as it was the case for the ball orbit observation method.

Another advantage of the cylindrical spinning rotor method coming the Newton’s
2nd law of motion is that the accelerations of the vehicle do not interfere in the
angular velocity measurement.

Finally, as the rotor is levitated by the magnetic bearings, it reaches high spinning
speeds synonymous of high rotor moment of inertia, which is directly related to a
higher sensitivity of the gyroscope.
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12.2 Drawbacks

As presented in Chapter 8, the rotor is driven by ten magnetic bearings. Its position
and its attitude are measured by nine sensors. Considering the volume required by
the actuators, the sensors and the rotor itself, one can directly conclude that a
miniaturization of the prototype within a cube of less than 40[mm] side length will
be very difficult.

The use of six AMB to control the rotor attitude introduces a coupled action of the
AMB on the rotor. An elaborated control strategy has been required to cope with
this coupling problem.
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Conclusion

13.1 Summary

An overview of the nowadays existing gyroscopes highlighted the fact that such
devices combining high precision in the angular velocity measurement, miniatur-
ization and low cost are not yet available, what prevents gyroscopes from being
used for the navigation of civil vehicles. This thesis proposes to apply the active
magnetic bearing technology to gyroscopic sensing in order to meet the challenge
offered by the three previously mentioned limitations.
The challenging objective of integrating the active magnetic bearing system within
a cube of 40[mm] of ridge length offered the possibility to conceive two gyroscope
prototypes, each relying on a different method to measure the vehicle angular ve-
locity.

The first method, referred as ball orbit observation, consists in levitating a ball
shaped rotor and to have it follow a trajectory, in this case a circular orbit but
it could be a sinusoid along one single axis. The vehicle angular velocity is then
computed from the measurement of the inclination of the said orbit. Thus, only the
position of the rotor in space needs to be controlled what permits an easy prototype
design and prevents from any coupling in the electromagnet actions.
In this prototype, the uncertainties due to the non linearities of the magnetic bear-
ings are compensated by regulating the rotor levitation with a model-reference
adaptive controller. The idea of such a controller is, by means of an adaption law,
to adjust in real time the reference signal feeding the controller (in this case a PID
controller) so that the output of the actual plant corresponds to the output of a
reference model.
Experimental tests run on this prototype demonstrated the feasibility of this mea-
surement method and validated the adaptive controller choice. However, this
method shows some drawbacks; among other, the cross sensitivity of the accel-
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eration and angular velocity, the derivation of the attitude angle that increases the
measurement noise...

To cope with these inconveniences, a second measurement method, called cylindrical
spinning rotor, which is based on the Newton’s 2nd law of motion has been studied
in the present work. Due to the integration objective of the active magnetic bearing
system within a cube of 40[mm] of ridge length, a prototype has been conceived
based on a trade off between the ability of the gyroscope to measure the vehicle
movements within a certain predefined range and the complexity of the designed
device control. Indeed, due to its geometry, the presented prototype shows a strong
coupling between the action of the forces exerted by the radial electromagnets on
the rotor. A linear and a non linear model of the plant expressing the force mutual
influence have been developed.
Because of its ability to overcome such couplings and to counteract the plant non-
linear uncertainties, H∞ robust control has been chosen to drive the plant. Three
H∞ compensators based on GS/T design have been synthesized using the plant
linear model. The first controller consists in the basic GS/T controller synthesis
scheme. The second controller introduced a feed forward controller whose input is
the torques and forces due to the rotor unbalance effects. Finally, the third con-
troller, adds an explicit integrator to the second controller. This explicit integrator
H∞ controller is, to our knowledge, for the first time used to drive active magnetic
bearings.
The quality of the angular velocity measurement provided by the three H∞ con-
trollers has been tested during simulations run on the nonlinear model which also
comprises a nonlinear behavior due to the gyroscopic effects. The simulations have
shown that both H∞ controllers including a feed forward can provide an equivalent
quality of measurement of the angular velocity. Therefore, only the H∞ compen-
sator with feed forward but without integral part is advised to be implemented on
the real gyroscope.

13.2 Outlook

This thesis is, in our knowledge, the first study reporting the use of miniaturized
active magnetic bearings for gyroscope sensing and the application, in the AMB
field, of a two-degree-of-freedom H∞ controller including an explicit integrator. In
addition to this, a new method to measure the angular velocity has been devel-
oped in this work. Therefore, several axes of research remain to explore. Thus,
future studies based on the ball orbit observation method should investigate other
rotor geometries, such as cylindrical rotors or rotors with a non magnetic unbalance.

For the cylindrical spinning rotor method, possible research works could propose:
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• a miniaturization of the rotor position sensing system in order to give more
space to the electromagnets, which would permit to increase the number of
actuators. This would result in the decoupling the radial forces what would
improve the quality of the control. This would also allow to add an electromag-
net arrangement specifically dedicated to the asynchronous motor function.

• for more accuracy, the measurement of the angular velocity which is currently
based on the linear model of the magnetic force should use a non linear model
of this force.

• an algorithm, that would compute the nonlinear behavior of the gyroscopic
effects in order to improve the quality of the angular velocity measurements,
should be developed.

• the measurement of the vehicle three-degree-of-freedom acceleration should
be included in order for the presented prototype to behave as a five-degree-
of-freedom inertial measurement unit.
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Appendix A

Kinematics

The notations used in §2.1 will be used throughout this chapter. Please refer to
Fig.(2.2) for the order of the rotations that is crucial when considering Euler angles
as the rotations in space are not commutative.

As a remembering from §2.1, three reference systems have been introduced:

• (O,xf , yf , zf ): the fix reference frame.

• (S,xs, ys, zs): the reference frame bound to the stator.

• (G,xr, yr, zr): the reference frame bound to the rotor.

In this chapter, we assume that the control of the rotor is stiff enough to allow for
the small angle approximation for φrsx and φrsy . We will also consider that the spin
speed Ωz of the rotor is constantly directed around the axis zr.

Along this chapter, the following notations will be used:

cx = cos
(
φsfx + φrsx

)
sx = sin

(
φsfx + φrsx

)
crsx = cos (φrsx ) srsx = sin (φrsx )
csfx = cos

(
φsfx

)
ssfx = sin

(
φsfx

)
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A.1 Expression of the Rotor Angular Momentum
in the Rotor Reference Frame

A.1.1 Angular Velocity of (G,xr, yr, zr) relatively to (O,xf , yf , zf)

The angular velocity of (G,xr, yr, zr) relatively to (O,xf , yf , zf ) is:

�ωrf =
(
φ̇sfy + φ̇rsy

)
· �yf +

(
φ̇sfx + φ̇rsx

)
· �xr =

⎡
⎢⎢⎣

φ̇sfx + φ̇rsx(
φ̇sfy + φ̇rsy

)
· cx

−
(
φ̇sfy + φ̇rsy

)
· sx

⎤
⎥⎥⎦
r

(A.1)

A.1.2 Angular Velocity of the Rotor

The angular velocity �ωrotor of the rotor expressed in the reference frame bound to
the rotor is the sum of the angular velocity �ωrf (see Eq.(A.1)) and of the rotor spin
speed Ωz · �zr:

�ωrotor = �ωrf + Ωz · �zr =

⎡
⎢⎢⎣

φ̇sfx + φ̇rsx(
φ̇sfy + φ̇rsy

)
· cx

−
(
φ̇sfy + φ̇rsy

)
· sx + Ωz

⎤
⎥⎥⎦
r

(A.2)

A.1.3 Rotor Angular Momentum

The expression of the rotor angular momentum becomes with the help of Eq.(A.2)
and assuming that the rotor is a perfect cylinder with radial (resp. polar) inertia
Jr (resp. Jz):

�LG
∣∣∣
r
=

⎡
⎢⎢⎢⎣

Jr ·
(
φ̇sfx + φ̇rsx

)
Jr ·

(
φ̇sfy + φ̇rsy

)
· cx

Jz ·
[
−
(
φ̇sfy + φ̇rsy

)
· sx + Ωz

]
⎤
⎥⎥⎥⎦
r

(A.3)
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A.2 Derivation of the Angular Momentum
in the Rotor Reference Frame

The computation of the derivative of the angular momentum will be done using the
Newton’s second law of motion (see Eq.(2.2)).

A.2.1 Derivation of the Rotor Angular Momentum
Relatively to the Rotor Reference Frame

The first step when using Eq.(2.2) consists in deriving the rotor angular momentum
relatively to the rotor reference frame. The following equations do not present the
coordinates of the computed vectors along the Z-axis as they are of no interest for
the present work.

d�LG
dt

∣∣∣∣∣∣
r

=

⎡
⎢⎢⎣
Jr ·

(
φ̈sfx + φ̈rsx

)

Jr ·
[(
φ̈sfy + φ̈rsy

)
· cx − sx ·

(
φ̇sfy + φ̇rsy

)
·
(
φ̇sfx + φ̇rsx

)]
⎤
⎥⎥⎦
r

(A.4)

A.2.2 Computation of the Cross Product
of the Newton’s 2nd Law of Motion

The second step to get the derivative of the rotor angular momentum consists in
computing the cross product between the angular velocity of the rotor reference
frame (see Eq.(A.1)) and the rotor angular momentum (see Eq.(A.3)).

�ωrf × �LG
∣∣∣
r
= Jr

⎡
⎣ cx · sx ·

(
φ̇sfy + φ̇rsy

)2

−sx ·
(
φ̇sfy + φ̇rsy

)
·
(
φ̇sfx + φ̇rsx

)
⎤
⎦

+Jz

⎡
⎣ −cx · sx ·

(
φ̇sfy + φ̇rsy

)2
+ Ωz · cx ·

(
φ̇sfy + φ̇rsy

)
sx ·

(
φ̇sfy + φ̇rsy

)
·
(
φ̇sfx + φ̇rsx

)
− Ωz ·

(
φ̇sfx + φ̇rsx

)
⎤
⎦

(A.5)

111



A.2 Derivation of the Angular Momentum Chapter A. Kinematics

A.2.3 Complete expression of the Derivative
of the Rotor Angular Momentum

The expression of the derivative of the rotor angular momentum relatively to the
rotor reference frame is given by the sum of Eq.(A.4) and Eq.(A.5):

d�LG
dt

= Jr

⎡
⎣
(
φ̈sfx + φ̈rsx

)
+ cx · sx ·

(
φ̇sfy + φ̇rsy

)2

(
φ̈sfy + φ̈rsy

)
· cx − 2 · sx ·

(
φ̇sfy + φ̇rsy

)
·
(
φ̇sfx + φ̇rsx

)
⎤
⎦

+Jz

⎡
⎣ −cx · sx ·

(
φ̇sfy + φ̇rsy

)2
+ Ωz · cx ·

(
φ̇sfy + φ̇rsy

)
sx ·

(
φ̇sfy + φ̇rsy

)
·
(
φ̇sfx + φ̇rsx

)
− Ωz ·

(
φ̇sfx + φ̇rsx

)
⎤
⎦

(A.6)

Considering that the angles between the rotor and the stator stay small, Eq.(A.6)
can be approximated as:

d�LG
dt

= Jr

⎡
⎢⎣
(
φ̈sfx + φ̈rsx

)
+ csfx · ssfx ·

[(
φ̇sfy

)2
+ 2 · φ̇sfy · φ̇rsy

]
(
φ̈sfy + φ̈rsy

)
· csfx − 2 · ssfx ·

(
φ̇sfy · φ̇sfx + φ̇sfx · φ̇rsy + φ̇sfy · φ̇rsx

)
⎤
⎥⎦

+Jz

⎡
⎢⎣ −csfx · ssfx ·

[(
φ̇sfy

)2
+ 2 · φ̇sfy · φ̇rsy

]
+ Ωz · csfx ·

(
φ̇sfy + φ̇rsy

)
ssfx ·

(
φ̇sfy · φ̇sfx + φ̇sfx · φ̇rsy + φ̇sfy · φ̇rsx

)
− Ωz ·

(
φ̇sfx + φ̇rsx

)
⎤
⎥⎦
(A.7)
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Matrices

B.1 Mechanical Matrices

The coordinates of the rotor in the center of mass (subscript "G") coordinates:

XG = [zG, xG, φyG, yG, φxG]
T (B.1)

The current vector δIc corresponds to the currents which flow in the different elec-
tromagnet coils:

δIc =
[
δiupz , δi

down
z , δiup0 , δi

down
0 , δiup120, δi

down
120 , δi

up
240, δi

down
240

]T
(B.2)

The AMB force tensor −−−−→FTamb represents the electromagnetic forces and torques
applied to the rotor. Using the notations of §9.1.2.c, −−−−→FTamb is given by:

−−−−−→
FTAMB = [F zAMB, F xAMB, T

y
AMB, F

y
AMB, T

x
AMB]

T (B.3)

The mass matrix M of the rotor composed of m its mass, Jr its radial inertia:

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0
0 m 0 0 0
0 0 Jr 0 0
0 0 0 m 0
0 0 0 0 Jr

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.4)
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The gyroscopic matrix Grs of the rotor composed of Ωz its spin speed and Jz its
axial inertia:

−G = Ωz

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 Jz
0 0 0 0 0
0 0 −Jz 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.5)

The matrix Kx (called stiffness matrix) expresses the force displacement stiffness
due to the AMB actuators:

−Kx =

⎡
⎢⎢⎢⎢⎢⎢⎣

kz 0 0 0 0
0 kr 0 0 0
0 0 kφ 0 0
0 0 0 kr 0
0 0 0 0 kφ

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.6)

The matrix Ki, called current matrix, contains the current to force proportional
factors of the AMB actuators:

Ki =

⎡
⎢⎢⎢⎢⎢⎢⎣

kiz −kiz 0 0 0 0 0 0
0 0 −2kir −2kir kir kir kir kir
0 0 0 0

√
3kiΦ −√3kiΦ −

√
3kiΦ

√
3kiΦ

0 0 0 0 −√3kir −
√
3kir

√
3kir

√
3kir

0 0 −2kiΦ 2kiΦ
√
3kiΦ −√3kiΦ

√
3kiΦ −√3kiΦ

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.7)
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B.2 Transformation Matrices

The matrix TAMB→G describes the transformation from the AMB coordinates to
the center of mass coordinates:

TAMB→G =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0
0 1 1 0 0
0 1/h4 −1/h4 0 0
0 0 0 1 1
0 0 0 −1/h4 1/h4

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.8)

The matrix TG→AMB describes the transformation from the center of mass coordi-
nates to the AMB coordinates:

TG→AMB =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 h4 0 0
0 1 −h4 0 0
0 0 0 1 −h4
0 0 0 1 h4

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.9)
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Appendix C

Model of the Torques
Generated by the AMB Radial
Actuators

The variables introduced in this section are:

• Δr0 = b+ 2(r − ρ).
• Sr = 2γ · ρ · e. Sr is the surface of one pole of a radial electromagnet. The
pole shape is cylindrical section with an angular opening of 2γ (see Fig.(9.3)).
e is the pole thickness but this variable will not been used any further.

• α0 is the mean angle of an actuator, in our case it can be 0, 2π
3 or 4π

3 depending
on the actuator.

• hj, j ∈ {1; 2} is the Z coordinate of the pole j.

The torque �τ = [τx, τy, τz] exerted by a radial actuator with two identical poles
placed at the height hr1 and hr2 on the rotor is proposed in Eq.(C.1).
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τx =
ai20Sr(hr1 + hr2)

γΔ2
r0

sin(α0) sin(γ) +
2ai0Sr(hr1 + hr2)

γΔ2
r0

sin(α0) sin(γ) · δi

+
ai20Sr
2γΔ3

r0

[
rΔr0 (2γ − cos(2α0) sin(2γ)) + 4 (hr1 + hr2)2 sin(α0) sin(γ)

]
· φx

− ai
2
0Sr

2γΔ3
r0

[
rΔr0 sin(2α0) sin(2γ) + 4 (hr1 + hr2)2 sin(α0) sin(γ)

]
· φy

−ai
2
0Sr (hr1 + hr2)
γΔ3
r0

sin(2α0) sin(2γ) · xG

−ai
2
0Sr (hr1 + hr2)
γΔ3
r0

(2γ − cos(2α0) sin(2γ)) · yG (C.1a)

τy =
−ai20Sr(hr1 + hr2)

γΔ2
r0

cos(α0) sin(γ)− 2ai0Sr(hr1 + hr2)
γΔ2
r0

cos(α0) sin(γ) · δi

− ai
2
0Sr

2γΔ3
r0

[
rΔr0 sin(2α0) sin(2γ) + 4 (hr1 + hr2)2 cos(α0) sin(γ)

]
· φx

+
ai20Sr
2γΔ3

r0

[
rΔr0 (2γ + cos(2α0) sin(2γ)) + 4 (hr1 + hr2)2 cos(α0) sin(γ)

]
· φy

+
ai20Sr (hr1 + hr2)

γΔ3
r0

(2γ + cos(2α0) sin(2γ)) · xG

+
ai20Sr (hr1 + hr2)

γΔ3
r0

sin(2α0) sin(2γ) · yG (C.1b)

τz =
−ai20Sr sin(γ)
γΔ2
r0

(hr1 + hr2) [cos(α0) · φx + sin(α0) · φy]

−2ai
2
0Sr sin(γ)
γΔ2
r0

[sin(α0) · xG − cos(α0) · yG] (C.1c)
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The prototype contains two symmetrical about the XY plane stages of radial ac-
tuators. The stages are referenced as up and down. The sum �T of the torques
generated by two actuators symmetrically placed about the XY plane will result
for the torques Tx and Tx (resp. Tz) in a canceling of the constant term and of the
effects of xG and yG (resp. of φx and φy). The expression of �T is given by:

Tx =
2ai0Sr(hr1 + hr2)

γΔ2
r0

sin(α0) sin(γ) · (δiup − δidown)

+
ai20Sr
γΔ3
r0

[
rΔr0 (2γ − cos(2α0) sin(2γ)) + 4 (hr1 + hr2)2 sin(α0) sin(γ)

]
· φx

−ai
2
0Sr
γΔ3
r0

[
rΔr0 sin(2α0) sin(2γ) + 4 (hr1 + hr2)2 sin(α0) sin(γ)

]
· φy (C.2a)

Ty = −2ai0Sr(hr1 + hr2)
γΔ2
r0

cos(α0) sin(γ) · (δiup − δidown)

−ai
2
0Sr
γΔ3
r0

[
rΔr0 sin(2α0) sin(2γ) + 4 (hr1 + hr2)2 cos(α0) sin(γ)

]
· φx (C.2b)

+
ai20Sr
γΔ3
r0

[
rΔr0 (2γ + cos(2α0) sin(2γ)) + 4 (hr1 + hr2)2 cos(α0) sin(γ)

]
· φy

Tz = −4ai
2
0Sr sin(γ)
γΔ2
r0

[sin(α0) · xG − cos(α0) · yG] (C.2c)

Three such torques are created by the actuators placed at α0 = 0◦, α0 = 120◦ and
α0 = 240◦. The sum of these tree torques is given by:

∑
Tx =

2ai0Sr(hr1 + hr2)
γΔ2
r0

sin(γ) sin(
2π
3
) [(δi120up − δi120down)− (δi240up − δi240down)]

+
6ai20Sr
Δ2
r0
· r · φx (C.3a)

∑
Ty = −2ai0Sr(hr1 + hr2)

γΔ2
r0

sin(γ) [(δi0up − δi0down)

−1
2
· (δi120up − δi120down + δi240up − δi240down) ]

+
6ai20Sr
Δ2
r0
· r · φy (C.3b)

∑
Tz = 0 (C.3c)
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Appendix D

Matrix Theory and Norms

D.1 State Space Representation of a System

A LTI invariant system (SISO or MIMO) can be fully described by a set of linear
differential equations with constant coefficients and by its initial conditions.

⎧⎪⎨
⎪⎩
ẋ(t) = A · x(t) +B · u(t) A ∈ R

n×n B ∈ R
n×m

y(t) = C · x(t) +D · u(t) B ∈ R
p×n D ∈ R

p×m

x(0) = x0

(D.1)

In Eq.(D.1), x ∈ R
n is the state vector, u ∈ R

m the input vector and y ∈ R
p the

output vector.

A more compact notation is:

[y] =
[
A B
C D

]
[u]

D.2 Frequency Domain Representation

Applying the Laplace transformation to Eq.(D.1) one gets:
{
s ·X(s) = A ·X(s) +B · U(s)
Y (s) = C ·X(s) +D · U(s)

This leads to the matrix transfer function of the linear dynamic system G(s) defined
as:

Y (s) = G(s) · U(s) = C · (s · I − A)−1cdotB +D
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Loop Transfer Function L = GK

Sensitivity Function (I +GK)−1 = (I + L)−1

Complementary Sensitivity (I +GK)−1GK = (I + L)−1 L

Table D.1: Transfer Functions of the Control System.

D.3 Closed Loop Transfer Functions

Figure D.1: General MIMO control system. K is the controller, G the plant
to control, r the reference signal, d and n disturbance signals
and ym the measured signal.

The general MIMO control system presented in Fig.(D.1) has the following closed
loop response:

ym = (I +GK)−1GK · r + (I +GK)−1G · d (I +GK)−1GK · n

This equation leads to a set of notations used throughout this thesis and that are
given in Tab.(D.1):

D.4 Signal and System Norms

D.4.1 Definition of a Signal Norm

The p-norm of a vector signal u(t) = [ui(t)] is a real number ‖u‖p defined as:

‖u‖p = p

√√√√ n∑
i=0

∫ ∞
0
|ui(τ)|pdτ
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D.4.2 The H∞ Norm of a System

The norm of a system can be directly derived from the signal norm. We consider
the system with a stable transfer function G(s) and its input and output vector
signals U(s) and Y (s). The H∞ of G(s) is defined as:

‖G‖∞ = sup
‖u‖2 �=0

‖y‖2
‖u‖2

For a matrix G(s) ∈ H∞ = {G(s)|G(s) is analytic in Re(s) > 0, ‖G(s)‖∞ <∞}
(this space is called Hardy space) we have the following identity:

‖G‖∞ = max
Re(s)>0

σ̄(G(s)) = max
ω
σ̄(G(jω))

The H∞ norm of a system is the maximum over all frequencies of all its largest
singular value.

D.5 Singular Values

The singular values σ1 ≥ σ2 ≥ ... ≥ σk (k = min{l,m}) of a matrix A ∈ C
l×m are

defined as the eigenvalues of the matrix (A∗)T · A:

σi =
√
λi
(
(A∗)T · A

)
i = 1..k

The maximum and minimum singular values are noted:

σmax(A) = σ1(A) = σ̄(A) = maxd�=0
‖Gd‖2
‖d‖2

σmin(A) = σk(A) = σ(A) = mind�=0
‖Gd‖2
‖d‖2

Hence for all vectors, the gains of the matrix A belong to the range [σ(A); σ̄(A)].
Therefore, the singular values have been chosen as measure of gain in the case of
MIMO systems [Sko96].
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Appendix E

Sensing System

E.1 Sensor Selection

The rotor center of gravity as well its attitude needs to be precisely measured
within its whole displacement range. Moreover, in order to keep the advantage of
a frictionless levitation the rotor must be sensed without any contact. Induction,
capacitive and light based sensors combine these conditions.
Optical reflective sensors OSRAM SFH 9201 have been chosen because they provide
a high sensitivity over the whole rotor displacement range [Zoe02].

E.2 Configuration Choice

In order to levitate the cylindrical rotor, the position (three DOF) of its center
of gravity as well as the attitude (two DOF) of its main axis must be controlled.
Therefore, at least five sensors are required. The chosen spatial configuration of the
sensing system is made out of nine sensors. This redundant information will permit
to mean certain signals thus increasing the measurement precision.

These nine sensors are arranged on three similar "Sensing Planes" (see fig.E.1), each
plane includes two horizontal sensors (HU and HD) and one vertical sensor(V).
Plane number 2 (resp. number 3) is the replica of plane number 1 by a rotation of
−π
3 (resp. −2π

3 ) around the gyroscope main axis.

The distance measured by sensor HU is called "u", called "v" for sensor V and "d"
for sensor HD. The subscripts 1,2 or 3 attached to the sensor names or measured
distances tell to which sensing plane a sensor belongs.
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Figure E.1: Configuration of the sensing plane number 1. The sensors are
represented in grey.

In the gyroscope cartesian coordinate system, the sensor coordinates are designated
by the subscripts X, Y and Z.
Inside its plane, the coordinates of a sensor are its distance (subscript R) to the
gyroscope main axis and its height (subscript Z) along this last axis.

Section (E.2) details the method to compute the above mentioned rotor five DOF
using these sensing planes and combinations of the sensorsHUi and HDi, i ∈ [1; 3].

E.3 Position and Angle Calculation

In a first time the rotor angles ϕx and ϕy are computed through the measurement
of a unitary vector parallel to the cylinder main axis. This is done in four steps
(the first two steps are repeated for the lower plane):

1. Two vectors of the upper rotor disc are computed using the measurements of
the three upper horizontal sensors. The coordinates of these vectors are
(HU1X −HU2X , HU1Y −HU2Y , HU1Z + u1Z −HU2Z − u2Z) and
(HU3X −HU2X , HU3Y −HU2Y , HU3Z + u3Z −HU2Z − u2Z).

2. The cross product of these vectors is computed and divided by its norm. The
result will consist in a unitary vector parallel to the cylinder main axis. This
vector is called the upper cylinder main vector.

3. The mean of the upper and lower cylinder main vectors is computed to get a
better approximation of the cylinder main axis.
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4. The angles will then be computed using the first order Taylor series of the
rotation matrix applied to the rotor main axis.

In a second time the position of the center of gravity is measured. Using the
previously computed angles ϕx and ϕy, one calculates the angles ϕ1, ϕ2 and ϕ3
corresponding to the inclination of the cylinder inside each measurement plane.
The center of gravity coordinates inside a plane i, i ∈ [1; 3] are Ri and Zi (Eq.E.1):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ri = 1

2 [(HUiR +HDiR) sin
2(ϕi) + 2 (V iR − vi) cos2(ϕi)

− (ui +HUiZ − di −HDiZ) cos(ϕi) sin(ϕi)]

Zi = 1
2 [(2V iR − 2vi −HUiR −HDiR) sin(ϕi) + (ui +HUiZ − di +HDiZ) cos(ϕi)]

(E.1)

Using the different Ri and Zi one obtains for the coordinates of the gravity center
(Eq.E.2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XG = 1
2

[
R1

cos(−π6 )
+ R3

cos(−5π
6 )

]

YG = 1
3

[
R1

sin(−π6 )
+ R2

sin(−π2 )
+ R3

sin(−5π
6 )

]

ZG = 1
3 [Z1 + Z2 + Z3]

(E.2)
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