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Abstract

In this paper, techniques for optimization of net
algorithms describing parallel asynchronous computations
and derived from cycling and branching behavioral
descriptions are presented. The parallelization level of the
algorithms is defined by a set of parallel operator pairs.
The optimization techniques cover the two key steps of
parallelization flow: the generation of an optimal initial set
of parallel operator pairs to meet the constraints on the
execution time or implementation cost, and the generation
of the final set of pairs to solve the net algorithm existence
problem. The quality of the proposed techniques is
evaluated by experimental results. The techniques based on
the minimization of the net algorithm critical paths
estimated using the maximal weight cliques of the
sequential and parallel operator graphs constitute the most
efficient approach to the generation of the initial and final
sets of parallel operator pairs.

Keywords: net algorithm, existence problem, critical
path, parallelization, optimization.

1. Introduction

The optimization during automatic parallelization of
computations is the most important task in the system
development process, since its results significantly
influence the final computing system parameters [4-8,11-
15]. Usually, the optimization task is formulated as a
scheduling problem [4,6-8,10,15]. Scheduling of two types
of computation is possible: synchronous and asynchronous.
In the majority of scheduling tools, two types of
optimization criterion are considered: to minimize the
execution time of the given algorithm at the specified
constraints on computing resources and to minimize the
implementation cost of the computations at the specified
constraints on the algorithm execution time.

2. Related work

The known sequential scheduling techniques [4,6,12,15]
optimizing synchronous parallel computations introduce
control steps and distribute computations into the steps.
These include: as soon as possible (ASAP), as late as
possible (ALAP), list scheduling, integer linear
programming formulation (ILPF), path-based scheduling,
scheduling for pipelines, sequential scheduling through
transforming the behavioral specification, and others.

Concurrent scheduling [6,10] does not introduce control
steps and states. It defines only precedence and concurrency
between operators, which conserves both time and
resources. The scheduling aims at optimization of
asynchronous digital systems that can be represented using
concurrent models such as Petri Nets [9], CASCADE
control graphs [2], Predicate/Transition Nets [14],
Micropipelines [3], Tangram asynchronous models [1].

Techniques for concurrent scheduling are proposed in
[6,10,13]. The technique described in [6] schedules non-
cyclic non-branching task graphs, analyzing dynamically
the schedule critical paths. The technique presented in
[10,13] defines the net schedule concurrency level with a
set of pairs of operations to be executed in parallel.

In this paper we propose and characterize techniques for
optimization of parallel computations represented as net
algorithms. Our objective is to develop a tool for
optimizing the net algorithms derived from the transformed
data flow cyclic computational model. First, we optimize
the net algorithm parallelization level. Second, we solve the
existence problem and generate a net algorithm that meets
the constraints on execution time and implementation cost.

3. Net algorithms

We derive the net algorithms from the One Basic Block
Model (OBBM) of a specified behavior proposed in [12]. In
VHDL, the OBBM is generated for every process by means
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entity GCD is
port(XP,YP: in Integer;

RES: out Integer)
end GCD;

architecture GCD_BEHAVIOR of GCD is
begin
GCD_OBBM: process

variable X, Y : Integer:=0;
variable C0: Boolean:=True;
variable C1: Boolean;

begin
if C0 then X := XP; Y:=YP; end if;
C0:=X=Y;
if C0 then RES<=X; wait on XP,YP; end if;
if not C0 then

C1:= X < Y;
if C1 then Y:=Y-X; end if;
if not C1 then X:=X-Y; end if;

end if;
end process GCD_OBBM;

end GCD_BEHAVIOR;

Figure 1. OBBM of GCD sequential algorithm
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Figure 2. GCD net algorithm

of eliminating the loop, exit, next, function and procedure
call statements. The transformed process is constructed as a
single unbounded loop and consists of assignment, wait and
conditional statements.

The net algorithm is represented by a directed labeled
graph constructed on the set of variables and set of
operators. The graph is initially generated using a
handshake mechanism. Request and acknowledge edges
that can be labeled by tokens are used for this purpose. The
graph nodes may be labeled by conditional expressions
defining whether the operator or variable assignment is
executed or not. The graph operates through firing nodes. A
time delay associated with a node depends on the value of
conditional expression. The graph can account for the data
and resource flow, which meets the time and cost
constraints.

The VHDL-based OBBM of a GCD algorithm
presented in Fig.1 is mapped to the net algorithm shown in
Fig.2. The net algorithm graph consists of seven operator-

nodes, four variable-nodes, twelve requests, and five
acknowledge edges. Six operator-nodes are labeled with
conditional expressions and seven edges are initially
labeled with tokens. Input operators 5 and 6 assign the
values of ports XP and YP to the variables X and Y. Output
operator 7 assigns the value of variable X to the port RES.

The net algorithm execution time is estimated as the
maximal clique weight of the graph G~D=(N, ~D) defining
the sequential execution of nodes, where N is the set of
operator-nodes and ~D is the complementation of set D of
concurrent node pairs. The net algorithm implementation
cost is estimated through the maximal clique weights of the
graph G~D=(N, D) defining the concurrent execution of
nodes.

4. Parallelization flow

The parallelization flow, we have developed, is
presented in Fig 3. First, a sequential algorithm is translated
to the Data-Control Flow Graph (DCFG). Then, two types
of transformation are applied to the algorithm: the
transformation of data flow and the transformation of
control flow. The transformation results in the OBBM of
the behavior.

The optimization of parallelization level is treated as
looking for a set of pairs of operators that can be executed
in parallel and minimize the execution time or
implementation cost.

To solve the existence problem is to check, if any net
algorithm exists which realizes the generated set of operator
pairs. The objectives of the net algorithm synthesis are the
(1) generation of the flow relation, (2) labeling of nodes
with conditional expressions, and (3) initial marking of
edges with tokens.

The transformation of the net algorithm is performed by
merging compatible nodes and by folding the graph.
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Figure 3. Parallelization flow
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5. Optimization of parallelization level

Depending on the optimization criterion, we have
developed two techniques A1D

optim and A2D
optim (Fig.4) for

optimization of the net algorithm parallelization level.
Technique A1D

optim. To minimize the execution time TD

(Fig.4a) we start with the empty set D=∅ of pairs and step
by step choose a pair from the maximal set DM and add it to
the set D. We break the process when the actual cost CD of
the algorithm implementation becomes greater than the
bounding cost C0.

Technique A2D
optim. To minimize the implementation

cost CD (Fig.4b) we start with the maximal set D=DM of
pairs and step by step choose and remove pairs from the set
D. We break the process when the actual execution time TD

becomes greater than T0.
It is proved in [10], such sets D exist for which no net

algorithm can be constructed. For this reason, we solve the
existence problem and modify the set through using the
techniques A1D

exist and A2D
exist.

Technique A1D
exist. We start with the set D generated by

the technique A1D
optim and step by step remove pairs from

D (Fig.4a). We break the process when the current set D
allows for the generation of a net algorithm.

Technique A2D
exist. We start with the set D generated by

the technique A2D
optim and step by step add pairs to D

(Fig.4b). We break the process when the generation of a net
algorithm is possible for the current set D.

Fig. 5 represents the parallelization process in the time-
cost space, when the execution time TD is being minimized.
The time, first, decreases from Tmax to Toptim, and then
increases to Texist. The cost, first, increases from Cmin to
Coptim and then decreases to Cexist.

Fig. 6 represents the parallelization process in the time-
cost space, when the implementation cost CD is being
minimized. The cost, first, decreases from Cmax to Coptim and
then increases to Cexist. The time, first, increases from Tmin

to Toptim, and then decreases to Texist.

a) Min {TD | CD≤C0}
D⊆DM

b) Min {CD | TD≤T0}
D⊆DM
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Figure 4. Searching for a parallelization level of the net
algorithm
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1 0 1 0 0 1 0 0 1 4,6
2 0 0 0 1 0 0 1 3,7 5,7
3 0 1 1 0 0 1 3,6 5,6

Q= 4 0 1 0 0 1 2,6 4,6
5 0 0 0 1 2,3 3,6
6 0 1 1 1.7 2,6
7 0 1 1,4 1,4
8 0 1,3 1,3

∅ Doptim Dexist

Figure 7. Optimization of parallelization level of an
algorithm with 8 operators including 5 additions and 3

multiplications on 2 adders and 1 multiplier
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An example optimization of the parallelization level is
shown in Fig.7. The matrix Q describes the maximal
parallelization potential of the behavior. In the matrix, an
element qij equals 0 if operators i and j are executed in
parallel, and equals 1 if the operators are executed
sequentially.

6. Optimization techniques

In this section, our objective is to generate an optimal or
quasi-optimal set D. We propose three techniques for the
selection at each step of an appropriate pair to be added to
or removed from the set D.

Technique MDT. It aims at the maximal decrease of the
execution time TD and implementation cost CD during the
set D generation process. When the pair is being added, the
technique chooses a pair splitting a maximal weight clique
of the sequential operator graph G~D without possibly
increasing the maximal clique weight of the parallel
operator graph GD. When the pair is being removed, the
technique chooses a pair splitting a maximal weight clique
of the parallel operator graph GD without possibly
increasing the maximal clique weight of the sequential
operator graph G~D.

The following two techniques TRT and TCT
preliminary order the operators and associated with them
rows and columns of the matrix QD. Two values associated
with each operator are used for the ordering:

QD=

o
r
d
e
r
e
d

o r d e r e d

Figure 8. Traversal of the rows technique (TRT)

QD=

o
r
d
e
r
e
d

o r d e r e d

Figure 9. Traversal of the columns technique (TCT)

• The ratio “maximal clique weight of graph G~DM to
maximal clique weight of graph GDM”; only the cliques
including the operator are taken into account.

• The difference “latest start time to earliest start time”
for the operator.

Technique TRT. It is based on the traversal of the rows
of matrix QD (Fig.8). It looks through the rows from the
first to the last and at each step adds to or removes from the
set D a pair of operators that can be executed in parallel and
does not imply the exceeding time and cost. The technique
generates the set D with the maximal (minimal) number of
parallel operator pairs.

Technique TCT. It is based on the traversal of the
columns of matrix QD (Fig.9). It looks through the columns
from the first to the last and at each step adds to or removes
from the set D a pair of operators. The technique preferably
parallelizes operators belonging to the maximal weight
cliques. Due to this strategy, the technique tries to reduce
the critical paths of the net algorithm to be synthesized.

7. Existence problem

After optimizing the set D, we construct a matrix Qx
D

(Fig.10) from the matrix QD. The elements qij and qji, i<j of
the matrix equal 1 and 0 respectively when (i,j)∉DM. In this
case the operators i and j are executed sequentially in such a
way as the operator j is executed after the operator i. The
elements equal 0 when (i,j)∈D. In this case, the operators i
and j are executed in parallel. The elements equal xij and
~xji respectively when (i,j)∉DM\D. Here xij is a Boolean
variable and ~ denotes a logical negation operation. In this
case, the operators i and j are executed sequentially, but it is
not known which of them is a predecessor and which of
them is a successor. The variable xij takes value 1 when i is
a predecessor of j, and takes value 0 when j is a predecessor
of i.

Fig.10 presents an example matrix Qx
D. The following

pairs of operators are executed sequentially in such a way
as the first operator precedes the second one: {(1,2),(1,5),
(1,8),(2,5),(2,8),(3,4),(3,5),(3,8),(4,5),(4,8),(5,8),(6,7), (6,8),
(7,8)}. The pairs of parallel operators are: {(1,3),(1,4),(2,6),
(3,6), (4,6), (5,6), (5,7)}. The unordered pairs of sequential
operators are: {(1,6),(1,7),(2,3),(2,4),(2,7),(3,7), (4,7)}.

+ * + * + + * +
1 0 1 0 0 1 x x 1
2 0 0 x x 1 0 x 1
3 0 x 0 1 1 0 x 1

Qx
D =4 0 x 0 0 1 0 x 1

5 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 1 1
7 x 0 0 0 0 0 0 1
8 x x x x 0 0 0 0

Figure 10. An example matrix Qx
D
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L1 = + (xki⊕xkj) + (xik≡xkj) + (xik⊕xjk) =0
k<i i<k<j j<k

(k ,i)∉D (i,k )∉D (i,k)∉D
(k ,j)∉D (k,j)∉D (j,k)∉D, for (i,j)∈D

L2 = + (~xij&xik&xkj) + (xij&~xik&~xkj) =0
i<k<j

(i,j)∉D
(i,k)∉D
(k ,j)∉D

L3 = xij = 1, for (i,j)∉D M

Figure 11. Formulation of the existence problem with a
combined logical equation

To solve the net algorithm existence problem, we look
for such values of the variables xij as the matrix Qx

D would
describe a transitive relation. When the relation is
transitive, the parallelization level of the net algorithm
exactly equals D.

We formulate the transitivity requirement to the relation
as a combined logical equation constructed on the matrix
Qx

D and presented in Fig.11. In the equation, an OR-
operation is denoted by +, an AND-operation is denoted by
&, a XOR-operation is denoted by ⊕, an equivalence
operation is denoted by ≡, and a negation operation is
denoted by ~. We can consider the equations L1 and L2 as
written in the form of sum of products. Every product that
is evaluated to 1 is treated as a conflict. When we can find
the values of variables xij for which the sum has no conflicts
a net algorithm exists, otherwise we must modify the set D
in such a way as to avoid the conflicts. We propose three
branch and bound techniques for the set D modification.

Technique MNC. It minimizes the number of conflicts
remaining in the equations L1 and L2 after removing some
pairs from the set D (the execution time is being minimiz-
ed) or adding some pairs to the set (the implementation cost
is being minimized). Several pairs can be removed or added
at one step. As a result, existing conflicts can disappear and
new conflicts can appear. The objective of this technique is
to quickly remove all conflicts from the equations.

Technique MNP. It minimizes the number of pairs
removed from the set D or added to the set in order to avoid
all conflicts. The technique finds out which of the pairs in
set D implies the greatest number of conflicts. These pairs
are being removed from or added to the set first of all. The
objective of this technique is to maximize the number of
pairs in the final set D and to generate a net algorithm with
the maximal parallelization level at the bounded resources.

Technique MCPL. It minimizes the critical path length
represented by the maximal clique weight of the graph G~D

when the execution time is being minimized and of the
graph GD when the implementation cost is being
minimized. At each step, the technique searches for the
pairs that do not possibly imply the increase of the critical
path length.

8. Experimental results

In order to find out which of the techniques are the most
efficient, we have made several experiments. Results for
the fifth order wave filter benchmark [4] are presented in
Tables 1 to 4. Table 1 describes the benchmark and its
parallelization potential.

Table 2 gives a comparison of three techniques optimiz-
ing the level of parallelization: TRT, TCT, and MDT. The
TRT includes the maximal number of pairs in D (187) and
produces the minimal number of conflicts (89), but the
average clique weight (critical path) of 15.00 is the highest
one. Instead, the MDT produces the minimal critical path of
11.65, but the number of pairs in D is also minimal and
equals 155, and the number of conflicts is maximal and
equals 279. After modifying the set D to solve the conflicts,
we can conclude that the TCT technique is the most effi-
cient because it produces the shortest critical and average
paths at the same constraint on the implementation cost.

Table 3 presents results providing a comparison of the
techniques MNC, MNP, and MCPL proposed for solving
the existence problem. All the techniques start with the
same initial set D for which no net algorithm exists. It is
obvious, the MCPL is much more preferable compared to
the MNC and MNP due to the maximal (19) and average
(17.50) clique weights are significantly less for the MCPL
technique.

Results of optimizing net algorithms for the filter at
different constraint on the number of adders and multipliers
are presented in Table 4. The TCT and MCPL techniques
were used. When the parallelization level is being
optimized, the number of pairs in the set D varies from 92
to 225. This implies variations in the maximal (from 26 to
17) and average (from 19.15 to 14.13) clique weights, and
in the number of Boolean variables (from 144 to 11) and
conflicts (from 271 to 13). To solve the existence problem,
from 58% to 3% of pairs are removed from the set D. Due
to the set reduction, the maximal and average clique
weights slightly increase.

Table 1. Parameters of fifth-order wave filter
N Parameter Value
1 Number of operators 34
2 Number of additions 26
3 Number of multiplications 8
4 Number of operator pairs 561
5 Number of pairs of sequential operators 325
6 Number of pairs of parallel operators (DM) 236
7 Execution time of addition 1
8 Execution time of multiplication 2

Net algorithm at maximal parallelization level:
9 Cliques of graph G~DM 12
10 Cliques of graph GDM 636
11 Maximal clique weight 17
12 Average clique weight 13.33
13 Number of adders 5
14 Number of multipliers 3
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Table 2. Generation of set D for the FILTER: 2 adders, 1
multiplier

Technique
Parameter TRT TCT MDT

Optimizing set D
Set D 187 184 155
Cliques of graph G~D 26 30 62
Cliques of graph GD 188 187 162
Maximal clique weight 20 20 20
Average clique weight 15.00 14.33 11.65
Boolean variables 49 52 81
Conflicts 89 107 279

Solving conflicts
Maximal clique weight 20 20 23
Average clique weight 18.18 17.93 17.99

Table 3. Solving conflicts for the FILTER: 2 adders, 2
multipliers

Technique
Parameter MNC MNP MCPL

Initial set D Cardinality of D is 194, maximal
clique weight is 17, average clique
weight is 14.25, number of Boolean
variables is 42, number of conflicts is
70

Final set D 137 141 114
Boolean variables 99 95 122
Cliques of graph G~D 24 22 44
Cliques of graph GD 110 114 88
Maximal clique weight 22 22 19
Average clique weight 17.58 17.64 17.50

Table 4. Parameters of optimized net algorithms for the
FILTER

Parameter Value
Adders 1 2 2 3 3
Multipliers 1 1 2 2 3

Optimizing set D
Set D 92 184 194 224 225
Cliques of graph G~D 13 30 24 18 16
Cliques of graph GD 99 187 185 291 291
Maximal clique weight 26 20 17 17 17
Average clique weight 19.15 14.33 14.25 14.22 14.13
Boolean variables 144 52 42 12 11
Conflicts 271 107 70 16 13

Solving conflicts
Set D 39 103 114 210 219
Pairs removed from D 58% 44% 41% 6% 3%
Cliques of graph G~D 76 116 44 20 16
Cliques of graph GD 47 83 88 234 315
Maximal clique weight 28 20 19 18 17
Average clique weight 22.58 17.93 17.50 15.10 14.75
Boolean variables 197 133 122 26 17
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