
1

Abstract—The complexity of nowadays, algorithms in terms
of number of lines of codes and cross-relations among
processing algorithms that are activated by specific input
signals, goes far beyond what the designer can reasonably
grasp from the “pencil & paper” analysis of the (software)
specifications. Moreover, depending on the implementation
goal different measures and metrics are required at different
steps of the implementation methodology or design flow of
SoC. The process of extracting the desired measures needs to
be supported by appropriate automatic tools, since code
rewriting, at each design stage, may result resource consuming
and error prone. This paper presents an integrated tool for
automatic analysis capable of producing complexity results
based on rich and customizable metrics. The tool is based on a
C virtual machine that allows extracting from any C program
execution the operations and data-flow information, according
to the defined metrics. The tool capabilities include the
simulation of virtual memory architectures.

I. INTRODUCTION

he always increasing complexity of processing
algorithms leads to the need of more and more intensive

specification and validation tasks, and forces to perform
these tasks at a high level of abstraction in order to
minimize the cost and time of such preliminary design
phase. It is a commonly adopted practice to write such
abstract algorithm reference descriptions by means of
common programming languages such as C and C++, as
confirmed by well known examples from standards such as
MPEG 4 [1] [2] and JPEG2000, where the reference
description is provided by the standard definitions
themselves.

In a way, even though conceived as abstract system
descriptions, algorithmic models can be seen as real
implementations over a generic virtual architecture, such
virtual architecture being the chosen programming
language. As for the successive system design over a real,
possibly heterogeneous, SoC architectures, C algorithm
descriptions also known as verification models, are thus the
starting point for driving the first architectural design
choices. A common methodology is to rewrite such
algorithm description into architectural C descriptions
where the C code architecture corresponds to the functional
elements of the final architecture. The possibility of
extracting architectural information from generic non-
architectural code and then refine and validate the

M. Ravasi and M. Mattavelli, are with the Signal Processing Laboratory
3, Signal processing Institute, Swiss Federal Institute of Technology of
Lausanne (EPFL), CH-1015 Lausanne, Switzerland (e-mail:
massimo.ravasi@epfl.ch marco.mattavelli@epfl.ch).

architectural description is very attracting because is
permits to avoid wrong choices or to reduce the number and
workload of redesign iterations.

Sec. II briefly reviews the state of the art in algorithmic
complexity analysis and complexity metric measurements;
Sec. III introduces an automatic integrated tool conceived
for the complexity analysis and virtual exploration of the
design-space for complex algorithms, called Software
Instrumentation Tool (SIT). Section IV describes the
measures obtainable for the computational complexity
analysis, data-flow and storage analysis, the simulation of
virtual architectures and outlines some possible evolutions,
of the analysis capabilities. Section V concludes the paper.

II. COMPLEXITY ANALYSIS AND DESIGN OF COMPLEX

SYSTEMS

In literature several different ways have been proposed to
measure the complexity of the building blocks of an
algorithm and of their execution. Two main axes are
typically recognized: the computational complexity analysis
and the data-transfers and storage complexity analysis. The
computational complexity represents the computational load
that has to be sustained to perform a given task; it can be
measured according to different metrics, such as number of
times a given task has to be performed, number of
operations or number of clock cycles. Similarly, the data
transfer and storage complexity analysis may aim to
measure the simple counting of I/O operations, or to
estimate a cache performance, or to estimate the I/O
bandwidth and processing demands.

A. Static Approaches

The methods based on a static analysis of the source code
range from the simple counting of the number of operations
appearing in a program up to sophisticated approaches
determining lower and upper running time of a given
program on a given processor [3]. While the simple
counting technique provides a very accurate evaluation of
the operations, it cannot handle loops, recursion and
conditional statements except for some particular cases.
Explicit or implicit enumeration of program paths can
handle loops and conditional statements and can yield
bounds on run-time best and worst case [3],. The main
drawback of these techniques is that the typical real
processing complexity of many algorithms heavily depends
on the input data statistics while static analysis can only
detect upper and lower bounds. Moreover, restricted
programming styles such as absence of dynamic data
structures, recursion and bounded loops are required so as
to correctly perform a static analysis [4].

High Level Extraction of SoC Architectural Information from
Generic C Algorithmic Descriptions

Marco Mattavelli and Massimo Ravasi

T

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

2

B. Profilers and Complexity Analysis at
Instruction-Level

The information provided by profilers is only available at
a relatively high level of abstraction that is at a function
level [5]. Since signal processing algorithms typically spend
the majority of the time in a few functions, more details and
reliable statistics about the processing operations executed
by those functions are necessary to assess and understand
the complexity of an algorithm. If only function-level
information is provided, a complete rewriting of the
program code, for instance to replace each elementary
operation with a function call, is necessary to obtain
accurate statistics of the executed operations. Profilers are
well suited for program optimization tasks on a given
specific architecture, as they measure, in fact, the time spent
by parts of a program. Furthermore, the number of calls of a
function can help the partial redesign of the program to
reduce the number of function calls to costly functions.

The information gathered with profilers strictly depends
on the underlying machine and on the compiler
optimizations, while a complexity evaluation depending
only on the algorithm itself is more appropriate for
high-level SoC system design. For such reason, tools for
profiling and optimization at very high abstraction level –
i.e. at programming language level – are better suited for
system design. An example of such tools is the ATOMIUM
[6] tool-suite (A Toolbox for Optimizing Memory I/O
Using geometrical Models), which addresses memory
related aspects of system-design, by supporting the Data
Transfer and Storage Exploration methodology (DTSE) [7].
ATOMIUM allows designers to quickly identify memory
related hotspots in the algorithm such as data structures and
arrays characterized by large data exchanges and functions,
or function portions, requiring dominant memory access
bandwidths as well as run-time peak memory usage. The
provided data-transfer analysis is based on a flat memory
architecture model, which does not allow taking into
account the effects of introducing one or more cache
memories in the memory hierarchy.

III. THE SOFTWARE INSTRUMENTATION TOOL (SIT)

The approach, presented in this paper has been developed
with the goal of measuring the complexity of a specific
algorithm independently from the hardware architecture on
which the software model of the algorithm is run. In other
words this means to extract architectural algorithmic
information from non-architectural and/or architectural C
algorithmic description. This approach is in line with
methodological approaches proposed for instance in [8] and
[6], aiming at optimizing data transfers, memory
bandwidths and storage requirements directly on algorithm
specifications at high abstraction level.

The new approach of SIT [9] is possible by means of a
breakthrough in the instrumentation/overloading technology
enabling a complete detection of all C operators without
any limitation in the way pointers and data structures are
used Error! Reference source not found.. Such
technology enables, besides a complete operator analysis, a

full data-transfer analysis on any data structure providing
design-oriented algorithmic complexity evaluations at pure
unstructured source-code level. In a way, SIT can be seen
as a virtual-machine for running C source code. The
instruction set of this virtual-machine corresponds exactly
to the set of C language operators and control-statements.
By means of such virtual-machine, all the operations
performed during the execution of the instrumented
verification model are intercepted and processed, providing
as result an exhaustive basis for computational complexity
and architectural analysis. Besides such operator based
analysis, customizable virtual memory architectures can be
plugged into the virtual-machine extending the analysis
capabilities to the data-transfer and storage domain. The
current version of SIT is capable of instrument any C
source code, independently of the chosen C dialect,
allowing to analyze a software program as-is, without the
need of tedious and error-prone work such as massive code
rewriting or manual code instrumentation. The main
innovations of SIT versus the state-of-the-art tool are:

Pure algorithmic complexity analysis at the highest
possible abstraction level: source-code level. The
analysis does not depend on the underlying platform or
on the compilation, but only on the source-code.
Input-data dependent analysis, the implementation of
algorithms is now based, rather than on the worst-case,
on the Cost/Quality-of-Service trade-off, which implies
the need of an input-data dependent analysis.
Completely automatic instrumentation process with no
limitations for ANSI C and K&R compliant C code.
Fully customizable memory simulation, for a versatile
data-transfer and storage analysis apt to explore different
design-spaces in the memory architecture domain.
The SIT virtual-machine is also a validated reliable
framework for building on top of it other simulators and
analysis tools, for different metrics and architectural
explorations.

The schematic diagram of the main functional blocks
constituting the SIT analysis framework and the blocks of
the instrumentation and simulation process is shown in
Figure 1. The whole instrumentation process, from the
source files to the instrumented executable, is completely
automatic: it appears to the end user as a normal
compilation; it can be tuned by configuring specific
instrumentation features, in several different ways (by
means of environment variables, configuration files or
command line options). The instrumented executable can be
run on real input data, exactly as its native executable
counterpart, to produce the complexity analysis results,
which can be browsed and manipulated by means of an
interactive GUI.

IV. ARCHITECTURAL MEASUREMENTS AND METRICS

A. Computational Complexity Analysis

The set of intercepted operations is an extension of C
operator set: it comprises both explicit C operations (e.g., +,
-, *, etc.) and implicit operations (e.g., implicit type castings

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

3

in expressions, variable constructions). Similarly, the
data-type basis is an extension of the C data-types set,
comprising C simple types (int, float, etc.), C derived types
(pointers, vectors, structures and pointers to functions).
Furthermore, results are collected along a third axis, the
execution-tree; the user can choose if the nodes in the
execution-tree correspond to the function calls (low
execution-tree resolution, faster simulation) or if they
include compound statements and basic-block (high
execution-tree resolution).

 Figure 1. The “Software Instrumentation Tool” complexity
analysis framework.

Figure 2. Example of computational complexity analysis
results provided by the Interactive GUI.

Main Instrumentation Core

Collector

Vct Stack MgrHeap Mgr Stack Mgr

256B Cache
(Register File)

Temp. Mgr
(Special Purpose)

32KB Cache

64MB RAM

To assign different
segments of the driven

memory to multiple “users”

“Dummy” Manager
(just to fill the Temporary

Memory slot)

Figure 3. Example of virtual memory architecture.

Figure 2 shows an example of computational complexity
analysis results (the picture is a screenshot of SITView, the
GUI of SIT). On the left side, there is the execution tree,
where the ‘print_mem_usage’ function is selected; since in
this example the execution tree was traced at high
resolution, two homonymous ‘main’ nodes are presented:
the first is ‘main-F’ (two nodes above ‘print_mem_usage’)
and corresponds to the actual ‘main’ function; the second is
‘main-CS’ (immediately below ‘print_mem_usage’) and
corresponds to an inner compound statement of the ‘main’

function. On the right side, the numerical results of the
computational complexity analysis are presented; the labels
for the horizontal axis contain both C data types (ulng =
unsigned long, pntr = generic pointer) and the extra BOOL
type (bool label); the vertical axis presents the operation
basis, where both explicit operations, i.e. >, >=, =, * pn
(pointer dereferencing operator) and & un (unary &
operator, returning the address of a variable) and implicit
operations, i.e. CSTR (variable “construction”) and CCPY
(copy initialization in variable construction), can be
identified.

B. Data-transfer and Storage Complexity Analysis

The data transfers and storage requirements play a
fundamental role in the evaluation of the algorithmic
complexity of a system for the design of a SoC. In data
dominated algorithms most of the power consumption and
bus load is due to data transfers and the optimization of
these dominant costs is one of the most critical steps in the
development of efficient and low-power implementations
[8]. By intercepting memory accesses by means of read and
write functions in instrumented types’ C++ classes and by
associating to the algorithm an underlying memory model,
SIT enables the simulation of memory operations and the
extraction of relevant information and measurements about
memory performance, such as number of data-transfers,
memory usage, cache hits and misses, etc.

The underlying memory architecture, for which
measurements are required, can be easily specified aside
without having to rewrite the algorithm source code. The
Memory Simulation Core is the basic framework for
memory simulation for data-transfer and storage complexity
analysis. The simulated memory architecture is composed
of several memory models, each of them composed by
different simulation modules (allocation managers, cache
memories, and storage memories). Figure 3 shows an
example of virtual memory architecture that can be
simulated with SIT. Figure 4 shows an example of memory
simulation results. On the vertical axis, the different
simulated modules can be identified, which in this case
correspond to the simulation of three memory models (i.e.
Stack, VctStack and Heap). It can be clearly seen that the
results generated through the simulation vary according to
the nature of a simulation module: the four labels RHist,
RMisses, WHits and WMisses (Read/Write Hits and Misses)
are specific for caches, the label Alloc is specific for
allocation managers and the labels PushSP and (Push Stack
Pointer) are specific for stack-like allocation managers. The
results of the data-transfer and storage complexity analysis
are collected along the same execution-tree basis as with the
computational complexity analysis results.

Figure 4. Example of data transfers and storage complexity
analysis results.

The simulation and analysis capabilities of the custom

SIT FrameworkAutomatic
Instrumentation

Source Code
Instrumentation

Memory Simulation
Core

Main Instrumentation
Core

Customizable
Memory Architecture

Source Files (C)

Instrumentation
Options

(Environment Variables,
Command Line

Parameters)

Instrumented
Executable

Instrumented
Files (C++)

Compilation
and Link (g++)

Simulation ResultsSimulation

Result Exploration
Tools

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

4

memory simulation cores can be further improved by fully
interfacing directly with the Main Instrumentation Core –
i.e. by bypassing the default interface between the Main
Instrumentation Core and the Memory Simulation Core.
More specifically, the Memory Simulation Core can be
driven not only by the data-transfer and storage events, as in
the default case, but also by the operation interception
events. By this way, it is possible to design custom
simulation and analysis cores, which may be targeted for
other analyses than the data-transfer and storage complexity
analysis or the computational complexity analysis only.
That is, SIT can be easily reused as framework for
developing new simulation and analysis tools.

Another interesting feature of the tool is the possibility of
weighting all computational and memory based operators
according to some specific target platforms. Accurate
evaluations of the performance on the target platform are
possible without the need of the actual porting of all or of
some parts of the code [9].

C. Automatic Measurement of Inter-Function
Data-Transfers for Explicit Statement of Data-transfer
dependences among Functions and for Functional
Modules Identification

A static analysis of a software program allows identifying
the dependences among the various functions in terms of
function call dependences. A dynamic analysis in real
working conditions allows evaluating the real dependences
among functions by explicitly detecting the actual
function-call tree, with a noticeable improvement with
respect to static analysis (e.g., by dead-branch detection, by
faithful evaluation of recursive function-call branches and
by explicitly taking into account dynamic dependences).
Indeed, this analysis results to be of limited use for the
system designer, as the data-transfer dependences between
the functions cannot be derived from the study of the
function-call tree. It is not uncommon that two or more
functions exchange a great amount of data through a
common buffer and yet they are far from each other in the
function-call tree, possibly belonging to completely
different branches. Furthermore, the functions in a
verification model are often loosely related with the actual
functional modules of the corresponding application, since
several functions may contribute to provide the
functionalities of a functional module Conversely, for the
system designer it is very important to have an overall
vision of an algorithm, of how it is composed by different
modules and on how they interact with each other. Explicit
measurements of the inter-function data-transfers are a
meaningful basis for high-level SoC architectural
optimizations. For programs composed by many nodes in
the function-call tree, a bottom-up analysis of the
function-call tree and of the inter-function data-transfer
graph can easily help identifying the different functional
modules by grouping the nodes in the call tree into groups
with limited data-transfers toward the other modules.

Another simulation capability of SIT is to automatically
generate the inter-function data-transfer graph by means of
the memory simulation core.

Module 2
Module 1

main

Func1

Func3

Func4

Func2

input

output

Module 2
Module 1

main

Func1

Func3

Func4

Func2

input

output

Func1

main

Func3

Func4

Func1

Func2

Func1

main

Func3

Func4

Func1

Func2

a) Function-call tree b) Functions, functional modules
and data-transfer dependences

Figure 5. The function call tree (a) does not help detecting
the actual data transfer dependences functions the functions
and grouping the functions in functional modules (b).

V. CONCLUSIONS

This paper has presented a tool supporting complexity
analysis of C algorithm descriptions for high level SoC
architectural exploration. The tool is based on a
breakthrough in instrumentation technology enabling the
implementation of a C virtual simulator capable of
measuring operators and data transfers during the execution
of algorithms. Besides being completely automatic in the
sense that no code rewriting is needed, the simulator can be
configured to provide measurements on user configured
memory architectures. Extensions of the metrics such as
critical path measurements or other simulation capabilities
obtainable using the SIT framework are not included here
for brevity and can be found in [10][11].

REFERENCES

[1] ISO/IEC, “Information technology – Coding of audio visual objects –
Part 2 Visual”, ISO/IEC International Standard 14496-2 (MPEG-4).

[2] ISO/IEC, “Information technology – Coding of audio visual objects –
Part 10 Advanced Video Coding”, ISO/IEC 14496-10.

[3] Y. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration”, IEEE Trans. on Computer-Aided
Design,of Int Circuits and Sys, vol. 16, pp. 1477-1487, Dec. 1997.

[4] E. Kligerman and D. Stoyenko, “Real–time Euclid: A language for
reliable real time systems”, IEEE Transactions on
Software.Engineering, vol. SE 12, pp. 941 949, September 1986.

[5] S. Graham, P. Kessler, and M. McKusick, “gprof: A call graph
execution profiler”, in Proceedings of Symposium on Compiler
Construction (SIGPLAN), vol. 17, pp. 120 126, June 1982.

[6] IMEC, “What is ATOMIUM?”, presentation page at the address
http://www.imec.be/design/multimedia/ atomium/.

[7] F. Catthoor, et al, "Optimisation of global data transfer and storage
organisation for decreased area and power in data dominated real time
processing systems", IMEC Internal report, November 1998.

[8] L. Nachtergaele et al. “System Level Power Optimization of Video
Codecs on Embedded Cores: A Systematic Approach”, Journal of
VLSI Signal Processing, 18, pp. 89 109, 1998.

[9] M. Ravasi, M. Mattavelli,et al : "High-Level Algorithmic Complexity
Analysis for the Implementation of a Motion-JPEG2000 Encoder", in
"Integrated Circuit and System Design" Lecture Notes in Computer
Science, LNCS 2799, pp 440-450, Springer September 2003.

[10] M. Ravasi, M. Mattavelli, "High-Level Algorithmic Complexity
Evaluation for System Design", Journal of Systems Architecture, vol.
48/13-15, pp. 403-427, Elsevier Science B.V., May 2003.

[11] A. Prihozhy, M. Mattavelli, D. Mlynek, "Data Dependences Critical
Path Evaluation at C/C++ System Level Description", Lecture Notes
in Computer Science , LNCS 2799, pg. 569 579, Springer, September
2003.

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

